51
|
Griffin MD, Pereira SR, DeBari MK, Abbott RD. Mechanisms of action, chemical characteristics, and model systems of obesogens. BMC Biomed Eng 2020; 2:6. [PMID: 32903358 PMCID: PMC7422567 DOI: 10.1186/s42490-020-00040-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence for the role of environmental endocrine disrupting contaminants, coined obesogens, in exacerbating the rising obesity epidemic. Obesogens can be found in everyday items ranging from pesticides to food packaging. Although research shows that obesogens can have effects on adipocyte size, phenotype, metabolic activity, and hormone levels, much remains unknown about these chemicals. This review will discuss what is currently known about the mechanisms of obesogens, including expression of the PPARs, hormone interference, and inflammation. Strategies for identifying obesogenic chemicals and their mechanisms through chemical characteristics and model systems will also be discussed. Ultimately, research should focus on improving models to discern precise mechanisms of obesogenic action and to test therapeutics targeting these mechanisms.
Collapse
Affiliation(s)
- Mallory D. Griffin
- Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall, Pittsburgh, PA 15213 USA
| | - Sean R. Pereira
- Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall, Pittsburgh, PA 15213 USA
| | - Megan K. DeBari
- Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall, Pittsburgh, PA 15213 USA
| | - Rosalyn D. Abbott
- Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall, Pittsburgh, PA 15213 USA
| |
Collapse
|
52
|
Orliaguet L, Dalmas E, Drareni K, Venteclef N, Alzaid F. Mechanisms of Macrophage Polarization in Insulin Signaling and Sensitivity. Front Endocrinol (Lausanne) 2020; 11:62. [PMID: 32140136 PMCID: PMC7042402 DOI: 10.3389/fendo.2020.00062] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Type-2 diabetes (T2D) is a disease of two etiologies: metabolic and inflammatory. At the cross-section of these etiologies lays the phenomenon of metabolic inflammation. Whilst metabolic inflammation is characterized as systemic, a common starting point is the tissue-resident macrophage, who's successful physiological or aberrant pathological adaptation to its microenvironment determines disease course and severity. This review will highlight the key mechanisms in macrophage polarization, inflammatory and non-inflammatory signaling that dictates the development and progression of insulin resistance and T2D. We first describe the known homeostatic functions of tissue macrophages in insulin secreting and major insulin sensitive tissues. Importantly we highlight the known mechanisms of aberrant macrophage activation in these tissues and the ways in which this leads to impairment of insulin sensitivity/secretion and the development of T2D. We next describe the cellular mechanisms that are known to dictate macrophage polarization. We review recent progress in macrophage bio-energetics, an emerging field of research that places cellular metabolism at the center of immune-effector function. Importantly, following the advent of the metabolically-activated macrophage, we cover the known transcriptional and epigenetic factors that canonically and non-canonically dictate macrophage differentiation and inflammatory polarization. In closing perspectives, we discuss emerging research themes and highlight novel non-inflammatory or non-immune roles that tissue macrophages have in maintaining microenvironmental and systemic homeostasis.
Collapse
Affiliation(s)
- Lucie Orliaguet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Elise Dalmas
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Karima Drareni
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicolas Venteclef
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| | - Fawaz Alzaid
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
53
|
Ramot Y, Bertolini M, Boboljova M, Uchida Y, Paus R. PPAR-γ signalling as a key mediator of human hair follicle physiology and pathology. Exp Dermatol 2019; 29:312-321. [PMID: 31769892 DOI: 10.1111/exd.14062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are abundantly expressed in human skin, with PPAR-γ being the most intensively investigated isoform. In various ex vivo and in vivo models, PPAR-γ-mediated signalling has recently surfaced as an essential element of hair follicle (HF) development, growth and stem cell biology. Moreover, the availability of novel, topically applicable PPAR-γ modulators with a favourable toxicological profile has extended the range of potential applications in clinical dermatology. In this review, we synthesize where this field currently stands and sketch promising future research avenues, focussing on the role of PPAR-γ-mediated signalling in the biology and pathology of human scalp HFs, with special emphasis on scarring alopecias such as lichen planopilaris and frontal fibrosing alopecia as model human epithelial stem cell diseases. In particular, we discuss whether and how pharmacological modulation of PPAR-γ signalling may be employed for the management of hair growth disorders, for example, in scarring alopecia (by reducing HF inflammation as well as by promoting the survival and suppressing pathological epithelial-mesenchymal transition of keratin 15 + epithelial stem cells in the bulge) and in hirsutism/hypertrichosis (by promoting catagen development). Moreover, we explore the potential role of PPAR-γ in androgenetic alopecia, HF energy metabolism and HF ageing, and consider clinical perspectives that emanate from the limited data available on this so far. As this field of translational human hair research is still in its infancy, many open questions exist, for which we briefly delineate selected experimental approaches that promise to generate instructive answers in the near future.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marta Bertolini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Maria Boboljova
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Yoshikazu Uchida
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Ralf Paus
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, and NIHR Biomedical Research Centre, Manchester, UK
| |
Collapse
|
54
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
55
|
Momotori N, Jo JI, Tabata Y. Preparation of polymer microspheres capable for pioglitazone release to modify macrophages function. Regen Ther 2019; 11:131-138. [PMID: 31338392 PMCID: PMC6626069 DOI: 10.1016/j.reth.2019.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 01/22/2023] Open
Abstract
Introduction Macrophages play an important role in regulating inflammation and tissue regeneration. It is known that anti-inflammatory macrophages play an important role for tissue regeneration. The objective of this study is to modify macrophages phenotypes for anti-inflammatory function by utilizing drug delivery technology. Method In this study, 4 types of poly (L-lactic-co-glycolic acid) (PLGA) microspheres incorporating pioglitazone of an anti-inflammatory modifier (pio-MS) with different sizes were prepared. In vitro release test of pio-MS was performed in phosphate buffered-saline solution (PBS) containing 1 wt% of sodium lauryl sulfate. The arginase activity and the secretion of interleukin (IL)−10 as anti-inflammatory macrophage markers of mouse bone marrow derived-macrophages (BMDM) cultured with the pio-MS were evaluated. Results The sustained release of pioglitazone was observed from all types of pio-MS in vitro. When BMDM were cultured with the pio-MS with an average diameter of 40 μm (pio-MS40), the arginase activity and the secretion of IL-10 increased to a significant extent compared with other pio-MS. Conclusions The pio-MS40 with an diameter of 40 μm had a potential to induce the anti-inflammatory modification of BMDM in this culture system. The sustained release of pioglitazone is promoting to modify the macrophage function. Microspheres incorporating pioglitazone with different sizes were prepared. Sustained release of pioglitazone from the microspheres were observed. The effect of pioglitazone on macrophages was enhanced by the sustained release.
Collapse
Key Words
- BMDM, mouse bone marrow derived-macrophage
- DDW, double-distilled water
- Drug delivery system
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- HPLC, high performance liquid chromatography
- IL, interleukin
- IMDM, Iscove's modified Dulbecco's medium
- M-CSF, macrophage colony stimulating factor
- Macrophages
- Microspheres
- PBS, phosphate buffered-saline solution
- PCR, polymerase chain reaction
- PGA, poly(glycolic acid)
- PLA, poly(l-lactic acid)
- PLGA
- PLGA, poly(L-lactic-co-glycolic acid)
- PPARγ, peroxisome proliferator-activated receptor γ
- Pioglitazone
- Poly(L-lactic-co-glycolic acid)
- RS, resulting solution
- SD, standard deviation
- SEM, scanning electron microscopy
- TNF, tumor necrosis factor
- UV, ultra violet
- iNOS, inducible nitric oxide synthase
- pio-MS, PLGA microspheres incorporating pioglitazone
Collapse
Affiliation(s)
- Naoki Momotori
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
56
|
Peroxisome Proliferator-Activated Receptor Gamma (PPAR) Suppresses Inflammation and Bacterial Clearance during Influenza-Bacterial Super-Infection. Viruses 2019; 11:v11060505. [PMID: 31159430 PMCID: PMC6630660 DOI: 10.3390/v11060505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/21/2023] Open
Abstract
Influenza virus is among the most common causes of respiratory illness worldwide and can be complicated by secondary bacterial pneumonia, a frequent cause of mortality. When influenza virus infects the lung, the innate immune response is activated, and interferons and inflammatory mediators are released. This "cytokine storm" is thought to play a role in influenza-induced lung pathogenesis. Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the nuclear hormone receptor super-family. PPARγ has numerous functions including enhancing lipid and glucose metabolism and cellular differentiation and suppressing inflammation. Synthetic PPARγagonists (thiazolidinediones or glitazones) have been used clinically in the treatment of type II diabetes. Using data from the National Health and Nutrition Examination Survey (NHANES), diabetic participants taking rosiglitazone had an increased risk of mortality from influenza/pneumonia compared to those not taking the drug. We examined the effect of rosiglitazone treatment during influenza and secondary bacterial (Methicillin resistant Staphylococcus aureus) pneumonia in mice. We found decreased influenza viral burden, decreased numbers of neutrophils and macrophages in bronchoalveolar lavage, and decreased production of cytokines and chemokines in influenza infected, rosiglitazone-treated mice when compared to controls. However, rosiglitazone treatment compromised bacterial clearance during influenza-bacterial super-infection. Both human and mouse data suggest that rosiglitazone treatment worsens the outcome of influenza-associated pneumonia.
Collapse
|
57
|
Uddin MS, Kabir MT, Jakaria M, Mamun AA, Niaz K, Amran MS, Barreto GE, Ashraf GM. Endothelial PPARγ Is Crucial for Averting Age-Related Vascular Dysfunction by Stalling Oxidative Stress and ROCK. Neurotox Res 2019; 36:583-601. [PMID: 31055770 DOI: 10.1007/s12640-019-00047-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Aging plays a significant role in the progression of vascular diseases and vascular dysfunction. Activation of the ADP-ribosylation factor 6 and small GTPases by inflammatory signals may cause vascular permeability and endothelial leakage. Pro-inflammatory molecules have a significant effect on smooth muscle cells (SMC). The migration and proliferation of SMC can be promoted by tumor necrosis factor alpha (TNF-α). TNF-α can also increase oxidative stress in SMCs, which has been identified to persuade DNA damage resulting in apoptosis and cellular senescence. Peroxisome proliferator-activated receptor (PPAR) acts as a ligand-dependent transcription factor and a member of the nuclear receptor superfamily. They play key roles in a wide range of biological processes, including cell differentiation and proliferation, bone formation, cell metabolism, tissue remodeling, insulin sensitivity, and eicosanoid signaling. The PPARγ activation regulates inflammatory responses, which can exert protective effects in the vasculature. In addition, loss of function of PPARγ enhances cardiovascular events and atherosclerosis in the vascular endothelium. This appraisal, therefore, discusses the critical linkage of PPARγ in the inflammatory process and highlights a crucial defensive role for endothelial PPARγ in vascular dysfunction and disease, as well as therapy for vascular aging.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
| | | | - Md Jakaria
- Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju, South Korea
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Md Shah Amran
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia. .,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
58
|
Drareni K, Gautier JF, Venteclef N, Alzaid F. Transcriptional control of macrophage polarisation in type 2 diabetes. Semin Immunopathol 2019; 41:515-529. [PMID: 31049647 DOI: 10.1007/s00281-019-00748-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 01/09/2023]
Abstract
Type-2 diabetes (T2D) is considered today as an inflammatory disease. Inflammatory processes in T2D are orchestrated by macrophage activation in different organs. Macrophages undergo classical M1 pro-inflammatory or alternative M2 anti-inflammatory activation in response to tissue microenvironmental signals. These subsets of macrophages are characterised by their expression of cell surface markers, secreted cytokines and chemokines. Transcriptional regulation is central to the polarisation of macrophages, and several major pathways have been described as essential to promote the expression of specific genes, which dictate the functional polarisation of macrophages. In this review, we summarise the current knowledge of transcriptional control of macrophage polarisation and the role this plays in development of insulin resistance.
