51
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
52
|
Wang Q, Wang X, Liu B, Ma S, Zhang F, Sun S, Jing Y, Fan Y, Ding Y, Xiong M, Li J, Zhai Q, Zheng Y, Liu C, Xu G, Yang J, Wang S, Ye J, Izpisua Belmonte JC, Qu J, Liu GH, Zhang W. Aging induces region-specific dysregulation of hormone synthesis in the primate adrenal gland. NATURE AGING 2024; 4:396-413. [PMID: 38503993 DOI: 10.1038/s43587-024-00588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
Adrenal glands, vital for steroid secretion and the regulation of metabolism, stress responses and immune activation, experience age-related decline, impacting systemic health. However, the regulatory mechanisms underlying adrenal aging remain largely uninvestigated. Here we established a single-nucleus transcriptomic atlas of both young and aged primate suprarenal glands, identifying lipid metabolism and steroidogenic pathways as core processes impacted by aging. We found dysregulation in centripetal adrenocortical differentiation in aged adrenal tissues and cells in the zona reticularis region, responsible for producing dehydroepiandrosterone sulfate (DHEA-S), were highly susceptible to aging, reflected by senescence, exhaustion and disturbed hormone production. Remarkably, LDLR was downregulated in all cell types of the outer cortex, and its targeted inactivation in human adrenal cells compromised cholesterol uptake and secretion of dehydroepiandrosterone sulfate, as observed in aged primate adrenal glands. Our study provides crucial insights into endocrine physiology, holding therapeutic promise for addressing aging-related adrenal insufficiency and delaying systemic aging.
Collapse
Affiliation(s)
- Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuebao Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Zhang
- Division of Endocrinology, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Shuhui Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yaobin Jing
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International Center for Aging and Cancer, Hainan Medical University, Haikou, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muzhao Xiong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaocheng Zhai
- Division of Endocrinology, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Yandong Zheng
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chengyu Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Si Wang
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- The Fifth People's Hospital of Chongqing, Chongqing, China
- Aging Biomarker Consortium, Beijing, China
| | - Jinlin Ye
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | | | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| |
Collapse
|
53
|
Gonzalez L, Chau-Duy Tam Vo S, Faivre B, Pierrel F, Fontecave M, Hamdane D, Lombard M. Activation of Coq6p, a FAD Monooxygenase Involved in Coenzyme Q Biosynthesis, by Adrenodoxin Reductase/Ferredoxin. Chembiochem 2024; 25:e202300738. [PMID: 38141230 DOI: 10.1002/cbic.202300738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/25/2023]
Abstract
Adrenodoxin reductase (AdxR) plays a pivotal role in electron transfer, shuttling electrons between NADPH and iron/sulfur adrenodoxin proteins in mitochondria. This electron transport system is essential for P450 enzymes involved in various endogenous biomolecules biosynthesis. Here, we present an in-depth examination of the kinetics governing the reduction of human AdxR by NADH or NADPH. Our results highlight the efficiency of human AdxR when utilizing NADPH as a flavin reducing agent. Nevertheless, akin to related flavoenzymes such as cytochrome P450 reductase, we observe that low NADPH concentrations hinder flavin reduction due to intricate equilibrium reactions between the enzyme and its substrate/product. Remarkably, the presence of MgCl2 suppresses this complex kinetic behavior by decreasing NADPH binding to oxidized AdxR, effectively transforming AdxR into a classical Michaelis-Menten enzyme. We propose that the addition of MgCl2 may be adapted for studying the reductive half-reactions of other flavoenzymes with NADPH. Furthermore, in vitro experiments provide evidence that the reduction of the yeast flavin monooxygenase Coq6p relies on an electron transfer chain comprising NADPH-AdxR-Yah1p-Coq6p, where Yah1p shuttles electrons between AdxR and Coq6p. This discovery explains the previous in vivo observation that Yah1p and the AdxR homolog, Arh1p, are required for the biosynthesis of coenzyme Q in yeast.
Collapse
Affiliation(s)
- Lucie Gonzalez
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| | - Samuel Chau-Duy Tam Vo
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruno Faivre
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| | - Fabien Pierrel
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| | - Djemel Hamdane
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
- Institut de Biologie Paris-Seine, Biology of Aging and Adaptation, UMR 8256, Sorbonne Université, 7 quai Saint-Bernard, 75 252, Paris, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, Collège de France, Sorbonne Université, CNRS UMR8229, PSL Research University, Sorbonne Université, 11 place Marcelin Berthelot, 75 005, Paris, France
| |
Collapse
|
54
|
Zhong Y, Zeng W, Chen Y, Zhu X. The effect of lipid metabolism on cuproptosis-inducing cancer therapy. Biomed Pharmacother 2024; 172:116247. [PMID: 38330710 DOI: 10.1016/j.biopha.2024.116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Cuproptosis provides a new therapeutic strategy for cancer treatment and is thought to have broad clinical application prospects. Nevertheless, some oncological clinical trials have yet to demonstrate favorable outcomes, highlighting the need for further research into the molecular mechanisms underlying cuproptosis in tumors. Cuproptosis primarily hinges on the intracellular accumulation of copper, with lipid metabolism exerting a profound influence on its course. The interaction between copper metabolism and lipid metabolism is closely related to cuproptosis. Copper imbalance can affect mitochondrial respiration and lipid metabolism changes, while lipid accumulation can promote copper uptake and absorption, and inhibit cuproptosis induced by copper. Anomalies in lipid metabolism can disrupt copper homeostasis within cells, potentially triggering cuproptosis. The interaction between cuproptosis and lipid metabolism regulates the occurrence, development, metastasis, chemotherapy drug resistance, and tumor immunity of cancer. Cuproptosis is a promising new target for cancer treatment. However, the influence of lipid metabolism and other factors should be taken into consideration. This review provides a brief overview of the characteristics of the interaction between cuproptosis and lipid metabolism in cancer and analyses potential strategies of applying cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhong
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Wei Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yongbo Chen
- Rehabilitation College of Gannan Medical University, Ganzhou 341000, China
| | - Xiuzhi Zhu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
55
|
魏 婷, 丁 洋, 张 佳, 李 金, 张 恒, 康 品, 张 宁. [Correlation of serum ferredoxin 1 and lipoic acid levels with severity of coronary artery disease]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:308-316. [PMID: 38501416 PMCID: PMC10954524 DOI: 10.12122/j.issn.1673-4254.2024.02.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To analyze the correlation of copper death inducer ferredoxin 1 (FDX1) and lipoic acid (LA) with the occurrence and severity of coronary atherosclerosis and explore their roles in coronary heart disease (CHD). METHODS We analyzed the data of 226 patients undergoing coronary artery angiography (CAG) in our hospital between October, 2021 and October, 2022, including 47 patients with normal CAG findings (control group) and 179 patients with mild, moderate or severe coronary artery stenosis (CHD group). Serum FDX1 and LA levels were determined with ELISA for all the patients. We also examined pathological changes in the aorta of normal and ApoE-/- mice using HE staining and observed collagen fiber deposition with Sirius red staining. Immunohistochemistry was used to detect the expression and distribution of FDX1 and LA in the aorta, and RT-PCR was performed to detect the expressions of FDX1, LIAS and ACO2 mRNAs in the myocardial tissues. RESULTS Compared with the control patients, CHD patients had significantly lower serum FDX1 and LA levels, which decreased progressively as coronary artery stenosis worsened (P < 0.01) and as the number of involved coronary artery branches increased (P < 0.05). Serum FDX1 and LA levels were positively correlated (r=0.451, P < 0.01) and they both negatively correlated with the Gensini score (r=-0.241 and -0.273, respectively; P < 0.01). Compared with normal mice, ApoE-/- mice showed significantly increased lipid levels (P < 0.01) and atherosclerosis index, obvious thickening, lipid aggregation, and collagen fiber hyperplasia in the aorta, and significantly reduced expressions of FDX1, LA, LIAS, and ACO2 (P < 0.05). CONCLUSION Serum FDX1 and LA levels decrease with worsening of coronary artery lesions, and theirs expressions are correlated with coronary artery lesions induced by hyperlipidemia.
Collapse
Affiliation(s)
- 婷 魏
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 洋洋 丁
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 佳佳 张
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 金龙 李
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 恒 张
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| | - 品方 康
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
- 蚌埠医科大学心脑血管基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Preclinical and Clinical Cardiovascular Medicine, Bengbu Medical University, Bengbu 233000, China
| | - 宁汝 张
- 蚌埠医科大学第一附属医院心血管科,安徽 蚌埠 233000Department of Cardiovascular Medicine of First Affiliated Hospital, Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
56
|
Mohibi S, Zhang Y, Perng V, Chen M, Zhang J, Chen X. Ferredoxin 1 is essential for embryonic development and lipid homeostasis. eLife 2024; 13:e91656. [PMID: 38251655 PMCID: PMC10846857 DOI: 10.7554/elife.91656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024] Open
Abstract
Mammalian ferredoxin 1 and 2 (FDX1/2) belong to an evolutionary conserved family of iron-sulfur cluster containing proteins and act as electron shutters between ferredoxin reductase (FDXR) and numerous proteins involved in critical biological pathways. FDX1 is involved in biogenesis of steroids and bile acids, Vitamin A/D metabolism, and lipoylation of tricarboxylic acid (TCA) cycle enzymes. FDX1 has been extensively characterized biochemically but its role in physiology and lipid metabolism has not been explored. In this study, we generated Fdx1-deficient mice and showed that knockout of both alleles of the Fdx1 gene led to embryonic lethality. We also showed that like Fdxr+/-+/-, Fdx1+/-+/- had a shorter life span and were prone to steatohepatitis. However, unlike Fdxr+/-+/-, Fdx1+/-+/- were not prone to spontaneous tumors. Additionally, we showed that FDX1 deficiency led to lipid droplet accumulation possibly via the ABCA1-SREBP1/2 pathway. Specifically, untargeted lipidomic analysis showed that FDX1 deficiency led to alterations in several classes of lipids, including cholesterol, triacylglycerides, acylcarnitines, ceramides, phospholipids and lysophospholipids. Taken together, our data indicate that FDX1 is essential for mammalian embryonic development and lipid homeostasis at both cellular and organismal levels.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Yanhong Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Vivian Perng
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, DallasDallasUnited States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, DavisDavisUnited States
| |
Collapse
|
57
|
Teraiya M, Krokhin O, Chen VC, Perreault H. Cytoplasmic Shotgun Proteomic Points to Key Proteins and Pathways in Temozolomide-Resistant Glioblastoma Multiforme. J Proteome Res 2024; 23:465-482. [PMID: 38147655 DOI: 10.1021/acs.jproteome.3c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Temozolomide (TMZ) is the first line of chemotherapy to treat primary brain tumors of the type glioblastoma multiforme (GBM). TMZ resistance (TMZR) is one of the main barriers to successful treatment and is a principal factor in relapse, resulting in a poor median survival of 15 months. The present paper focuses on proteomic analyses of cytosolic fractions from TMZ-resistant (TMZR) LN-18 cells. The experimental workflow includes an easy, cost-effective, and reproducible method to isolate subcellular fraction of cytosolic (CYTO) proteins, mitochondria, and plasma membrane proteins for proteomic studies. For this study, enriched cytoplasmic fractions were analyzed in replicates by nanoflow liquid chromatography tandem high-resolution mass spectrometry (nLC-MS/MS), and proteins identified were quantified using a label-free approach (LFQ). Statistical analysis of control (CTRL) and temozolomide-resistant (TMZR) proteomes revealed proteins that appear to be differentially controlled in the cytoplasm. The functions of these proteins are discussed as well as their roles in other cancers and TMZ resistance in GBM. Key proteins are also described through biological processes related to gene ontology (GO), molecular functions, and cellular components. For protein-protein interactions (PPI), network and pathway involvement analyses have been performed, highlighting the roles of key proteins in the TMZ resistance phenotypes. This study provides a detailed insight into methods of subcellular fractionation for proteomic analysis of TMZ-resistant GBM cells and the potential to apply this approach to future large-scale studies. Several key proteins, protein-protein interactions (PPI), and pathways have been identified, underlying the TMZ resistance phenotype and highlighting the proteins' biological functions.
