51
|
Choi JH, Lindsey-Boltz LA, Sancar A. Cooperative activation of the ATR checkpoint kinase by TopBP1 and damaged DNA. Nucleic Acids Res 2009; 37:1501-9. [PMID: 19139065 PMCID: PMC2655664 DOI: 10.1093/nar/gkn1075] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
TopBP1, acting in concert with DNA containing bulky base lesions, stimulates ATR kinase activity under physiologically relevant reaction conditions. Here, we analyze the roles of the three components in ATR activation: DNA, base damage and TopBP1. We show that base adducts caused by a potent carcinogen, benzo[a]pyrene diol epoxide (BPDE), constitute a strong signal for TopBP1-dependent ATR kinase activity on Chk1 and p53. We find that the C-terminus of TopBP1 binds preferentially to damaged DNA and is sufficient to mediate damaged DNA-dependent ATR activation in a manner similar to full-length TopBP1. Significantly, we find that stimulation of ATR by BPDE-damaged DNA exhibits strong dependence on the length of DNA, with essentially no stimulation with fragments of 0.2 kb and reaching maximum stimulation with 2 kb fragments. Moreover, TopBP1 shows preferential binding to longer DNA fragments and, in contrast to previous biochemical studies, TopBP1 binding is completely independent of DNA ends. We find that TopBP1 binds to circular and linear DNAs with comparable affinities and that these DNA forms elicit the same level of TopBP1-dependent ATR activation. Taken together, these findings suggest a cooperative activation mechanism for the ATR checkpoint kinase by TopBP1 and damaged DNA.
Collapse
Affiliation(s)
- Jun-Hyuk Choi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7260, USA
| | | | | |
Collapse
|
52
|
Kedar PS, Stefanick DF, Horton JK, Wilson SH. Interaction between PARP-1 and ATR in mouse fibroblasts is blocked by PARP inhibition. DNA Repair (Amst) 2008; 7:1787-98. [PMID: 18691676 PMCID: PMC2585487 DOI: 10.1016/j.dnarep.2008.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 01/21/2023]
Abstract
Inhibition of PARP activity results in extreme sensitization to MMS-induced cell killing in cultured mouse fibroblasts. In these MMS-treated cells, PARP inhibition is accompanied by an accumulation of S-phase cells that requires signaling by the checkpoint kinase ATR [J.K. Horton, D.F. Stefanick, J.M. Naron, P.S. Kedar, S.H. Wilson, Poly(ADP-ribose) polymerase activity prevents signaling pathways for cell cycle arrest following DNA methylating agent exposure, J. Biol. Chem. 280 (2005) 15773-15785]. Here, we examined mouse fibroblast extracts for formation of a complex that may reflect association between the damage responsive proteins PARP-1 and ATR. Co-immunoprecipitation of PARP-1 and ATR was observed in extracts prepared from MMS-treated cells, but not under conditions of PARP inhibition. Further, our experiments demonstrated PAR-adduction of ATR in extracts from control and MMS-treated cells. An interaction between purified ATR and PARP-1 was similarly demonstrated, suggesting that the observed co-immunoprecipitation of ATR and PARP-1 from cell extracts may be due to a direct interaction between the two enzymes. In addition, purified recombinant ATR is a substrate for poly(ADP-ribosyl)ation by PARP-1, and poly(ADP-ribose) adduction of PARP-1 and ATR resulted in an increase in PARP-1 and ATR co-immunoprecipitation.
Collapse
Affiliation(s)
- Padmini S Kedar
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
53
|
Riches LC, Lynch AM, Gooderham NJ. Early events in the mammalian response to DNA double-strand breaks. Mutagenesis 2008; 23:331-9. [PMID: 18644834 DOI: 10.1093/mutage/gen039] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Physical and chemical agents that induce DNA double-strand breaks (DSBs) are among the most potent mutagens. The mammalian cell response to DSB comprises a highly co-ordinated, yet complex network of proteins that have been categorized as sensors, signal transducers, mediators and effectors of damage and repair. While this provides an accessible classification system, review of the literature indicates that many proteins satisfy the criteria of more than one category, pointing towards a series of highly co-operative pathways with overlapping function. In summary, the MRE11-NBS1-RAD50 complex is necessary for achieving optimal activation of ataxia-telangiectasia-mutated (ATM) kinase, which catalyses a phosphorylation-mediated signal transduction cascade. Among the subset of proteins phosphorylated by ATM are histone H2AX (H2AX), mediator of damage checkpoint protein 1, nibrin (NBS1), P53-binding protein 1 and breast cancer protein 1, all of which subsequently redistribute into DSB-containing sub-nuclear compartments. Post-translational modification of DSB responding proteins achieves a rapid and reversible change in protein behaviour and mediates damage-specific interactions, hence imparting a high degree of vigilance to the cell. This review highlights events fundamental in maintaining genetic integrity with emphasis on early stages of the DSB response.
Collapse
Affiliation(s)
- Lucy C Riches
- Department of Biomolecular Medicine, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | | |
Collapse
|
54
|
Kim SC, Park SS, Lee YJ. Effect of UV irradiation on colorectal cancer cells with acquired TRAIL resistance. J Cell Biochem 2008; 104:1172-80. [PMID: 18247342 DOI: 10.1002/jcb.21682] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily. TRAIL shows strong cytotoxicity to many cancer cells but minimal cytotoxicity to most normal cells. Interestingly, our recent studies have demonstrated that pretreatment with TRAIL induces acquired resistance to TRAIL (Song et al. 2007 J Biol Chem 282: 319). Acquired TRAIL resistance develops within 1 day and gradually decays within 5 days after TRAIL treatment. In our current study, we examined whether human colorectal carcinoma CX-1 cells with acquired TRAIL resistance are resistant to UV irradiation as well. CX-1 cells were treated with 200 ng/ml TRAIL for 6 h and incubated various times (0.25-5 days) and then challenged to UV irradiation. Unexpectedly, we observed an increase in apoptosis in acquired TRAIL resistant cells after UVC as well as UVB exposure. This was due to an increase in caspase activation which was mediated through cytochrome c release. These results suggest that cells with acquired TRAIL resistance are sensitive to UV irradiation.
Collapse
Affiliation(s)
- Seong C Kim
- Department of Surgery and Pharmacology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
55
|
Abstract
Genome maintenance is a constant concern for cells, and a coordinated response to DNA damage is required to maintain cellular viability and prevent disease. The ataxia-telangiectasia mutated (ATM) and ATM and RAD3-related (ATR) protein kinases act as master regulators of the DNA-damage response by signalling to control cell-cycle transitions, DNA replication, DNA repair and apoptosis. Recent studies have provided new insights into the mechanisms that control ATR activation, have helped to explain the overlapping but non-redundant activities of ATR and ATM in DNA-damage signalling, and have clarified the crucial functions of ATR in maintaining genome integrity.
Collapse
Affiliation(s)
- Karlene A. Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Clark Center, 318 Campus Drive, W350B, Stanford, CA 94305-5441, , 650-498-4720
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, 613 Light Hall, 23 @ Pierce Ave., Nashville, TN 37232, , 615-322-8547, website: http://www.mc.vanderbilt.edu/root/vumc.php?site=cortezlab
| |
Collapse
|
56
|
Jamil S, Mojtabavi S, Hojabrpour P, Cheah S, Duronio V. An essential role for MCL-1 in ATR-mediated CHK1 phosphorylation. Mol Biol Cell 2008; 19:3212-20. [PMID: 18495871 DOI: 10.1091/mbc.e07-11-1171] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Here we report a novel role for myeloid cell leukemia 1 (Mcl-1), a Bcl-2 family member, in regulating phosphorylation and activation of DNA damage checkpoint kinase, Chk1. Increased expression of nuclear Mcl-1 and/or a previously reported short nuclear form of Mcl-1, snMcl-1, was observed in response to treatment with low concentrations of etoposide or low doses of UV irradiation. We showed that after etoposide treatment, Mcl-1 could coimmunoprecipitate with the regulatory kinase, Chk1. Chk1 is a known regulator of DNA damage response, and its phosphorylation is associated with activation of the kinase. Transient transfection with Mcl-1 resulted in an increase in the expression of phospho-Ser345 Chk1, in the absence of any evidence of DNA damage, and accumulation of cells in G2. Importantly, knockdown of Mcl-1 expression abolished Chk1 phosphorylation in response to DNA damage. Mcl-1 could induce Chk1 phosphorylation in ATM-negative (ataxia telangectasia mutated) cells, but this response was lost in ATR (AT mutated and Rad3 related)-defective cells. Low levels of UV treatment also caused transient increases in Mcl-1 levels and an ATR-dependent phosphorylation of Chk1. Together, our results strongly support an essential regulatory role for Mcl-1, perhaps acting as an adaptor protein, in controlling the ATR-mediated regulation of Chk1 phosphorylation.