Collapse
Affiliation(s)
- Karima Drareni
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006, Paris, France
| | - Jean-François Gautier
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006, Paris, France.,Lariboisière Hospital, AP-HP, Diabetology Department, University of Paris Diderot, Paris, France
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006, Paris, France.
| | - Fawaz Alzaid
- Cordeliers Research Centre, INSERM, Immunity and Metabolism in Diabetes Laboratory, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006, Paris, France.
| |
Collapse
|
59
|
Herradon G, Ramos-Alvarez MP, Gramage E. Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTPβ/ζ Axis: Relevance in Therapeutic Development. Front Pharmacol 2019; 10:377. [PMID: 31031625 PMCID: PMC6474308 DOI: 10.3389/fphar.2019.00377] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a common factor of pathologies such as obesity, type 2 diabetes or neurodegenerative diseases. Chronic inflammation is considered part of the pathogenic mechanisms of different disorders associated with aging. Interestingly, peripheral inflammation and the associated metabolic alterations not only facilitate insulin resistance and diabetes but also neurodegenerative disorders. Therefore, the identification of novel pathways, common to the development of these diseases, which modulate the immune response and signaling is key. It will provide highly relevant information to advance our knowledge of the multifactorial process of aging, and to establish new biomarkers and/or therapeutic targets to counteract the underlying chronic inflammatory processes. One novel pathway that regulates peripheral and central immune responses is triggered by the cytokines pleiotrophin (PTN) and midkine (MK), which bind its receptor, Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ, and inactivate its phosphatase activity. In this review, we compile a growing body of knowledge suggesting that PTN and MK modulate the immune response and/or inflammation in different pathologies characterized by peripheral inflammation associated with insulin resistance, such as aging, and in central disorders characterized by overt neuroinflammation, such as neurodegenerative diseases and endotoxemia. Evidence strongly suggests that regulation of the PTN and MK signaling pathways may provide new therapeutic opportunities particularly in those neurological disorders characterized by increased PTN and/or MK cerebral levels and neuroinflammation. Importantly, we discuss existing therapeutics, and others being developed, that modulate these signaling pathways, and their potential use in pathologies characterized by overt neuroinflammation.
Collapse
Affiliation(s)
- Gonzalo Herradon
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - M Pilar Ramos-Alvarez
- Departmento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
60
|
Hwang JS, Lee WJ, Hur J, Lee HG, Kim E, Lee GH, Choi MJ, Lim DS, Paek KS, Seo HG. Rosiglitazone-dependent dissociation of HuR from PPAR-γ regulates adiponectin expression at the posttranscriptional level. FASEB J 2019; 33:7707-7720. [PMID: 30897345 DOI: 10.1096/fj.201802643r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-γ has been implicated as a key player in the regulation of adiponectin levels via both transcriptional and posttranscriptional mechanisms. Herein, we show that PPAR-γ interacts with human antigen R (HuR) and that the PPAR-γ-HuR complex dissociates following activation of PPAR-γ by rosiglitazone, a specific ligand of PPAR-γ. This rosiglitazone-dependent dissociation of HuR from PPAR-γ leads to nucleocytoplasmic shuttling of HuR and its binding to the 3'-UTR of adiponectin mRNA. PPAR-γ with H321A and H447A double mutation (PPAR-γH321/447A), a mutant lacking ligand-binding activity, impaired HuR dissociation from the PPAR-γ-HuR complex, resulting in reduced nucleocytoplasmic shuttling, even in the presence of rosiglitazone. Consequently, rosiglitazone up-regulated adiponectin levels by modulating the stability of adiponectin mRNA, whereas these effects were abolished by HuR ablation or blocked in cells expressing the PPAR-γH321/447A mutant, indicating that the interaction of PPAR-γ and HuR is a critical event during adiponectin expression. Taken together, the findings demonstrate a novel mechanism for regulating adiponectin expression at the posttranscriptional level and suggest that ligand-mediated activation of PPAR-γ to interfere with interaction of HuR could offer a therapeutic strategy for inflammation-associated diseases that involve decreased adiponectin mRNA stability.-Hwang, J. S., Lee, W. J., Hur, J., Lee, H. G., Kim, E., Lee, G. H., Choi, M.-J., Lim, D.-S., Paek, K. S., Seo, H. G. Rosiglitazone-dependent dissociation of HuR from PPAR-γ regulates adiponectin expression at the posttranscriptional level.
Collapse
Affiliation(s)
- Jung Seok Hwang
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Won Jin Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Jinwoo Hur
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Hyuk Gyoon Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Eunsu Kim
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Gyeong Hee Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Mi-Jung Choi
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Korea
| | | | - Han Geuk Seo
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
61
|
Sima C, Viniegra A, Glogauer M. Macrophage immunomodulation in chronic osteolytic diseases-the case of periodontitis. J Leukoc Biol 2019; 105:473-487. [PMID: 30452781 PMCID: PMC6386606 DOI: 10.1002/jlb.1ru0818-310r] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Periodontitis (PD) is a chronic osteolytic disease that shares pathogenic inflammatory features with other conditions associated with nonresolving inflammation. A hallmark of PD is inflammation-mediated alveolar bone loss. Myeloid cells, in particular polymorphonuclear neutrophils (PMN) and macrophages (Mac), are essential players in PD by control of gingival biofilm pathogenicity, activation of adaptive immunity, as well as nonresolving inflammation and collateral tissue damage. Despite mounting evidence of significant innate immune implications to PD progression and healing after therapy, myeloid cell markers and targets for immune modulation have not been validated for clinical use. The remarkable plasticity of monocytes/Mac in response to local activation factors enables these cells to play central roles in inflammation and restoration of tissue homeostasis and provides opportunities for biomarker and therapeutic target discovery for management of chronic inflammatory conditions, including osteolytic diseases such as PD and arthritis. Along a wide spectrum of activation states ranging from proinflammatory to pro-resolving, Macs respond to environmental changes in a site-specific manner in virtually all tissues. This review summarizes the existing evidence on Mac immunomodulation therapies for osteolytic diseases in the broader context of conditions associated with nonresolving inflammation, and discusses osteoimmune implications of Macs in PD.
Collapse
Affiliation(s)
- Corneliu Sima
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Viniegra
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Michael Glogauer
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
62
|
Nor Effa SZ, Yaacob NS, Mohd Nor N. Crosstalk between PPARγ Ligands and Inflammatory-Related Pathways in Natural T-Regulatory Cells from Type 1 Diabetes Mouse Model. Biomolecules 2018; 8:E135. [PMID: 30400642 PMCID: PMC6315476 DOI: 10.3390/biom8040135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023] Open
Abstract
Immunomodulation, as a means of immunotherapy, has been studied in major research and clinical laboratories for many years. T-Regulatory (Treg) cell therapy is one of the modulators used in immunotherapy approaches. Similarly, nuclear receptor peroxisome proliferator activated receptor gamma (PPARγ) has extensively been shown to play a role as an immuno-modulator during inflammation. Given their mutual roles in downregulating the immune response, current study examined the influence of PPARγ ligands i.e., thiazolidinedione (TZD) class of drugs on Forkhead Box P3 (Foxp3) expression and possible crosstalk between PPARγ and nTreg cells of Non-Obese Diabetes (NOD) and Non-Obese Diabetes Resistant (NOR) mice. Results showed that TZD drug, ciglitazone and natural ligand of PPARγ 15d-prostaglandin downregulated Foxp3 expression in activated nTreg cells from both NOD and NOR mice. Interestingly, addition of the PPARγ inhibitor, GW9662 further downregulated Foxp3 expression in these cells from both mice. We also found that PPARγ ligands negatively regulate Foxp3 expression in activated nTreg cells via PPARγ-independent mechanism(s). These results demonstrate that both natural and synthetic PPARγ ligands capable of suppressing Foxp3 expression in activated nTreg cells of NOD and NOR mice. This may suggest that the effect of PPARγ ligands in modulating Foxp3 expression in activated nTreg cells is different from their reported effects on effector T cells. Given the capability to suppress Foxp3 gene, it is possible to be tested as immunomodulators in cancer-related studies. The co-lateral use of PPARγ ligands in nTreg cells in inducing tolerance towards pseudo-self antigens as in tumor microenvironment may uphold beneficial outcomes.
Collapse
Affiliation(s)
- S Zulkafli Nor Effa
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Kubang Kerian 16150, Malaysia.
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Malaysia.
| | - Nik Soriani Yaacob
- School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Kubang Kerian 16150, Malaysia.
| | - Norazmi Mohd Nor
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Kubang Kerian 16150, Malaysia.
| |
Collapse
|
63
|
Wei W, Chen X, Lin X, Shan F, Lin S, Shen Q, Zhang L. Serum PPARγ level and PPARγ gene polymorphism as well as severity and prognosis of brain injury in patients with arteriosclotic cerebral infarction. Exp Ther Med 2018; 16:4058-4062. [PMID: 30344683 PMCID: PMC6176134 DOI: 10.3892/etm.2018.6660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/18/2018] [Indexed: 01/12/2023] Open
Abstract
The aim of the study was to study the serum peroxisome proliferator-activated receptor gamma (PPARγ) level and PPARγ gene polymorphism as well as the severity and prognosis of brain injury in patients with arteriosclotic cerebral infarction (ACI). A total of 246 ACI patients presenting at the Department of Neurology of Zengcheng District People's Hospital of Guangzhou between April 2009 and July 2015 were selected as the case group, and 382 control subjects were enrolled as the control group. The hepatic and renal functions and homocysteine (Hcy) expression levels were measured. Enzyme-linked immunosorbent assay (ELISA) kit was used to detect the serum PPARγ levels of the ACI patients. Polymerase chain reaction-restriction fragment length polymorphism method was applied to measure the PPARγ gene polymorphism. The proportions of hypertension patients, diabetes patients and smoking people in the case group were significantly higher than those in the control group. The levels of cholesterol and fasting blood glucose in the case group were elevated obviously compared with those in the control group. The levels of indexes related to the hepatic function and renal function in the case group were remarkably higher than those in the control group. The serum PPARγ levels were increased progressively at acute stage. The distribution frequencies of PPARγ genotypes CC, CT and TT in the case group were higher than those in the control group; compared with that in the control group, the proportion of C allele in the case group was raised obviously, while that of T allele was significantly decreased. The serum PPARγ level has a close correlation with the PPARγ gene polymorphism in ACI patients, and PPARγ is also remarkably related to the severity of brain injury; therefore, PPARγ has great significance in the diagnosis and treatment of cerebral infarction.