Collapse
Affiliation(s)
- Milan Teraiya
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba R3T3C7, Canada
| | - Oleg Krokhin
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba R3T3C7, Canada
- Manitoba Centre for Proteomics and Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E3P4, Canada
| | - Vincent C Chen
- Chemistry Department, Brandon University, Brandon, Manitoba R7A 6A9, Canada
| | - Hélène Perreault
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba R3T3C7, Canada
| |
Collapse
|
58
|
Nicoll CR, Alvigini L, Gottinger A, Cecchini D, Mannucci B, Corana F, Mascotti ML, Mattevi A. In vitro construction of the COQ metabolon unveils the molecular determinants of coenzyme Q biosynthesis. Nat Catal 2024; 7:148-160. [PMID: 38425362 PMCID: PMC7615680 DOI: 10.1038/s41929-023-01087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/20/2023] [Indexed: 03/02/2024]
Abstract
Metabolons are protein assemblies that perform a series of reactions in a metabolic pathway. However, the general importance and aptitude of metabolons for enzyme catalysis remain poorly understood. In animals, biosynthesis of coenzyme Q is currently attributed to ten different proteins, with COQ3, COQ4, COQ5, COQ6, COQ7 and COQ9 forming the iconic COQ metabolon. Yet several reaction steps conducted by the metabolon remain enigmatic. To elucidate the prerequisites for animal coenzyme Q biosynthesis, we sought to construct the entire metabolon in vitro. Here we show that this approach, rooted in ancestral sequence reconstruction, reveals the enzymes responsible for the uncharacterized steps and captures the biosynthetic pathway in vitro. We demonstrate that COQ8, a kinase, increases and streamlines coenzyme Q production. Our findings provide crucial insight into how biocatalytic efficiency is regulated and enhanced by these biosynthetic engines in the context of the cell.
Collapse
Affiliation(s)
- Callum R. Nicoll
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Laura Alvigini
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Andrea Gottinger
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Domiziana Cecchini
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | | | - Federica Corana
- ’Centro Grandi Strumenti’, University of Pavia, Pavia, Italy
| | - María Laura Mascotti
- Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Andrea Mattevi
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| |
Collapse
|
59
|
Tian X, Zhu S, Liu W, Wu X, Wei G, Zhang J, Anwaier A, Chen C, Ye S, Che X, Xu W, Qu Y, Zhang H, Ye D. Construction of cuproptosis signature based on bioinformatics and experimental validation in clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:17451-17466. [PMID: 37889309 DOI: 10.1007/s00432-023-05259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Cuproptosis was defined as a novel nonapoptotic cell death pathway and its potential function in clear cell renal cell carcinoma (ccRCC) remains unclear. METHODS We obtained gene expression profiles, somatic mutation and corresponding clinical information of 881 ccRCC samples from 3 cohorts including the cancer genome atlas cohort, GSE29609 cohort and CheckMate 025 cohort. As described in the latest published article, we enrolled 16 genes as cuproptosis-related genes (CRGs). We explored the expression level, variants and copy number variation of the CRGs. Univariate and multi-variate regression were utilized to assess the prognostic significance of the CRGs. Non-negative matrix factorization was used to identify potential subgroup and gene set variation analysis was used to explore the potential biological functions. CIBERSORT, ESTIMATE algorithm and single sample gene set enrichment analysis were used to evaluate the tumor microenvironment. In vitro experiments including CCK-8, transwell and wound healing assays were utilized to explore the potential biological function of DLAT in ccRCC. RESULTS We found that except for CDKN2A, the CRGs were positively associated with patients' OS. Cuproptosis cluster, cuproptosis gene cluster and cuproptosis score were established, respectively, and higher cuproptosis score was significantly associated with a worse OS in ccRCC (p < 0.001). The area under the receiver operating characteristic curve of the cuproptosis-related nomogram at 1 year, 3 years, 5 years was 0.858, 0.821 and 0.78, respectively. In addition, we found that the cuproptosis score was positively associated with PDCD1, CTLA4 expression level, thus the cuproptosis score may also reflect the dysfunction of tumor infiltrating immune cells. In vitro experiments indicated that overexpression of DLAT could inhibited the migration and proliferation ability of ccRCC cells. CONCLUSION Our findings identify a novel cuproptosis-related signature and the cuproptosis characteristics may influence the anti-tumor immunity though complex regulating networks, and thus cuproptosis may play a role in developing novel therapeutic target of ccRCC.
Collapse
Affiliation(s)
- Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shuxuan Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Xinrui Wu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Gaomeng Wei
- Department of Urology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, People's Republic of China
| | - Ji Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Cong Chen
- Department of Nursing, Fudan University Shanghai Cancer Cente, Shanghai, China
| | - Shiqi Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiangxian Che
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
60
|
Gkiourtzis N, Tramma D, Papadopoulou-Legbelou K, Moutafi M, Evangeliou A. Α rare case of myopathy, lactic acidosis, and severe rhabdomyolysis, due to a homozygous mutation of the ferredoxin-2 (FDX2) gene. Am J Med Genet A 2023; 191:2843-2849. [PMID: 37565517 DOI: 10.1002/ajmg.a.63368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Mitochondrial myopathy is a severe metabolic myopathy related to nuclear or mitochondrial DNA dysfunction. We present a rare case of mitochondrial myopathy, presented with multiple episodes of proximal muscle weakness, lactic acidosis, and severe rhabdomyolysis (CPK 319,990 U/L, lactic acid 22.31 mmol/L, and GFR 3.82 mL/min/1.73m2 ). She was hospitalized in the pediatric intensive care unit due to acute kidney injury, elevated blood pressure, and deterioration of respiratory and cardiac function. Investigation for inherited metabolic disorders showed elevated levels of ammonia, lactic acid to pyruvic acid ratio, and urine ketone bodies. Exome sequencing detected a homozygous pathogenic variant in FDX2 (ENST00000541276:p.Met4Leu/c.10A > T) and a heterozygous variant of uncertain significance in MSTO1 (ENST00000538143:p.Leu137Pro/c.410 T > C). After Sanger sequencing, the p.Met4Leu pathogenic variant in FDX2 (ENST00000541276:p.Met4Leu/c.10A > T) was identified in a heterozygous state in both her parents and sister. Recently, pathogenic variants in the FDX2 gene have been associated with mitochondrial myopathy, lactic acidosis, optic atrophy, and leukoencephalopathy. Only four reports of FDX2-related rhabdomyolysis have been described before, but none of the previous patients had hyperammonemia. This is a rare case of severe mitochondrial myopathy in a pediatric patient related to a pathogenic FDX2 variant, suggesting the need for genetic analysis of the FDX2 gene in cases of suspicion of mitochondrial myopathies.
Collapse
Affiliation(s)
- Nikolaos Gkiourtzis
- 4th Department of Pediatrics, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Tramma
- 4th Department of Pediatrics, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriaki Papadopoulou-Legbelou
- 4th Department of Pediatrics, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Moutafi
- 4th Department of Pediatrics, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Evangeliou
- 4th Department of Pediatrics, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
61
|
Zulkifli M, Okonkwo AU, Gohil VM. FDX1 Is Required for the Biogenesis of Mitochondrial Cytochrome c Oxidase in Mammalian Cells. J Mol Biol 2023; 435:168317. [PMID: 37858707 PMCID: PMC11451897 DOI: 10.1016/j.jmb.2023.168317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Ferredoxins (FDXs) are evolutionarily conserved iron-sulfur (Fe-S) proteins that function as electron transfer proteins in diverse metabolic pathways. Mammalian mitochondria contain two ferredoxins, FDX1 and FDX2, which share a high degree of structural similarity but exhibit different functionalities. Previous studies have established the unique role of FDX2 in the biogenesis of Fe-S clusters; however, FDX1 seems to have multiple targets in vivo, some of which are only recently emerging. Using CRISPR-Cas9-based loss-of-function studies in rat cardiomyocyte cell line, we demonstrate an essential requirement of FDX1 in mitochondrial respiration and energy production. We attribute reduced mitochondrial respiration to a specific decrease in the abundance and assembly of cytochrome c oxidase (CcO), a mitochondrial heme-copper oxidase and the terminal enzyme of the mitochondrial respiratory chain. FDX1 knockout cells have reduced levels of copper and heme a/a3, factors that are essential for the maturation of the CcO enzyme complex. Copper supplementation failed to rescue CcO biogenesis, but overexpression of heme a synthase, COX15, partially rescued COX1 abundance in FDX1 knockout cells. This finding links FDX1 function to heme a biosynthesis, and places it upstream of COX15 in CcO biogenesis like its ancestral yeast homolog. Taken together, our work has identified FDX1 as a critical CcO biogenesis factor in mammalian cells.
Collapse
Affiliation(s)
- Mohammad Zulkifli
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| | - Adriana U Okonkwo
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
62
|
Zhong H, Janer A, Khalimonchuk O, Antonicka H, Shoubridge E, Barrientos A. BOLA3 and NFU1 link mitoribosome iron-sulfur cluster assembly to multiple mitochondrial dysfunctions syndrome. Nucleic Acids Res 2023; 51:11797-11812. [PMID: 37823603 PMCID: PMC10681725 DOI: 10.1093/nar/gkad842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
The human mitochondrial ribosome contains three [2Fe-2S] clusters whose assembly pathway, role, and implications for mitochondrial and metabolic diseases are unknown. Here, structure-function correlation studies show that the clusters play a structural role during mitoribosome assembly. To uncover the assembly pathway, we have examined the effect of silencing the expression of Fe-S cluster biosynthetic and delivery factors on mitoribosome stability. We find that the mitoribosome receives its [2Fe-2S] clusters from the GLRX5-BOLA3 node. Additionally, the assembly of the small subunit depends on the mitoribosome biogenesis factor METTL17, recently reported containing a [4Fe-4S] cluster, which we propose is inserted via the ISCA1-NFU1 node. Consistently, fibroblasts from subjects suffering from 'multiple mitochondrial dysfunction' syndrome due to mutations in BOLA3 or NFU1 display previously unrecognized attenuation of mitochondrial protein synthesis that contributes to their cellular and pathophysiological phenotypes. Finally, we report that, in addition to their structural role, one of the mitoribosomal [2Fe-2S] clusters and the [4Fe-4S] cluster in mitoribosome assembly factor METTL17 sense changes in the redox environment, thus providing a way to regulate organellar protein synthesis accordingly.
Collapse
Affiliation(s)
- Hui Zhong
- Department of Biochemistry and Molecular Biology. University of Miami Miller School of Medicine, 1600 NW 10Ave. Miami, FL 33136, USA
| | - Alexandre Janer
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Oleh Khalimonchuk
- Department of Biochemistry. University of Nebraska-Lincoln; 1901 Vine St. Beadle Center, Lincoln, NE 68588, USA
- Nebraska Redox Biology Center. University of Nebraska-Lincoln; 1901 Vine St. Beadle Center, Lincoln, NE 68588, USA
| | - Hana Antonicka
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Eric A Shoubridge
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology. University of Miami Miller School of Medicine, 1600 NW 10Ave. Miami, FL 33136, USA
- Department of Neurology. University of Miami Miller School of Medicine; 1600 NW 10 Ave., Miami, FL 33136, USA
| |
Collapse
|
63
|
Campbell T, Slone J, Metzger H, Liu W, Sacharow S, Yang A, Moosajee M, La Morgia C, Carelli V, Palombo F, Lines MA, Innes AM, Levy RJ, Neilson D, Longo N, Huang T. Clinical study of ferredoxin-reductase-related mitochondriopathy: Genotype-phenotype correlation and proposal of ancestry-based carrier screening in the Mexican population. GENETICS IN MEDICINE OPEN 2023; 2:100841. [PMID: 39669623 PMCID: PMC11613914 DOI: 10.1016/j.gimo.2023.100841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 12/14/2024]
Abstract
Purpose Ferredoxin reductase (FDXR) is a flavoprotein that functions in both iron sulfur cluster biogenesis and steroid biosynthesis pathways in the mitochondria. Not surprisingly, loss of FDXR function causes severe mitochondrial diseases in humans. Although several FDXR-related mitochondriopathy (FRM) cohorts have been reported in the literature, further characterization of the natural history of FRM is warranted. Methods To better understand the spectrum of FRM, a natural history study of FRM was performed. New cases were added to previously reported FRM cases for analysis (n = 62 cases). Results Optic atrophy, movement disorder, and developmental delay were frequent findings. Mortality is high, with 18% of patients, often infants, passing from complications. Notably, 25% of cases were homozygous or compound heterozygous for the previously reported p.Arg386Trp "hotspot" variant. Of the obtained ancestry, all but 1 individual heterozygous for the p.Arg386Trp variant was Hispanic, with many reporting Mexican heritage. Utilizing recent large-scale genome sequencing surveys, the carrier frequency of the p.Arg386Trp variant was estimated as 1 of 185 in the Mexican population. Conclusion Given the high mortality of FRM and carrier frequency of the common variant, consideration of a new approach for population carrier screening and development of therapeutics for affected individuals is needed.
