51
|
Balmer D, Flors V, Glauser G, Mauch-Mani B. Metabolomics of cereals under biotic stress: current knowledge and techniques. FRONTIERS IN PLANT SCIENCE 2013; 4:82. [PMID: 23630531 PMCID: PMC3632780 DOI: 10.3389/fpls.2013.00082] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/20/2013] [Indexed: 05/18/2023]
Abstract
Prone to attacks by pathogens and pests, plants employ intricate chemical defense mechanisms consisting of metabolic adaptations. However, many plant attackers are manipulating the host metabolism to counteract defense responses and to induce favorable nutritional conditions. Advances in analytical chemistry have allowed the generation of extensive metabolic profiles during plant-pathogen and pest interactions. Thereby, metabolic processes were found to be highly specific for given tissues, species, and plant-pathogen/pest interactions. The clusters of identified compounds not only serve as base in the quest of novel defense compounds, but also as markers for the characterization of the plants' defensive state. The latter is especially useful in agronomic applications where meaningful markers are essential for crop protection. Cereals such as maize make use of their metabolic arsenal during both local and systemic defense responses, and the chemical response is highly adapted to specific attackers. Here, we summarize highlights and recent findings of metabolic patterns of cereals under pathogen and pest attack.
Collapse
Affiliation(s)
- Dirk Balmer
- Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
- *Correspondence: Brigitte Mauch-Mani, University of Neuchâtel, Faculty of Sciences, Institute of Botany, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland. e-mail:
| | - Victor Flors
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume ICastellón, Spain
| | - Gaetan Glauser
- Chemical Analytical Service of the Swiss Plant Science Web, University of NeuchâtelNeuchâtel, Switzerland
| | - Brigitte Mauch-Mani
- Institute of Biology, University of NeuchâtelNeuchâtel, Switzerland
- *Correspondence: Brigitte Mauch-Mani, University of Neuchâtel, Faculty of Sciences, Institute of Botany, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland. e-mail:
| |
Collapse
|
52
|
Gong CY, Wang T. Proteomic evaluation of genetically modified crops: current status and challenges. FRONTIERS IN PLANT SCIENCE 2013; 4:41. [PMID: 23471542 PMCID: PMC3590489 DOI: 10.3389/fpls.2013.00041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/19/2013] [Indexed: 05/07/2023]
Abstract
Hectares of genetically modified (GM) crops have increased exponentially since 1996, when such crops began to be commercialized. GM biotechnology, together with conventional breeding, has become the main approach to improving agronomic traits of crops. However, people are concerned about the safety of GM crops, especially GM-derived food and feed. Many efforts have been made to evaluate the unintended effects caused by the introduction of exogenous genes. "Omics" techniques have advantages over targeted analysis in evaluating such crops because of their use of high-throughput screening. Proteins are key players in gene function and are directly involved in metabolism and cellular development or have roles as toxins, antinutrients, or allergens, which are essential for human health. Thus, proteomics can be expected to become one of the most useful tools in safety assessment. This review assesses the potential of proteomics in evaluating various GM crops. We further describe the challenges in ensuring homogeneity and sensitivity in detection techniques.
Collapse
Affiliation(s)
| | - Tai Wang
- *Correspondence: Tai Wang, Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidianqu, Beijing 100093, China. e-mail:
| |
Collapse
|
53
|
Mehrotra S, Goyal V. Evaluation of designer crops for biosafety--a scientist's perspective. Gene 2012; 515:241-8. [PMID: 23266812 DOI: 10.1016/j.gene.2012.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/26/2012] [Accepted: 12/04/2012] [Indexed: 01/16/2023]
Abstract
With the advent of transgenic technology, it has become possible to mobilize and express foreign genes into plants and to design crop varieties with better agronomic attributes and adaptability to challenging environmental conditions. Recent advances in transgenic technology have led to concerns about safety of transgenic crops to human and animal health and environment. Biosafety focuses on preventing, minimizing and eliminating risks associated with the research, production, and use of transgenic crops. Food biosafety involves studies of substantial equivalence related to compositional analysis, toxicity and allergenicity. Environmental biosafety involves glasshouse and field trials and study of unintended effects on non-target organisms. Transgenics are characterized at phenotypic and molecular levels for understanding the location of transgene insertion site, ploidy level, copy number, integrated vector sequences, protein expression and stability of the transgene. Various techniques employed for transgene characterization include flow cytometry, southern, northern and western analyses, real-time (qRT) PCR, competitive PCR, FISH, fiber-FISH, DNA micro-arrays, mRNA profiling, 2DE-MS, iTRAQ, FT-MS, NMR, GC-MS, CE-MS and biosensor-based approaches. Evaluation of transgene expression involves the application of integrated phenomics, transcriptomics, proteomics and metabolomics approaches. However, the relevance and application of these approaches may vary in different cases. The elaborate analysis of transgenic crops will facilitate the safety assessment and commercialization of transgenics and lead to global food security for the future.