Collapse
Affiliation(s)
- Sarwat Jamil
- Department of Medicine, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, V6H 3Z6 Canada
| | | | | | | | | |
Collapse
|
57
|
Lu YP, Lou YR, Peng QY, Xie JG, Nghiem P, Conney AH. Effect of caffeine on the ATR/Chk1 pathway in the epidermis of UVB-irradiated mice. Cancer Res 2008; 68:2523-9. [PMID: 18381462 PMCID: PMC2562529 DOI: 10.1158/0008-5472.can-07-5955] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Administration of caffeine was shown in earlier studies to enhance UVB-induced apoptosis and inhibit UVB-induced carcinogenesis in hairless SKH-1 mice. Here, we describe a potential mechanism for these in vivo effects. A single irradiation of mouse skin with UVB activated the ataxia-telangiectasia mutated- and Rad3-related (ATR) pathway, causing a severalfold increase in keratinocytes with phospho-Chk1 (Ser(345)) and a marked decrease in mitotic keratinocytes with cyclin B1 compared with baseline. When given in the drinking water for 1 to 2 weeks before UVB, caffeine (0.4 mg/mL) markedly inhibited the UVB-induced phosphorylation of Chk1 on Ser(345) and caused premature expression of cyclin B1 in the epidermis. Normal keratinocytes had delayed mitotic entry for >10 h following UVB. Caffeine administration reduced this mitotic delay to only 4 h and caused markedly increased apoptosis by 6 to 10 h after UVB. p53 knockout mice were used to determine the role of p53 in these processes. Irradiation with UVB markedly decreased the number of mitotic keratinocytes with cyclin B1 in p53 knockout mice, and topical caffeine immediately after UVB abrogated this response and increased UVB-induced apoptosis severalfold. These effects of caffeine in knockout mice were substantially greater than in wild-type mice. The ability of caffeine to promote the deletion of p53(-/-) keratinocytes may be relevant to its inhibitory effect on UVB-induced skin cancer. Our studies indicate that administration of caffeine enhances the removal of DNA-damaged cells by inhibiting the ATR-mediated phosphorylation of Chk1 and prematurely increasing the number of cyclin B1-containing cells that undergo lethal mitosis.
Collapse
Affiliation(s)
- Yao-Ping Lu
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - You-Rong Lou
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Qing-Yun Peng
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jian-Guo Xie
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Paul Nghiem
- University of Washington at South Lake Union, Dermatology/Medicine, Seattle, Washington
| | - Allan H. Conney
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
58
|
Sivasubramaniam S, Sun X, Pan YR, Wang S, Lee EYHP. Cep164 is a mediator protein required for the maintenance of genomic stability through modulation of MDC1, RPA, and CHK1. Genes Dev 2008; 22:587-600. [PMID: 18283122 DOI: 10.1101/gad.1627708] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The activation of the ataxia telangiectasia mutated (ATM) and ATM/Rad3-related (ATR) kinases triggers a diverse cellular response including the initiation of DNA damage-induced cell cycle checkpoints. Mediator of DNA Damage Checkpoint protein, MDC1, and H2AX are chromatin remodeling factors required for the recruitment of DNA repair proteins to the DNA damage sites. We identified a novel mediator protein, Cep164 (KIAA1052), that interacts with both ATR and ATM. Cep164 is phosphorylated upon replication stress, ultraviolet radiation (UV), and ionizing radiation (IR). Ser186 of Cep164 is phosphorylated by ATR/ATM in vitro and in vivo. The phosphorylation of Ser186 is not affected by RPA knockdown but is severely hampered by MDC1 knockdown. siRNA-mediated silencing of Cep164 significantly reduces DNA damage-induced phosphorylation of RPA, H2AX, MDC1, CHK2, and CHK1, but not NBS1. Analyses of Cep164 knockdown cells demonstrate a critical role of Cep164 in G2/M checkpoint and nuclear divisions. These findings reveal that Cep164 is a key player in the DNA damage-activated signaling cascade.
Collapse
Affiliation(s)
- Sudhakar Sivasubramaniam
- Department of Biological Chemistry and Department of Developmental and Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
59
|
Herrlich P, Karin M, Weiss C. Supreme EnLIGHTenment: damage recognition and signaling in the mammalian UV response. Mol Cell 2008; 29:279-90. [PMID: 18280234 PMCID: PMC2714880 DOI: 10.1016/j.molcel.2008.01.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Indexed: 12/21/2022]
Abstract
Like their prokaryotic counterparts, mammalian cells can sense light, especially in the ultraviolet (UV) range of the spectrum. After UV exposure, cells mount an elaborate response--called the UV response--that mimics physiological signaling responses except that it targets multiple pathways, thereby lacking the defined specificity of receptor-triggered signal transduction. Despite many years of research, it is still not fully clear how UV radiation is sensed and converted into the "language of cells"--signal reception and transduction. This review focuses on how photonic energy and its primary cellular products are sensed to elicit the UV response.
Collapse
Affiliation(s)
- Peter Herrlich
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany.
| | | | | |
Collapse
|
60
|
Choi JH, Lindsey-Boltz LA, Sancar A. Reconstitution of a human ATR-mediated checkpoint response to damaged DNA. Proc Natl Acad Sci U S A 2007; 104:13301-6. [PMID: 17686975 PMCID: PMC1941640 DOI: 10.1073/pnas.0706013104] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The DNA damage checkpoint response delays cell cycle progression upon DNA damage and prevents genomic instability. Genetic analysis has identified sensor, mediator, signal transducer, and effector components of this global signal transduction pathway. Here we describe an in vitro system with purified human checkpoint proteins that recapitulates key elements of the DNA damage checkpoint. We show that the damage sensor ATR in the presence of topoisomerase II binding protein 1 (TopBP1) mediator/adaptor protein phosphorylates the Chk1 signal-transducing kinase in a reaction that is strongly dependent on the presence of DNA containing bulky base lesions. The dependence on damaged DNA requires DNA binding by TopBP1, and, indeed, TopBP1 shows preferential binding to damaged DNA. This in vitro system provides a useful platform for mechanistic studies of the human DNA damage checkpoint response.
Collapse
Affiliation(s)
- Jun-Hyuk Choi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7260
| | - Laura A. Lindsey-Boltz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7260
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7260
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
61
|
Garate M, Campos EI, Bush JA, Xiao H, Li G. Phosphorylation of the tumor suppressor p33(ING1b) at Ser-126 influences its protein stability and proliferation of melanoma cells. FASEB J 2007; 21:3705-16. [PMID: 17585055 DOI: 10.1096/fj.07-8069com] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ING (inhibitor of growth) tumor suppressors regulate cell-cycle checkpoints, apoptosis, and ultimately tumor suppression. Among the ING family members, p33(ING1b) is the most intensively studied and plays an important role in the cellular stress response to DNA damage. Here we demonstrate that there is basal phosphorylation of p33(ING1b) at Ser-126 in normal physiological conditions and that this phosphorylation is increased on DNA damage. The mutation of Ser-126 to alanine dramatically shortened the half-life of p33(ING1b). Furthermore, we found that both Chk1 and Cdk1 can phosphorylate this residue. Interestingly, while Cdk1 can phosphorylate p33(ING1b) at Ser-126 in nonstress conditions, Chk1 predominantly phosphorylates this residue on DNA damage, which suggests that p33(ING1b) is a downstream target of the ATM/ATR response cascade to genotoxic stress. More importantly, our data indicate that the Ser-126 residue plays a key role in regulating the expression of cyclin B1 and proliferation of melanoma cells.
Collapse
Affiliation(s)
- Marco Garate
- Department of Dermatology and Skin Science, Vancouver Coastal Health Research Institute, Jack Bell Research Centre, 2660 Oak St., Vancouver, BC, Canada V6H 3Z6
| | | | | | | | | |
Collapse
|
62
|
Ranuncolo SM, Polo JM, Dierov J, Singer M, Kuo T, Greally J, Green R, Carroll M, Melnick A. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nat Immunol 2007; 8:705-14. [PMID: 17558410 DOI: 10.1038/ni1478] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 05/04/2007] [Indexed: 11/09/2022]
Abstract
Antibody specificity and diversity is generated in B cells during germinal center maturation through clonal expansion while they undergo class-switch recombination and somatic hypermutation. Here we demonstrate that the transcriptional repressor Bcl-6 mediates this phenotype by directly repressing ATR in centroblasts and lymphoma cells. ATR is critical in replication and DNA damage-sensing checkpoints. Bcl-6 allowed B cells to evade ATR-mediated checkpoints and attenuated the response of the B cells to exogenous DNA damage. Repression of ATR was necessary and sufficient for those Bcl-6 activities. CD40 signaling 'rescued' B cells from those effects by disrupting the Bcl-6 transcription-repression complex on the promoter of the gene encoding ATR. Our data demonstrate a transcriptional regulatory loop whereby Bcl-6 mediates the centroblast phenotype through transient silencing of ATR.