Collapse
Affiliation(s)
- Teresa Campbell
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Jesse Slone
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Hallie Metzger
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Wensheng Liu
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Stephanie Sacharow
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Amy Yang
- Oregon Health and Science University, Portland, OR
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, BO, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, BO, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, BO, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, BO, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, BO, Italy
| | - Matthew A. Lines
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - A. Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Derek Neilson
- Division of Genetics and Metabolism, Department of Child Health, The University of Arizona College of Medicine, Phoenix, AZ
| | - Nicola Longo
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Taosheng Huang
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
64
|
Zhu Y, Chang S, Liu J, Wang B. Identification of a novel cuproptosis-related gene signature for multiple myeloma diagnosis. Immun Inflamm Dis 2023; 11:e1058. [PMID: 38018590 PMCID: PMC10629272 DOI: 10.1002/iid3.1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/19/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) ranks second among the most prevalent hematological malignancies. Recent studies have unearthed the promise of cuproptosis as a novel therapeutic intervention for cancer. However, no research has unveiled the particular roles of cuproptosis-related genes (CRGs) in the prediction of MM diagnosis. METHODS Microarray data and clinical characteristics of MM patients were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed gene analysis, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE) algorithms were applied to identify potential signature genes for MM diagnosis. Predictive performance was further assessed by receiver operating characteristic (ROC) curves, nomogram analysis, and external data sets. Functional enrichment analysis was performed to elucidate the involved mechanisms. Finally, the expression of the identified genes was validated by quantitative real-time polymerase chain reaction (qRT-PCR) in MM cell samples. RESULTS The optimal gene signature was identified using LASSO and SVM-RFE algorithms based on the differentially expressed CRGs: ATP7A, FDX1, PDHA1, PDHB, MTF1, CDKN2A, and DLST. Our gene signature-based nomogram revealed a high degree of accuracy in predicting MM diagnosis. ROC curves showed the signature had dependable predictive ability across all data sets, with area under the curve values exceeding 0.80. Additionally, functional enrichment analysis suggested significant associations between the signature genes and immune-related pathways. The expression of the genes was validated in MM cells, indicating the robustness of these findings. CONCLUSION We discovered and validated a novel CRG signature with strong predictive capability for diagnosing MM, potentially implicated in MM pathogenesis and progression through immune-related pathways.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Shuaikang Chang
- Department of Hematology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Bo Wang
- Department of Endocrinology, Yangpu HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
65
|
Wang X, Jia JH, Zhang M, Meng QS, Yan BW, Ma ZY, Wang DB. Adrenomedullin/FOXO3 enhances sunitinib resistance in clear cell renal cell carcinoma by inhibiting FDX1 expression and cuproptosis. FASEB J 2023; 37:e23143. [PMID: 37698353 DOI: 10.1096/fj.202300474r] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 09/13/2023]
Abstract
Cuproptosis, a new type of copper-induced cell death, is involved in the antitumor activity and resistance of multiple chemotherapeutic drugs. Our previous study revealed that adrenomedullin (ADM) was engaged in sunitinib resistance in clear cell renal cell carcinoma (ccRCC). However, it has yet to be investigated whether and how ADM regulates sunitinib resistance by cuproptosis. This study found that the ADM expression was elevated in sunitinib-resistant ccRCC tissues and cells. Furthermore, the upregulation of ADM significantly enhanced the chemoresistance of sunitinib compared with their respective control. Moreover, cuproptosis was involved in ADM-regulated sunitinib resistance by inhibiting mammalian ferredoxin 1 (FDX1) expression. Mechanically, the upregulated ADM activates the p38/MAPK signaling pathway to promote Forkhead box O3 (FOXO3) phosphorylation and its entry into the nucleus. Consequently, the increased FOXO3 in the nucleus inhibited FDX1 transcription and cell cuproptosis, promoting chemoresistance. Collectively, cuproptosis has a critical effector role in ccRCC progress and chemoresistance and thus is a relevant target to eradicate the cell population of sunitinib resistance.
Collapse
Affiliation(s)
- Xin Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiang-Hua Jia
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qing-Song Meng
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo-Wen Yan
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zi-Yue Ma
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dong-Bin Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
66
|
Dreishpoon MB, Bick NR, Petrova B, Warui DM, Cameron A, Booker SJ, Kanarek N, Golub TR, Tsvetkov P. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. J Biol Chem 2023; 299:105046. [PMID: 37453661 PMCID: PMC10462841 DOI: 10.1016/j.jbc.2023.105046] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Ferredoxins are a family of iron-sulfur (Fe-S) cluster proteins that serve as essential electron donors in numerous cellular processes that are conserved through evolution. The promiscuous nature of ferredoxins as electron donors enables them to participate in many metabolic processes including steroid, heme, vitamin D, and Fe-S cluster biosynthesis in different organisms. However, the unique natural function(s) of each of the two human ferredoxins (FDX1 and FDX2) are still poorly characterized. We recently reported that FDX1 is both a crucial regulator of copper ionophore-induced cell death and serves as an upstream regulator of cellular protein lipoylation, a mitochondrial lipid-based post-translational modification naturally occurring on four mitochondrial enzymes that are crucial for TCA cycle function. Here we show that FDX1 directly regulates protein lipoylation by binding the lipoyl synthase (LIAS) enzyme promoting its functional binding to the lipoyl carrier protein GCSH and not through indirect regulation of cellular Fe-S cluster biosynthesis. Metabolite profiling revealed that the predominant cellular metabolic outcome of FDX1 loss of function is manifested through the regulation of the four lipoylation-dependent enzymes ultimately resulting in loss of cellular respiration and sensitivity to mild glucose starvation. Transcriptional profiling established that FDX1 loss-of-function results in the induction of both compensatory metabolism-related genes and the integrated stress response, consistent with our findings that FDX1 loss-of-function is conditionally lethal. Together, our findings establish that FDX1 directly engages with LIAS, promoting its role in cellular protein lipoylation, a process essential in maintaining cell viability under low glucose conditions.
Collapse
Affiliation(s)
| | - Nolan R Bick
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Boryana Petrova
- Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Douglas M Warui
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, State College, Pennsylvania, USA
| | | | - Squire J Booker
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Naama Kanarek
- Broad Institute of Harvard and MIT, Cambridge, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Todd R Golub
- Broad Institute of Harvard and MIT, Cambridge, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
67
|
Joshi PR, Sadre S, Guo XA, McCoy JG, Mootha VK. Lipoylation is dependent on the ferredoxin FDX1 and dispensable under hypoxia in human cells. J Biol Chem 2023; 299:105075. [PMID: 37481209 PMCID: PMC10470009 DOI: 10.1016/j.jbc.2023.105075] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023] Open
Abstract
Iron-sulfur clusters (ISC) are essential cofactors that participate in electron transfer, environmental sensing, and catalysis. Amongst the most ancient ISC-containing proteins are the ferredoxin (FDX) family of electron carriers. Humans have two FDXs- FDX1 and FDX2, both of which are localized to mitochondria, and the latter of which is itself important for ISC synthesis. We have previously shown that hypoxia can eliminate the requirement for some components of the ISC biosynthetic pathway, but FDXs were not included in that study. Here, we report that FDX1, but not FDX2, is dispensable under 1% O2 in cultured human cells. We find that FDX1 is essential for production of the lipoic acid cofactor, which is synthesized by the ISC-containing enzyme lipoyl synthase. While hypoxia can rescue the growth phenotype of either FDX1 or lipoyl synthase KO cells, lipoylation in these same cells is not rescued, arguing against an alternative biosynthetic route or salvage pathway for lipoate in hypoxia. Our work reveals the divergent roles of FDX1 and FDX2 in mitochondria, identifies a role for FDX1 in lipoate synthesis, and suggests that loss of lipoic acid can be tolerated under low oxygen tensions in cell culture.
Collapse
Affiliation(s)
- Pallavi R Joshi
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shayan Sadre
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoyan A Guo
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason G McCoy
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Vamsi K Mootha
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
68
|
Wang Y, Zhang X, Chen G, Xing Q, Zhu B, Wang X. Integrated analyses reveal the prognostic, immunological features and mechanisms of cuproptosis critical mediator gene FDX1 in KIRC. Genes Immun 2023; 24:171-182. [PMID: 37430022 DOI: 10.1038/s41435-023-00211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
The ferredoxin 1 (FDX1) gene had been recently reported as a critical mediator of cuproptosis, and without doubt, its roles in KIRC would be of importance. Hence, this paper was to explore the roles of FDX1 in kidney renal clear cell carcinoma (KIRC) and its potential molecular mechanisms via scRNA-sequencing and bulk RNA-sequencing analyses. FDX1 was lowly expressed in KIRC and validated both at the protein and mRNA levels (all p < 0.05). Moreover, its elevated expression was linked with a better overall survival (OS) prognosis in KIRC (p < 0.01). The independent impact of FDX1 on KIRC prognosis was demonstrated by univariate/multivariate regression analysis (p < 0.01). Gene set enrichment analysis (GSEA) identified seven pathways strongly associated with FDX1 in KIRC. Furthermore, FDX1 was also revealed to be significantly related with immunity (p < 0.05). In addition, patients with low expression of FDX1 might be more sensitive to immunotherapies. ScRNA-seq analysis found that FDX1 could be expressed in immune cells and was mainly differently expressed in Mono/Macro cells. Ultimately, we also identified several LncRNA/RBP/FDX1 mRNA networks to reveal its underlying mechanisms in KIRC. Taken together, FDX1 was closely related to prognosis and immunity in KIRC, and its RBP-involved mechanisms of LncRNA/RBP/FDX1 networks were also revealed by us.
Collapse
Affiliation(s)
- Yi Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xinyu Zhang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Guihua Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Bingye Zhu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, 226001, Jiangsu Province, China.
| | - Xiang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
69
|
Lu J, Ling X, Sun Y, Liu L, Liu L, Wang X, Lu C, Ren C, Han X, Yu Z. FDX1 enhances endometriosis cell cuproptosis via G6PD-mediated redox homeostasis. Apoptosis 2023; 28:1128-1140. [PMID: 37119432 DOI: 10.1007/s10495-023-01845-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 05/01/2023]
Abstract
Cuproptosis is a new form of programmed cell death, which is associated with the mitochondrial TCA (tricarboxylic acid) cycle. But the functions of cuproptosis in endometriosis progression are still unknown. Here, we find that cuproptosis suppresses the growth of endometriosis cells and the growth of ectopic endometrial tissues in a mouse model. FDX1 as a key regulator in cuproptosis pathway could promote cuproptosis in endometriosis cells. Interestingly, FDX1 interacts with G6PD, and reduces its protein stability, which predominantly affects the cellular redox-regulating systems. Then, the reduced G6PD activity enhances cuproptosis via down-regulating NADPH and GSH levels. Collectively, our study demonstrates that FDX1 mediates cuproptosis in endometriosis via G6PD pathway, resulting in repression of endometriosis cell proliferation and metastasis.