Collapse
Affiliation(s)
- Shweta Mehrotra
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi-110012, India.
| | | |
Collapse
|
54
|
Rohn H, Junker A, Hartmann A, Grafahrend-Belau E, Treutler H, Klapperstück M, Czauderna T, Klukas C, Schreiber F. VANTED v2: a framework for systems biology applications. BMC SYSTEMS BIOLOGY 2012; 6:139. [PMID: 23140568 PMCID: PMC3610154 DOI: 10.1186/1752-0509-6-139] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/01/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Experimental datasets are becoming larger and increasingly complex, spanning different data domains, thereby expanding the requirements for respective tool support for their analysis. Networks provide a basis for the integration, analysis and visualization of multi-omics experimental datasets. RESULTS Here we present VANTED (version 2), a framework for systems biology applications, which comprises a comprehensive set of seven main tasks. These range from network reconstruction, data visualization, integration of various data types, network simulation to data exploration combined with a manifold support of systems biology standards for visualization and data exchange. The offered set of functionalities is instantiated by combining several tasks in order to enable users to view and explore a comprehensive dataset from different perspectives. We describe the system as well as an exemplary workflow. CONCLUSIONS VANTED is a stand-alone framework which supports scientists during the data analysis and interpretation phase. It is available as a Java open source tool from http://www.vanted.org.
Collapse
Affiliation(s)
- Hendrik Rohn
- , Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Astrid Junker
- , Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Anja Hartmann
- , Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Eva Grafahrend-Belau
- , Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Hendrik Treutler
- , Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Matthias Klapperstück
- , Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Tobias Czauderna
- , Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Christian Klukas
- , Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Falk Schreiber
- , Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1, 06120 Halle, Germany
- Clayton School of Information Technology, Monash University, Victoria 3800, Australia
| |
Collapse
|
55
|
Schlüter U, Mascher M, Colmsee C, Scholz U, Bräutigam A, Fahnenstich H, Sonnewald U. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis. PLANT PHYSIOLOGY 2012; 160:1384-406. [PMID: 22972706 PMCID: PMC3490595 DOI: 10.1104/pp.112.204420] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 09/12/2012] [Indexed: 05/18/2023]
Abstract
Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mM) or limiting (0.15 mM) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype- and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions.
Collapse
|
56
|
Hassan F, Noorian MS, Jacobsen HJ. Effect of antifungal genes expressed in transgenic pea (Pisum sativum L.) on root colonization with Glomus intraradices. GM CROPS & FOOD 2012; 3:301-9. [PMID: 22922179 DOI: 10.4161/gmcr.21897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pathogenic fungi have always been a major problem in agriculture. One of the effective methods for controlling pathogen fungi to date is the introduction of resistance genes into the genome of crops. It is interesting to find out whether the induced resistance in crops will have a negative effect on non-target organisms such as root colonization with the AM fungi. The objective of the present research was to study the influence of producing antifungal molecules by four transgenic pea (Pisum sativum L.) lines expressing PGIP gene from raspberry, VST-stilbene synthase from vine, a hybrid of PGIP/VST and bacterial Chitinase gene (Chit30) from Streptomyces olivaceoviridis respectively on the colonization potential of Glomus intraradices. Four different experiments were done in greenhouse and climate chamber, colonization was observed in all replications. The following parameters were used for evaluation: frequency of mycorrhization, the intensity of mycorrhization, the average presence of arbuscules within the colonized areas and the presence of arbuscules in the whole root system which showed insignificant difference between transgenic and non-transgenic plants. The root/shoot ratio exhibited different values according to the experiment condition. Compared with negative non-transgenic control all transgenic lines showed the ability to establish symbiosis and the different growth parameters had insignificant effect due to mycorrhization. The results of the present study proved that the introduced pathogen resistance genes did not affect the mycorrhization allocations in pea.