Collapse
Affiliation(s)
- Weiming Wei
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Xuwen Chen
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Xueying Lin
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Fulan Shan
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Shaopeng Lin
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Qingyu Shen
- Department of Neurology, Zengcheng District People's Hospital of Guangzhou, Guangzhou, Guangdong 511300, P.R. China
| | - Li Zhang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
- Correspondence to: Li Zhang, The First Affiliated Hospital of Guangdong Pharmaceutical University, 19 Nonglinxi Road, Guangzhou, Guangdong 510000, P.R. China, E-mail:
| |
Collapse
|
64
|
Ducheix S, Peres C, Härdfeldt J, Frau C, Mocciaro G, Piccinin E, Lobaccaro JM, De Santis S, Chieppa M, Bertrand-Michel J, Plateroti M, Griffin JL, Sabbà C, Ntambi JM, Moschetta A. Deletion of Stearoyl-CoA Desaturase-1 From the Intestinal Epithelium Promotes Inflammation and Tumorigenesis, Reversed by Dietary Oleate. Gastroenterology 2018; 155:1524-1538.e9. [PMID: 30063922 DOI: 10.1053/j.gastro.2018.07.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The enzyme stearoyl-coenzyme A desaturase 1 (SCD or SCD1) produces monounsaturated fatty acids by introducing double bonds into saturated bonds between carbons 9 and 10, with oleic acid as the main product. SCD1 is present in the intestinal epithelium, and fatty acids regulate cell proliferation, so we investigated the effects of SCD1-induced production of oleic acid in enterocytes in mice. METHODS We generated mice with disruption of Scd1 selectively in the intestinal epithelium (iScd1-/- mice) on a C57BL/6 background; iScd1+/+ mice were used as controls. We also generated iScd1-/-ApcMin/+ mice and studied cancer susceptibility. Mice were fed a chow, oleic acid-deficient, or oleic acid-rich diet. Intestinal tissues were collected and analyzed by histology, reverse transcription quantitative polymerase chain reaction, immunohistochemistry, and mass spectrometry, and tumors were quantified and measured. RESULTS Compared with control mice, the ileal mucosa of iScd1-/- mice had a lower proportion of palmitoleic (C16:1 n-7) and oleic acids (C18:1 n-9), with accumulation of stearic acid (C18:0); this resulted a reduction of the Δ9 desaturation ratio between monounsaturated (C16:1 n-7 and C18:1 n-9) and saturated (C16:0 and C18:0) fatty acids. Ileal tissues from iScd1-/- mice had increased expression of markers of inflammation activation and crypt proliferative genes compared with control mice. The iScd1-/-ApcMin/+ mice developed more and larger tumors than iScd1+/+ApcMin/+ mice. iScd1-/-ApcMin/+ mice fed the oleic acid-rich diet had reduced intestinal inflammation and significantly lower tumor burden compared with mice fed a chow diet. CONCLUSIONS In studies of mice, we found intestinal SCD1 to be required for synthesis of oleate in the enterocytes and maintenance of fatty acid homeostasis. Dietary supplementation with oleic acid reduces intestinal inflammation and tumor development in mice.
Collapse
Affiliation(s)
- Simon Ducheix
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - Claudia Peres
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - Jennifer Härdfeldt
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - Carla Frau
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Département de la recherche, Lyon, France
| | - Gabriele Mocciaro
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Elena Piccinin
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - Jean-Marc Lobaccaro
- INSERM U 1103, CNRS, UMR 6293, Université Clermont Auvergne, GReD, F-6300 Aubière, France; Centre de Recherche en Nutrition Humaine d'Auvergne, F-63000 Clermont-Ferrand, France
| | - Stefania De Santis
- IRCCS National Institute of Gastroenterology S. de Bellis, Castellana Grotte, Italy
| | - Marcello Chieppa
- IRCCS National Institute of Gastroenterology S. de Bellis, Castellana Grotte, Italy
| | - Justine Bertrand-Michel
- Lipidomic Facility, MetaboHUB, INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Michelina Plateroti
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université de Lyon, Département de la recherche, Lyon, France
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Carlo Sabbà
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia
| | - James M Ntambi
- University of Wisconsin Madison, Departments of Biochemistry and of Nutritional Sciences, Madison, Wisconsin
| | - Antonio Moschetta
- Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italia; IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italia.
| |
Collapse
|
65
|
The Nuclear Receptor PPARγ Controls Progressive Macrophage Polarization as a Ligand-Insensitive Epigenomic Ratchet of Transcriptional Memory. Immunity 2018; 49:615-626.e6. [PMID: 30332629 PMCID: PMC6197058 DOI: 10.1016/j.immuni.2018.09.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/29/2018] [Accepted: 08/31/2018] [Indexed: 12/28/2022]
Abstract
Macrophages polarize into distinct phenotypes in response to complex environmental cues. We found that the nuclear receptor PPARγ drove robust phenotypic changes in macrophages upon repeated stimulation with interleukin (IL)-4. The functions of PPARγ on macrophage polarization in this setting were independent of ligand binding. Ligand-insensitive PPARγ bound DNA and recruited the coactivator P300 and the architectural protein RAD21. This established a permissive chromatin environment that conferred transcriptional memory by facilitating the binding of the transcriptional regulator STAT6 and RNA polymerase II, leading to robust production of enhancer and mRNAs upon IL-4 re-stimulation. Ligand-insensitive PPARγ binding controlled the expression of an extracellular matrix remodeling-related gene network in macrophages. Expression of these genes increased during muscle regeneration in a mouse model of injury, and this increase coincided with the detection of IL-4 and PPARγ in the affected tissue. Thus, a predominantly ligand-insensitive PPARγ:RXR cistrome regulates progressive and/or reinforcing macrophage polarization.
Collapse
|
66
|
Weber KJ, Sauer M, He L, Tycksen E, Kalugotla G, Razani B, Schilling JD. PPARγ Deficiency Suppresses the Release of IL-1β and IL-1α in Macrophages via a Type 1 IFN-Dependent Mechanism. THE JOURNAL OF IMMUNOLOGY 2018; 201:2054-2069. [PMID: 30143592 DOI: 10.4049/jimmunol.1800224] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
Abstract
Obesity and diabetes modulate macrophage activation, often leading to prolonged inflammation and dysfunctional tissue repair. Increasing evidence suggests that the NLRP3 inflammasome plays an important role in obesity-associated inflammation. We have previously shown that activation of the lipotoxic inflammasome by excess fatty acids in macrophages occurs via a lysosome-dependent pathway. However, the mechanisms that link cellular lipid metabolism to altered inflammation remain poorly understood. PPARγ is a nuclear receptor transcription factor expressed by macrophages that is known to alter lipid handling, mitochondrial function, and inflammatory cytokine expression. To undercover novel links between metabolic signaling and lipotoxic inflammasome activation, we investigated mouse primary macrophages deficient in PPARγ. Contrary to our expectation, PPARγ knockout (KO) macrophages released significantly less IL-1β and IL-1α in response to lipotoxic stimulation. The suppression occurred at the transcriptional level and was apparent for multiple activators of the NLRP3 inflammasome. RNA sequencing revealed upregulation of IFN-β in activated PPARγKO macrophages, and this was confirmed at the protein level. A blocking Ab against the type 1 IFNR restored the release of IL-1β to wild type levels in PPARγKO cells, confirming the mechanistic link between these events. Conversely, PPARγ activation with rosiglitazone selectively suppressed IFN-β expression in activated macrophages. Loss of PPARγ also resulted in diminished expression of genes involved in sterol biosynthesis, a pathway known to influence IFN production. Together, these findings demonstrate a cross-talk pathway that influences the interplay between metabolism and inflammation in macrophages.
Collapse
Affiliation(s)
- Kassandra J Weber
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110.,Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Madeline Sauer
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110.,Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Li He
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110.,Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric Tycksen
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Gowri Kalugotla
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110.,Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Babak Razani
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110.,Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joel D Schilling
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110; .,Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
67
|
The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders. Biochem Pharmacol 2018; 157:122-133. [PMID: 30138623 DOI: 10.1016/j.bcp.2018.08.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/16/2018] [Indexed: 12/31/2022]
Abstract
The skin is the largest organ of the body and has a complex and very active structure that contributes to homeostasis and provides the first line defense against injury and infection. In the past few years it has become evident that the endocannabinoid system (ECS) plays a relevant role in healthy and diseased skin. Specifically, we review how the dysregulation of ECS has been associated to dermatological disorders such as atopic dermatitis, psoriasis, scleroderma and skin cancer. Therefore, the druggability of the ECS could open new research avenues for the treatment of the pathologies mentioned. Numerous studies have reported that phytocannabinoids and their biological analogues modulate a complex network pharmacology involved in the modulation of ECS, focusing on classical cannabinoid receptors, transient receptor potential channels (TRPs), and peroxisome proliferator-activated receptors (PPARs). The combined targeting of several end-points seems critical to provide better chances of therapeutically success, in sharp contrast to the one-disease-one-target dogma that permeates current drug discovery campaigns.
Collapse
|
68
|
Yao X, Lu B, Lü C, Bai Q, Yan D, Wu Y, Hong Z, Xu H. Solanesol induces the expression of heme oxygenase-1 via p38 and Akt and suppresses the production of proinflammatory cytokines in RAW264.7 cells. Food Funct 2018; 8:132-141. [PMID: 27921103 DOI: 10.1039/c6fo01073c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to examine the anti-inflammatory effect of solanesol and to elucidate the underlying mechanisms. Heme oxygenase-1 (HO-1) plays an important role in cytoprotection against oxidative stress and inflammation. Solanesol induced HO-1 expression both at the level of mRNA and proteins, resulting in increased HO-1 activity. Solanesol treatment enhanced the level of the phosphorylated form, nuclear translocation, ARE-binding, and transcriptional activity of Nrf2. p38 and Akt contributed to ARE-driven HO-1 expression. Solanesol activated both p38 and Akt, and treatments with SB203580 (a p38 kinase inhibitor), LY294002 (an Akt inhibitor), specific p38 siRNA and Akt siRNA suppressed the solanesol-induced activation of Nrf2, resulting in a decrease in HO-1 expression. Solanesol also elevated the autophagic protein LC3B-II level. SnPP (a HO-1 inhibitor) and HO-1 siRNA markedly abolished the anti-inflammatory effect of solanesol against LPS-induced cell damage. Likewise, SB203580, LY294002, 3-MA and Baf-A1 inhibited the solanesol-induced anti-inflammatory effect. These studies demonstrate that solanesol attenuates inflammation by HO-1 induction via p38 and Akt signaling. Thus, it is quite plausible that HO-1 induction by solanesol could trigger anti-inflammatory pathways including limiting LPS-stimulated cytokine production through autophagic signaling via p38 and Akt.