Collapse
Affiliation(s)
- Jiayi Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Xi Ling
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Yonghong Sun
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Lu Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Lan Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Xiaoyun Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| | - Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| |
Collapse
|
70
|
Wang Z, Wang Y, Yan J, Wei Y, Zhang Y, Wang X, Leng X. Analysis of cuproptosis-related genes in Ulcerative colitis and immunological characterization based on machine learning. Front Med (Lausanne) 2023; 10:1115500. [PMID: 37529244 PMCID: PMC10389668 DOI: 10.3389/fmed.2023.1115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Cuproptosis is a novel form of cell death, mediated by protein lipid acylation and highly associated with mitochondrial metabolism, which is regulated in the cell. Ulcerative colitis (UC) is a chronic inflammatory bowel disease that recurs frequently, and its incidence is increasing worldwide every year. Currently, a growing number of studies have shown that cuproptosis-related genes (CRGs) play a crucial role in the development and progression of a variety of tumors. However, the regulatory role of CRGs in UC has not been fully elucidated. Firstly, we identified differentially expressed genes in UC, Likewise, CRGs expression profiles and immunological profiles were evaluated. Using 75 UC samples, we typed UC based on the expression profiles of CRGs, followed by correlative immune cell infiltration analysis. Using the weighted gene co-expression network analysis (WGCNA) methodology, the cluster's differentially expressed genes (DEGs) were produced. Then, the performances of extreme gradient boosting models (XGB), support vector machine models (SVM), random forest models (RF), and generalized linear models (GLM) were constructed and predicted. Finally, the effectiveness of the best machine learning model was evaluated using five external datasets, receiver operating characteristic curve (ROC), the area under the curve of ROC (AUC), a calibration curve, a nomogram, and a decision curve analysis (DCA). A total of 13 CRGs were identified as significantly different in UC and control samples. Two subtypes were identified in UC based on CRGs expression profiles. Immune cell infiltration analysis of subtypes showed significant differences between immune cells of different subtypes. WGCNA results showed a total of 8 modules with significant differences between subtypes, with the turquoise module being the most specific. The machine learning results showed satisfactory performance of the XGB model (AUC = 0.981). Finally, the construction of the final 5-gene-based XGB model, validated by the calibration curve, nomogram, decision curve analysis, and five external datasets (GSE11223: AUC = 0.987; GSE38713: AUC = 0.815; GSE53306: AUC = 0.946; GSE94648: AUC = 0.809; GSE87466: AUC = 0.981), also proved to predict subtypes of UC with accuracy. Our research presents a trustworthy model that can predict the likelihood of developing UC and methodically outlines the complex relationship between CRGs and UC.
Collapse
Affiliation(s)
- Zhengyan Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jing Yan
- Changchun University of Chinese Medicine, Changchun, China
| | - Yuchi Wei
- Changchun University of Chinese Medicine, Changchun, China
| | - Yinzhen Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - Xukai Wang
- Department of Orthopedics, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyang Leng
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
71
|
Cui Y, Chen Y, Gan N, Li M, Liao W, Zhou Y, Xiang Q, Gong X, Guo Q, Hu P, Zheng XL, Shang D, Peng J, Tang Z. A novel cuproptosis-related diagnostic gene signature and differential expression validation in atherosclerosis. MOLECULAR BIOMEDICINE 2023; 4:21. [PMID: 37442861 DOI: 10.1186/s43556-023-00131-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/04/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerosis (AS) is a major contributor to morbidity and mortality worldwide. However, the molecular mechanisms and mediator molecules involved remain largely unknown. Copper, which plays an essential role in cardiovascular disease, has been suggested as a potential risk factor. Copper homeostasis is closely related to the occurrence and development of AS. Recently, a new cell death pathway called cuproptosis has been discovered, which is driven by intracellular copper excess. However, no previous studies have reported a relationship between cuproptosis and AS. In this study, we integrated bulk and single-cell sequencing data to screen and identify key cuproptosis-related genes in AS. We used correlation analysis, enrichment analysis, random forest, and other bioinformatics methods to reveal their relationships. Our findings report, for the first time, the involvement of cuproptosis-related genes FDX1, SLC31A1, and GLS in atherogenesis. FDX1 and SLC31A1 were upregulated, while GLS was downregulated in atherosclerotic plaque. Receiver operating characteristic curves demonstrate their potential diagnostic value for AS. Additionally, we confirm that GLS is mainly expressed in vascular smooth muscle cells, and SLC31A1 is mainly localized in macrophages of atherosclerotic lesions in experiments. These findings shed light on the cuproptosis landscape and potential diagnostic biomarkers for AS, providing further evidence about the vital role of cuproptosis in atherosclerosis progression.
Collapse
Affiliation(s)
- Yuting Cui
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yanyu Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ni Gan
- Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Man Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wei Liao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yating Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qiong Xiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xi Gong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qianqian Guo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Pengwei Hu
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Xi-Long Zheng
- Departments of Biochemistry & Molecular Biology and Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Desi Shang
- Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Juan Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhihan Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
72
|
Blatt EB, Parra K, Neeb A, Buroni L, Bogdan D, Yuan W, Gao Y, Gilbreath C, Paschalis A, Carreira S, DeBerardinis RJ, Mani RS, de Bono JS, Raj GV. Critical role of antioxidant programs in enzalutamide-resistant prostate cancer. Oncogene 2023; 42:2347-2359. [PMID: 37355762 PMCID: PMC10752496 DOI: 10.1038/s41388-023-02756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Therapy resistance to second-generation androgen receptor (AR) antagonists, such as enzalutamide, is common in patients with advanced prostate cancer (PCa). To understand the metabolic alterations involved in enzalutamide resistance, we performed metabolomic, transcriptomic, and cistromic analyses of enzalutamide-sensitive and -resistant PCa cells, xenografts, patient-derived organoids, patient-derived explants, and tumors. We noted dramatically higher basal and inducible levels of reactive oxygen species (ROS) in enzalutamide-resistant PCa and castration-resistant PCa (CRPC), in comparison to enzalutamide-sensitive PCa cells or primary therapy-naive tumors respectively. Unbiased metabolomic evaluation identified that glutamine metabolism was consistently upregulated in enzalutamide-resistant PCa cells and CRPC tumors. Stable isotope tracing studies suggest that this enhanced glutamine metabolism drives an antioxidant program that allows these cells to tolerate higher basal levels of ROS. Inhibition of glutamine metabolism with either a small-molecule glutaminase inhibitor or genetic knockout of glutaminase enhanced ROS levels, and blocked the growth of enzalutamide-resistant PCa. The critical role of compensatory antioxidant pathways in maintaining enzalutamide-resistant PCa cells was validated by targeting another antioxidant program driver, ferredoxin 1. Taken together, our data identify a metabolic need to maintain antioxidant programs and a potentially targetable metabolic vulnerability in enzalutamide-resistant PCa.
Collapse
Affiliation(s)
- Eliot B Blatt
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Karla Parra
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Antje Neeb
- The Institute of Cancer Research, London, UK
| | | | | | - Wei Yuan
- The Institute of Cancer Research, London, UK
| | - Yunpeng Gao
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Collin Gilbreath
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | | | | | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Ram S Mani
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Johann S de Bono
- The Institute of Cancer Research, London, UK
- Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, London, UK
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
73
|
Zhang G, Shen L, Li Z, Zhao Y. FDX1 serves as a prognostic biomarker and promotes glioma progression by regulating the immune response. Aging (Albany NY) 2023; 15:4963-4985. [PMID: 37301546 PMCID: PMC10292899 DOI: 10.18632/aging.204772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The present study investigates the prognostic value of the FDX1 gene and its association with immune infiltration in gliomas. Gene expression profiles and corresponding clinical parameters of glioma patients were obtained from the Cancer Genome Atlas and Chinese Glioma Genome Atlas databases. In vitro experiments were also performed to validate its impact on malignant phenotypes of glioma cells. Kaplan-Meier analysis demonstrated that high FDX1 expression was associated with poor prognosis in glioma. Function and pathway enrichment for FDX1 predominantly demonstrated immunomodulatory function. In addition, the high-FDX1 expression group had higher Estimation of Stromal and Immune cells in malignant tumor tissues using Expression data, stromal, and immune scores (p<0.001). On evaluation of immunotherapy response, TIDE and dysfunction scores were higher in the low-FDX1 group, while the exclusion score demonstrated an opposite trend. In vitro tests showed that FDX1 silencing-induced inhibition of cell invasion and migration inactivated the nucleotide oligomerization domain (NOD)-like receptor signaling pathway by regulating PD-L1 expression. Notably, NOD1 expression was reversed in FDX1-knockdown cells after treatment with NOD1 agonists. In conclusion, FDX1 may play an important role in the diagnosis and treatment of gliomas. Regulating its expression may therefore help improve immunotherapy for these tumors.
Collapse
Affiliation(s)
- Guangying Zhang
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| | - Yajie Zhao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China
| |
Collapse
|
74
|
Lu H, Liang J, He X, Ye H, Ruan C, Shao H, Zhang R, Li Y. A Novel Oncogenic Role of FDX1 in Human Melanoma Related to PD-L1 Immune Checkpoint. Int J Mol Sci 2023; 24:ijms24119182. [PMID: 37298135 DOI: 10.3390/ijms24119182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The aim of this study was to evaluate the association between Ferredoxin 1 (FDX1) expression and the prognostic survival of tumor patients and predict the efficacy of immunotherapy response to antitumor drug sensitivity. FDX1 plays an oncogenic role in thirty-three types of tumors, based on TCGA and GEO databases, and further experimental validation in vitro was provided through multiple cell lines. FDX1 was expressed highly in multiple types of cancer and differently linked to the survival prognosis of tumorous patients. A high phosphorylation level was correlated with the FDX1 site of S177 in lung cancer. FDX1 exhibited a significant association with infiltrated cancer-associated fibroblasts and CD8+ T cells. Moreover, FDX1 demonstrated correlations with immune and molecular subtypes, as well as functional enrichments in GO/KEGG pathways. Additionally, FDX1 displayed relationships with the tumor mutational burden (TMB), microsatellite instability (MSI), DNA methylation, and RNA and DNA synthesis (RNAss/DNAss) within the tumor microenvironment. Notably, FDX1 exhibited a strong connection with immune checkpoint genes in the co-expression network. The validity of these findings was further confirmed through Western blotting, RT-qPCR, and flow cytometry experiments conducted on WM115 and A375 tumor cells. Elevated FDX1 expression has been linked to the enhanced effectiveness of PD-L1 blockade immunotherapy in melanoma, as observed in the GSE22155 and GSE172320 cohorts. Autodocking simulations have suggested that FDX1 may influence drug resistance by affecting the binding sites of antitumor drugs. Collectively, these findings propose that FDX1 could serve as a novel and valuable biomarker and represent an immunotherapeutic target for augmenting immune responses in various human cancers when used in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Huijiao Lu
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Liang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue He
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huabin Ye
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chuangdong Ruan
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongwei Shao
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongxin Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
75
|
Alfadul SM, Matnurov EM, Varakutin AE, Babak MV. Metal-Based Anticancer Complexes and p53: How Much Do We Know? Cancers (Basel) 2023; 15:2834. [PMID: 37345171 DOI: 10.3390/cancers15102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
P53 plays a key role in protecting the human genome from DNA-related mutations; however, it is one of the most frequently mutated genes in cancer. The P53 family members p63 and p73 were also shown to play important roles in cancer development and progression. Currently, there are various organic molecules from different structural classes of compounds that could reactivate the function of wild-type p53, degrade or inhibit mutant p53, etc. It was shown that: (1) the function of the wild-type p53 protein was dependent on the presence of Zn atoms, and (2) Zn supplementation restored the altered conformation of the mutant p53 protein. This prompted us to question whether the dependence of p53 on Zn and other metals might be used as a cancer vulnerability. This review article focuses on the role of different metals in the structure and function of p53, as well as discusses the effects of metal complexes based on Zn, Cu, Fe, Ru, Au, Ag, Pd, Pt, Ir, V, Mo, Bi and Sn on the p53 protein and p53-associated signaling.