Collapse
Affiliation(s)
- Fathi Hassan
- Institute for Plant Genetics, Section of Plant Biotechnology, Leibniz University of Hannover, Hannover, Germany.
| | | | | |
Collapse
|
57
|
Brotman Y, Landau U, Pnini S, Lisec J, Balazadeh S, Mueller-Roeber B, Zilberstein A, Willmitzer L, Chet I, Viterbo A. The LysM receptor-like kinase LysM RLK1 is required to activate defense and abiotic-stress responses induced by overexpression of fungal chitinases in Arabidopsis plants. MOLECULAR PLANT 2012; 5:1113-1124. [PMID: 22461667 DOI: 10.1093/mp/sss021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Application of crab shell chitin or pentamer chitin oligosaccharide to Arabidopsis seedlings increased tolerance to salinity in wild-type but not in knockout mutants of the LysM Receptor-Like Kinase1 (CERK1/LysM RLK1) gene, known to play a critical role in signaling defense responses induced by exogenous chitin. Arabidopsis plants overexpressing the endochitinase chit36 and hexoaminidase excy1 genes from the fungus Trichoderma asperelleoides T203 showed increased tolerance to salinity, heavy-metal stresses, and Botrytis cinerea infection. Resistant lines, overexpressing fungal chitinases at different levels, were outcrossed to lysm rlk1 mutants. Independent homozygous hybrids lost resistance to biotic and abiotic stresses, despite enhanced chitinase activity. Expression analysis of 270 stress-related genes, including those induced by reactive oxygen species (ROS) and chitin, revealed constant up-regulation (at least twofold) of 10 genes in the chitinase-overexpressing line and an additional 76 salt-induced genes whose expression was not elevated in the lysm rlk1 knockout mutant or the hybrids harboring the mutation. These findings elucidate that chitin-induced signaling mediated by LysM RLK1 receptor is not limited to biotic stress response but also encompasses abiotic-stress signaling and can be conveyed by ectopic expression of chitinases in plants.
Collapse
Affiliation(s)
- Yariv Brotman
- Genes and Small Molecules, AG Willmitzer, Max-Planck-Institut of Molecular Plant Physiology, Am Muhlenberg 1, D-14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Liu Z, Li Y, Zhao J, Chen X, Jian G, Peng Y, Qi F. Differentially expressed genes distributed over chromosomes and implicated in certain biological processes for site insertion genetically modified rice Kemingdao. Int J Biol Sci 2012; 8:953-63. [PMID: 22811617 PMCID: PMC3399318 DOI: 10.7150/ijbs.4527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/05/2012] [Indexed: 01/17/2023] Open
Abstract
Release of genetically modified (GM) plants has sparked off intensive debates worldwide partly because of concerns about potential adverse unintended effects of GM plants to the agro system and the safety of foods. In this study, with the aim of revealing the molecular basis for unintended effects of a single site insertion GM Kemingdao (KMD) rice transformed with a synthetic cry1Ab gene, and bridging unintended effects of KMD rice through clues of differentially expressed genes, comparative transcriptome analyses were performed for GM KMD rice and its parent rice of Xiushui11 (XS11). The results showed that 680 differentially expressed transcripts were identified from 30-day old seedlings of GM KMD rice. The absolute majority of these changed expression transcripts dispersed and located over all rice chromosomes, and existed physical distance on chromosome from the insertion site, while only two transcripts were found to be differentially expressed within the 21 genes located within 100 kb up and down-stream of the insertion site. Pathway and biology function analyses further revealed that differentially expressed transcripts of KMD rice were involved in certain biological processes, and mainly implicated in two types of pathways. One type was pathways implicated in plant stress/defense responses, which were considerably in coordination with the reported unintended effects of KMD rice, which were more susceptible to rice diseases compared to its parent rice XS11; the other type was pathways associated with amino acids metabolism. With this clue, new unintended effects for changes in amino acids synthesis of KMD rice leaves were successfully revealed. Such that an actual case was firstly provided for identification of unintended effects in GM plants by comparative transciptome analysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuan Ming Yuan Road, Beijing 100193, P. R. China
| | - Fangjun Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2 West Yuan Ming Yuan Road, Beijing 100193, P. R. China
| |
Collapse
|
59
|
Liu Z, Zhao J, Li Y, Zhang W, Jian G, Peng Y, Qi F. Non-uniform distribution pattern for differentially expressed genes of transgenic rice Huahui 1 at different developmental stages and environments. PLoS One 2012; 7:e37078. [PMID: 22606331 PMCID: PMC3350509 DOI: 10.1371/journal.pone.0037078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 04/13/2012] [Indexed: 11/18/2022] Open
Abstract
DNA microarray analysis is an effective method to detect unintended effects by detecting differentially expressed genes (DEG) in safety assessment of genetically modified (GM) crops. With the aim to reveal the distribution of DEG of GM crops under different conditions, we performed DNA microarray analysis using transgenic rice Huahui 1 (HH1) and its non-transgenic parent Minghui 63 (MH63) at different developmental stages and environmental conditions. Considerable DEG were selected in each group of HH1 under different conditions. For each group of HH1, the number of DEG was different; however, considerable common DEG were shared between different groups of HH1. These findings suggested that both DEG and common DEG were adequate for investigation of unintended effects. Furthermore, a number of significantly changed pathways were found in all groups of HH1, indicating genetic modification caused everlasting changes to plants. To our knowledge, our study for the first time provided the non-uniformly distributed pattern for DEG of GM crops at different developmental stages and environments. Our result also suggested that DEG selected in GM plants at specific developmental stage and environment could act as useful clues for further evaluation of unintended effects of GM plants.