Collapse
MESH Headings
- Ataxia Telangiectasia Mutated Proteins
- B-Lymphocyte Subsets/enzymology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Line, Tumor
- Cells, Cultured
- DNA Damage/genetics
- DNA-Binding Proteins/physiology
- Down-Regulation/genetics
- Down-Regulation/immunology
- Gene Silencing
- Germinal Center/enzymology
- Germinal Center/immunology
- Germinal Center/pathology
- Humans
- Immunophenotyping
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/biosynthesis
- Protein Serine-Threonine Kinases/genetics
- Proto-Oncogene Proteins c-bcl-6
Collapse
Affiliation(s)
- Stella Maris Ranuncolo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Horikawa-Miura M, Matsuda N, Yoshida M, Okumura Y, Mori T, Watanabe M. The Greater Lethality of UVB Radiation to Cultured Human Cells is Associated with the Specific Activation of a DNA Damage-Independent Signaling Pathway. Radiat Res 2007; 167:655-62. [PMID: 17523842 DOI: 10.1667/rr0448.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 11/09/2006] [Indexed: 11/03/2022]
Abstract
UV radiation causes cell death through the activation of various intracellular signaling molecules in both DNA damage-dependent and -independent manners. The ability of middle-wavelength UV (UVB) radiation to form DNA photoproducts is less than that of short-wavelength UV (UVC) radiation; however, the differences between UVB and UVC radiation in the extent of DNA damage-independent signaling and its contribution to cell death have not been well characterized. When cells were irradiated with UVB or UVC radiation at doses that generated equivalent amounts of DNA photoproducts, UVB radiation induced more clonogenic cell death, apoptotic cells, mitochondrial cytochrome C release, and intracellular oxidative stress. Among the signaling molecules examined, levels of p53 phosphorylated at Ser-392 and p38 were higher in UVB-irradiated cells than in UVC-irradiated cells. Both phosphorylations were reduced by treating cells with an antioxidant. Furthermore, an inhibitor of p38 also blocked the phosphorylation of p53 at Ser-392. These results suggest that UVB radiation activates the p38 pathway through the generation of oxidative stress, which merges with the DNA p53 pathway by phosphorylation of p53 at ser392. This greater contribution of the DNA damage-independent pathway in UVB-irradiated cells may explain the greater lethality of UVB radiation.
Collapse
Affiliation(s)
- Miwa Horikawa-Miura
- Division of Radiation Biology and Protection, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | |
Collapse
|
64
|
LaRocque JR, Dougherty DL, Hussain SK, Sekelsky J. Reducing DNA polymerase alpha in the absence of Drosophila ATR leads to P53-dependent apoptosis and developmental defects. Genetics 2007; 176:1441-51. [PMID: 17483406 PMCID: PMC1931523 DOI: 10.1534/genetics.107.073635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ability to respond to DNA damage and incomplete replication ensures proper duplication and stability of the genome. Two checkpoint kinases, ATM and ATR, are required for DNA damage and replication checkpoint responses. In Drosophila, the ATR ortholog (MEI-41) is essential for preventing entry into mitosis in the presence of DNA damage. In the absence of MEI-41, heterozygosity for the E(mus304) mutation causes rough eyes. We found that E(mus304) is a mutation in DNApol-alpha180, which encodes the catalytic subunit of DNA polymerase alpha. We did not find any defects resulting from reducing Polalpha by itself. However, reducing Polalpha in the absence of MEI-41 resulted in elevated P53-dependent apoptosis, rough eyes, and increased genomic instability. Reducing Polalpha in mutants that lack downstream components of the DNA damage checkpoint (DmChk1 and DmChk2) results in the same defects. Furthermore, reducing levels of mitotic cyclins rescues both phenotypes. We suggest that reducing Polalpha slows replication, imposing an essential requirement for the MEI-41-dependent checkpoint for maintenance of genome stability, cell survival, and proper development. This work demonstrates a critical contribution of the checkpoint function of MEI-41 in responding to endogenous damage.
Collapse
Affiliation(s)
- Jeannine R LaRocque
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
65
|
Ball HL, Ehrhardt MR, Mordes DA, Glick GG, Chazin WJ, Cortez D. Function of a conserved checkpoint recruitment domain in ATRIP proteins. Mol Cell Biol 2007; 27:3367-77. [PMID: 17339343 PMCID: PMC1899971 DOI: 10.1128/mcb.02238-06] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATR (ATM and Rad3-related) kinase is essential to maintain genomic integrity. ATR is recruited to DNA lesions in part through its association with ATR-interacting protein (ATRIP), which in turn interacts with the single-stranded DNA binding protein RPA (replication protein A). In this study, a conserved checkpoint protein recruitment domain (CRD) in ATRIP orthologs was identified by biochemical mapping of the RPA binding site in combination with nuclear magnetic resonance, mutagenesis, and computational modeling. Mutations in the CRD of the Saccharomyces cerevisiae ATRIP ortholog Ddc2 disrupt the Ddc2-RPA interaction, prevent proper localization of Ddc2 to DNA breaks, sensitize yeast to DNA-damaging agents, and partially compromise checkpoint signaling. These data demonstrate that the CRD is critical for localization and optimal DNA damage responses. However, the stimulation of ATR kinase activity by binding of topoisomerase binding protein 1 (TopBP1) to ATRIP-ATR can occur independently of the interaction of ATRIP with RPA. Our results support the idea of a multistep model for ATR activation that requires separable localization and activation functions of ATRIP.
Collapse
Affiliation(s)
- Heather L Ball
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
66
|
Takahashi S, Kontani K, Araki Y, Katada T. Caf1 regulates translocation of ribonucleotide reductase by releasing nucleoplasmic Spd1-Suc22 assembly. Nucleic Acids Res 2007; 35:1187-97. [PMID: 17264117 PMCID: PMC1851654 DOI: 10.1093/nar/gkm015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Appropriate supply of deoxyribonucleotides by the ribonucleotide reductase (RNR) complex is essential for DNA replication and repair. One recent model for the RNR activation in Schizosaccharomyces pombe is translocation of the regulatory subunit Suc22 from the nucleoplasm to the cytoplasm. The RNR inhibitory protein Spd1, which retains Suc22 in the nucleoplasm, is rapidly degraded upon DNA-replication stress, resulting in release of Suc22 to form the active RNR complex in the cytoplasm. Here, we show that Caf1, a component of the Ccr4-Not complex, is responsible for resistance of the replication stress and control of the Suc22 translocation. Caf1 is required not only for the stress-induced translocation of Suc22 from nucleoplasm to cytoplasm but also for the degradation of nucleoplasmic Spd1. DNA-replication stress appears to allow Caf1 to interact with Suc22, resulting in release of the nucleoplasmic Spd1-Suc22 assembly. Taken together, these results suggest a novel function of Caf1 as a key regulator in the stress-induced RNR activation.
Collapse
Affiliation(s)
| | | | | | - Toshiaki Katada
- *To Whom Correspondence should be addressed. Tel: +81-3-5841-4750; Fax: +81 3 5841 4751; E-mail:
| |
Collapse
|
67
|
Abstract
The ability of a cell to sense and respond to DNA damage is essential for genome stability. An important aspect of the response is arrest of the cell cycle, presumably to allow time for repair. Ataxia telangiectasia mutated (ATM) and ATR are essential for such cell-cycle control, but some observations suggest that they also play a direct role in DNA repair. The Drosophila ortholog of ATR, MEI-41, mediates the DNA damage-dependent G2-M checkpoint. We examined the role of MEI-41 in repair of double-strand breaks (DSBs) induced by P-element excision. We found that mei-41 mutants are defective in completing the later steps of homologous recombination repair, but have no defects in end-joining repair. We hypothesized that these repair defects are the result of loss of checkpoint control. To test this, we genetically reduced mitotic cyclin levels and also examined repair in grp (DmChk1) and lok (DmChk2) mutants. Our results suggest that a significant component of the repair defects is due to loss of MEI-41-dependent cell cycle regulation. However, this does not account for all of the defects we observed. We propose a novel role for MEI-41 in DSB repair, independent of the Chk1/Chk2-mediated checkpoint response.
Collapse
Affiliation(s)
- Jeannine R LaRocque
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
68
|
Callegari AJ, Kelly TJ. UV irradiation induces a postreplication DNA damage checkpoint. Proc Natl Acad Sci U S A 2006; 103:15877-82. [PMID: 17043220 PMCID: PMC1613229 DOI: 10.1073/pnas.0607343103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic cells irradiated with high doses of UV exhibit cell-cycle responses referred to as G(1)/S, intraS, and G(2)/M checkpoints. After a moderate UV dose that approximates sunlight exposure and is lethal to fission yeast checkpoint mutants, we found unexpectedly that these cell-cycle responses do not occur. Instead, cells at all stages of the cell cycle carry lesions into S phase and delay cell-cycle progression for hours after the completion of bulk DNA synthesis. Both DNA replication and the checkpoint kinase, Chk1, are required to generate this cell-cycle response. UV-irradiation of Deltachk1 cells causes chromosome damage and loss of viability only after cells have replicated irradiated DNA and entered mitosis. These data suggest that an important physiological role of the cell-cycle response to UV is to provide time for postreplication repair.