Collapse
Affiliation(s)
- Xiangyang Yao
- Department of Biology and Food Engineering, Bengbu University, Bengbu, PR China.
| | - Binyu Lu
- School of Pharmacy, Fudan University, Shanghai, PR China
| | - Chaotian Lü
- Department of Biology and Food Engineering, Bengbu University, Bengbu, PR China.
| | - Qin Bai
- Department of Biology and Food Engineering, Bengbu University, Bengbu, PR China.
| | - Dazhong Yan
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China
| | - Yanli Wu
- Department of Biology and Food Engineering, Bengbu University, Bengbu, PR China.
| | - Zibing Hong
- Department of Biology and Food Engineering, Bengbu University, Bengbu, PR China.
| | - Hui Xu
- Department of Biology and Food Engineering, Bengbu University, Bengbu, PR China.
| |
Collapse
|
69
|
Heming M, Gran S, Jauch SL, Fischer-Riepe L, Russo A, Klotz L, Hermann S, Schäfers M, Roth J, Barczyk-Kahlert K. Peroxisome Proliferator-Activated Receptor-γ Modulates the Response of Macrophages to Lipopolysaccharide and Glucocorticoids. Front Immunol 2018; 9:893. [PMID: 29867927 PMCID: PMC5949563 DOI: 10.3389/fimmu.2018.00893] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
Although glucocorticoids (GC) represent the most frequently used immunosuppressive drugs, their effects are still not well understood. In our previous studies, we have shown that treatment of monocytes with GC does not cause a global suppression of monocytic effector functions, but rather induces differentiation of a specific anti-inflammatory phenotype. The anti-inflammatory role of peroxisome proliferator-activated receptor (PPAR)-γ has been extensively studied during recent years. However, a relationship between GC treatment and PPAR-γ expression in macrophages has not been investigated so far. Studies using PPAR-γ-deficient mice have frequently provided controversial results. A potential reason is the use of primary cells, which commonly represent inhomogeneous populations burdened with side effects and influenced by bystander cells. To overcome this constraint, we established ER-Hoxb8-immortalized bone marrow-derived macrophages from Ppargfl/fl and LysM-Cre Ppargfl/fl mice in this study. In contrast to primary macrophages, the ER-Hoxb8 system allows the generation of a homogeneous and well-defined population of resting macrophages. We could show that the loss of PPAR-γ resulted in delayed kinetic of differentiation of monocytes into macrophages as assessed by reduced F4/80, but increased Ly6C expression in early phases of differentiation. As expected, PPAR-γ-deficient macrophages displayed an increased pro-inflammatory phenotype upon long-term LPS stimulation characterized by an elevated production of pro-inflammatory cytokines TNF-α, IL1-β, IL-6, IL-12 and a reduced production of anti-inflammatory cytokine IL-10 compared to PPAR-γ WT cells. Moreover, PPAR-γ-deficient macrophages showed impaired phagocytosis. GC treatment of macrophages led to the upregulation of PPAR-γ expression. However, there were no differences in GC-induced suppression of cytokines between both cell types, implicating a PPAR-γ-independent mechanism. Intriguingly, GC treatment resulted in an increased in vitro migration only in PPAR-γ-deficient macrophages. Performing a newly developed in vivo cell-tracking experiment, we could confirm that GC induces an increased recruitment of PPAR-γ KO, but not PPAR-γ WT macrophages to the site of inflammation. Our findings suggest a specific effect of PPAR-γ on GC-induced migration in macrophages. In conclusion, we could demonstrate that PPAR-γ exerts anti-inflammatory activities and shapes macrophage functions. Moreover, we identified a molecular link between GC and PPAR-γ and could show for the first time that PPAR-γ modulates GC-induced migration in macrophages.
Collapse
Affiliation(s)
- Michael Heming
- Institute of Immunology, University of Muenster, Muenster, Germany.,Department of Neurology, University of Muenster, Muenster, Germany
| | - Sandra Gran
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Saskia-L Jauch
- Institute of Immunology, University of Muenster, Muenster, Germany
| | | | - Antonella Russo
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Luisa Klotz
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Muenster, Muenster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Muenster, Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Muenster, Germany
| | | |
Collapse
|
70
|
Shen ZX, Yang QZ, Li C, Du LJ, Sun XN, Liu Y, Sun JY, Gu HH, Sun YM, Wang J, Duan SZ. Myeloid peroxisome proliferator-activated receptor gamma deficiency aggravates myocardial infarction in mice. Atherosclerosis 2018; 274:199-205. [PMID: 29800789 DOI: 10.1016/j.atherosclerosis.2018.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND AIMS Agonists of peroxisome proliferator-activated receptor gamma (Pparγ) have been demonstrated to reduce the risk of myocardial infarction (MI) in clinical trials and animal experiments. However, the cellular and molecular mechanisms are not completely understood. We aimed to reveal the functions of myeloid Pparγ in MI and explore the potential mechanisms in this study. METHODS Myeloid Pparγ knockout (MPGKO) mice (n = 12) and control mice (n = 8) underwent coronary artery ligation to induce MI. Another cohort of MPGKO mice and control mice underwent coronary artery ligation and were then treated with IgG or neutralizing antibodies against interleukin (IL)-1β. Infarct size was determined by TTC staining and cardiac function was measured using echocardiography. Conditioned media from GW9662- or vehicle-treated macrophages were used to treat H9C2 cardiomyocyte cell line. Gene expression was analyzed using quantitative PCR. Reactive oxygen species were measured using flow cytometry. RESULTS Myeloid Pparγ deficiency significantly increased myocardial infarct size. Cardiac hypertrophy was also exacerbated in MPGKO mice, with upregulation of β-myosin heavy chain (Mhc) and brain natriuretic peptide (Bnp) and downregulation of α-Mhc in the non-infarcted zone. Conditioned media from GW9662-treated macrophages increased expression of β-Mhc and Bnp in H9C2 cells. Echocardiographic measurements showed that MPGKO mice had worsen cardiac dysfunction after MI. Myeloid Pparγ deficiency increased gene expression of NADPH oxidase subunits (Nox2 and Nox4) in the non-infarcted zone after MI. Conditioned media from GW9662-treated macrophages increased reactive oxygen species in H9C2 cells. Expression of inflammatory genes such as IL-1β and IL-6 was upregulated in the non-infarcted zone of MPGKO mice after MI. With the injection of neutralizing antibodies against IL-1β, control mice and MPGKO mice had comparable cardiac function and expression of inflammatory genes after MI. CONCLUSIONS Myeloid Pparγ deficiency exacerbates MI, likely through increased oxidative stress and cardiac inflammation.
Collapse
Affiliation(s)
- Zhu-Xia Shen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Qing-Zhen Yang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chao Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lin-Juan Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xue-Nan Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Jian-Yong Sun
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Hui-Hui Gu
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Yu-Min Sun
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Jun Wang
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Ninth People's Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
71
|
The Role of PPAR and Its Cross-Talk with CAR and LXR in Obesity and Atherosclerosis. Int J Mol Sci 2018; 19:ijms19041260. [PMID: 29690611 PMCID: PMC5979375 DOI: 10.3390/ijms19041260] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
The prevalence of obesity and atherosclerosis has substantially increased worldwide over the past several decades. Peroxisome proliferator-activated receptors (PPARs), as fatty acids sensors, have been therapeutic targets in several human lipid metabolic diseases, such as obesity, atherosclerosis, diabetes, hyperlipidaemia, and non-alcoholic fatty liver disease. Constitutive androstane receptor (CAR) and liver X receptors (LXRs) were also reported as potential therapeutic targets for the treatment of obesity and atherosclerosis, respectively. Further clarification of the internal relationships between these three lipid metabolic nuclear receptors is necessary to enable drug discovery. In this review, we mainly summarized the cross-talk of PPARs-CAR in obesity and PPARs-LXRs in atherosclerosis.
Collapse
|
72
|
Goyal G, Wong K, Nirschl CJ, Souders N, Neuberg D, Anandasabapathy N, Dranoff G. PPARγ Contributes to Immunity Induced by Cancer Cell Vaccines That Secrete GM-CSF. Cancer Immunol Res 2018; 6:723-732. [PMID: 29669721 DOI: 10.1158/2326-6066.cir-17-0612] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/12/2018] [Accepted: 04/11/2018] [Indexed: 11/16/2022]
Abstract
Peroxisome proliferator activated receptor-γ (PPARγ) is a lipid-activated nuclear receptor that promotes immune tolerance through effects on macrophages, dendritic cells (DCs), and regulatory T cells (Tregs). Granulocyte-macrophage colony stimulating factor (GM-CSF) induces PPARγ expression in multiple myeloid cell types. GM-CSF contributes to both immune tolerance and protection, but the role of PPARγ in these pathways is poorly understood. Here, we reveal an unexpected stimulatory role for PPARγ in the generation of antitumor immunity with irradiated, GM-CSF-secreting tumor-cell vaccines (GVAX). Mice harboring a deletion of pparg in lysozyme M (LysM)-expressing myeloid cells (KO) showed a decreased ratio of CD8+ T effectors to Tregs and impaired tumor rejection with GVAX. Diminished tumor protection was associated with altered DC responses and increased production of the Treg attracting chemokines CCL17 and CLL22. Correspondingly, the systemic administration of PPARγ agonists to vaccinated mice elevated the CD8+ T effector to Treg ratio through effects on myeloid cells and intensified the antitumor activity of GVAX combined with cytotoxic T lymphocyte-associated antigen-4 antibody blockade. PPARγ agonists similarly attenuated Treg induction and decreased CCL17 and CCL22 levels in cultures of human peripheral blood mononuclear cells with GM-CSF-secreting tumor cells. Together, these results highlight a key role for myeloid cell PPARγ in GM-CSF-stimulated antitumor immunity and suggest that PPARγ agonists might be useful in cancer immunotherapy. Cancer Immunol Res; 6(6); 723-32. ©2018 AACR.
Collapse
Affiliation(s)
- Girija Goyal
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Karrie Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christopher J Nirschl
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nicholas Souders
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Niroshana Anandasabapathy
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
73
|
Schwager J, Gagno L, Richard N, Simon W, Weber P, Bendik I. Z-ligustilide and anti-inflammatory prostaglandins have common biological properties in macrophages and leukocytes. Nutr Metab (Lond) 2018; 15:4. [PMID: 29371874 PMCID: PMC5771029 DOI: 10.1186/s12986-018-0239-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/02/2018] [Indexed: 01/22/2023] Open
Affiliation(s)
- Joseph Schwager
- DSM Nutritional Products Ltd., Department of Human Nutrition & Health, P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Lidia Gagno
- DSM Nutritional Products Ltd., Department of Human Nutrition & Health, P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Nathalie Richard
- DSM Nutritional Products Ltd., Department of Human Nutrition & Health, P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Werner Simon
- DSM Nutritional Products Ltd., Department of Human Nutrition & Health, P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Peter Weber
- DSM Nutritional Products Ltd., Department of Human Nutrition & Health, P.O. Box 2676, CH-4002 Basel, Switzerland
| | - Igor Bendik
- DSM Nutritional Products Ltd., Department of Human Nutrition & Health, P.O. Box 2676, CH-4002 Basel, Switzerland
| |
Collapse
|
74
|
Duggan C, Baumgartner RN, Baumgartner KB, Bernstein L, George S, Ballard R, Neuhouser ML, McTiernan A. Genetic variation in TNFα, PPARγ, and IRS-1 genes, and their association with breast-cancer survival in the HEAL cohort. Breast Cancer Res Treat 2017; 168:567-576. [PMID: 29256014 DOI: 10.1007/s10549-017-4621-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Tumor necrosis factor-α (TNF-α), peroxisome proliferator-activated receptor-γ (PPARγ), and insulin receptor substrate-1 (IRS-1) are associated with obesity, insulin resistance, and inflammation. Few data exist on associations between polymorphisms in these genes and mortality in breast cancer survivors. METHODS We investigated associations between TNF-α -308G > A (rs1800629); PPARγ Pro12Ala (rs1801282); and IRS-1 Gly972Arg (rs1801278) polymorphisms and anthropometric variables, circulating levels of previously measured biomarkers, and tumor characteristics in 553 women enrolled in the Health, Eating, Activity, and Lifestyle Study, a multiethnic, prospective cohort study of women diagnosed with stage I-IIIA breast cancer between 1995 and 1999 (median follow-up 14.7 years). Using Cox proportional hazards models adjusted for possible confounders, we evaluated associations between these polymorphisms and mortality. RESULTS Carriers of the PPARγ variant allele had statistically significantly lower rates of type 2 diabetes (P = 0.04), lower BMI (P = 0.01), and HOMA scores [P = 0.004; non-Hispanic White (NHWs) only]; carriers of the TNF-α variant A allele had higher serum glucose (P = 0.004, NHW only); and the IRS-1 variant was associated with higher leptin levels (P = 0.003, Hispanics only). There were no associations between any of the polymorphisms and tumor characteristics. Among 141 deaths, 62 were due to breast cancer. Carriers of the TNF-α-variant A allele had a decreased risk of breast-cancer-specific mortality [hazard ratio (HR) 0.30; 95% confidence interval (CI) 0.10-0.83] and all-cause mortality (HR 0.51; 95% CI 0.28-0.91). CONCLUSIONS Neither the PPARγ nor the IRS-1 polymorphism was associated with mortality outcome. The TNF-α -308 G > A polymorphism was associated with reduced breast-cancer-specific and all-cause mortality.