Collapse
Affiliation(s)
- Zhi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jie Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yunhe Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Wenwei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Guiliang Jian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yufa Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail: (FQ); (YP)
| | - Fangjun Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- * E-mail: (FQ); (YP)
| |
Collapse
|
60
|
Gong CY, Li Q, Yu HT, Wang Z, Wang T. Proteomics insight into the biological safety of transgenic modification of rice as compared with conventional genetic breeding and spontaneous genotypic variation. J Proteome Res 2012; 11:3019-29. [PMID: 22509807 DOI: 10.1021/pr300148w] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential of unintended effects caused by transgenic events is a key issue in the commercialization of genetically modified (GM) crops. To investigate whether transgenic events cause unintended effects, we used comparative proteomics approaches to evaluate proteome differences in seeds from 2 sets of GM indica rice, herbicide-resistant Bar68-1 carrying bar and insect-resistant 2036-1a carrying cry1Ac/sck, and their respective controls D68 and MH86, as well as indica variety MH63, a parental line for breeding MH86, and japonica variety ZH10. This experimental design allowed for comparing proteome difference caused by transgenes, conventional genetic breeding, and natural genetic variation. Proteomics analysis revealed the maximum numbers of differentially expressed proteins between indica and japonica cultivars, second among indica varieties with relative small difference between MH86 and MH63, and the minimum between GM rice and respective control, thus indicating GM events do not substantially alter proteome profiles as compared with conventional genetic breeding and natural genetic variation. Mass spectrometry analysis revealed 234 proteins differentially expressed in the 6 materials, and these proteins were involved in different cellular and metabolic processes with a prominent skew toward metabolism (31.2%), protein synthesis and destination (25.2%), and defense response (22.4%). In these seed proteomes, proteins implicated in the 3 prominent biological processes showed significantly different composite expression patterns and were major factors differentiating japonica and indica cultivars, as well as indica varieties. Thus, metabolism, protein synthesis and destination, and defense response in seeds are important in differentiating rice cultivars and varieties.
Collapse
Affiliation(s)
- Chun Yan Gong
- Key Laboratory for Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100093, China
| | | | | | | | | |
Collapse
|
61
|
Schäfer T, Hanke MV, Flachowsky H, König S, Peil A, Kaldorf M, Polle A, Buscot F. Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple. Genet Mol Biol 2012; 35:466-73. [PMID: 22888297 PMCID: PMC3389536 DOI: 10.1590/s1415-47572012000300014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 03/06/2012] [Indexed: 11/30/2022] Open
Abstract
This study investigated the impact of constitutively expressed Trichoderma atroviride genes encoding exochitinase nag70 or endochitinase ech42 in transgenic lines of the apple cultivar Pinova on the symbiosis with arbuscular mycorrhizal fungi (AMF). We compared the exo- and endochitinase activities of leaves and roots from non-transgenic Pinova and the transgenic lines T386 and T389. Local and systemic effects were examined using own-rooted trees and trees grafted onto rootstock M9. Scab susceptibility was also assessed in own-rooted and grafted trees. AMF root colonization was assessed microscopically in the roots of apple trees cultivated in pots with artificial substrate and inoculated with the AMF Glomus intraradices and Glomus mosseae. Own-rooted transgenic lines had significantly higher chitinase activities in their leaves and roots compared to non-transgenic Pinova. Both of the own-rooted transgenic lines showed significantly fewer symptoms of scab infection as well as significantly lower root colonization by AMF. Biomass production was significantly reduced in both own-rooted transgenic lines. Rootstock M9 influenced chitinase activities in the leaves of grafted scions. When grafted onto M9, the leaf chitinase activities of non-transgenic Pinova (M9/Pinova) and transgenic lines (M9/T386 and M9/T389) were not as different as when grown on their own roots. M9/T386 and M9/T389 were only temporarily less infected by scab than M9/Pinova. M9/T386 and M9/T389 did not differ significantly from M9/Pinova in their root chitinase activities, AMF root colonization and biomass.