Collapse
Affiliation(s)
- Samah Mutasim Alfadul
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Egor M Matnurov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Alexander E Varakutin
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| |
Collapse
|
76
|
Li D, Gao Z, Li Q, Liu X, Liu H. Cuproptosis-a potential target for the treatment of osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1135181. [PMID: 37214253 PMCID: PMC10196240 DOI: 10.3389/fendo.2023.1135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Osteoporosis is an age-related disease of bone metabolism marked by reduced bone mineral density and impaired bone strength. The disease causes the bones to weaken and break more easily. Osteoclasts participate in bone resorption more than osteoblasts participate in bone formation, disrupting bone homeostasis and leading to osteoporosis. Currently, drug therapy for osteoporosis includes calcium supplements, vitamin D, parathyroid hormone, estrogen, calcitonin, bisphosphates, and other medications. These medications are effective in treating osteoporosis but have side effects. Copper is a necessary trace element in the human body, and studies have shown that it links to the development of osteoporosis. Cuproptosis is a recently proposed new type of cell death. Copper-induced cell death regulates by lipoylated components mediated via mitochondrial ferredoxin 1; that is, copper binds directly to the lipoylated components of the tricarboxylic acid cycle, resulting in lipoylated protein accumulation and subsequent loss of iron-sulfur cluster proteins, leading to proteotoxic stress and eventually cell death. Therapeutic options for tumor disorders include targeting the intracellular toxicity of copper and cuproptosis. The hypoxic environment in bone and the metabolic pathway of glycolysis to provide energy in cells can inhibit cuproptosis, which may promote the survival and proliferation of various cells, including osteoblasts, osteoclasts, effector T cells, and macrophages, thereby mediating the osteoporosis process. As a result, our group tried to explain the relationship between the role of cuproptosis and its essential regulatory genes, as well as the pathological mechanism of osteoporosis and its effects on various cells. This study intends to investigate a new treatment approach for the clinical treatment of osteoporosis that is beneficial to the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dinglin Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
77
|
Wu Y, Ma J, Shi J, Cao S, Luo J, Zheng T, Wang M. iTRAQ-Based Quantitative Proteomic Analysis of Arthrobacter simplex in Response to Cortisone Acetate and Its Mutants with Improved Δ 1-Dehydrogenation Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6376-6388. [PMID: 37043686 DOI: 10.1021/acs.jafc.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arthrobacter simplex is extensively used for cortisone acetate (CA) biotransformation in industry, but the Δ1-dehydrogenation molecular fundamental remains unclear. Herein, the comparative proteome revealed several proteins with the potential role in this reaction, which were mainly involved in lipid or amino acid transport and metabolism, energy production and conversion, steroid degradation, and transporter. The influences of six proteins were further confirmed, where pps, MceGA, yrbE4AA, yrbE4BA, and hyp2 showed positive impacts, while hyp1 exhibited a negative effect. Additionally, KsdD5 behaved as the best catalytic enzyme. By the combined manipulation in multiple genes under the control of a stronger promoter, an optimal strain with better catalytic enzyme activity, substrate transportation, and cell stress tolerance was created. After biotechnology optimization, the production peak and productivity were, respectively, boosted by 4.1- and 4.0-fold relative to the initial level. Our work broadens the understanding of the Δ1-dehydrogenation mechanism, also providing effective strategies for excellent steroid-transforming strains.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianan Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jinghui Shi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuting Cao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tingting Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
78
|
Xing J, Qiao G, Luo X, Liu S, Chen S, Ye G, Zhang C, Yi J. Ferredoxin 1 regulates granulosa cell apoptosis and autophagy in polycystic ovary syndrome. Clin Sci (Lond) 2023; 137:453-468. [PMID: 36752638 DOI: 10.1042/cs20220408] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Polycystic ovary syndrome (PCOS), a common reproductive endocrine disorder in women of reproductive age, causes anovulatory infertility. Increased apoptosis of granulosa cells has been identified as one of the key factors contributing to abnormal follicular development. Ferredoxin 1 (FDX1) encodes a small ferredoxin that is involved in the reduction in mitochondrial cytochromes and the synthesis of various steroid hormones and has the potential to influence the function of granulosa cells. In the present study, we aimed to determine the relationship between FDX1 and follicular granulosa cell function. To this end, we investigated the difference between FDX1 expression in the granulosa cells of 50 patients with PCOS and that of the controls. Furthermore, we sought to elucidate the role and mechanism of FDX1 in PCOS granulosa cells by establishing a mouse PCOS model with dehydroepiandrosterone and KGN (a steroidogenic human granulosa cell-like tumor cell line). The results indicated significant up-regulation of FDX1 in the granulosa cells after androgen stimulation. Knockdown of FDX1 promoted the proliferation of KGN and inhibited apoptosis. Moreover, FDX1 could regulate autophagy by influencing the autophagy proteins ATG3 and ATG7. Our results demonstrated that FDX1 plays a critical role in female folliculogenesis by mediating apoptosis, autophagy, and proliferation. Therefore, FDX1 may be a potential prognostic factor for female infertility.
Collapse
Affiliation(s)
- Jinshan Xing
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Gan Qiao
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xin Luo
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shuang Liu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shaokun Chen
- Department of Morphological Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Geng Ye
- Department of Pharmacology, School of Pharmacy, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Chunxiang Zhang
- Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Nucleic Acid Medicine of Luzhou Key Laboratory, Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
79
|
Hu H, Yin Y, Jiang B, Feng Z, Cai T, Wu S. Cuproptosis signature and PLCD3 predicts immune infiltration and drug responses in osteosarcoma. Front Oncol 2023; 13:1156455. [PMID: 37007130 PMCID: PMC10060837 DOI: 10.3389/fonc.2023.1156455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Osteosarcoma (OS) is a cancer that is frequently found in children and adolescents and has made little improvement in terms of prognosis in recent years. A recently discovered type of programmed cell death called cuproptosis is mediated by copper ions and the tricarboxylic acid (TCA) cycle. The expression patterns, roles, and prognostic and predictive capabilities of the cuproptosis regulating genes were investigated in this work. TARGET and GEO provided transcriptional profiling of OS. To find different cuproptosis gene expression patterns, consensus clustering was used. To identify hub genes linked to cuproptosis, differential expression (DE) and weighted gene co-expression network analysis (WGCNA) were used. Cox regression and Random Survival Forest were used to build an evaluation model for prognosis. For various clusters/subgroups, GSVA, mRNAsi, and other immune infiltration experiments were carried out. The drug-responsive study was carried out by the Oncopredict algorithm. Cuproptosis genes displayed two unique patterns of expression, and high expression of FDX1 was associated with a poor outcome in OS patients. The TCA cycle and other tumor-promoting pathways were validated by the functional study, and activation of the cuproptosis genes may also be connected with immunosuppressive state. The robust survival prediction ability of a five-gene prognostic model was verified. This rating method also took stemness and immunosuppressive characteristics into account. Additionally, it can be associated with a higher sensitivity to medications that block PI3K/AKT/mTOR signaling as well as numerous chemoresistances. U2OS cell migration and proliferation may be encouraged by PLCD3. The relevance of PLCD3 in immunotherapy prediction was verified. The prognostic significance, expressing patterns, and functions of cuproptosis in OS were revealed in this work on a preliminary basis. The cuproptosis-related scoring model worked well for predicting prognosis and chemoresistance.
Collapse
Affiliation(s)
- Hai Hu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuesong Yin
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Binbin Jiang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhennan Feng
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ting Cai
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ting Cai, ; Song Wu,
| | - Song Wu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ting Cai, ; Song Wu,
| |
Collapse
|
80
|
Zhang M, Liu X, Wang D, Ruan X, Wang P, Liu L, Xue Y. A novel cuproptosis-related gene signature to predict prognosis in Glioma. BMC Cancer 2023; 23:237. [PMID: 36915038 PMCID: PMC10012466 DOI: 10.1186/s12885-023-10714-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Glioma is primary brain tumour with a poor prognosis. Metabolic reprogramming is a hallmark of glioma, and is critical in the development of antiglioma agents and glioma therapy. Cuproptosis is a novel form of cell death mediated by protein lipidation and highly associated with mitochondrial metabolism. However, the clinical impact of cuproptosis-related genes (CRGs) in glioma remains largely unknown. The purpose of this study is to create a new CRGs signature that can be used to predict survival and immunotherapy in glioma patients. LASSO regression analysis was applied to establish prognostic gene signatures. Furthermore, a CRGs signature-based nomogram was developed and demonstrated good predictive potential. We also analyzed the relationship of CRGs and immune infiltration and the correlation with the pathological grade of glioma. Finally, we explored the miRNA that may regulate cuproptosis-related gene FDX1. We found that miR-606 was markedly downregulated in GBM, overexpression of miR-606 can significantly inhibit aerobic glycolysis and proliferation of GBM cells. FDX1 was upregulated in GBM, knockdown of FDX1 significantly inhibit aerobic glycolysis and proliferation of GBM cells. And luciferase assay was used to verified that miR-606 binds to and regulates FDX1 mRNA. These results provide a basis for further exploring the biological mechanisms of cuproptosis. This study may provide new potential therapeutic perspectives for patients with glioma.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Xiaobai Liu
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Di Wang
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
81
|
Zulkifli M, Spelbring A, Zhang Y, Soma S, Chen S, Li L, Le T, Shanbhag V, Petris M, Chen TY, Ralle M, Barondeau D, Gohil V. FDX1-dependent and independent mechanisms of elesclomol-mediated intracellular copper delivery. Proc Natl Acad Sci U S A 2023; 120:e2216722120. [PMID: 36848556 PMCID: PMC10013847 DOI: 10.1073/pnas.2216722120] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/26/2023] [Indexed: 03/01/2023] Open
Abstract
Recent studies have uncovered the therapeutic potential of elesclomol (ES), a copper-ionophore, for copper deficiency disorders. However, we currently do not understand the mechanism by which copper brought into cells as ES-Cu(II) is released and delivered to cuproenzymes present in different subcellular compartments. Here, we have utilized a combination of genetic, biochemical, and cell-biological approaches to demonstrate that intracellular release of copper from ES occurs inside and outside of mitochondria. The mitochondrial matrix reductase, FDX1, catalyzes the reduction of ES-Cu(II) to Cu(I), releasing it into mitochondria where it is bioavailable for the metalation of mitochondrial cuproenzyme- cytochrome c oxidase. Consistently, ES fails to rescue cytochrome c oxidase abundance and activity in copper-deficient cells lacking FDX1. In the absence of FDX1, the ES-dependent increase in cellular copper is attenuated but not abolished. Thus, ES-mediated copper delivery to nonmitochondrial cuproproteins continues even in the absence of FDX1, suggesting alternate mechanism(s) of copper release. Importantly, we demonstrate that this mechanism of copper transport by ES is distinct from other clinically used copper-transporting drugs. Our study uncovers a unique mode of intracellular copper delivery by ES and may further aid in repurposing this anticancer drug for copper deficiency disorders.