Collapse
Affiliation(s)
- Catherine Duggan
- Epidemiology Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Richard N Baumgartner
- Department of Epidemiology & Population Health, University of Louisville, Louisville, KY, USA
| | - Kathy B Baumgartner
- Department of Epidemiology & Population Health, University of Louisville, Louisville, KY, USA
| | - Leslie Bernstein
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Stephanie George
- Office of Disease Prevention, National Institutes of Health, Rockville, MD, USA
| | - Rachel Ballard
- Office of Disease Prevention, National Institutes of Health, Rockville, MD, USA
| | - Marian L Neuhouser
- Epidemiology Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Anne McTiernan
- Epidemiology Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
75
|
Sutton MT, Fletcher D, Episalla N, Auster L, Kaur S, Gwin MC, Folz M, Velasquez D, Roy V, van Heeckeren R, Lennon DP, Caplan AI, Bonfield TL. Mesenchymal Stem Cell Soluble Mediators and Cystic Fibrosis. ACTA ACUST UNITED AC 2017; 7. [PMID: 29291140 DOI: 10.4172/2157-7633.1000400] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human Mesenchymal stem cells (hMSCs) secrete products (supernatants) that are anti-inflammatory and antimicrobial. We have previously shown that hMSCs decrease inflammation and Pseudomonas aeruginosa infection in the in vivo murine model of Cystic Fibrosis (CF). Cystic Fibrosis (CF) is a genetic disease in which pulmonary infection and inflammation becomes the major cause of morbidity and mortality. Our studies focus on determining how MSCs contribute to improved outcomes in the CF mouse model centering on how the MSCs impact the inflammatory response to pathogenic organisms. We hypothesize that MSCs secrete products that are anti-inflammatory in scenarios of chronic pulmonary infections using the murine model of infection and inflammation with a specific interest in Pseudomonas aeruginosa (gram negative). Further, our studies will identify whether the MSCs are impacting this inflammatory response through the regulation of peroxisome proliferator activator receptor gamma (PPARγ) which aides in decreasing inflammation.
Collapse
Affiliation(s)
- Morgan T Sutton
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,National Center of Regenerative Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Engineering, Case Western Reserve University, Cleveland Ohio 44106-4948.,Hathaway Brown School, Shaker Heights Ohio 44122.,Summer Programs in Undergraduate Research, Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland Ohio 44106-4948
| | - David Fletcher
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Nicole Episalla
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Lauren Auster
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Sukhmani Kaur
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Hathaway Brown School, Shaker Heights Ohio 44122
| | - Mary Chandler Gwin
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,Summer Programs in Undergraduate Research, Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland Ohio 44106-4948
| | - Michael Folz
- School of Engineering, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Dante Velasquez
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,National Center of Regenerative Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Varun Roy
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Rolf van Heeckeren
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Donald P Lennon
- Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948.,Skeletal Research Center, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Arnold I Caplan
- Department of Biology, Case Western Reserve University, Cleveland Ohio 44106-4948.,Skeletal Research Center, Case Western Reserve University, Cleveland Ohio 44106-4948
| | - Tracey L Bonfield
- Department of Pediatrics, Case Western Reserve University, Cleveland Ohio 44106-4948.,National Center of Regenerative Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,School of Medicine, Case Western Reserve University, Cleveland Ohio 44106-4948.,Skeletal Research Center, Case Western Reserve University, Cleveland Ohio 44106-4948
| |
Collapse
|
76
|
Sharma A, Vella A. Obstacles to Translating Genotype-Phenotype Correlates in Metabolic Disease. Physiology (Bethesda) 2017; 32:42-50. [PMID: 27927804 DOI: 10.1152/physiol.00009.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Type 2 diabetes mellitus is a polygenic disease with a variable phenotype. Many genetic associations have been described; however, understanding their underlying pathophysiological role in Type 2 diabetes mellitus is important for development of future therapeutic targets. Here, we review the physiological mechanisms of diabetes-associated variants that affect glycemia.
Collapse
Affiliation(s)
- Anu Sharma
- Department of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, Minnesota
| | - Adrian Vella
- Department of Endocrinology, Diabetes and Nutrition, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
77
|
Balancing anti-inflammatory and anti-oxidant responses in murine bone marrow derived macrophages. PLoS One 2017; 12:e0184469. [PMID: 28886148 PMCID: PMC5590945 DOI: 10.1371/journal.pone.0184469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/24/2017] [Indexed: 11/29/2022] Open
Abstract
Rationale The underlying pathophysiology of bronchopulmonary dysplasia includes a macrophage-mediated host response orchestrated by anti-inflammatory peroxisome proliferator-activated receptor gamma (PPARγ) and anti-oxidant nuclear factor (erythroid-derived 2)-like 2 (Nrf2). These have not yet been studied in combination. This study tested the hypothesis that combined inflammatory and oxidative stressors would interact and change PPARγ- and Nrf2-regulated gene expression and antioxidant capacity. Therefore, we investigated the effect of dual stimulation with lipopolysaccharide and hyperoxia in murine bone marrow-derived macrophages (BMDM). Methods Sub-confluent BMDM from wild-type C57BL/6J mice were treated with lipopolysaccharide (LPS) 1ug/mL for 2 hours followed by room air (21% oxygen) or hyperoxia (95% oxygen) for 24 hours. Taqman real time-polymerase chain reaction gene expression assays, total antioxidant capacity assays, and Luminex assays were performed. Results Supernatants of cultured BMDM contained significant antioxidant capacity. In room air, LPS treatment decreased expression of PPARγ and Nrf2, and increased expression of tumor necrosis factor-alpha and heme oxygenase-1; similar findings were observed under hyperoxic conditions. LPS treatment decreased cellular total antioxidant capacity in room air but not in hyperoxia. Increased expression of sulfiredoxin-1 in response to hyperoxia was not observed in LPS-treated cells. Dual stimulation with LPS treatment and exposure to hyperoxia did not have synergistic effects on gene expression. Cellular total antioxidant capacity was not changed by hyperoxia exposure. Conclusions Our hypothesis was supported and we demonstrate an interaction between inflammatory and oxidative stressors in a model system of bronchopulmonary dysplasia pathogenesis. The protective anti-oxidant effect of cell culture media may have protected the cells from the most deleterious effects of hyperoxia.
Collapse
|
78
|
Zafari V, Hashemzadeh S, Hosseinpour Feizi M, Pouladi N, Rostami Zadeh L, Sakhinia E. mRNA expression of nuclear factor of activated T-cells, cytoplasmic 2 (NFATc2) and peroxisome proliferator-activated receptor gamma (PPARG) transcription factors in colorectal carcinoma. Bosn J Basic Med Sci 2017; 17:255-261. [PMID: 28504924 DOI: 10.17305/bjbms.2017.1886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/17/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
Transcription factors are involved in cell cycle and apoptosis regulation and thus have a key role in the carcinogenesis of different tumors. Nuclear factor of activated T-cells, cytoplasmic 2 (NFATc2) and peroxisome proliferator-activated receptor gamma (PPARG) transcription factors are important in the carcinogenesis of colorectal cancer (CRC). In this study, we examined whether the expression of NFATc2 and PPARG genes is significantly altered during the carcinogenesis of CRC. A total of 47 tumor samples and matched normal tissue margins were collected during surgery from patients with CRC. In addition, three CRC cell lines (HCT119, SW480, and HT29) and healthy cell line were used. After total RNA extraction and cDNA synthesis, mRNA expression levels of NFATc2 and PPARG were examined by real-time polymerase chain reaction. The results showed that NFATc2 is overexpressed in the tumor tissues compared with normal tissue margins (p ≤ 0.05). However, the mRNA expression levels of PPARG were not significantly different between the tumor tissues and tissue margins. Our results indicate that NFATc2 may be used as an early diagnostic or predictive biomarker for CRC as well as a therapeutic target, providing that upcoming studies confirm these results.
Collapse
Affiliation(s)
- Venus Zafari
- Department of Biochemistry and Clinical Laboratories, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | | | |
Collapse
|
79
|
Jongstra-Bilen J, Zhang CX, Wisnicki T, Li MK, White-Alfred S, Ilaalagan R, Ferri DM, Deonarain A, Wan MH, Hyduk SJ, Cummins CL, Cybulsky MI. Oxidized Low-Density Lipoprotein Loading of Macrophages Downregulates TLR-Induced Proinflammatory Responses in a Gene-Specific and Temporal Manner through Transcriptional Control. THE JOURNAL OF IMMUNOLOGY 2017; 199:2149-2157. [PMID: 28784845 DOI: 10.4049/jimmunol.1601363] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 07/16/2017] [Indexed: 01/08/2023]
Abstract
Hypercholesterolemia is a key risk factor for atherosclerosis and leads to the uptake of native and oxidized low-density lipoprotein (oxLDL) by macrophages (Mϕs) and foam cell formation. Inflammatory processes accompany Mϕ foam cell formation in the artery wall, yet the relationship between Mϕ lipid loading and their response to inflammatory stimuli remains elusive. We investigated proinflammatory gene expression in thioglycollate-elicited peritoneal Mϕs, bone marrow-derived Mϕs and dendritic cells, and RAW264.7 cells. Loading with oxLDL did not induce peritoneal Mϕ apoptosis or modulate basal-level expression of proinflammatory genes. Upon stimulation of TLR4, the rapid induction of IFN-β was inhibited in cells loaded with oxLDL, whereas the induction of other proinflammatory genes by TLR4 (LPS), TLR3 (polyriboinosinic-polyribocytidylic acid), TLR2 (Pam3CSK4), and TLR9 (CpG) remained comparable within the first 2 h. Subsequently, the expression of a subset of proinflammatory genes (e.g., IL-1β, IL-6, CCL5) was reduced in oxLDL-loaded cells at the level of transcription. This phenomenon was partially dependent on NF erythroid 2-related factor 2 (NRF2) but not on nuclear liver X receptors α and β (LXRα,β), peroxisome proliferator-activated receptor-γ (PPARγ), and activating transcription factor 3 (ATF3). LPS-induced NF-κB reporter activity and intracellular signaling by NF-κB and MAPK pathways were comparable in oxLDL-loaded Mϕs, yet the binding of p65/RelA (the prototypic NF-κB family member) was reduced at IL-6 and CCL5 promoters. This study revealed that oxLDL loading of Mϕs negatively regulates transcription at late stages of TLR-induced proinflammatory gene expression and implicates epigenetic mechanisms such as histone deacetylase activity.