Collapse
Affiliation(s)
- A. John Callegari
- *Program in Molecular Biology, Memorial Sloan–Kettering Cancer Center, New York, NY 10021; and
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Thomas J. Kelly
- *Program in Molecular Biology, Memorial Sloan–Kettering Cancer Center, New York, NY 10021; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
69
|
Rai R, Dai H, Multani AS, Li K, Chin K, Gray J, Lahad JP, Liang J, Mills GB, Meric-Bernstam F, Lin SY. BRIT1 regulates early DNA damage response, chromosomal integrity, and cancer. Cancer Cell 2006; 10:145-57. [PMID: 16872911 PMCID: PMC1557410 DOI: 10.1016/j.ccr.2006.07.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 05/18/2006] [Accepted: 07/13/2006] [Indexed: 12/20/2022]
Abstract
BRIT1, initially identified as an hTERT repressor, has additional functions at DNA damage checkpoints. Here, we demonstrate that BRIT1 formed nuclear foci minutes after irradiation. The foci of BRIT1 colocalized with 53BP1, MDC1, NBS1, ATM, RPA, and ATR. BRIT1 was required for activation of these elements, indicating that BRIT1 is a proximal factor in the DNA damage response pathway. Depletion of BRIT1 increased the accumulation of chromosomal aberrations. In addition, decreased levels of BRIT1 were detected in several types of human cancer, with BRIT1 expression being inversely correlated with genomic instability and metastasis. These results identify BRIT1 as a crucial DNA damage regulator in the ATM/ATR pathways and suggest that it functions as a tumor suppressor gene.
Collapse
Affiliation(s)
- Rekha Rai
- Department of Molecular Therapeutics, The University of Texas M D Anderson Cancer Center, Houston, Texas 77054, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Wu X, Shell SM, Yang Z, Zou Y. Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-related-dependent checkpoint pathway promotes cell survival in response to UV irradiation. Cancer Res 2006; 66:2997-3005. [PMID: 16540648 PMCID: PMC1450106 DOI: 10.1158/0008-5472.can-05-3403] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA damage triggers complex cellular responses in eukaryotic cells, including initiation of DNA repair and activation of cell cycle checkpoints. In addition to inducing cell cycle arrest, checkpoint also has been suggested to modulate a variety of other cellular processes in response to DNA damage. In this study, we present evidence showing that the cellular function of xeroderma pigmentosum group A (XPA), a major nucleotide excision repair (NER) factor, could be modulated by checkpoint kinase ataxia-telangiectasia mutated and Rad3-related (ATR) in response to UV irradiation. We observed the apparent interaction and colocalization of XPA with ATR in response to UV irradiation. We showed that XPA was a substrate for in vitro phosphorylation by phosphatidylinositol-3-kinase-related kinase family kinases whereas in cells XPA was phosphorylated in an ATR-dependent manner and stimulated by UV irradiation. The Ser196 of XPA was identified as a biologically significant residue to be phosphorylated in vivo. The XPA-deficient cells complemented with XPA-S196A mutant, in which Ser196 was substituted with an alanine, displayed significantly higher UV sensitivity compared with the XPA cells complemented with wild-type XPA. Moreover, substitution of Ser196 with aspartic acid for mimicking the phosphorylation of XPA increased the cell survival to UV irradiation. Taken together, our results revealed a potential physical and functional link between NER and the ATR-dependent checkpoint pathway in human cells and suggested that the ATR checkpoint pathway could modulate the cellular activity of NER through phosphorylation of XPA at Ser196 on UV irradiation.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | | | | | | |
Collapse
|
71
|
Rossi ML, Purohit V, Brandt PD, Bambara RA. Lagging strand replication proteins in genome stability and DNA repair. Chem Rev 2006; 106:453-73. [PMID: 16464014 DOI: 10.1021/cr040497l] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marie L Rossi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | | | |
Collapse
|
72
|
Jiang G, Sancar A. Recruitment of DNA damage checkpoint proteins to damage in transcribed and nontranscribed sequences. Mol Cell Biol 2006; 26:39-49. [PMID: 16354678 PMCID: PMC1317637 DOI: 10.1128/mcb.26.1.39-49.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a chromatin immunoprecipitation method for analyzing the binding of repair and checkpoint proteins to DNA base lesions in any region of the human genome. Using this method, we investigated the recruitment of DNA damage checkpoint proteins RPA, Rad9, and ATR to base damage induced by UV and acetoxyacetylaminofluorene in transcribed and nontranscribed regions in wild-type and excision repair-deficient human cells in G1 and S phases of the cell cycle. We find that all 3 damage sensors tested assemble at the site or in the vicinity of damage in the absence of DNA replication or repair and that transcription enhances recruitment of checkpoint proteins to the damage site. Furthermore, we find that UV irradiation of human cells defective in excision repair leads to phosphorylation of Chk1 kinase in both G1 and S phase of the cell cycle, suggesting that primary DNA lesions as well as stalled transcription complexes may act as signals to initiate the DNA damage checkpoint response.
Collapse
Affiliation(s)
- Guochun Jiang
- Department of Biochemistry and Biophysics, Mary Ellen Jones Building CB 7260, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
73
|
Myers JS, Cortez D. Rapid activation of ATR by ionizing radiation requires ATM and Mre11. J Biol Chem 2006; 281:9346-50. [PMID: 16431910 PMCID: PMC1821075 DOI: 10.1074/jbc.m513265200] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases are crucial regulatory proteins in genotoxic stress response pathways that pause the cell cycle to permit DNA repair. Here we show that Chk1 phosphorylation in response to hydroxyurea and ultraviolet radiation is ATR-dependent and ATM- and Mre11-independent. In contrast, Chk1 phosphorylation in response to ionizing radiation (IR) is dependent on ATR, ATM, and Mre11. The ATR and ATM/Mre11 pathways are generally thought to be separate with ATM activation occurring early and ATR activation occurring as a late response to double strand breaks. However, we demonstrate that ATR is activated rapidly by IR, and ATM and Mre11 enhance ATR signaling. ATR-ATR-interacting protein recruitment to double strand breaks is less efficient in the absence of ATM and Mre11. Furthermore, IR-induced replication protein A foci formation is defective in ATM- and Mre11-deficient cells. Thus, ATM and Mre11 may stimulate the ATR signaling pathway by converting DNA damage generated by IR into structures that recruit and activate ATR.
Collapse
Affiliation(s)
- Jeremy S Myers
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
74
|
Liu JS, Kuo SR, Melendy T. Phosphorylation of replication protein A by S-phase checkpoint kinases. DNA Repair (Amst) 2006; 5:369-80. [PMID: 16412704 DOI: 10.1016/j.dnarep.2005.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/15/2005] [Accepted: 11/18/2005] [Indexed: 11/26/2022]
Abstract
The major eukaryotic single-stranded DNA (ssDNA) binding protein, replication protein A (RPA), is a heterotrimer with subunits of 70, 32 and 14 kDa (RPA70, RPA32 and RPA14). RPA-coated ssDNA has been implicated as one of the triggers for intra-S-phase checkpoint activation. Phosphorylation of RPA occurs in cells with damaged DNA or stalled replication forks. Here we show that human RPA70 and RPA32 can be phosphorylated by purified S-phase checkpoint kinases, ATR and Chk1. While ATR phosphorylates the N-terminus of RPA70, Chk1 preferentially phosphorylates RPA's major ssDNA binding domain. Chk1 phosphorylated RPA70 shows reduced ssDNA binding activity, and binding of RPA to ssDNA blocks Chk1 phosphorylation, suggesting that Chk1 and ssDNA compete for RPA's major ssDNA binding domain. ssDNA stimulates RPA32 phosphorylation by ATR in a length dependent manner. Furthermore, 3'-, but not 5'-, recessed single strand/double strand DNA junctions produce an even stronger stimulatory effect on RPA32 phosphorylation by ATR. This stimulation occurs for both RNA and DNA recessed ends. RPA's DNA binding polarity and its interaction to 3'-primer-template junctions contribute to efficient RPA32 phosphorylation. Progression of DNA polymerase is able to block the accessibility of the 3'-recessed ends and prevent the stimulatory effects of primer-template junctions on RPA phosphorylation by ATR. We propose models for the role of RPA phosphorylation by Chk1 in S-phase checkpoint pathways, and the possible regulation of ATR activity by different nucleic acid structures.
Collapse
Affiliation(s)
- Jen-Sing Liu
- Department of Microbiology & Immunology, and the Witebsky Center for Microbial Pathogenesis & Immunology, University at Buffalo, School of Medicine & Biomedical Sciences, Buffalo, NY 14214, USA.
| | | | | |
Collapse
|
75
|
Abstract
The ATR (ataxia-telangiectasia mutated and rad3-related)-ATRIP (ATR-interacting protein) kinase complex plays a central role in the checkpoint responses to a variety of types of DNA damage, especially those interfering with DNA replication. The checkpoint-signaling pathway activated by ATR-ATRIP regulates and coordinates cell-cycle progression, DNA replication, DNA repair, and many other cellular processes critical for genomic stability. Upon DNA damage or DNA replication interference, ATR-ATRIP and two of its key regulators, the Rad17 and the 9-1-1 complexes, are localized to sites of DNA damage and stalled replication forks. Recent biochemical and cell biological studies have revealed that RPA-coated single-stranded DNA, a common structure generated at sites of DNA damage and stalled replication forks, plays crucial roles in the recruitment of ATR-ATRIP, Rad17, and 9-1-1 complexes. The recruitment of ATR-ATRIP and its regulators to DNA damage is a key step for the recognition of DNA damage by the checkpoint, and is likely important for the regulation of ATR activity and/or function in response to DNA damage. The methods used to characterize the DNA association of ATR-ATRIP, Rad17, and 9-1-1 complexes have laid a foundation for further biochemical studies, which may ultimately lead us to understand the molecular mechanisms by which ATR-ATRIP monitors and protects genomic integrity.