Collapse
Affiliation(s)
- Mohammad Zulkifli
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Amy N. Spelbring
- Department of Chemistry, Texas A&M University, College Station, TX77842
| | - Yuteng Zhang
- Department of Chemistry, University of Houston, Houston, TX77204
| | - Shivatheja Soma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL60439
| | - Luxi Li
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL60439
| | - Trung Le
- Department of Chemistry, Texas A&M University, College Station, TX77842
| | - Vinit Shanbhag
- Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, MO65211
- Department of Ophthalmology, Life Sciences Center, University of Missouri, Columbia, MO65211
| | - Michael J. Petris
- Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, MO65211
- Department of Ophthalmology, Life Sciences Center, University of Missouri, Columbia, MO65211
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, TX77204
| | - Martina Ralle
- Molecular and Medical Genetics Department, Oregon Health and Sciences University, Portland, OR97239
| | | | - Vishal M. Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843
| |
Collapse
|
82
|
Xie J, Yang Y, Gao Y, He J. Cuproptosis: mechanisms and links with cancers. Mol Cancer 2023; 22:46. [PMID: 36882769 PMCID: PMC9990368 DOI: 10.1186/s12943-023-01732-y] [Citation(s) in RCA: 348] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
Cuproptosis was a copper-dependent and unique kind of cell death that was separate from existing other forms of cell death. The last decade has witnessed a considerable increase in investigations of programmed cell death, and whether copper induced cell death was an independent form of cell death has long been argued until mechanism of cuproptosis has been revealed. After that, increasing number of researchers attempted to identify the relationship between cuproptosis and the process of cancer. Thus, in this review, we systematically detailed the systemic and cellular metabolic processes of copper and the copper-related tumor signaling pathways. Moreover, we not only focus on the discovery process of cuproptosis and its mechanism, but also outline the association between cuproptosis and cancers. Finally, we further highlight the possible therapeutic direction of employing copper ion ionophores with cuproptosis-inducing functions in combination with small molecule drugs for targeted therapy to treat specific cancers.
Collapse
Affiliation(s)
- Jiaming Xie
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yannan Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China. .,Laboratory of Translational Medicine, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 101399, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China. .,Laboratory of Translational Medicine, National Cancer Center/National, Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 101399, China.
| |
Collapse
|
83
|
4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer. Biomed Pharmacother 2023; 159:114301. [PMID: 36706634 DOI: 10.1016/j.biopha.2023.114301] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Cuproptosis, a novel copper-induced cell death pathway, is linked to mitochondrial respiration and mediated by protein lipoylation. The discovery of cuproptosis unfolds new areas of investigation, particularly in cancers. The present study aimed to explore the role of cuproptosis in colorectal cancer progression. The genetic alterations of cuproptosis in colon cancer were evaluated using a database. MTT assays, colony formation, and flow cytometry were used to examine the effect of elesclomol-Cu and 4-Octyl itaconate (4-OI) on colorectal cancer cell and oxaliplatin-resistant cell viability. The anti-tumor effect of elesclomol with 4-OI was verified in vivo assay. The results showed that FDX1, SDHB, DLAT, and DLST genes were more highly expressed in normal tissues than those in primary tumor tissues. Patients with high expressions of these genes in tumor tissues had a better prognosis. Using MTT assay and colony formation analysis, elesclomol-Cu pulse treatment showed significant inhibition of cell viability in HCT116, LoVo, and HCT116-R cells. In addition, flow cytometry revealed elesclomol-Cu significantly promoted apoptosis. Tetrathiomolybdate, a copper chelator, markedly inhibited cuproptosis. Subsequently, we found 2-deoxy-D-glucose, a glucose metabolism inhibitor, sensitized cuproptosis. Furthermore, galactose further promoted cuproptosis. Interestingly, 4-OI significantly enhanced cuproptosis which was irrelevant to ROS production, apoptosis, necroptosis, or pyroptosis pathways. Aerobic glycolysis was inhibited by 4-OI through GAPDH, one of the key enzymes of glycolysis, sensitizing cuproptosis. Meanwhile, FDX1 knockdown weakened the ability of 4-OI to promote cuproptosis. In vivo experiments, 4-OI with elesclomol-Cu showed better anti-tumor effects. These results indicated that elesclomol-Cu rapidly halted cell growth in colorectal cancer cells and oxaliplatin-resistant cell line. Importantly, we revealed that 4-OI inhibited aerobic glycolysis by targeting GAPDH to promote cuproptosis.
Collapse
|
84
|
Novel Cuproptosis-Related Gene Signature for Precise Identification of High-Risk Populations in Low-Grade Gliomas. Mediators Inflamm 2023; 2023:6232620. [PMID: 36814682 PMCID: PMC9940981 DOI: 10.1155/2023/6232620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 11/24/2022] [Indexed: 02/15/2023] Open
Abstract
Background Patients with low-grade glioma (LGG) have wildly varying average lifespans. However, no effective way exists for identifying LGG patients at high risk. Cuproptosis is a recently described form of cell death associated with the abnormal aggregation of lipid acylated proteins. Few investigations have been conducted on cuproptosis-associated genes and LGG thus far. The purpose of this research is to establish a predictive model for cuproptosis-related genes in order to recognise LGG populations at high risk. Methods We analyzed 926 LGGs from 2 public datasets, all of which were RNA sequencing datasets. On the basis of immune scores, the LGG population was split into different risk categories with X-tile. LASSO and Cox regressions were employed to filter cuproptosis-associated genes and construct prediction models. The accuracy of the predictive models was measured by using TCGA internal validation set and the CGGA external validation set. In addition, LGG immune cell infiltration was viewed using CIBERSORT and ssGSEA algorithms and correlation analysis was done with cuproptosis-related genes. Finally, immune escape capacity in LGG low- and high-risk groups was evaluated using the TIDE method. Results The prediction model constructed by four cuproptosis-related genes was used to identify high-risk populations in LGG. It performed well in training and all validation sets (AUC values: 0.915, 0.894, and 0.774). Meanwhile, we found that FDX1 and ATP7A in the four cuproptosis-related genes were positively correlated with immune response, while GCSH and ATP7B were opposite. In addition, the high immune score group had a lower TIDE score, indicating that their immune escape capacity was weak. Conclusion High-risk individuals in LGG can be reliably identified by the model based on cuproptosis-related genes. Furthermore, cuproptosis is closely related to tumor immune microenvironment, which gives a novel approach to treating LGG.
Collapse
|
85
|
Xiong C, Ling H, Hao Q, Zhou X. Cuproptosis: p53-regulated metabolic cell death? Cell Death Differ 2023; 30:876-884. [PMID: 36755067 PMCID: PMC10070433 DOI: 10.1038/s41418-023-01125-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 02/10/2023] Open
Abstract
Cuproptosis is a novel type of copper-induced cell death that primarily occurs in cells that utilize oxidative phosphorylation as the main metabolic pathway to produce energy. Copper directly associates with the lipoylated proteins of the tricarboxylic acid cycle, leading to the disulfide-bond-dependent aggregation of these lipoylated proteins, destabilization of the iron-sulfur cluster proteins, and consequent proteotoxic stress. Cancer cells prefer glycolysis (Warburg effect) to oxidative phosphorylation for producing intermediate metabolites and energy, thereby achieving resistance to cuproptosis. Interestingly, the tumor suppressor p53 is a crucial metabolic regulator that inhibits glycolysis and drives a metabolic switch towards oxidative phosphorylation in cancer cells. Additionally, p53 regulates the biogenesis of iron-sulfur clusters and the copper chelator glutathione, which are two critical components of the cuproptotic pathway, suggesting that this tumor suppressor might play a role in cuproptosis. Furthermore, the possible roles of mutant p53 in regulating cuproptosis are discussed. In this essay, we review the recent progress in the understanding of the mechanism underlying cuproptosis, revisit the roles of p53 in metabolic regulation and iron-sulfur cluster and glutathione biosynthesis, and propose several potential mechanisms for wild-type and mutant p53-mediated cuproptosis regulation.
Collapse
Affiliation(s)
- Chen Xiong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong Ling
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
86
|
Huang W, Wu Y, Zhu J, Luo N, Wang C, Liu S, Cheng Z. Pan-cancer integrated bioinformatics analysis reveals cuproptosis related gene FDX1 is a potential prognostic and immunotherapeutic biomarker for lower-grade gliomas. Front Mol Biosci 2023; 10:963639. [PMID: 36825202 PMCID: PMC9941349 DOI: 10.3389/fmolb.2023.963639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
FDX1 participates in cuproptosis, a copper-dependent cell death mode, which might influence tumor progressions like ferroptosis and pyroptosis. However, the role of FDX1 in tumors remains to be explored. This study investigated FDX1 expression features, and correlations to prognosis, tumor stages, immune microenvironment, and cuproptosis from a pan-cancer perspective based on integrated bioinformatics. FDX1 mRNA and clinical data were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Broad Institute Cancer Cell Line Encyclopedia (CCLE) databases. Differential expression of FDX1 in tumor stages was performed on GEPIA2.0. Cox proportional hazard regression and survival curve were used to analyze the prognostic value of FDX1. The relationships between FDX1 expression and immune infiltration, immune cells, immune checkpoints, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), and DNA methyltransferase (DNMT) were explored. GSEA was utilized to find the biological function of FDX1 in LGG. Results showed that FDX1 was abnormally expressed in multiple tumor types and demonstrated variability in various tumor stages. Survival analysis revealed FDX1 predicted poor prognosis in glioma (GBMLGG), brain lower-grade glioma (LGG), and good prognosis in the pan-kidney cohort (KIPAN), and kidney renal clear cell carcinoma (KIRC). Immune correlation analysis suggested FDX1 showed positive correlations to StromalScore, ImmuneScore, ESTIMATEScore in LGG and negative correlation in KIRC. Additionally, positive correlations were observed between FDX1 and immune cells infiltration, immune checkpoints, tumor stemness, homologous recombination deficiency (HRD), and TMB in LGG in the pan-cancer analysis. Validation with CGGA suggested prognostic value and immune correlation of FDX1 in LGG. Specifically, high expression of FDX1 was accompanied by high expression of immune checkpoints such as CD276 (B7-H3), CD274 (PD-L1), PDCD1LG2 (PD-L2), CTLA4, and HAVCR2. These findings illustrated that FDX1 might be considered a potential poor prognosis biomarker and immunotherapy predictor in LGG.
Collapse
Affiliation(s)
- Wei Huang
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Yuliang Wu
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China,School of Medicine, Tongji University, Shanghai, China
| | - Jihui Zhu
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Ning Luo
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Chunyan Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Shupeng Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China,*Correspondence: Shupeng Liu, ; Zhongping Cheng,
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China,*Correspondence: Shupeng Liu, ; Zhongping Cheng,
| |
Collapse
|
87
|
Dreishpoon MB, Bick NR, Petrova B, Warui DM, Cameron A, Booker SJ, Kanarek N, Golub TR, Tsvetkov P. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526472. [PMID: 36778498 PMCID: PMC9915701 DOI: 10.1101/2023.02.03.526472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Ferredoxins are a family of iron-sulfur (Fe-S) cluster proteins that serve as essential electron donors in numerous cellular processes that are conserved through evolution. The promiscuous nature of ferredoxins as electron donors enables them to participate in many metabolic processes including steroid, heme, vitamin D and Fe-S cluster biosynthesis in different organisms. However, the unique natural function(s) of each of the two human ferredoxins (FDX1 and FDX2) are still poorly characterized. We recently reported that FDX1 is both a crucial regulator of copper ionophore induced cell death and serves as an upstream regulator of cellular protein lipoylation, a mitochondrial lipid-based post translational modification naturally occurring on four mitochondrial enzymes that are crucial for TCA cycle function. Here we show that FDX1 regulates protein lipoylation by directly binding to the lipoyl synthase (LIAS) enzyme and not through indirect regulation of cellular Fe-S cluster biosynthesis. Metabolite profiling revealed that the predominant cellular metabolic outcome of FDX1 loss-of-function is manifested through the regulation of the four lipoylation-dependent enzymes ultimately resulting in loss of cellular respiration and sensitivity to mild glucose starvation. Transcriptional profiling of cells growing in either normal or low glucose conditions established that FDX1 loss-of-function results in the induction of both compensatory metabolism related genes and the integrated stress response, consistent with our findings that FDX1 loss-of-functions is conditionally lethal. Together, our findings establish that FDX1 directly engages with LIAS, promoting cellular protein lipoylation, a process essential in maintaining cell viability under low glucose conditions.