Collapse
Affiliation(s)
- Jenny Jongstra-Bilen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada; .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Cindy X Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Timothy Wisnicki
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Mengyi K Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Samantha White-Alfred
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ragave Ilaalagan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dario M Ferri
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Ashley Deonarain
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| | - Mark H Wan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Carolyn L Cummins
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; and
| |
Collapse
|
80
|
Chen X, Ding HW, Li HD, Huang HM, Li XF, Yang Y, Zhang YL, Pan XY, Huang C, Meng XM, Li J. Hesperetin derivative-14 alleviates inflammation by activating PPAR-γ in mice with CCl4-induced acute liver injury and LPS-treated RAW264.7 cells. Toxicol Lett 2017; 274:51-63. [DOI: 10.1016/j.toxlet.2017.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022]
|
81
|
Viladomiu M, Bassaganya-Riera J, Tubau-Juni N, Kronsteiner B, Leber A, Philipson CW, Zoccoli-Rodriguez V, Hontecillas R. Cooperation of Gastric Mononuclear Phagocytes with Helicobacter pylori during Colonization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3195-3204. [PMID: 28264969 PMCID: PMC5380565 DOI: 10.4049/jimmunol.1601902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/08/2017] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori, the dominant member of the human gastric microbiota, elicits immunoregulatory responses implicated in protective versus pathological outcomes. To evaluate the role of macrophages during infection, we employed a system with a shifted proinflammatory macrophage phenotype by deleting PPARγ in myeloid cells and found a 5- to 10-fold decrease in gastric bacterial loads. Higher levels of colonization in wild-type mice were associated with increased presence of mononuclear phagocytes and in particular with the accumulation of CD11b+F4/80hiCD64+CX3CR1+ macrophages in the gastric lamina propria. Depletion of phagocytic cells by clodronate liposomes in wild-type mice resulted in a reduction of gastric H. pylori colonization compared with nontreated mice. PPARγ-deficient and macrophage-depleted mice presented decreased IL-10-mediated myeloid and T cell regulatory responses soon after infection. IL-10 neutralization during H. pylori infection led to increased IL-17-mediated responses and increased neutrophil accumulation at the gastric mucosa. In conclusion, we report the induction of IL-10-driven regulatory responses mediated by CD11b+F4/80hiCD64+CX3CR1+ mononuclear phagocytes that contribute to maintaining high levels of H. pylori loads in the stomach by modulating effector T cell responses at the gastric mucosa.
Collapse
Affiliation(s)
- Monica Viladomiu
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| | - Barbara Kronsteiner
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| | - Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| | - Casandra W Philipson
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| | - Victoria Zoccoli-Rodriguez
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
82
|
Chinetti-Gbaguidi G, Staels B. PPARβ in macrophages and atherosclerosis. Biochimie 2016; 136:59-64. [PMID: 28011212 DOI: 10.1016/j.biochi.2016.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 12/19/2022]
Abstract
Macrophages are central cells in the genesis and development of atherosclerosis, one of the major causes of cardiovascular diseases. Macrophages take up lipids (mainly cholesterol and triglycerides) from lipoproteins thus transforming into foam cells. Moreover, through the efflux pathway, macrophages are the main actors of the elimination of excessive tissue cholesterol toward extra-cellular acceptors. Macrophages participate in the control of inflammation by displaying different functional phenotypes, from the M1 pro-inflammatory to the M2 anti-inflammatory state. The nuclear receptor Peroxisome Proliferator-Activated Receptor (PPAR)β (also called PPARδ or PPARβ/δ) is expressed in macrophages where it plays a different role in the control of lipid metabolism, inflammation and phagocytosis of apoptotic cells. This review will summarize our current understanding of how PPARβ regulates macrophage biology and its impact on atherosclerosis. Differences between studies and species-specific macrophage gene regulation will be discussed.
Collapse
Affiliation(s)
| | - B Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, F-59000, Lille, France.
| |
Collapse
|
83
|
Macrophage PPARγ, a Lipid Activated Transcription Factor Controls the Growth Factor GDF3 and Skeletal Muscle Regeneration. Immunity 2016; 45:1038-1051. [PMID: 27836432 DOI: 10.1016/j.immuni.2016.10.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 12/29/2022]
Abstract
Tissue regeneration requires inflammatory and reparatory activity of macrophages. Macrophages detect and eliminate the damaged tissue and subsequently promote regeneration. This dichotomy requires the switch of effector functions of macrophages coordinated with other cell types inside the injured tissue. The gene regulatory events supporting the sensory and effector functions of macrophages involved in tissue repair are not well understood. Here we show that the lipid activated transcription factor, PPARγ, is required for proper skeletal muscle regeneration, acting in repair macrophages. PPARγ controls the expression of the transforming growth factor-β (TGF-β) family member, GDF3, which in turn regulates the restoration of skeletal muscle integrity by promoting muscle progenitor cell fusion. This work establishes PPARγ as a required metabolic sensor and transcriptional regulator of repair macrophages. Moreover, this work also establishes GDF3 as a secreted extrinsic effector protein acting on myoblasts and serving as an exclusively macrophage-derived regeneration factor in tissue repair.
Collapse
|
84
|
Cheng WY, Huynh H, Chen P, Peña-Llopis S, Wan Y. Macrophage PPARγ inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone. eLife 2016; 5. [PMID: 27692066 PMCID: PMC5047746 DOI: 10.7554/elife.18501] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophage (TAM) significantly contributes to cancer progression. Human cancer is enhanced by PPARγ loss-of-function mutations, but inhibited by PPARγ agonists such as TZD diabetes drugs including rosiglitazone. However, it remains enigmatic whether and how macrophage contributes to PPARγ tumor-suppressive functions. Here we report that macrophage PPARγ deletion in mice not only exacerbates mammary tumor development but also impairs the anti-tumor effects of rosiglitazone. Mechanistically, we identify Gpr132 as a novel direct PPARγ target in macrophage whose expression is enhanced by PPARγ loss but repressed by PPARγ activation. Functionally, macrophage Gpr132 is pro-inflammatory and pro-tumor. Genetic Gpr132 deletion not only retards inflammation and cancer growth but also abrogates the anti-tumor effects of PPARγ and rosiglitazone. Pharmacological Gpr132 inhibition significantly impedes mammary tumor malignancy. These findings uncover macrophage PPARγ and Gpr132 as critical TAM modulators, new cancer therapeutic targets, and essential mediators of TZD anti-cancer effects. DOI:http://dx.doi.org/10.7554/eLife.18501.001 The immune system can both contribute to cancer progression and restrain the growth of tumors. Some immune cells – called macrophages – create an inflammatory environment around a tumor, which can support the spread of the cancer cells. Independent observations and experiments have shown that a protein called PPARγ can suppress the development and growth of tumors. Drugs called thiazolidinediones (or TZDs for short), which are normally used to treat type 2 diabetes, activate PPARγ and therefore have anti-tumor effects. However, it is not fully understood how PPARγ and TZDs suppress tumor development. Cheng et al. hypothesized that the PPARγ protein and TZDs can inhibit the activity of the inflammatory macrophages that help tumors to develop. To test this, mice were genetically engineered so that their macrophages could not produce the PPARγ protein. These engineered mice were more likely to develop breast cancer than normal. Furthermore, the breast tumors in the modified mice did not shrink when they were treated with TZDs, whereas the tumors of normal mice did. Cheng et al. also found that PPARγ inhibits the ability of macrophages to produce a protein called Gpr132, which itself contributes to inflammation and allows breast cancer cells to grow. Mice that were unable to produce Grp132 displayed less inflammation, and cancer growth was blocked. Drugs that inhibited the activity of Grp132 in normal mice also reduced the ability of breast tumors to spread. Future experiments will need to examine exactly how the Gpr132 proteins produced by macrophages communicate with the cancer cells. Furthermore, developing new drugs that can inhibit Gpr132 could ultimately lead to more effective treatments for cancer. DOI:http://dx.doi.org/10.7554/eLife.18501.002
Collapse
Affiliation(s)
- Wing Yin Cheng
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - HoangDinh Huynh
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Peiwen Chen
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Samuel Peña-Llopis
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, United States.,Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
85
|
Tan NS, Vázquez-Carrera M, Montagner A, Sng MK, Guillou H, Wahli W. Transcriptional control of physiological and pathological processes by the nuclear receptor PPARβ/δ. Prog Lipid Res 2016; 64:98-122. [PMID: 27665713 DOI: 10.1016/j.plipres.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology & Research, 138673, Singapore; KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore.
| | - Manuel Vázquez-Carrera
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | | | - Ming Keat Sng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore
| | - Hervé Guillou
- INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore; INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France; Center for Integrative Genomics, University of Lausanne, Le Génopode, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
86
|
Ho MM, Manughian-Peter A, Spivia WR, Taylor A, Fraser DA. Macrophage molecular signaling and inflammatory responses during ingestion of atherogenic lipoproteins are modulated by complement protein C1q. Atherosclerosis 2016; 253:38-46. [PMID: 27573737 DOI: 10.1016/j.atherosclerosis.2016.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/08/2016] [Accepted: 08/19/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS This study investigated the effect of innate immune protein C1q on macrophage programmed responses during the ingestion of atherogenic lipoproteins. C1q plays a dual role in atherosclerosis where activation of complement by C1q is known to drive inflammation and promote disease progression. However, C1q is atheroprotective in early disease using mouse models. Our previous studies have highlighted a non-complement associated role for C1q in polarizing macrophages towards an M2-like anti-inflammatory phenotype during ingestion of targets such as atherogenic lipoproteins. This study aims to investigate the molecular mechanisms involved. METHODS We investigated the molecular signaling mechanisms involved in macrophage polarization using an unbiased examination of gene expression profiles in human monocyte derived macrophages ingesting oxidized or acetylated low density lipoproteins in the presence or absence of C1q. RESULTS Expression of genes involved in Janus kinase and signal transducer and activator of transcription (JAK-STAT) signaling, peroxisome proliferator activating receptor (PPAR) signaling and toll-like receptor (TLR) signaling were modulated by C1q in this screen. C1q was also shown to significantly suppress JAK-STAT pathway activation (a maximum 55% ± 13% reduction, p = 0.044) and increase transcriptional activation of PPARs (a maximum 229% ± 54% increase, p = 0.0002), consistent with an M2-like polarized response. These pathways were regulated in macrophages by C1q bound to different types of modified atherogenic lipoprotein and led to a reduction in the release of pro-inflammatory cytokine IL-6. CONCLUSIONS This study identifies potential molecular mechanisms for the beneficial role C1q plays in early atherosclerosis.