Collapse
Affiliation(s)
- Xiaohong Helena Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, USA
| | | |
Collapse
|
76
|
Abstract
When cells that are actively replicating DNA encounter sites of base damage or strand breaks, replication might stall or arrest. In this situation, cells rely on DNA-damage-tolerance mechanisms to bypass the damage effectively. One of these mechanisms, known as translesion DNA synthesis, is supported by specialized DNA polymerases that are able to catalyse nucleotide incorporation opposite lesions that cannot be negotiated by high-fidelity replicative polymerases. A second category of tolerance mechanism involves alternative replication strategies that obviate the need to replicate directly across sites of template-strand damage.
Collapse
Affiliation(s)
- Errol C Friedberg
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9072, USA.
| |
Collapse
|
77
|
Itakura E, Sawada I, Matsuura A. Dimerization of the ATRIP protein through the coiled-coil motif and its implication to the maintenance of stalled replication forks. Mol Biol Cell 2005; 16:5551-62. [PMID: 16176973 PMCID: PMC1289401 DOI: 10.1091/mbc.e05-05-0427] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ATR (ATM and Rad3-related), a PI kinase-related kinase (PIKK), has been implicated in the DNA structure checkpoint in mammalian cells. ATR associates with its partner protein ATRIP to form a functional complex in the nucleus. In this study, we investigated the role of the ATRIP coiled-coil domain in ATR-mediated processes. The coiled-coil domain of human ATRIP contributes to self-dimerization in vivo, which is important for the stable translocation of the ATR-ATRIP complex to nuclear foci that are formed after exposure to genotoxic stress. The expression of dimerization-defective ATRIP diminishes the maintenance of replication forks during treatment with replication inhibitors. By contrast, it does not compromise the G2/M checkpoint after IR-induced DNA damage. These results show that there are two critical functions of ATR-ATRIP after the exposure to genotoxic stress: maintenance of the integrity of replication machinery and execution of cell cycle arrest, which are separable and are achieved via distinct mechanisms. The former function may involve the concentrated localization of ATR to damaged sites for which the ATRIP coiled-coil motif is critical.
Collapse
Affiliation(s)
- Eisuke Itakura
- Department of Geriatric Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Morioka-cho, Obu, Aichi 474-8522, Japan
| | | | | |
Collapse
|
78
|
Cadoret JC, Rousseau B, Perewoska I, Sicora C, Cheregi O, Vass I, Houmard J. Cyclic nucleotides, the photosynthetic apparatus and response to a UV-B stress in the Cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2005; 280:33935-44. [PMID: 16096278 DOI: 10.1074/jbc.m503153200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic nucleotides cAMP and cGMP are ubiquitous signaling molecules that mediate many adaptative responses in eukaryotic cells. Cyanobacteria present the peculiarity among the prokaryotes of having the two types of cyclic nucleotide. Cellular homeostasis requires both cyclases (adenylyl/guanylyl, for their synthesis) and phosphodiesterases (for their degradation). Fully segregated null mutants have been obtained for the two genes, sll1624 and slr2100, which encode putative cNMP phosphodiesterases. We present physiological evidence that the Synechocystis PCC 6803 open reading frame slr2100 could be a cGMP phosphodiesterase. In addition, we show that Slr2100, but not Sll1624, is required for the adaptation of the cells to a UV-B stress. UV-B radiation has deleterious effects for photosynthetic organisms, in particular on the photosystem II, through damaging the protein structure of the reaction center. Using biophysical and biochemical approaches, it was found that Slr2100 is involved in the signal transduction events which permit the repair of the UV-B-damaged photosystem II. This was confirmed by quantitative reverse transcriptase-PCR analyses. Altogether, the data point to an important role for cGMP in signal transduction and photoacclimation processes during a UV-B stress.
Collapse
Affiliation(s)
- Jean-Charles Cadoret
- Organismes Photosynthétiques et Environnement, CNRS FRE 2433, Département de Biologie, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
The ATM and ATR kinases signal cell cycle checkpoint responses to DNA damage. Inactive ATM is an oligomer that is disrupted to form active monomers in response to ionizing radiation. We examined whether ATR is activated by a similar mechanism. We found that the ATRIP subunit of the ATR kinase and ATR itself exist as homooligomers in cells. We did not detect regulation of ATR or ATRIP oligomerization after DNA damage. The predicted coiled-coil domain of ATRIP is essential for ATRIP oligomerization, stable ATR binding, and accumulation of ATRIP at DNA lesions. Additionally, the ATRIP coiled-coil is also required for ATRIP to support ATR-dependent checkpoint signaling to Chk1. Replacing the ATRIP coiled-coil domain with a heterologous dimerization domain restored stable binding to ATR and localization to damage-induced intranuclear foci. Thus, the ATR-ATRIP complex exists in higher order oligomeric states within cells and ATRIP oligomerization is essential for its function.
Collapse
Affiliation(s)
- Heather L Ball
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
80
|
Affiliation(s)
- David Cortez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
81
|
Lu YP, Lou YR, Liao J, Xie JG, Peng QY, Yang CS, Conney AH. Administration of green tea or caffeine enhances the disappearance of UVB-induced patches of mutant p53 positive epidermal cells in SKH-1 mice. Carcinogenesis 2005; 26:1465-72. [PMID: 15817611 DOI: 10.1093/carcin/bgi086] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Irradiation of female SKH-1 hairless mice with UVB (30 mJ/cm2) twice a week for 10-20 weeks resulted in the formation of a large number of cellular patches (>8 adjacent cells/patch) that are recognized with an antibody (Pab240) which recognizes mutated but not wild-type p53 protein. These patches are not recognized by an antibody (Pab1620) to wild-type p53 protein. The patches, which are considered putative early cellular markers of the beginning of tumor formation, started appearing after 4-6 weeks of UVB treatment, and multiple patches were observed after treatment for 10 weeks. The number and size of the patches increased progressively with continued UVB treatment. Discontinuation of UVB for 4 weeks resulted in an 80-90% decrease in the number of these patches. The number of the remaining patches did not decrease any further but remained relatively constant for at least 4-9 weeks. Oral administration of green tea (6 mg tea solids/ml) or caffeine (0.4 mg/ml) as the sole source of drinking fluid during irradiation with UVB, twice a week for 20 weeks, inhibited UVB-induced formation of mutant p53 positive patches by approximately 40%. Oral administration of green tea (6 mg tea solids/ml) as the sole source of drinking fluid or topical applications of caffeine (6.2 micromol) once a day 5 days a week starting immediately after discontinuation of UVB treatment enhanced the rate and extent of disappearance of the mutant p53-positive patches. Topical applications of caffeine to the dorsal skin of mice pretreated with UVB for 20 weeks resulted in enhanced apoptosis selectively in focal basal cell hyperplastic areas of the epidermis (putative precancerous lesions), but not in areas of the epidermis that only had diffuse hyperplasia. Our studies indicate that the chemopreventive effect of caffeine or green tea may occur by a proapoptotic effect preferentially in early precancerous lesions.
Collapse
Affiliation(s)
- Yao-Ping Lu
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Falck J, Coates J, Jackson SP. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 2005; 434:605-11. [PMID: 15758953 DOI: 10.1038/nature03442] [Citation(s) in RCA: 948] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 02/14/2005] [Indexed: 01/13/2023]
Abstract
Ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are members of the phosphoinositide-3-kinase-related protein kinase (PIKK) family, and are rapidly activated in response to DNA damage. ATM and DNA-PKcs respond mainly to DNA double-strand breaks, whereas ATR is activated by single-stranded DNA and stalled DNA replication forks. In all cases, activation involves their recruitment to the sites of damage. Here we identify related, conserved carboxy-terminal motifs in human Nbs1, ATRIP and Ku80 proteins that are required for their interaction with ATM, ATR and DNA-PKcs, respectively. These motifs are essential not only for efficient recruitment of ATM, ATR and DNA-PKcs to sites of damage, but are also critical for ATM-, ATR- and DNA-PKcs-mediated signalling events that trigger cell cycle checkpoints and DNA repair. Our findings reveal that recruitment of these PIKKs to DNA lesions occurs by common mechanisms through an evolutionarily conserved motif, and provide direct evidence that PIKK recruitment is required for PIKK-dependent DNA-damage signalling.
Collapse
Affiliation(s)
- Jacob Falck
- The Wellcome Trust and Cancer Research UK Gurdon Institute, and Department of Zoology, Cambridge University, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
83
|
Ball HL, Myers JS, Cortez D. ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation. Mol Biol Cell 2005; 16:2372-81. [PMID: 15743907 PMCID: PMC1087242 DOI: 10.1091/mbc.e04-11-1006] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ATR associates with the regulatory protein ATRIP that has been proposed to localize ATR to sites of DNA damage through an interaction with single-stranded DNA (ssDNA) coated with replication protein A (RPA). We tested this hypothesis and found that ATRIP is required for ATR accumulation at intranuclear foci induced by DNA damage. A domain at the N terminus of ATRIP is necessary and sufficient for interaction with RPA-ssDNA. Deletion of the ssDNA-RPA interaction domain of ATRIP greatly diminished accumulation of ATRIP into foci. However, the ATRIP-RPA-ssDNA interaction is not sufficient for ATRIP recognition of DNA damage. A splice variant of ATRIP that cannot bind to ATR revealed that ATR association is also essential for proper ATRIP localization. Furthermore, the ATRIP-RPA-ssDNA interaction is not absolutely essential for ATR activation because ATR phosphorylates Chk1 in cells expressing only a mutant of ATRIP that does not bind to RPA-ssDNA. These data suggest that binding to RPA-ssDNA is not the essential function of ATRIP in ATR-dependent checkpoint signaling and ATR has an important function in properly localizing the ATR-ATRIP complex.