Collapse
Affiliation(s)
| | | | - Boryana Petrova
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children’s Hospital, Boston, MA USA
| | - Douglas M. Warui
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, PA, United States
| | | | - Squire J. Booker
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, PA, United States
| | - Naama Kanarek
- Broad Institute of Harvard and MIT, Cambridge, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children’s Hospital, Boston, MA USA
| | - Todd R. Golub
- Broad Institute of Harvard and MIT, Cambridge, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | | |
Collapse
|
88
|
Azemin WA, Alias N, Ali AM, Shamsir MS. Structural and functional characterisation of HepTH1-5 peptide as a potential hepcidin replacement. J Biomol Struct Dyn 2023; 41:681-704. [PMID: 34870559 DOI: 10.1080/07391102.2021.2011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepcidin is a principal regulator of iron homeostasis and its dysregulation has been recognised as a causative factor in cancers and iron disorders. The strategy of manipulating the presence of hepcidin peptide has been used for cancer treatment. However, this has demonstrated poor efficiency and has been short-lived in patients. Many studies reported using minihepcidin therapy as an alternative way to treat hepcidin dysregulation, but this was only applied to non-cancer patients. Highly conserved fish hepcidin protein, HepTH1-5, was investigated to determine its potential use in developing a hepcidin replacement for human hepcidin (Hepc25) and as a therapeutic agent by targeting the tumour suppressor protein, p53, through structure-function analysis. The authors found that HepTH1-5 is stably bound to ferroportin, compared to Hepc25, by triggering the ferroportin internalisation via Lys42 and Lys270 ubiquitination, in a similar manner to the Hepc25 activity. Moreover, the residues Ile24 and Gly24, along with copper and zinc ligands, interacted with similar residues, Lys24 and Asp1 of Hepc25, respectively, showing that those molecules are crucial to the hepcidin replacement strategy. HepTH1-5 interacts with p53 and activates its function through phosphorylation. This finding shows that HepTH1-5 might be involved in the apoptosis signalling pathway upon a DNA damage response. This study will be very helpful for understanding the mechanism of the hepcidin replacement and providing insights into the HepTH1-5 peptide as a new target for hepcidin and cancer therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia.,Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nadiawati Alias
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Abdul Manaf Ali
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Johor, Malaysia
| |
Collapse
|
89
|
Ferredoxins at the crossroads. Nat Chem Biol 2023; 19:129-130. [PMID: 36280792 DOI: 10.1038/s41589-022-01176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
90
|
Zhou J, Lin L, Cai H, Liu L, Wang H, Zhang J, Xia G, Wang J, Wang F, Wang C. SP1 impacts the primordial to primary follicle transition by regulating cholesterol metabolism in granulosa cells. FASEB J 2023; 37:e22767. [PMID: 36624701 DOI: 10.1096/fj.202201274rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
The primordial to primary follicle transition (PPT) in the ovary is critical to maintain sustainable reproductive resources in female mammals. However, it is unclear how granulosa cells (GCs) of the primary follicle participate in regulating PPT. This study focused on exploring the role of transcription factor Sp1 (SP1) in regulating PPT based on the fact that SP1 is pivotal for pregranulosa cell proliferation before primordial follicle formation. The results showed that mice fertility was prolonged when Sp1 was specifically depleted from GCs (GC- Sp1 -/- ). Besides, the PPT in GC- Sp1 -/- mice was reduced, resulting in more primordial follicles being preserved. Single-cell RNA-seq also indicated that the level of cholesterol metabolism was downregulated in GC- Sp1 -/- mice. Additionally, the PPT was promoted by either overexpression of ferredoxin-1 (FDX1), one of the key genes in mediating cholesterol metabolism or supplementing cholesterol for cultured fetal ovaries. Collectively, SP1 in GCs participates in the metabolism of cholesterol partially by regulating the transcription of Fdx1 during the PPT.
Collapse
Affiliation(s)
- Jiaqi Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Lin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Han Cai
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Longping Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Huarong Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingwen Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Jianbin Wang
- School of Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Fengchao Wang
- Transgenic Animal Center, National Institute of Biological Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
91
|
Pignataro MF, Herrera MG, Fernández NB, Aran M, Gentili HG, Battaglini F, Santos J. Selection of synthetic proteins to modulate the human frataxin function. Biotechnol Bioeng 2023; 120:409-425. [PMID: 36225115 DOI: 10.1002/bit.28263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 01/13/2023]
Abstract
Frataxin is a kinetic activator of the mitochondrial supercomplex for iron-sulfur cluster assembly. Low frataxin expression or a decrease in its functionality results in Friedreich's Ataxia (FRDA). With the aim of creating new molecular tools to study this metabolic pathway, and ultimately, to explore new therapeutic strategies, we have investigated the possibility of obtaining small proteins exhibiting a high affinity for frataxin. In this study, we applied the ribosome display approach, using human frataxin as the target. We focused on Affi_224, one of the proteins that we were able to select after five rounds of selection. We have studied the interaction between both proteins and discussed some applications of this specific molecular tutor, concerning the modulation of the supercomplex activity. Affi_224 and frataxin showed a KD value in the nanomolar range, as judged by surface plasmon resonance analysis. Most likely, it binds to the frataxin acidic ridge, as suggested by the analysis of chemical shift perturbations (nuclear magnetic resonance) and computational simulations. Affi_224 was able to increase Cys NFS1 desulfurase activation exerted by the FRDA frataxin variant G130V. Importantly, Affi_224 interacts with frataxin in a human cellular model. Our results suggest quaternary addition may be a new tool to modulate frataxin function in vivo. Nevertheless, more functional experiments under physiological conditions should be carried out to evaluate Affi_224 effectiveness in FRDA cell models.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Georgina Herrera
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Brenda Fernández
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martín Aran
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina.,Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Hernán Gustavo Gentili
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Battaglini
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET), Buenos Aires, Argentina
| | - Javier Santos
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
92
|
Schulz V, Basu S, Freibert SA, Webert H, Boss L, Mühlenhoff U, Pierrel F, Essen LO, Warui DM, Booker SJ, Stehling O, Lill R. Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat Chem Biol 2023; 19:206-217. [PMID: 36280795 PMCID: PMC10873809 DOI: 10.1038/s41589-022-01159-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/01/2022] [Indexed: 02/04/2023]
Abstract
Ferredoxins comprise a large family of iron-sulfur (Fe-S) proteins that shuttle electrons in diverse biological processes. Human mitochondria contain two isoforms of [2Fe-2S] ferredoxins, FDX1 (aka adrenodoxin) and FDX2, with known functions in cytochrome P450-dependent steroid transformations and Fe-S protein biogenesis. Here, we show that only FDX2, but not FDX1, is involved in Fe-S protein maturation. Vice versa, FDX1 is specific not only for steroidogenesis, but also for heme a and lipoyl cofactor biosyntheses. In the latter pathway, FDX1 provides electrons to kickstart the radical chain reaction catalyzed by lipoyl synthase. We also identified lipoylation as a target of the toxic antitumor copper ionophore elesclomol. Finally, the striking target specificity of each ferredoxin was assigned to small conserved sequence motifs. Swapping these motifs changed the target specificity of these electron donors. Together, our findings identify new biochemical tasks of mitochondrial ferredoxins and provide structural insights into their functional specificity.
Collapse
Affiliation(s)
- Vinzent Schulz
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Somsuvro Basu
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
- Freelance Medical Communications Consultant, Brno, Czech Republic
| | - Sven-A Freibert
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Holger Webert
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Linda Boss
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany
| | - Fabien Pierrel
- Univ. of Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France
| | - Lars-O Essen
- Department of Biochemistry, Faculty of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Douglas M Warui
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Squire J Booker
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, PA, USA
| | - Oliver Stehling
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany.
- Centre for Synthetic Microbiology, Synmikro, Marburg, Germany.
| | - Roland Lill
- Institute for Cytobiology, Philipps University of Marburg, Marburg, Germany.
- Centre for Synthetic Microbiology, Synmikro, Marburg, Germany.
| |
Collapse
|
93
|
Copper Death Inducer, FDX1, as a Prognostic Biomarker Reshaping Tumor Immunity in Clear Cell Renal Cell Carcinoma. Cells 2023; 12:cells12030349. [PMID: 36766692 PMCID: PMC9913648 DOI: 10.3390/cells12030349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Progress in the diagnosis and treatment of clear cell renal cell carcinoma (ccRCC) has significantly prolonged patient survival. However, ccRCC displays an extreme heterogenous characteristic and metastatic tendency, which limit the benefit of targeted or immune therapy. Thus, identifying novel biomarkers and therapeutic targets for ccRCC is of great importance. METHOD Pan cancer datasets, including the expression profile, DNA methylation, copy number variation, and single nucleic variation, were introduced to decode the aberrance of copper death regulators (CDRs). Then, FDX1 was systematically analyzed in ccRCC to evaluate its impact on clinical characteristics, prognosis, biological function, immune infiltration, and therapy response. Finally, in vivo experiments were utilized to decipher FDX1 in ccRCC malignancy and its role in tumor immunity. RESULT Copper death regulators were identified at the pancancer level, especially in ccRCC. FDX1 played a protective role in ccRCC, and its expression level was significantly decreased in tumor tissues, which might be regulated via CNV events. At the molecular mechanism level, FDX1 positively regulated fatty acid metabolism and oxidative phosphorylation. In addition, FDX1 overexpression restrained ccRCC cell line malignancy and enhanced tumor immunity by increasing the secretion levels of IL2 and TNFγ. CONCLUSIONS Our research illustrated the role of FDX1 in ccRCC patients' clinical outcomes and its impact on tumor immunity, which could be treated as a promising target for ccRCC patients.
Collapse
|
94
|
Schulz V, Freibert SA, Boss L, Mühlenhoff U, Stehling O, Lill R. Mitochondrial [2Fe-2S] ferredoxins: new functions for old dogs. FEBS Lett 2023; 597:102-121. [PMID: 36443530 DOI: 10.1002/1873-3468.14546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Ferredoxins (FDXs) comprise a large family of iron-sulfur proteins that shuttle electrons from NADPH and FDX reductases into diverse biological processes. This review focuses on the structure, function and specificity of mitochondrial [2Fe-2S] FDXs that are related to bacterial FDXs due to their endosymbiotic inheritance. Their classical function in cytochrome P450-dependent steroid transformations was identified around 1960, and is exemplified by mammalian FDX1 (aka adrenodoxin). Thirty years later the essential function in cellular Fe/S protein biogenesis was discovered for the yeast mitochondrial FDX Yah1 that is additionally crucial for the formation of haem a and ubiquinone CoQ6 . In mammals, Fe/S protein biogenesis is exclusively performed by the FDX1 paralog FDX2, despite the high structural similarity of both proteins. Recently, additional and specific roles of human FDX1 in haem a and lipoyl cofactor biosyntheses were described. For lipoyl synthesis, FDX1 transfers electrons to the radical S-adenosyl methionine-dependent lipoyl synthase to kickstart its radical chain reaction. The high target specificity of the two mammalian FDXs is contained within small conserved sequence motifs, that upon swapping change the target selection of these electron donors.
Collapse
Affiliation(s)
- Vinzent Schulz
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Sven-A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Linda Boss
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Oliver Stehling
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Germany.,Zentrum für Synthetische Mikrobiologie Synmikro, Marburg, Germany
| |
Collapse
|
95
|
Zhao Q, Qi T. The implications and prospect of cuproptosis-related genes and copper transporters in cancer progression. Front Oncol 2023; 13:1117164. [PMID: 36925927 PMCID: PMC10011146 DOI: 10.3389/fonc.2023.1117164] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Currently, cancer has become one of the major public health problems worldwide. Apoptosis is an important anti-cancer defense mechanism, which is used in the development of targeted drugs. Because cancer cells have endogenous resistance to apoptosis,the clinical efficacy of related drugs is not ideal. Therefore, non-apoptotic regulatory cell death may bring new therapeutic strategies for cancer treatment. Cuproptosis is a novel form of regulatory cell death which is copper-dependent, regulated and distinct from other known cell death regulatory mechanisms. FDX1,LIAS,and DLAT named cuproptosis-related genes play an essential role in regulating cuproptosis. Meanwhile, abnormal accumulation of copper can be observed in various malignant tumors. The correlation has been established between elevated copper levels in serum and tissues and the progression of several cancers. Copper transporters, CTR1 and Copper-transporting ATPases(ATP7A and ATP7B), are mainly involved in regulating the dynamic balance of copper concentration to maintain copper homeostasis. Thus,cuproptosis-related genes and copper transporters will be the focus of cancer research in future. This review elaborated the basic functions of cuproptosis-related genes and copper transporters by retrievalling PubMed. And then we analyzed their potential relationship with cancer aiming to provide theoretical support and reference in cancer progression, diagnosis and treatment for future study.