Collapse
Affiliation(s)
- Minh-Minh Ho
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Ayla Manughian-Peter
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Weston R Spivia
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Adam Taylor
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Deborah A Fraser
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA.
| |
Collapse
|
87
|
Berbudi A, Surendar J, Ajendra J, Gondorf F, Schmidt D, Neumann AL, Wardani APF, Layland LE, Hoffmann LS, Pfeifer A, Hoerauf A, Hübner MP. Filarial Infection or Antigen Administration Improves Glucose Tolerance in Diet-Induced Obese Mice. J Innate Immun 2016; 8:601-616. [PMID: 27544668 DOI: 10.1159/000448401] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/14/2016] [Indexed: 12/25/2022] Open
Abstract
Helminths induce type 2 immune responses and establish an anti-inflammatory milieu in their hosts. This immunomodulation was previously shown to improve diet-induced insulin resistance which is linked to chronic inflammation. In the current study, we demonstrate that infection with the filarial nematode Litomosoides sigmodontis increased the eosinophil number and alternatively activated macrophage abundance within epididymal adipose tissue (EAT) and improved glucose tolerance in diet-induced obese mice in an eosinophil-dependent manner. L. sigmodontis antigen (LsAg) administration neither altered the body weight of animals nor adipose tissue mass or adipocyte size, but it triggered type 2 immune responses, eosinophils, alternatively activated macrophages, and type 2 innate lymphoid cells in EAT. Improvement in glucose tolerance by LsAg treatment remained even in the absence of Foxp3+ regulatory T cells. Furthermore, PCR array results revealed that LsAg treatment reduced inflammatory immune responses and increased the expression of genes related to insulin signaling (Glut4, Pde3b, Pik3r1, and Hk2) and fatty acid uptake (Fabp4 and Lpl). Our investigation demonstrates that L. sigmodontis infection and LsAg administration reduce diet-induced EAT inflammation and improve glucose tolerance. Helminth-derived products may, therefore, offer new options to improve insulin sensitivity, while loss of helminth infections in developing and developed countries may contribute to the recent increase in the prevalence of type 2 diabetes.
Collapse
Affiliation(s)
- Afiat Berbudi
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Rodríguez-Carrio J, Alperi-López M, López P, Ballina-García FJ, Suárez A. Non-Esterified Fatty Acids Profiling in Rheumatoid Arthritis: Associations with Clinical Features and Th1 Response. PLoS One 2016; 11:e0159573. [PMID: 27487156 PMCID: PMC4972416 DOI: 10.1371/journal.pone.0159573] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
Objectives Since lipid compounds are known to modulate the function of CD4+ T-cells and macrophages, we hypothesize that altered levels of serum non-esterified fatty acids (NEFA) may underlie rheumatoid arthritis (RA) pathogenesis. Methods Serum levels of NEFA (palmitic, stearic, palmitoleic, oleic, linoleic, γ-linoleic, arachidonic –AA–, linolenic, eicosapentaenoic –EPA– and docosahexaenoic –DHA–) were quantified by LC-MS/MS after methyl-tert-butylether (MTBE)-extraction in 124 RA patients and 56 healthy controls (HC). CD4+ phenotype was studied by flow cytometry. TNFα, IL-8, VEGF, GM-CSF, IFNγ, IL-17, CCL2, CXCL10, leptin and resistin serum levels were quantified by immunoassays. The effect of FA on IFNγ production by PBMC was evaluated in vitro. Results Lower levels of palmitic (p<0.0001), palmitoleic (p = 0.002), oleic (p = 0.010), arachidonic (p = 0.027), EPA (p<0.0001) and DHA (p<0.0001) were found in RA patients, some NEFA being altered at onset. Cluster analysis identified a NEFA profile (hallmarked by increased stearic and decreased EPA and DHA) overrepresented in RA patients compared to HC (p = 0.002), being associated with clinical features (RF, shared epitope and erosions), increased IFNγ expression in CD4+ T-cells (p = 0.002) and a Th1-enriched serum milieu (IFNγ, CCL2 and CXCL10, all p<0.005). In vitro assays demonstrated that imbalanced FA could underlie IFNγ production by CD4+ T-cells. Finally, changes on NEFA levels were associated with clinical response upon TNFα-blockade. Conclusion An altered NEFA profile can be found in RA patients associated with clinical characteristics of aggressive disease and enhanced Th1 response. These results support the relevance of lipidomic studies in RA and provide a rationale for new therapeutic targets.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Mercedes Alperi-López
- Department of Rheumatology, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain
| | - Patricia López
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
| | | | - Ana Suárez
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
- * E-mail:
| |
Collapse
|
89
|
Trikha P, Plews RL, Stiff A, Gautam S, Hsu V, Abood D, Wesolowski R, Landi I, Mo X, Phay J, Chen CS, Byrd J, Caligiuri M, Tridandapani S, Carson W. Targeting myeloid-derived suppressor cells using a novel adenosine monophosphate-activated protein kinase (AMPK) activator. Oncoimmunology 2016; 5:e1214787. [PMID: 27757311 DOI: 10.1080/2162402x.2016.1214787] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 02/09/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of early myeloid cells that accumulate in the blood and tumors of patients with cancer. MDSC play a critical role during tumor evasion and promote immune suppression through variety of mechanisms, such as the generation of reactive oxygen and nitrogen species (ROS and RNS) and cytokines. AMPactivated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that regulates energy homeostasis and metabolic stress. However, the role of AMPK in the regulation of MDSC function remains largely unexplored. This study was designed to investigate whether treatment of MDSC with OSU-53, a PPAR-inactive derivative that stimulates AMPK kinase, can modulate MDSC function. Our results demonstrate that OSU-53 treatment increases the phosphorylation of AMPK, significantly reduces nitric oxide production, inhibits MDSC migration, and reduces the levels of IL-6 in murine MDSC cell line (MSC2 cells). OSU53 treatment mitigated the immune suppressive functions of murine MDSC, promoting T-cell proliferation. Although OSU-53 had a modest effect on tumor growth in mice inoculated with EMT-6 cells, importantly, administration of OSU53 significantly (p < 0.05) reduced the levels of MDSC in the spleens and tumors. Furthermore, mouse MDSC from EMT-6 tumor-bearing mice and human MDSC isolated from melanoma patients treated with OSU-53 showed a significant reduction in the expression of immune suppressive genes iNOS and arginase. In summary, these results demonstrate a novel role of AMPK in the regulation of MDSC functions and provide a rationale of combining OSU-53 with immune checkpoint inhibitors to augment their response in cancer patients.
Collapse
Affiliation(s)
- Prashant Trikha
- Comprehensive Cancer Center, The Ohio State University , Columbus, OH, USA
| | - Robert L Plews
- Division of Surgical Oncology, Department of Surgery and Comprehensive Cancer Center, The Ohio State University , Columbus, OH, USA
| | - Andrew Stiff
- Comprehensive Cancer Center, The Ohio State University , Columbus, OH, USA
| | - Shalini Gautam
- Comprehensive Cancer Center, The Ohio State University , Columbus, OH, USA
| | - Vincent Hsu
- Comprehensive Cancer Center, The Ohio State University , Columbus, OH, USA
| | - David Abood
- Comprehensive Cancer Center, The Ohio State University , Columbus, OH, USA
| | - Robert Wesolowski
- Comprehensive Cancer Center, The Ohio State University , Columbus, OH, USA
| | - Ian Landi
- Comprehensive Cancer Center, The Ohio State University , Columbus, OH, USA
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University , Columbus, OH, USA
| | - John Phay
- Division of Surgical Oncology, Department of Surgery and Comprehensive Cancer Center, The Ohio State University , Columbus, OH, USA
| | - Ching-Shih Chen
- College of Pharmacy, The Ohio State University , Columbus, OH, USA
| | - John Byrd
- Comprehensive Cancer Center, The Ohio State University , Columbus, OH, USA
| | - Michael Caligiuri
- Comprehensive Cancer Center, The Ohio State University , Columbus, OH, USA
| | | | - William Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Division of Surgical Oncology, Department of Surgery and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
90
|
Qin L, Zhu N, Ao BX, Liu C, Shi YN, Du K, Chen JX, Zheng XL, Liao DF. Caveolae and Caveolin-1 Integrate Reverse Cholesterol Transport and Inflammation in Atherosclerosis. Int J Mol Sci 2016; 17:429. [PMID: 27011179 PMCID: PMC4813279 DOI: 10.3390/ijms17030429] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 01/18/2023] Open
Abstract
Lipid disorder and inflammation play critical roles in the development of atherosclerosis. Reverse cholesterol transport is a key event in lipid metabolism. Caveolae and caveolin-1 are in the center stage of cholesterol transportation and inflammation in macrophages. Here, we propose that reverse cholesterol transport and inflammation in atherosclerosis can be integrated by caveolae and caveolin-1.
Collapse
Affiliation(s)
- Li Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Bao-Xue Ao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Chan Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Ya-Ning Shi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Ke Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Jian-Xiong Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS 39216, USA.
| | - Xi-Long Zheng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
- Department of Biochemistry & Molecular Biology, the Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
91
|
CD97/ADGRE5 Inhibits LPS Induced NF-κB Activation through PPAR-γ Upregulation in Macrophages. Mediators Inflamm 2016; 2016:1605948. [PMID: 26997758 PMCID: PMC4779537 DOI: 10.1155/2016/1605948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022] Open
Abstract
CD97/ADGRE5 protein is predominantly expressed on leukocytes and belongs to the EGF-TM7 receptors family. It mediates granulocytes accumulation in the inflammatory tissues and is involved in firm adhesion of PMNC on activated endothelial cells. There have not been any studies exploring the role of CD97 in LPS induced NF-κB activation in macrophages. Therefore, we first measured the CD97 expression in LPS treated human primary macrophages and subsequently analyzed the levels of inflammatory factor TNF-α and transcription factor NF-κB in these macrophages that have been manipulated with either CD97 knockdown or overexpression. We found that a reported anti-inflammatory transcription factor, PPAR-γ, was involved in the CD97 mediated NF-κB suppression. Furthermore, by immunofluorescence staining, we established that CD97 overexpression not only inhibited LPS induced p65 expression in the nucleus but also promoted the PPAR-γ expression. Moreover, using CD97 knockout THP-1 cells, we further demonstrated that CD97 promoted PPAR-γ expression and decreased LPS induced NF-κB activation. In conclusion, CD97 plays a negative role in LPS induced NF-κB activation and TNF-α secretion, partly through PPAR-γ upregulation.
Collapse
|
92
|
Sakai S, Sato K, Tabata Y, Kishi K. Local release of pioglitazone (a peroxisome proliferator-activated receptor γ agonist) accelerates proliferation and remodeling phases of wound healing. Wound Repair Regen 2015; 24:57-64. [DOI: 10.1111/wrr.12376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shigeki Sakai
- Department of Plastic and Reconstructive Surgery; Keio University School of Medicine; Tokyo 160-8582 Japan
- Department of Biomaterials; Institute for Frontier Medical Sciences, Kyoto University; Kyoto 606-8507 Japan
| | - Keisuke Sato
- Department of Biomaterials; Institute for Frontier Medical Sciences, Kyoto University; Kyoto 606-8507 Japan
| | - Yasuhiko Tabata
- Department of Biomaterials; Institute for Frontier Medical Sciences, Kyoto University; Kyoto 606-8507 Japan
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery; Keio University School of Medicine; Tokyo 160-8582 Japan
| |
Collapse
|
93
|
Leone Roberti Maggiore U, Ferrero S. An overview of early drug development for endometriosis. Expert Opin Investig Drugs 2015; 25:227-47. [DOI: 10.1517/13543784.2016.1126579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
94
|
PPARs: Protectors or Opponents of Myocardial Function? PPAR Res 2015; 2015:835985. [PMID: 26713088 PMCID: PMC4680114 DOI: 10.1155/2015/835985] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Over 5 million people in the United States suffer from the complications of heart failure (HF), which is a rapidly expanding health complication. Disorders that contribute to HF include ischemic cardiac disease, cardiomyopathies, and hypertension. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family. There are three PPAR isoforms: PPARα, PPARγ, and PPARδ. They can be activated by endogenous ligands, such as fatty acids, as well as by pharmacologic agents. Activators of PPARs are used for treating several metabolic complications, such as diabetes and hyperlipidemia that are directly or indirectly associated with HF. However, some of these drugs have adverse effects that compromise cardiac function. This review article aims to summarize the current basic and clinical research findings of the beneficial or detrimental effects of PPAR biology on myocardial function.