Collapse
Affiliation(s)
- Tina Schäfer
- Department of Terrestrial Ecology, Faculty of Biological Science, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Magda-Viola Hanke
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Horticultural and Fruit Crops, Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Horticultural and Fruit Crops, Dresden, Germany
| | - Stephan König
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Andreas Peil
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Horticultural and Fruit Crops, Dresden, Germany
| | - Michael Kaldorf
- Department of Terrestrial Ecology, Faculty of Biological Science, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Andrea Polle
- Department of Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August-Universität Göttingen, Göttingen, Germany
| | - François Buscot
- Department of Terrestrial Ecology, Faculty of Biological Science, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| |
Collapse
|
62
|
Schnell J, Labbé H, Kovinich N, Manabe Y, Miki B. Comparability of imazapyr-resistant Arabidopsis created by transgenesis and mutagenesis. Transgenic Res 2012; 21:1255-64. [PMID: 22430369 DOI: 10.1007/s11248-012-9597-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/03/2012] [Indexed: 11/27/2022]
Abstract
The Arabidopsis CSR1 gene codes for the enzyme acetohydroxyacid synthase (AHAS, EC 2.2.1.6), also known as acetolactate synthase, which catalyzes the first step in branched-chain amino acid biosynthesis. It is inhibited by several classes of herbicides, including the imidazolinone herbicides, such as imazapyr; however, a substitution mutation in csr1-2 (Ser-653-Asn) confers selective resistance to the imidazolinones. The transcriptome of csr1-2 seedlings grown in the presence of imazapyr has been shown in a previous study (Manabe in Plant Cell Physiol 48:1340-1358, 2007) to be identical to that of wild-type seedlings indicating that AHAS is the sole target of imazapyr and that the mutation is not associated with pleiotropic effects detectable by transcriptome analysis. In this study, a lethal null mutant, csr1-7, created by a T-DNA insertion into the CSR1 gene was complemented with a randomly-inserted 35S/CSR1-2/NOS transgene in a subsequent genetic transformation event. A comparison of the csr1-2 substitution mutant with the transgenic lines revealed that all were resistant to imazapyr; however, the transgenic lines yielded significantly higher levels of resistance and greater biomass accumulation in the presence of imazapyr. Microarray analysis revealed few differences in their transcriptomes. The most notable was a sevenfold to tenfold elevation in the CSR1-2 transcript level. The data indicate that transgenesis did not create significant unintended pleiotropic effects on gene expression and that the mutant and transgenic lines were highly similar, except for the level of herbicide resistance.
Collapse
Affiliation(s)
- Jaimie Schnell
- Bioproducts and Bioprocesses, Research Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | | | | | | | | |
Collapse
|
63
|
Pudelski B, Schock A, Hoth S, Radchuk R, Weber H, Hofmann J, Sonnewald U, Soll J, Philippar K. The plastid outer envelope protein OEP16 affects metabolic fluxes during ABA-controlled seed development and germination. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1919-36. [PMID: 22155670 PMCID: PMC3295387 DOI: 10.1093/jxb/err375] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/15/2011] [Accepted: 10/21/2011] [Indexed: 05/20/2023]
Abstract
Previously, the OEP16.1 channel pore in the outer envelope membrane of mature pea (Pisum sativum) chloroplasts in vitro has been characterized to be selective for amino acids. Isolation of OEP16.2, a second OEP16 isoform from pea, in the current study allowed membrane localization and gene expression of OEP16 to be followed throughout seed development and germination of Arabidopsis thaliana and P. sativum. Thereby it can be shown on the transcript and protein level that the isoforms OEP16.1 and OEP16.2 in both plant species are alternating: whereas OEP16.1 is prominent in early embryo development and first leaves of the growing plantlet, OEP16.2 dominates in late seed development stages, which are associated with dormancy and desiccation, as well as early germination events. Further, OEP16.2 expression in seeds is under control of the phytohormone abscisic acid (ABA), leading to an ABA-hypersensitive phenotype of germinating oep16 knockout mutants. In consequence, the loss of OEP16 causes metabolic imbalance, in particular that of amino acids during seed development and early germination. It is thus concluded that in vivo OEP16 most probably functions in shuttling amino acids across the outer envelope of seed plastids.