Collapse
Affiliation(s)
- Qianwen Zhao
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Tonggang Qi
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
96
|
Wang L, Cao Y, Guo W, Xu J. High expression of cuproptosis-related gene FDX1 in relation to good prognosis and immune cells infiltration in colon adenocarcinoma (COAD). J Cancer Res Clin Oncol 2023; 149:15-24. [PMID: 36173462 PMCID: PMC9889456 DOI: 10.1007/s00432-022-04382-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/24/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Cuproptosis induced by FDX1 is a newly discovered mechanism regulating cell death. However, the role of FDX1 in the pathogenesis of colon adenocarcinoma (COAD) remains to be studied. METHODS FDX1 expression was analyzed with The Cancer Genome Atlas (TCGA) database and Human Protein Atlas (HPA) database. Association between FDX1 expression and COAD prognosis was investigated via the Kaplan-Meier (KM) survival curve. The differentially expressed genes (DEGs) of FDX1 were screened with R packages and the PPI were constructed via STRING database. Cytoscape software was used to detect the most profound modules in the PPIs network. CancerSEA database was used to analyze the effect of FDX1 expression levels on different functional status of COAD cells. The relationship between FDX1 expression and immune infiltration of COAD was analyzed by TIMER2.0 database. The COAD patients with high expression of FDX1 by Western blot, and the levels of immune infiltration were measured by flow cytometry. RESULTS FDX1 was low expressed in most cancers, such as BRCA, KICH, and COAD. The overall survival (OS) and disease-specific survival (DSS) of COAD with high FDX1 expression were better than that of the low expression group. GO-KEGG enrichment analysis revealed that FDX1 and its co-expressed genes played an important role in the pathogenesis of COAD. Moreover, FDX1 expression in COAD were positively associated with "quiescence" and "inflammation" but negatively correlated with "invasion". FDX1 expression was positively correlated with infiltration levels of CD8+ T cells, NK cells, and neutrophils. Oppositely, FDX1 expression was negatively correlated with that of CD4+ T cells and cancer-associated fibroblasts (CAFs). Finally, 6 COAD patients with high expression of FDX1 were screened, and the proportion of CD8+ T cells in cancer tissues of these patients was significantly higher than that in paracancerous, while the CD4+ T cells presented the opposite pattern. CONCLUSION FDX1 plays a role in inducing cuproptosis and modulating tumor immunity, which could be considered as potential therapeutic targets in COAD.
Collapse
Affiliation(s)
- Lizong Wang
- grid.452929.10000 0004 8513 0241General Practice Department, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province China
| | - Yi Cao
- grid.443626.10000 0004 1798 4069School of Basic Medicine, Wannan Medical College, NO. 22 Wenchang west road, Wuhu, Anhui Province China
| | - Wei Guo
- grid.443626.10000 0004 1798 4069School of Basic Medicine, Wannan Medical College, NO. 22 Wenchang west road, Wuhu, Anhui Province China
| | - Jingyun Xu
- School of Basic Medicine, Wannan Medical College, NO. 22 Wenchang west road, Wuhu, Anhui Province, China.
| |
Collapse
|
97
|
Cuproptosis-Related MiR-21-5p/FDX1 Axis in Clear Cell Renal Cell Carcinoma and Its Potential Impact on Tumor Microenvironment. Cells 2022; 12:cells12010173. [PMID: 36611966 PMCID: PMC9818076 DOI: 10.3390/cells12010173] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
As a newly identified type of programmed cell death, cuproptosis may have an impact on cancer development, including clear cell renal cell carcinoma (ccRCC). Herein, we first noticed that the expression levels of cuproptosis regulators exhibited a tight correlation with the clinicopathological characteristics of ccRCC. The cuproptosis-sensitive sub-type (CSS), classified via consensus clustering analysis, harbored a higher overall survival rate compared to the cuproptosis-resistant sub-type (CRS), which may have resulted from the differential infiltration of immune cells. FDX1, the cuproptosis master regulator, was experimentally determined as a tumor suppressor in ccRCC cells by suppressing the cell growth and cell invasion of ACHN and OSRC-2 cells in a cuproptosis-dependent and -independent manner. The results from IHC staining also demonstrated that FDX1 expression was negatively correlated with ccRCC tumor initiation and progression. Furthermore, we identified the miR-21-5p/FDX1 axis in ccRCC and experimentally verified that miR-21-5p directly binds the 3'-UTR of FDX1 to mediate its degradation. Consequently, a miR-21-5p inhibitor suppressed the cell growth and cell invasion of ACHN and OSRC-2 cells, which could be compensated by FDX1 knockdown, reinforcing the functional linkage between miR-21-5p and FDX1 in ccRCC. Finally, we evaluated the ccRCC tumor microenvironment under the miR-21-5p/FDX1 axis and noted that this axis was strongly associated with the infiltration of immune cells such as CD4+ T cells, Treg cells, and macrophages, suggesting that this signaling axis may alter microenvironmental components to drive ccRCC progression. Overall, this study constructed the miR-21-5p/FDX1 axis in ccRCC and analyzed its potential impact on the tumor microenvironment, providing valuable insights to improve current ccRCC management.
Collapse
|
98
|
Xu J, Hu Z, Cao H, Zhang H, Luo P, Zhang J, Wang X, Cheng Q, Li J. Multi-omics pan-cancer study of cuproptosis core gene FDX1 and its role in kidney renal clear cell carcinoma. Front Immunol 2022; 13:981764. [PMID: 36605188 PMCID: PMC9810262 DOI: 10.3389/fimmu.2022.981764] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/28/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The mechanism of copper-induced cellular death was newly discovered and termed cuproptosis. Inducing cuproptosis in cancer cells is well anticipated for its curative potential in treating tumor diseases. However, ferredoxin 1 (FDX1), the core regulatory gene in cuproptosis, is rarely studied, and the regulation of FDX1 in tumor biology remains obscure. A comprehensive pan-cancer analysis of FDX1 is needed. METHODS Thirty-three types of tumors were included with paired normal tissues in The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) datasets. The interaction between transcription, protein, phosphorylation, and promoter methylation levels was analyzed. Survival, immune infiltration, single-cell FDX1 expression, FDX1-related tumor mutational burden (TMB), microsatellite instability (MSI), stemness, tumor immune dysfunction and exclusion (TIDE), and immunotherapy-related analyses were performed. FDX1 protein expression was assessed by kidney renal clear cell carcinoma (KIRC) tissue microarray immunohistochemistry. The function of FDX1 in KIRC was further explored by experiments in 786-O cell lines in vitro. RESULTS FDX1 is highly expressed in 15 tumor types and lowly expressed in 11 tumor types. The corresponding changes in protein expression, phosphorylation, and promoter methylation level of FDX1 have been described in several tumors. Survival analysis showed that FDX1 was related to favorable or poor overall survival in eight tumors and progression-free survival in nine tumors. Immune infiltration and single-cell analysis indicated the indispensable role of FDX1 expression in macrophages and monocytes. Multiple established immunotherapy cohorts suggested that FDX1 may be a potential predictor of treatment effects for tumor patients. Tissue microarray analysis showed decreased FDX1 expression in KIRC patients' tumor tissues. Knockdown of FDX1 resulted in the downregulation of cuproptosis in kidney renal clear tumor cells. Mechanistically, the FDX1-associated gene expression signature in KIRC is related to the enrichment of genes involved in the tricarboxylic acid (TCA) cycle, NOTCH pathway, etc. Several NOTCH pathway genes were differentially expressed in the high- and low-FDX1 groups in KIRC. CONCLUSION Our analysis showed that the central regulatory gene of cuproptosis, FDX1, has differential expression and modification levels in various tumors, which is associated with cellular function, immune modulation, and disease prognosis. Thus, FDX1-dependent cuproptosis may serve as a brand-new target in future therapeutic approaches against tumors.
Collapse
Affiliation(s)
- Jiahao Xu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhengang Hu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Cao
- Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Jingbo Li
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
99
|
Zhang K, Yang W, Zhang Z, Ma K, Li L, Xu Y, Qiu J, Yu C, Zhou J, Cai L, Gong Y, Gong K. A Novel Cuproptosis-Related Prognostic Model and the Hub Gene FDX1 Predict the Prognosis and Correlate with Immune Infiltration in Clear Cell Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:2124088. [PMID: 36536785 PMCID: PMC9759391 DOI: 10.1155/2022/2124088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 09/29/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignancy of the urological system with poor prognosis. Cuproptosis is a recently discovered novel manner of cell death, and the hub gene FDX1 could promote cuproptosis. However, the potential roles of cuproptosis-related genes (CRGs) and FDX1 for predicting prognosis, the immune microenvironment, and therapeutic response have been poorly studied in ccRCC. In the present study, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) data were downloaded. CRGs were subjected to prognosis analysis, and three of them were used to construct the prognostic model by least absolute shrinkage and selection operator (LASSO) regression. The CRGs prognostic model showed excellent performance. Moreover, based on the risk score of the model, the nomogram was developed to predict 1-year, 3-year, and 5-year survival. Furthermore, the hub gene of cuproptosis, FDX1, was an independent prognostic biomarker in multivariate Cox regression analysis. The pan-cancer analysis showed that FDX1 was significantly downregulated and closely related to prognosis in ccRCC among 33 cancer types. Lower FDX1 was also correlated with worse clinicopathologic features. The lower expression of FDX1 in ccRCC was verified in the external database and our own database, which may be caused by DNA methylation. We further demonstrated that the tumor mutational burden (TMB) and immune cell infiltration were related to the expression of FDX1. Immune response and drug sensitivity analysis revealed that immunotherapy or elesclomol may have a favorable treatment effect in the high FDX1 expression group and sunitinib or axitinib may work better in the low FDX1 expression group. In conclusion, we constructed a CRGs prognostic model and revealed that FDX1 could serve as a prognostic biomarker and predict therapeutic response in ccRCC. The study will provide a novel, precise, and individual treatment strategy for ccRCC patients.
Collapse
Affiliation(s)
- Kenan Zhang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Wuping Yang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Zedan Zhang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Kaifang Ma
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Lei Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Yawei Xu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Jianhui Qiu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Chaojian Yu
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Jingcheng Zhou
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Lin Cai
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing 100034, China
- Hereditary Kidney Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
100
|
Hino K, Yanatori I, Hara Y, Nishina S. Iron and liver cancer: an inseparable connection. FEBS J 2022; 289:7810-7829. [PMID: 34543507 DOI: 10.1111/febs.16208] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
Iron is an essential element for all organisms. Iron-containing proteins play critical roles in cellular functions. The biological importance of iron is largely attributable to its chemical properties as a transitional metal. However, an excess of 'free' reactive iron damages the macromolecular components of cells and cellular DNA through the production of harmful free radicals. On the contrary, most of the body's excess iron is stored in the liver. Not only hereditary haemochromatosis but also some liver diseases with mild-to-moderate hepatic iron accumulation, such as chronic hepatitis C, alcoholic liver disease and nonalcoholic steatohepatitis, are associated with a high risk for liver cancer development. These findings have attracted attention to the causative and promotive roles of iron in the development of liver cancer. In the last decade, accumulating evidence regarding molecules regulating iron metabolism or iron-related cell death programmes such as ferroptosis has shed light on the relationship between hepatic iron accumulation and hepatocarcinogenesis. In this review, we briefly present the current molecular understanding of iron regulation in the liver. Next, we describe the mechanisms underlying dysregulated iron metabolism depending on the aetiology of liver diseases. Finally, we discuss the causative and promotive roles of iron in cancer development.
Collapse
Affiliation(s)
- Keisuke Hino
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Izumi Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Japan
| | - Yuichi Hara
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| | - Sohji Nishina
- Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|