Collapse
Affiliation(s)
- Heather L Ball
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
84
|
Shechter D, Costanzo V, Gautier J. Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair (Amst) 2005; 3:901-8. [PMID: 15279775 DOI: 10.1016/j.dnarep.2004.03.020] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The nuclear protein kinase ATR controls S-phase progression in response to DNA damage and replication fork stalling, including damage caused by ultraviolet irradiation, hyperoxia, and replication inhibitors like aphidicolin and hydroxyurea. ATR activation and substrate specificity require the presence of adapter and mediator molecules, ultimately resulting in the downstream inhibition of the S-phase kinases that function to initiate DNA replication at origins of replication. The data reviewed strongly support the hypothesis that ATR is activated in response to persistent RPA-bound single-stranded DNA, a common intermediate of unstressed and damaged DNA replication and metabolism.
Collapse
Affiliation(s)
- David Shechter
- Department of Genetics and Development, Hammer Health Sciences Center, Room 1620, Columbia University College of Physicians and Surgeons, 701 W. 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
85
|
Ismail IH, Nyström S, Nygren J, Hammarsten O. Activation of Ataxia Telangiectasia Mutated by DNA Strand Break-inducing Agents Correlates Closely with the Number of DNA Double Strand Breaks. J Biol Chem 2005; 280:4649-55. [PMID: 15546858 DOI: 10.1074/jbc.m411588200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein kinase ataxia telangiectasia mutated (ATM) is activated when cells are exposed to ionizing radiation (IR). It has been assumed that ATM is specifically activated by the few induced DNA double strand breaks (DSBs), although little direct evidence for this assumption has been presented. DSBs constitute only a few percent of the IR-induced DNA damage, whereas the more frequent single strand DNA breaks (SSBs) and base damage account for over 98% of the overall DNA damage. It is therefore unclear whether DSBs are the only IR-induced DNA lesions that activate ATM. To test directly whether or not DSBs are responsible for ATM activation, we exposed cells to drugs and radiation that produce different numbers of DSBs and SSBs. We determined the resulting ATM activation by measuring the amount of phosphorylated Chk2 and the numbers of SSBs and DSBs in the same cells after short incubation periods. We found a strong correlation between the number of DSBs and ATM activation but no correlation with the number of SSBs. In fact, hydrogen peroxide, which, similar to IR, induces DNA damage through hydroxyl radicals but fails to induce DSBs, did not activate ATM. In contrast, we found that calicheamicin-induced strand breaks activated ATM more efficiently than IR and that ATM activation correlated with the relative DSB induction by these agents. Our data indicate that ATM is specifically activated by IR-induced DSBs, with little or no contribution from SSBs and other types of DNA damage. These findings have implications for how ATM might recognize DSBs in cells.
Collapse
Affiliation(s)
- Ismail Hassan Ismail
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Göteborg University, SE-413 45 Göteborg, Sweden
| | | | | | | |
Collapse
|
86
|
Abstract
Chk2 is a critical mediator of diverse cellular responses to DNA damage. Activation of Chk2 by DNA damage requires phosphorylation at sites including Thr68. In earlier work, we found that an activity present in rabbit reticulocyte lysates phosphorylates and activates Chk2. We now find that hypophosphorylated Chk2 can be phosphorylated at Thr68 by various subcellular fractions of HEK293 cells. This activity is sensitive to the phosphatidylinositol 3'-kinase-like kinase inhibitor wortmannin, but not to caffeine. DNA enhances the Chk2 phosphorylation by cellular fractions in vitro. The wortmannin-sensitive Chk2 kinase activity is present in fractions from ATM-deficient cells. In contrast, Chk2 was not efficiently phosphorylated at Thr68 in vitro by fractions from cells with a defective DNA-dependent protein kinase (DNA-PK) catalytic subunit. Chk2 is phosphorylated by purified DNA-PK in vitro. Endogenous Chk2 coimmunoprecipitates Ku70 and Ku80. In a series of matched cell lines having and lacking functional DNA-PK, Chk2 activation by exposure of cells to ionizing radiation, or to camptothecin was consistently diminished in the absence of DNA-PK. Down-regulation of DNA-PK(cs) by either siRNA or a chemical inhibitor attenuated radiation-induced Chk2 phosphorylation. Ionizing radiation-induced Chk2 phosphorylation was wortmannin-sensitive in ATM-defective cells with depleted ATR. These results suggest that DNA-PK augments ATM and ATR in activation of Chk2 by DNA damage.
Collapse
Affiliation(s)
- Jia Li
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
87
|
Ottey M, Han SY, Druck T, Barnoski BL, McCorkell KA, Croce CM, Raventos-Suarez C, Fairchild CR, Wang Y, Huebner K. Fhit-deficient normal and cancer cells are mitomycin C and UVC resistant. Br J Cancer 2004; 91:1669-77. [PMID: 15494723 PMCID: PMC2410021 DOI: 10.1038/sj.bjc.6602058] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To identify functions of the fragile tumour suppressor gene, FHIT, matched pairs of Fhit-negative and -positive human cancer cell clones, and normal cell lines established from Fhit −/− and +/+ mice, were stressed and examined for differences in cell cycle kinetics and survival. A larger fraction of Fhit-negative human cancer cells and murine kidney cells survived treatment with mitomycin C or UVC light compared to matched Fhit-positive cells; ∼10-fold more colonies of Fhit-deficient cells survived high UVC doses in clonigenic assays. The human cancer cells were synchronised in G1, released into S and treated with UVC or mitomycin C. At 18 h post mitomycin C treatment ∼6-fold more Fhit-positive than -negative cells had died, and 18 h post UVC treatment 3.5-fold more Fhit-positive cells were dead. Similar results were obtained for the murine −/− cells. After low UVC doses, the rate of DNA synthesis in −/− cells decreased more rapidly and steeply than in +/+ cells, although the Atr–Chk1 pathway appeared intact in both cell types. UVC surviving Fhit −/− cells appear transformed and exhibit >5-fold increased mutation frequency. This increased mutation burden could explain the susceptibility of Fhit-deficient cells in vivo to malignant transformation.
Collapse
Affiliation(s)
- M Ottey
- Department of Microbiology-Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, USA
| | - S-Y Han
- Department of Microbiology-Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, USA
| | - T Druck
- Department of Microbiology-Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, USA
| | - B L Barnoski
- Department of Medicine, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, USA
| | - K A McCorkell
- Department of Microbiology-Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, USA
| | - C M Croce
- Department of Microbiology-Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, USA
| | - C Raventos-Suarez
- Oncology Drug Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ, USA
| | - C R Fairchild
- Oncology Drug Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ, USA
| | - Y Wang
- Department of Radiation Oncology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, USA
| | - K Huebner
- Department of Microbiology-Immunology, Kimmel Cancer Center, Jefferson Medical College, Philadelphia, USA
- Kimmel Cancer Center, BLSB, Room 1008, 233 S. 10th Street, Philadelphia, PA 19107, USA. E-mail:
| |
Collapse
|
88
|
Helt CE, Cliby WA, Keng PC, Bambara RA, O'Reilly MA. Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem 2004; 280:1186-92. [PMID: 15533933 DOI: 10.1074/jbc.m410873200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ataxia telangiectasia mutated (ATM) and ATR (ATM and Rad3-related) protein kinases exert cell cycle delay, in part, by phosphorylating Checkpoint kinase (Chk) 1, Chk2, and p53. It is well established that ATR is activated following UV light-induced DNA damage such as pyrimidine dimers and the 6-(1,2)-dihydro-2-oxo-4-pyrimidinyl-5-methyl-2,4-(1H,3H)-pyrimidinediones, whereas ATM is activated in response to double strand DNA breaks. Here we clarify the activation of these kinases in cells exposed to IR, UV, and hyperoxia, a condition of chronic oxidative stress resulting in clastogenic DNA damage. Phosphorylation on Chk1(Ser-345), Chk2(Thr-68), and p53(Ser-15) following oxidative damage by IR involved both ATM and ATR. In response to ultraviolet radiation-induced stalled replication forks, phosphorylation on Chk1 and p53 required ATR, whereas Chk2 required ATM. Cells exposed to hyperoxia exhibited growth delay in G1, S, and G2 that was disrupted by wortmannin. Consistent with ATM or ATR activation, hyperoxia induced wortmannin-sensitive phosphorylation of Chk1, Chk2, and p53. By using ATM- and ATR-defective cells, phosphorylation on Chk1, Chk2, and p53 was found to be ATM-dependent, whereas ATR also contributed to Chk1 phosphorylation. These data reveal activated ATM and ATR exhibit selective substrate specificity in response to different genotoxic agents.