Collapse
Affiliation(s)
- Birgit Pudelski
- Biochemie und Physiologie der Pflanzen, Department Biologie I, Botanik, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
- Munich Centre for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | - Annette Schock
- Biochemie und Physiologie der Pflanzen, Department Biologie I, Botanik, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
- Munich Centre for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | - Stefan Hoth
- Molekulare Pflanzenphysiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
- Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststrabe 18, D-22609 Hamburg, Germany
| | - Ruslana Radchuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Hans Weber
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany
| | - Jörg Hofmann
- Biochemie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Uwe Sonnewald
- Biochemie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Jürgen Soll
- Biochemie und Physiologie der Pflanzen, Department Biologie I, Botanik, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
- Munich Centre for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| | - Katrin Philippar
- Biochemie und Physiologie der Pflanzen, Department Biologie I, Botanik, Ludwig-Maximilians-Universität München, D-82152 Planegg-Martinsried, Germany
- Munich Centre for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, D-81377 München, Germany
| |
Collapse
|
64
|
Hamilton CE, Gundel PE, Helander M, Saikkonen K. Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0158-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
65
|
Scientific opinion addressing the safety assessment of plants developed through cisgenesis and intragenesis. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2561] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
66
|
German JB, Zivkovic AM, Dallas DC, Smilowitz JT. Nutrigenomics and personalized diets: What will they mean for food? Annu Rev Food Sci Technol 2012; 2:97-123. [PMID: 22129377 DOI: 10.1146/annurev.food.102308.124147] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The modern food system feeds six billion people with remarkable diversity, safety, and nutrition. Yet, the current rise in diet-related diseases is compromising health and devaluing many aspects of modern agriculture. Steps to increase the nutritional quality of individual foods will assist in personalizing health and in guiding individuals to achieve superior health. Nutrigenomics is the scientific field of the genetic basis for varying susceptibilities to disease and the diverse responses to foods. Although some of these genetic determinants will be simple and amenable to personal genotyping as the means to predict health, in practice most will not. As a result, genotyping will not be the secret to personalizing diet and health. Human assessment technologies from imaging to proteomics and metabolomics are providing tools to both understand and accurately assess the nutritional phenotype of individuals. The business models are also emerging to bring these assessment capabilities to industrial practice, in which consumers will know more about their personal health and seek personal solutions.
Collapse
Affiliation(s)
- J Bruce German
- Foods for Health Institute, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
67
|
Mochida K, Shinozaki K. Advances in omics and bioinformatics tools for systems analyses of plant functions. PLANT & CELL PHYSIOLOGY 2011; 52:2017-38. [PMID: 22156726 PMCID: PMC3233218 DOI: 10.1093/pcp/pcr153] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Omics and bioinformatics are essential to understanding the molecular systems that underlie various plant functions. Recent game-changing sequencing technologies have revitalized sequencing approaches in genomics and have produced opportunities for various emerging analytical applications. Driven by technological advances, several new omics layers such as the interactome, epigenome and hormonome have emerged. Furthermore, in several plant species, the development of omics resources has progressed to address particular biological properties of individual species. Integration of knowledge from omics-based research is an emerging issue as researchers seek to identify significance, gain biological insights and promote translational research. From these perspectives, we provide this review of the emerging aspects of plant systems research based on omics and bioinformatics analyses together with their associated resources and technological advances.
Collapse
Affiliation(s)
- Keiichi Mochida
- RIKEN Biomass Engineering Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan.
| | | |
Collapse
|
68
|
Mochida K, Shinozaki K. Advances in omics and bioinformatics tools for systems analyses of plant functions. PLANT & CELL PHYSIOLOGY 2011. [PMID: 22156726 DOI: 10.1093/pcp/pc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Omics and bioinformatics are essential to understanding the molecular systems that underlie various plant functions. Recent game-changing sequencing technologies have revitalized sequencing approaches in genomics and have produced opportunities for various emerging analytical applications. Driven by technological advances, several new omics layers such as the interactome, epigenome and hormonome have emerged. Furthermore, in several plant species, the development of omics resources has progressed to address particular biological properties of individual species. Integration of knowledge from omics-based research is an emerging issue as researchers seek to identify significance, gain biological insights and promote translational research. From these perspectives, we provide this review of the emerging aspects of plant systems research based on omics and bioinformatics analyses together with their associated resources and technological advances.