Collapse
|
95
|
Zhao D, Zhu Z, Li D, Xu R, Wang T, Liu K. Pioglitazone Suppresses CXCR7 Expression To Inhibit Human Macrophage Chemotaxis through Peroxisome Proliferator-Activated Receptor γ. Biochemistry 2015; 54:6806-14. [PMID: 26507929 DOI: 10.1021/acs.biochem.5b00847] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). Pioglitazone, the widely used thiazolidinedione, is shown to be efficient in the prevention of cardiovascular complications of T2DM. In this study, we report that pioglitazone inhibits CXCR7 expression and thus blocks chemotaxis in differentiated macrophage without perturbing cell viability or macrophage differentiation. In addition, pioglitazone-mediated CXCR7 suppression and chemotaxis inhibition occur via activating peroxisome proliferator-activated receptor γ (PPARγ) but not PPARα in differentiated macrophage. More importantly, pioglitazone therapy-induced PPARγ activation suppresses CXCR7 expression in human carotid atherosclerotic lesions. Collectively, our data demonstrate that pioglitazone suppresses CXCR7 expression to inhibit human macrophage chemotaxis through PPARγ.
Collapse
Affiliation(s)
- Duo Zhao
- Department of Cardiovascular Surgery, Second Hospital of Jilin University, Jilin University , Changchun 130041, China
| | - Zhicheng Zhu
- Department of Cardiovascular Surgery, Second Hospital of Jilin University, Jilin University , Changchun 130041, China
| | - Dan Li
- Department of Cardiovascular Surgery, Second Hospital of Jilin University, Jilin University , Changchun 130041, China
| | - Rihao Xu
- Department of Cardiovascular Surgery, Second Hospital of Jilin University, Jilin University , Changchun 130041, China
| | - Tiance Wang
- Department of Cardiovascular Surgery, Second Hospital of Jilin University, Jilin University , Changchun 130041, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, Second Hospital of Jilin University, Jilin University , Changchun 130041, China
| |
Collapse
|
96
|
Mohey V, Singh M, Puri N, Kaur T, Pathak D, Singh AP. Sildenafil obviates ischemia-reperfusion injury-induced acute kidney injury through peroxisome proliferator-activated receptor γ agonism in rats. J Surg Res 2015; 201:69-75. [PMID: 26850186 DOI: 10.1016/j.jss.2015.09.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Sildenafil is a phosphodiesterase inhibitor used clinically for treating erectile dysfunction. Few studies suggest sildenafil to be a renoprotective agent. The present study investigated the involvement of peroxisome proliferator-activated receptor γ (PPAR-γ) in sildenafil-mediated protection against ischemia-reperfusion-induced acute kidney injury (AKI) in rats. MATERIALS AND METHODS The rats were subjected to ischemia-reperfusion injury (IRI) with 40 min of bilateral renal ischemia followed by reperfusion for 24 h. The renal damage was assessed by measuring creatinine clearance, blood urea nitrogen, plasma uric acid, electrolytes, and microproteinuria in rats. The thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione levels were measured to assess oxidative stress in renal tissues. The hematoxylin-eosin staining was carried out to demonstrate histopathologic changes in renal tissues. Sildenafil (0.5 and 1.0 mg/kg, intraperitoneal) was administered 1 h before subjecting the rats to renal IRI. In a separate group, bisphenol A diglycidyl ether (30 mg/kg, intraperitoneal), a PPAR-γ receptor antagonist, was given before sildenafil administration followed by IRI. RESULTS The ischemia-reperfusion demonstrated marked AKI with significant changes in serum and urinary parameters, enhanced oxidative stress, and histopathologic changes in renal tissues. The administration of sildenafil demonstrated significant protection against ischemia-reperfusion-induced AKI. The prior treatment with bisphenol A diglycidyl ether abolished sildenafil-mediated renal protection, thereby confirming involvement of PPAR-γ agonism in the sildenafil-mediated renoprotective effect. CONCLUSIONS It is concluded that sildenafil protects against ischemia-reperfusion-induced AKI through PPAR-γ agonism in rats.
Collapse
Affiliation(s)
- Vinita Mohey
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Manjinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Nikkita Puri
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tajpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India; Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
97
|
Mirza RE, Fang MM, Novak ML, Urao N, Sui A, Ennis WJ, Koh TJ. Macrophage PPARγ and impaired wound healing in type 2 diabetes. J Pathol 2015; 236:433-44. [PMID: 25875529 DOI: 10.1002/path.4548] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/06/2015] [Accepted: 04/14/2015] [Indexed: 12/15/2022]
Abstract
Macrophages undergo a transition from pro-inflammatory to healing-associated phenotypes that is critical for efficient wound healing. However, the regulation of this transition during normal and impaired healing remains to be elucidated. In our studies, the switch in macrophage phenotypes during skin wound healing was associated with up-regulation of the peroxisome proliferator-activated receptor (PPAR)γ and its downstream targets, along with increased mitochondrial content. In the setting of diabetes, up-regulation of PPARγ activity was impaired by sustained expression of IL-1β in both mouse and human wounds. In addition, experiments with myeloid-specific PPARγ knockout mice indicated that loss of PPARγ in macrophages is sufficient to prolong wound inflammation and delay healing. Furthermore, PPARγ agonists promoted a healing-associated macrophage phenotype both in vitro and in vivo, even in the diabetic wound environment. Importantly, topical administration of PPARγ agonists improved healing in diabetic mice, suggesting an appealing strategy for down-regulating inflammation and improving the healing of chronic wounds.
Collapse
Affiliation(s)
- Rita E Mirza
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL, USA
| | - Milie M Fang
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL, USA
| | - Margaret L Novak
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL, USA
| | - Norifumi Urao
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL, USA.,Center for Tissue Repair and Regeneration, University of Illinois, Chicago, IL, USA
| | - Audrey Sui
- Department of Surgery, University of Illinois, Chicago, IL, USA
| | - William J Ennis
- Department of Surgery, University of Illinois, Chicago, IL, USA.,Center for Tissue Repair and Regeneration, University of Illinois, Chicago, IL, USA
| | - Timothy J Koh
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL, USA.,Center for Tissue Repair and Regeneration, University of Illinois, Chicago, IL, USA
| |
Collapse
|
98
|
Shimada K, Furukawa H, Wada K, Korai M, Wei Y, Tada Y, Kuwabara A, Shikata F, Kitazato KT, Nagahiro S, Lawton MT, Hashimoto T. Protective Role of Peroxisome Proliferator-Activated Receptor-γ in the Development of Intracranial Aneurysm Rupture. Stroke 2015; 46:1664-72. [PMID: 25931465 DOI: 10.1161/strokeaha.114.007722] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/02/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Inflammation is emerging as a key component of the pathophysiology of intracranial aneurysms. Peroxisome proliferator-activated receptor-γ (PPARγ) is a nuclear hormone receptor of which activation modulates various aspects of inflammation. METHODS Using a mouse model of intracranial aneurysm, we examined the potential roles of PPARγ in the development of rupture of intracranial aneurysm. RESULTS A PPARγ agonist, pioglitazone, significantly reduced the incidence of ruptured aneurysms and the rupture rate without affecting the total incidence aneurysm (unruptured aneurysms and ruptured aneurysms). PPARγ antagonist (GW9662) abolished the protective effect of pioglitazone. The protective effect of pioglitazone was absent in mice lacking macrophage PPARγ. Pioglitazone treatment reduced the mRNA levels of inflammatory cytokines (monocyte chemoattractant factor-1, interleukin-1, and interleukin-6) that are primarily produced by macrophages in the cerebral arteries. Pioglitazone treatment reduced the infiltration of M1 macrophage into the cerebral arteries and the macrophage M1/M2 ratio. Depletion of macrophages significantly reduced the rupture rate. CONCLUSIONS Our data showed that the activation of macrophage PPARγ protects against the development of aneurysmal rupture. PPARγ in inflammatory cells may be a potential therapeutic target for the prevention of aneurysmal rupture.
Collapse
Affiliation(s)
- Kenji Shimada
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Hajime Furukawa
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Kosuke Wada
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Masaaki Korai
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Yuan Wei
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Yoshiteru Tada
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Atsushi Kuwabara
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Fumiaki Shikata
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Keiko T Kitazato
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Shinji Nagahiro
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Michael T Lawton
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan
| | - Tomoki Hashimoto
- From the Departments of Anesthesia and Perioperative Care (K.S., H.F., K.W., M.K., Y.W., A.K., F.S., T.H.) and Neurological Surgery (M.T.L.), University of California, San Francisco; and Department of Neurosurgery (K.S., M.K., Y.T., K.T.K., S.N.), School of Medicine, The University of Tokushima, Tokushima City, Japan.
| |
Collapse
|
99
|
Campbell DE, Boyle RJ, Thornton CA, Prescott SL. Mechanisms of allergic disease - environmental and genetic determinants for the development of allergy. Clin Exp Allergy 2015; 45:844-858. [DOI: 10.1111/cea.12531] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- D. E. Campbell
- Children's Hospital Westmead; Sydney NSW Australia
- Discipline of Paediatrics and Child Health; University of Sydney; Sydney NSW Australia
| | - R. J. Boyle
- Section of Paediatrics; Faculty of Medicine; Imperial College; London UK
| | - C. A. Thornton
- Institute of Life Science; College of Medicine; Swansea University; Swansea UK
| | - S. L. Prescott
- School of Paediatrics and Child Health and Telethon KIDS Institute; c/o Princess Margaret Hospital; University of Western Australia; Perth WA Australia
| |
Collapse
|
100
|
Abstract
The role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in cancer remains contentious due in large part to divergent publications indicating opposing effects in different rodent and human cell culture models. During the past 10 years, some facts regarding PPARβ/δ in cancer have become clearer, while others remain uncertain. For example, it is now well accepted that (1) expression of PPARβ/δ is relatively lower in most human tumors as compared to the corresponding non-transformed tissue, (2) PPARβ/δ promotes terminal differentiation, and (3) PPARβ/δ inhibits pro-inflammatory signaling in multiple in vivo models. However, whether PPARβ/δ is suitable to target with natural and/or synthetic agonists or antagonists for cancer chemoprevention is hindered because of the uncertainty in the mechanism of action and role in carcinogenesis. Recent findings that shed new insight into the possibility of targeting this nuclear receptor to improve human health will be discussed.
Collapse
|