Collapse
Affiliation(s)
- Christopher E Helt
- Department of Environmental Medicine, School of Medicine and Dentistry, the University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
89
|
Gould KA, Nixon C, Tilby MJ. p53 elevation in relation to levels and cytotoxicity of mono- and bifunctional melphalan-DNA adducts. Mol Pharmacol 2004; 66:1301-9. [PMID: 15308759 DOI: 10.1124/mol.104.000596] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that bifunctional DNA adducts formed by a nitrogen mustard-based anticancer drug were more efficient than monofunctional adducts at causing elevation of p53, consistent with the difference in cytotoxicity. Human leukemia cell line ML-1 was exposed for 1 h to melphalan or its monofunctional derivative monohydroxymelphalan. Levels of DNA adducts, measured by specific immunoassay, were linearly related to the concentration of alkylating agent. Monohydroxymelphalan formed twice as many adducts as did equal concentrations of melphalan. After the removal of the alkylating agent, adduct levels were maintained or increased slightly up to 8 h and then decreased by 27 to 44% by 24 h. Alkaline elution analyses confirmed the absence of detectable DNA interstrand cross-links in cells exposed to monohydroxymelphalan. DNA single-strand breaks were detected after monohydroxymelphalan but not after melphalan. Levels of p53 were quantified by sensitive fluorogenic enzyme-linked immunosorbent assay at intervals up to 24 h after exposure of cells to various concentrations of melphalan and monohydroxymelphalan. The level of initially formed DNA adducts needed to cause elevation of p53 from a baseline level of 0.5 ng/mg total protein to 2 ng/mg was 5- to 8-fold higher for monohydroxymelphalan than melphalan. The concentrations of melphalan and monohydroxymelphalan (+/-S.D.) causing 50% growth inhibition were 1.2 +/- 0.4 and 28.1 +/- 1.6 microg/ml, respectively, a 23-fold difference. The adduct levels induced by these exposures were 9.3 and 420 nmol/g DNA for melphalan and monohydroxymelphalan, respectively, a 45-fold difference, which is considerably greater than the difference in efficacy at elevating p53.
Collapse
Affiliation(s)
- Katherine A Gould
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, University of Newcastle, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | | | |
Collapse
|
90
|
Itakura E, Takai KK, Umeda K, Kimura M, Ohsumi M, Tamai K, Matsuura A. Amino-terminal domain of ATRIP contributes to intranuclear relocation of the ATR-ATRIP complex following DNA damage. FEBS Lett 2004; 577:289-93. [PMID: 15527801 DOI: 10.1016/j.febslet.2004.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2004] [Revised: 10/10/2004] [Accepted: 10/10/2004] [Indexed: 10/26/2022]
Abstract
ATM and rad3-related protein kinase (ATR), a member of the phosphoinositide kinase-like protein kinase family, plays a critical role in cellular responses to DNA structural abnormalities in conjunction with its interacting protein, ATRIP. Here, we show that the amino-terminal portion of ATRIP is relocalized to DNA damage-induced nuclear foci in an RPA-dependent manner, despite its lack of ability to associate with ATR. In addition, ATR-free ATRIP protein can be recruited to the nuclear foci. Our results suggest that the N-terminal domain of the ATRIP protein contributes to the cell cycle checkpoint by regulating the intranuclear localization of ATR.
Collapse
Affiliation(s)
- Eisuke Itakura
- Department of Geriatric Research, National Institute for Longevity Sciences, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Interest in the tumour suppressor p53 has generated much information regarding the complexity of its function and regulation in carcinogenesis. However, gaps still exist in our knowledge regarding the role of p53 post-translational modifications in carcinogenesis and cancer prevention. A thorough understanding of p53 will be extremely useful in the development of new strategies for treating and preventing cancer, including restoration of p53 function and selective killing of tumours with mutant TP53.
Collapse
Affiliation(s)
- Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, Minnesota 55912, USA
| | | |
Collapse
|
92
|
Kumagai A, Kim SM, Dunphy WG. Claspin and the activated form of ATR-ATRIP collaborate in the activation of Chk1. J Biol Chem 2004; 279:49599-608. [PMID: 15371427 DOI: 10.1074/jbc.m408353200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Claspin is necessary for the ATR-dependent activation of Chk1 in Xenopus egg extracts containing incompletely replicated DNA. ATR possesses a regulatory partner called ATRIP. We have studied the respective roles of ATR-ATRIP and Claspin in the activation of Chk1. ATR-ATRIP bound well to various DNA templates in Xenopus egg extracts. ATR-ATRIP bound to a single-stranded DNA template was weakly active. By contrast, the ATR-ATRIP complex on a DNA template containing both single- and double-stranded regions displayed a large increase in kinase activity. This observation suggests that ATR-ATRIP normally undergoes activation upon association with specific nucleic acid structures at DNA replication forks. Without Claspin, activated ATR-ATRIP phosphorylated Chk1 weakly in a cell-free reaction. The addition of Claspin to this reaction strongly stimulated the phosphorylation of Chk1 by ATR-ATRIP. Claspin also induced significant autophosphorylation of Chk1 in the absence of ATR-ATRIP. Taken together, these results indicate that the checkpoint-dependent phosphorylation of Chk1 is a multistep process involving activation of the ATR-ATRIP complex at replication forks and presentation of Chk1 to this complex by Claspin.
Collapse
Affiliation(s)
- Akiko Kumagai
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
93
|
Yan T, Desai AB, Jacobberger JW, Sramkoski RM, Loh T, Kinsella TJ. CHK1 and CHK2 are differentially involved in mismatch repair–mediated 6-thioguanine-induced cell cycle checkpoint responses. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1147.3.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The DNA mismatch repair (MMR) system plays an important role in mediating a G2-M checkpoint arrest and subsequent cell death following treatment with a variety of chemotherapeutic agents. In this study, using 6-thioguanine (6-TG) as a mismatch-inducing drug, we examine the role of ataxia telangiectasia mutated (ATM)/CHK2 and ATM and Rad-3 related (ATR)/CHK1 signaling pathways in MMR-mediated cell cycle responses in MMR-proficient human colorectal cancer RKO cells. We show that, in response to 6-TG (3 μmol/L × 24 hours), activating phosphorylation of CHK1 at Ser317 [CHK1(pS317)] and CHK2 at Thr68 [CHK2(pT68)] are induced differentially during a prolonged course (up to 6 days) of MMR-mediated cell cycle arrests following 6-TG treatment, with CHK1(pS317) being induced within 1 day and CHK2(pT68) being induced later. Using chemical inhibitors and small interfering RNA of the signaling kinases, we show that a MMR-mediated 6-TG-induced G2 arrest is ATR/CHK1 dependent but ATM/CHK2 independent and that ATR/CHK1 signaling is responsible for both initiation and maintenance of the G2 arrest. However, CHK2(pT68) seems to be involved in a subsequent tetraploid G1 arrest, which blocks cells that escape from the G2-M checkpoint following 6-TG treatment. Furthermore, we show that CHK2 is hyperphosphorylated at later times following 6-TG treatment and the phosphorylation of CHK2 seems to be ATM independent but up-regulated when ATR or CHK1 is reduced. Thus, our data suggest that CHK1(pS317) is involved in a MMR-mediated 6-TG-induced G2 arrest, whereas CHK2(pT68) seems to be involved in a subsequent tetraploid G1-S checkpoint. The two signaling kinases seem to work cooperatively to ensure that 6-TG damaged cells arrest at these cell cycle checkpoints.
Collapse
Affiliation(s)
- Tao Yan
- Department of Radiation Oncology, Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Anand B. Desai
- Department of Radiation Oncology, Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - James W. Jacobberger
- Department of Radiation Oncology, Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - R. Michael Sramkoski
- Department of Radiation Oncology, Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Tamalette Loh
- Department of Radiation Oncology, Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Timothy J. Kinsella
- Department of Radiation Oncology, Case Comprehensive Cancer Center, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
94
|
Sar F, Lindsey-Boltz LA, Subramanian D, Croteau DL, Hutsell SQ, Griffith JD, Sancar A. Human claspin is a ring-shaped DNA-binding protein with high affinity to branched DNA structures. J Biol Chem 2004; 279:39289-95. [PMID: 15226314 DOI: 10.1074/jbc.m405793200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Claspin is an essential protein for the ATR-dependent activation of the DNA replication checkpoint response in Xenopus and human cells. Here we describe the purification and characterization of human Claspin. The protein has a ring-like structure and binds with high affinity to branched DNA molecules. These findings suggest that Claspin may be a component of the replication ensemble and plays a role in the replication checkpoint by directly associating with replication forks and with the various branched DNA structures likely to form at stalled replication forks because of DNA damage.
Collapse
Affiliation(s)
- Funda Sar
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints. Annu Rev Biochem 2004; 73:39-85. [PMID: 15189136 DOI: 10.1146/annurev.biochem.73.011303.073723] [Citation(s) in RCA: 2394] [Impact Index Per Article: 114.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.