Collapse
Affiliation(s)
- Keiichi Mochida
- RIKEN Biomass Engineering Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan.
| | | |
Collapse
|
69
|
Hofmann J, Börnke F, Schmiedl A, Kleine T, Sonnewald U. Detecting functional groups of Arabidopsis mutants by metabolic profiling and evaluation of pleiotropic responses. FRONTIERS IN PLANT SCIENCE 2011; 2:82. [PMID: 22639613 PMCID: PMC3355665 DOI: 10.3389/fpls.2011.00082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 11/02/2011] [Indexed: 06/01/2023]
Abstract
Metabolic profiles and fingerprints of Arabidopsis thaliana plants with various defects in plastidic sugar metabolism or photosynthesis were analyzed to elucidate if the genetic mutations can be traced by comparing their metabolic status. Using a platform of chromatographic and spectrometric tools data from untargeted full MS scans as well as from selected metabolites including major carbohydrates, phosphorylated intermediates, carboxylates, free amino acids, major antioxidants, and plastidic pigments were evaluated. Our key observations are that by multivariate statistical analysis each mutant can be separated by a unique metabolic signature. Closely related mutants come close. Thus metabolic profiles of sugar mutants are different but more similar than those of photosynthesis mutants. All mutants show pleiotropic responses mirrored in their metabolic status. These pleiotropic responses are typical and can be used for separating and grouping of the mutants. Our findings show that metabolite fingerprints can be taken to classify mutants and hence may be used to sort genes into functional groups.
Collapse
Affiliation(s)
- Jörg Hofmann
- Division of Biochemistry, Department Biology, Friedrich-Alexander-Universität Erlangen-NurembergErlangen, Germany
| | - Frederik Börnke
- Division of Biochemistry, Department Biology, Friedrich-Alexander-Universität Erlangen-NurembergErlangen, Germany
| | - Alfred Schmiedl
- Division of Biochemistry, Department Biology, Friedrich-Alexander-Universität Erlangen-NurembergErlangen, Germany
| | - Tatjana Kleine
- Biochemistry and Plant Physiology (Botany), Department Biology I, Ludwig-Maximilians-Universität MünchenPlanegg-Martinsried, Germany
| | - Uwe Sonnewald
- Division of Biochemistry, Department Biology, Friedrich-Alexander-Universität Erlangen-NurembergErlangen, Germany
| |
Collapse
|
70
|
Heinemann JA, Kurenbach B, Quist D. Molecular profiling--a tool for addressing emerging gaps in the comparative risk assessment of GMOs. ENVIRONMENT INTERNATIONAL 2011; 37:1285-93. [PMID: 21624662 DOI: 10.1016/j.envint.2011.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/15/2011] [Accepted: 05/05/2011] [Indexed: 05/20/2023]
Abstract
Assessing the risks of genetically modified organisms (GMOs) is required by both international agreement and domestic legislation. Many view the use of the "omics" tools for profiling classes of molecules as useful in risk assessment, but no consensus has formed on the need or value of these techniques for assessing the risks of all GMOs. In this and many other cases, experts support case-by-case use of molecular profiling techniques for risk assessment. We review the latest research on the applicability and usefulness of molecular profiling techniques for GMO risk assessment. As more and more kinds of GMOs and traits are developed, broader use of molecular profiling in a risk assessment may be required to supplement the comparative approach to risk assessment. The literature-based discussions on the use of profiling appear to have settled on two findings: 1. profiling techniques are reliable and relevant, at least no less so than other techniques used in risk assessment; and 2. although not required routinely, regulators should be aware of when they are needed. The dismissal of routine molecular profiling may be confusing to regulators who then lack guidance on when molecular profiling might be worthwhile. Molecular profiling is an important way to increase confidence in risk assessments if the profiles are properly designed to address relevant risks and are applied at the correct stage of the assessment.
Collapse
Affiliation(s)
- Jack A Heinemann
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
| | | | | |
Collapse
|
71
|
Brunner S, Hurni S, Herren G, Kalinina O, von Burg S, Zeller SL, Schmid B, Winzeler M, Keller B. Transgenic Pm3b wheat lines show resistance to powdery mildew in the field. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:897-910. [PMID: 21438988 DOI: 10.1111/j.1467-7652.2011.00603.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Plant resistance (R) genes are highly effective in protecting plants against diseases, but pathogens can overcome such genes relatively easily by adaptation. Consequently, in many cases R genes do not confer durable resistance in agricultural environments. One possible strategy to make the use of R genes more sustainable depends on the modification of R genes followed by transformation. To test a possible transgenic use of R genes, we overexpressed in wheat the Pm3b resistance gene against powdery mildew under control of the maize ubiquitin promoter. Four independent transgenic lines were tested in the greenhouse and the field during 3 years. The four lines showed a five- to 600-fold transgene overexpression compared with the expression of the endogenous Pm3b gene in the landrace 'Chul'. Powdery mildew resistance was significantly improved in all lines in the greenhouse and the field, both with naturally occurring infection or after artificial inoculation. Under controlled environmental conditions, the line with the strongest overexpression of the Pm3b gene showed a dramatic increase in resistance to powdery mildew isolates that are virulent on the endogenous Pm3b. Under a variety of field conditions, but never in the greenhouse, three of the four transgenic lines showed pleiotropic effects on spike and leaf morphology. The highest overexpressing line had the strongest side effects, suggesting a correlation between expression level and phenotypic changes. These results demonstrate that the successful transgenic use of R genes critically depends on achieving an optimal level of their expression, possibly in a tissue-specific way.
Collapse
Affiliation(s)
- Susanne Brunner
- Institute of Plant Biology, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Imani J, Li L, Schäfer P, Kogel KH. STARTS--a stable root transformation system for rapid functional analyses of proteins of the monocot model plant barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:726-735. [PMID: 21518054 DOI: 10.1111/j.1365-313x.2011.04620.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Large data sets are generated from plants by the various 'omics platforms. Currently, a limiting step in data analysis is the assessment of protein function and its translation into a biological context. The lack of robust high-throughput transformation systems for monocotyledonous plants, to which the vast majority of crop plants belong, is a major restriction and impedes exploitation of novel traits in agriculture. Here we present a stable root transformation system for barley, termed STARTS, that allows assessment of gene function in root tissues within 6 weeks. The system is based on the finding that a callus, produced on root induction medium from the scutellum of the immature embryo, is able to regenerate roots from single transformed cells by concomitant suppression of shoot development. Using Agrobacterium tumefaciens-mediated transfer of genes involved in root development and pathogenesis, we show that those calli regenerate large amounts of uniformly transformed roots for in situ functional analysis of newly expressed proteins.
Collapse
Affiliation(s)
- Jafargholi Imani
- Research Centre for BioSystems, Land Use and Nutrition (IFZ), Justus Liebig University, Institute of Phytopathology and Applied Zoology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
73
|
Montero M, Coll A, Nadal A, Messeguer J, Pla M. Only half the transcriptomic differences between resistant genetically modified and conventional rice are associated with the transgene. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:693-702. [PMID: 21040388 DOI: 10.1111/j.1467-7652.2010.00572.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Besides the intended effects that give a genetically modified (GM) plant the desired trait, unintended differences between GM and non-GM comparable plants may also occur. Profiling technologies allow their identification, and a number of examples demonstrating that unintended effects are limited and diverse have recently been reported. Both from the food safety aspect and for research purposes, it is important to discern unintended changes produced by the transgene and its expression from those that may be attributed to other factors. Here, we show differential expression of around 0.40% transcriptome between conventional rice var. Senia and Senia-afp constitutively expressing the AFP antifungal protein. Analysis of one-fifth of the regulated sequences showed that around 35% of the unintended effects could be attributed to the process used to produce GM plants, based on in vitro tissue culture techniques. A further ∼15% were event specific, and their regulation was attributed to host gene disruption and genome rearrangements at the insertion site, and effects on proximal sequences. Thus, only around half the transcriptional unintended effects could be associated to the transgene itself. A significant number of changes in Senia-afp and Senia are part of the plant response to stress conditions, and around half the sequences for which up-regulation was attributed to the transgene were induced in conventional (but not transgenic) plants after wounding. Unintended effects might, as such, putatively result in widening the self-resistance characteristics because of the transgene in GM plants.
Collapse
Affiliation(s)
- Maria Montero
- Institut de Tecnologia Agroalimentària (INTEA), Universitat de Girona, Campus Montilivi, Girona, Spain
| | | | | | | | | |
Collapse
|
74
|
Ricroch AE, Bergé JB, Kuntz M. Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques. PLANT PHYSIOLOGY 2011; 155:1752-61. [PMID: 21350035 PMCID: PMC3091128 DOI: 10.1104/pp.111.173609] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/17/2011] [Indexed: 05/18/2023]
|
75
|
Pauwels K, Breyer D, De Schrijver A, Goossens M, Herman P. Contributions from scientific research to the risk assessment of GMOs. Lessons learned from a symposium held in Brussels, Belgium, 21-22 October 2010. ENVIRONMENTAL BIOSAFETY RESEARCH 2010; 9:113-121. [PMID: 21851803 DOI: 10.1051/ebr/2011108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Katia Pauwels
- Scientific Institute of Public Health, Biosafety and Biotechnology Unit, Rue J. Wytsmanstraat 14, B-1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|