Collapse
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA.
| | | | | | | |
Collapse
|
96
|
Jones GG, Reaper PM, Pettitt AR, Sherrington PD. The ATR-p53 pathway is suppressed in noncycling normal and malignant lymphocytes. Oncogene 2004; 23:1911-21. [PMID: 14755251 DOI: 10.1038/sj.onc.1207318] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) results from the accumulation of apoptosis-resistant clonal B cells that are arrested in G0/G1, and is heterogeneous with respect to clinical outcome. An aggressive form of the disease is identified by an impaired p53 response to ionizing radiation (IR). This is associated with inactivating mutations of either p53 or ATM, a regulator of p53 activated by IR-induced DNA damage. Since other forms of DNA damage activate p53 via ATR, a kinase closely related to ATM, abnormalities of the ATR-p53 pathway also have the potential to result in p53 dysfunction. We therefore tested cases of CLL for abnormal p53 responses to ultraviolet irradiation (UVC), a known activator of ATR, to screen for additional forms of p53 dysfunction. CLL cells and normal peripheral blood mononuclear cell (PBMC) preparations (predominantly noncycling lymphocytes) were treated with UVC and assessed for p53 responses. In all of the CLL cases and PBMC preparations tested, we were unable to detect p53 accumulation, phosphorylation or transcriptional consequences in response to UVC-induced DNA damage. The most likely explanation for the absence of UVC-induced p53 activation in CLL and normal lymphocytes was that, in contrast to other cell types, the UVC-induced ATR pathway was inactive. This notion was confirmed by showing that ATR protein was absent or undetectable in all of the cases of CLL and normal PBMCs screened. This was an unexpected finding because ATR was thought to be essential for the viability of somatic cells and for normal human and murine embryonic development. An obvious difference between the cell lines used as positive controls for ATR antibodies and the CLL cells/PBMCs was that the former were actively cycling while the latter were quiescent. We therefore hypothesized that the ATR-p53 pathway is selectively downregulated in noncycling lymphocytes. To test this, we induced cycling in the T-cell fraction of PBMC preparations and demonstrated that ATR protein expression was restored. Furthermore, p53 was upregulated and phosphorylated in response to UVC in these cells. Our data support the conclusion that the ATR-p53 pathway is suppressed in noncycling lymphocytes via ATR downregulation. We tentatively suggest that this repressed DNA damage response may have evolved to protect quiescent lymphocytes from the potential for p53-dependent apoptosis in the face of some forms of endurable genotoxic stress. If this is the case, DNA repair and genome stability might be compromised in quiescent lymphocytes with potentially negative consequences.
Collapse
MESH Headings
- Base Sequence
- Cell Cycle
- Cells, Cultured
- DNA Damage
- DNA Primers
- DNA, Neoplasm/genetics
- DNA, Neoplasm/radiation effects
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Lymphocytes/cytology
- Lymphocytes/pathology
- Mitosis
- Reference Values
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/genetics
- Ultraviolet Rays
Collapse
Affiliation(s)
- Gillian G Jones
- Department of Haematology, Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP, UK
| | | | | | | |
Collapse
|
97
|
Bartrand AJ, Iyasu D, Brush GS. DNA stimulates Mec1-mediated phosphorylation of replication protein A. J Biol Chem 2004; 279:26762-7. [PMID: 15078888 DOI: 10.1074/jbc.m312353200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) becomes phosphorylated periodically during the normal cell cycle and also in response to DNA damage. In Saccharomyces cerevisiae, RPA phosphorylation requires the checkpoint protein Mec1, a protein kinase homologous in structure and function to human ATR. We confirm here that immunocomplexes containing a tagged version of Mec1 catalyze phosphorylation of purified RPA, likely reflecting an RPA kinase activity intrinsic to Mec1. A significant stimulation of this activity is observed upon the addition of covalently closed ssDNA derived from the bacteriophage M13. This stimulation is not observed with mutant RPA deficient for DNA binding, indicating that DNA-bound RPA is a preferred substrate. Stimulation is also observed upon the addition of linear ssDNA homopolymers or hydrolyzed M13 ssDNA. In contrast to circular ssDNA, these DNA cofactors stimulate both wild type and mutant RPA phosphorylation. This finding suggests that linear ssDNA can also stimulate Mec1-mediated RPA phosphorylation by activating Mec1 or an associated protein. Although the Mec1-interacting protein Ddc2 is required for RPA phosphorylation in vivo, it is required for neither basal nor ssDNA-stimulated RPA phosphorylation in vitro. Therefore, activation of Mec1-mediated RPA phosphorylation by either circular or linear ssDNA does not operate through Ddc2. Our results provide insight into the mechanisms that function in vivo to specifically induce RPA phosphorylation upon initiation of DNA replication, repair, or recombination.
Collapse
Affiliation(s)
- Amy J Bartrand
- Program in Molecular Biology and Human Genetics, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
98
|
Unsal-Kaçmaz K, Sancar A. Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities. Mol Cell Biol 2004; 24:1292-300. [PMID: 14729973 PMCID: PMC321456 DOI: 10.1128/mcb.24.3.1292-1300.2003] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ATR is an essential protein that functions as a damage sensor and a proximal kinase in the DNA damage checkpoint response in mammalian cells. It is a member of the phosphoinositide 3-kinase-like kinase (PIKK) family, which includes ATM, ATR, and DNA-dependent protein kinase. Recently, it was found that ATM is an oligomeric protein that is converted to an active monomeric form by phosphorylation in trans upon DNA damage, and this raised the possibility that other members of the PIKK family may be regulated in a similar manner. Here we show that ATR is a monomeric protein associated with a smaller protein called ATRIP with moderate affinity. The ATR protein by itself or in the form of the ATR-ATRIP heterodimer binds to naked or replication protein A (RPA)-covered DNAs with comparable affinities. However, the phosphorylation of RPA by ATR is dependent on single-stranded DNA and is stimulated by ATRIP. These findings suggest that the regulation and mechanism of action of ATR are fundamentally different from those of the other PIKK proteins.
Collapse
Affiliation(s)
- Keziban Unsal-Kaçmaz
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
99
|
Davies SL, North PS, Dart A, Lakin ND, Hickson ID. Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest. Mol Cell Biol 2004; 24:1279-91. [PMID: 14729972 PMCID: PMC321429 DOI: 10.1128/mcb.24.3.1279-1291.2004] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bloom's syndrome (BS) is a human genetic disorder associated with cancer predisposition. The BS gene product, BLM, is a member of the RecQ helicase family, which is required for the maintenance of genome stability in all organisms. In budding and fission yeasts, loss of RecQ helicase function confers sensitivity to inhibitors of DNA replication, such as hydroxyurea (HU), by failure to execute normal cell cycle progression following recovery from such an S-phase arrest. We have examined the role of the human BLM protein in recovery from S-phase arrest mediated by HU and have probed whether the stress-activated ATR kinase, which functions in checkpoint signaling during S-phase arrest, plays a role in the regulation of BLM function. We show that, consistent with a role for BLM in protection of human cells against the toxicity associated with arrest of DNA replication, BS cells are hypersensitive to HU. BLM physically associates with ATR (ataxia telangiectasia and rad3(+) related) protein and is phosphorylated on two residues in the N-terminal domain, Thr-99 and Thr-122, by this kinase. Moreover, BS cells ectopically expressing a BLM protein containing phosphorylation-resistant T99A/T122A substitutions fail to adequately recover from an HU-induced replication blockade, and the cells subsequently arrest at a caffeine-sensitive G(2)/M checkpoint. These abnormalities are not associated with a failure of the BLM-T99A/T122A protein to localize to replication foci or to colocalize either with ATR itself or with other proteins that are required for response to DNA damage, such as phosphorylated histone H2AX and RAD51. Our data indicate that RecQ helicases play a conserved role in recovery from perturbations in DNA replication and are consistent with a model in which RecQ helicases act to restore productive DNA replication following S-phase arrest and hence prevent subsequent genomic instability.
Collapse
Affiliation(s)
- Sally L Davies
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | | | | | | | |
Collapse
|
100
|
Ward IM, Minn K, Chen J. UV-induced ataxia-telangiectasia-mutated and Rad3-related (ATR) activation requires replication stress. J Biol Chem 2004; 279:9677-80. [PMID: 14742437 DOI: 10.1074/jbc.c300554200] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ataxia-telangiectasia-mutated and Rad3-related (ATR) plays an essential role in the maintenance of genome integrity and cell viability. The kinase is activated in response to DNA damage and initiates a checkpoint signaling cascade by phosphorylating a number of downstream substrates including Chk1. Unlike ataxia-telangiectasia-mutated (ATM), which appears to be mainly activated by DNA double-strand breaks, ATR can be activated by a variety of DNA damaging agents. However, it is still unclear what triggers ATR activation in response to such diverse DNA lesions. One model proposes that ATR can directly recognize DNA lesions, while other recent data suggest that ATR is activated by a common single-stranded DNA (ssDNA) intermediate generated during DNA repair. In this study, we show that UV lesions do not directly activate ATR in vivo. In addition, ssDNA lesions created during the repair of UV damage are also not sufficient to activate the ATR-dependent pathway. ATR activation is only observed in replicating cells indicating that replication stress is required to trigger the ATR-mediated checkpoint cascade in response to UV irradiation. Interestingly, H2AX appears to be required for the accumulation of ATR at stalled replication forks. Together our data suggest that ssDNA at arrested replication forks recruits ATR and initiates ATR-mediated phosphorylation of H2AX and Chk1. Phosphorylated H2AX might further facilitate ATR activation by stabilizing ATR at the sites of arrested replication forks.
Collapse
Affiliation(s)
- Irene M Ward
- Guggenheim 1306, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|