51
|
|
52
|
Abstract
In this review, I discuss the various methods researchers use to unfold proteins in the lab in order to understand protein folding both
in vitro and
in vivo. The four main techniques, chemical-, heat-, pressure- and force-denaturation, produce distinctly different unfolded conformational ensembles. Recent measurements have revealed different folding kinetics from different unfolding mechanisms. Thus, comparing these distinct unfolded ensembles sheds light on the underlying free energy landscape of folding.
Collapse
Affiliation(s)
- Lisa J Lapidus
- Department of Physics and Astronomy, Michigan State University, East Lansing, USA
| |
Collapse
|
53
|
Hao Y, Canavan C, Taylor SS, Maillard RA. Integrated Method to Attach DNA Handles and Functionally Select Proteins to Study Folding and Protein-Ligand Interactions with Optical Tweezers. Sci Rep 2017; 7:10843. [PMID: 28883488 PMCID: PMC5589850 DOI: 10.1038/s41598-017-11214-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/21/2017] [Indexed: 12/15/2022] Open
Abstract
Optical tweezers has emerged as a powerful tool to study folding, ligand binding, and motor enzymes. The manipulation of proteins with optical tweezers requires attaching molecular handles to the protein of interest. Here, we describe a novel method that integrates the covalent attachment of DNA handles to target proteins with a selection step for functional and properly folded molecules. In addition, this method enables obtaining protein molecules in different liganded states and can be used with handles of different lengths. We apply this method to study the cAMP binding domain A (CBD-A) of Protein kinase A. We find that the functional selection step drastically improves the reproducibility and homogeneity of the single molecule data. In contrast, without a functional selection step, proteins often display misfolded conformations. cAMP binding stabilizes the CBD-A against a denaturing force, and increases the folded state lifetime. Data obtained with handles of 370 and 70 base pairs are indistinguishable, but at low forces short handles provide a higher spatial resolution. Altogether, this method is flexible, selects for properly folded molecules in different liganded states, and can be readily applicable to study protein folding or protein-ligand interactions with force spectroscopy that require molecular handles.
Collapse
Affiliation(s)
- Yuxin Hao
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Clare Canavan
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Susan S Taylor
- Department of Pharmacology & Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rodrigo A Maillard
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
54
|
Yeo QY, Loh IY, Tee SR, Chiang YH, Cheng J, Liu MH, Wang ZS. A DNA bipedal nanowalker with a piston-like expulsion stroke. NANOSCALE 2017; 9:12142-12149. [PMID: 28805877 DOI: 10.1039/c7nr03809g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Artificial molecular walkers beyond burn-bridge designs are important for nanotechnology, but their systematic development remains difficult. Herein, we have reported a new rationally designed DNA walker-track system and experimentally verified a previously proposed general expulsion regime for implementing non-burn-bridge nanowalkers. The DNA walker has an optically powered engine motif that reversibly extends and contracts the walker via a quadruplex-duplex conformational change. The walker's extension is an energy-absorbing and force-generating process, which drives the walker's leg dissociation off-track in a piston-like expulsion stroke. The unzipping-shearing asymmetry provides the expulsion stroke a bias, which decides the direction of the walker. Moreover, three candidate walkers of different sizes were fabricated. Fluorescence motility experiments indicated two of them as successful walkers and revealed a distinctive size dependence that was expected for these expulsive walkers, but was not observed in previously reported walkers. This study identifies unique technical requirements for expulsive nanowalkers. The present DNA design is readily adapted for making similar walkers from other molecules since the unzipping-shearing asymmetry is common.
Collapse
Affiliation(s)
- Q Y Yeo
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
| | - I Y Loh
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
| | - S R Tee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
| | - Y H Chiang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
| | - J Cheng
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
| | - M H Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542.
| | - Z S Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542. and NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
55
|
West R, Rousseau D. The role of nonfat ingredients on confectionery fat crystallization. Crit Rev Food Sci Nutr 2017; 58:1917-1936. [DOI: 10.1080/10408398.2017.1286293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ryan West
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Dérick Rousseau
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
56
|
Sun Y, Di W, Li Y, Huang W, Wang X, Qin M, Wang W, Cao Y. Mg2+-Dependent High Mechanical Anisotropy of Three-Way-Junction pRNA as Revealed by Single-Molecule Force Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yang Sun
- Collaborative Innovation Center of Advanced Microstructures; National Laboratory of Solid State Microstructure; Department of Physics; Nanjing University; 22 Hankou Road Nanjing Jiang Su 210093 P.R. China
| | - Weishuai Di
- Collaborative Innovation Center of Advanced Microstructures; National Laboratory of Solid State Microstructure; Department of Physics; Nanjing University; 22 Hankou Road Nanjing Jiang Su 210093 P.R. China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures; National Laboratory of Solid State Microstructure; Department of Physics; Nanjing University; 22 Hankou Road Nanjing Jiang Su 210093 P.R. China
| | - Wenmao Huang
- Collaborative Innovation Center of Advanced Microstructures; National Laboratory of Solid State Microstructure; Department of Physics; Nanjing University; 22 Hankou Road Nanjing Jiang Su 210093 P.R. China
| | - Xin Wang
- Collaborative Innovation Center of Advanced Microstructures; National Laboratory of Solid State Microstructure; Department of Physics; Nanjing University; 22 Hankou Road Nanjing Jiang Su 210093 P.R. China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures; National Laboratory of Solid State Microstructure; Department of Physics; Nanjing University; 22 Hankou Road Nanjing Jiang Su 210093 P.R. China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures; National Laboratory of Solid State Microstructure; Department of Physics; Nanjing University; 22 Hankou Road Nanjing Jiang Su 210093 P.R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures; National Laboratory of Solid State Microstructure; Department of Physics; Nanjing University; 22 Hankou Road Nanjing Jiang Su 210093 P.R. China
| |
Collapse
|
57
|
Sun Y, Di W, Li Y, Huang W, Wang X, Qin M, Wang W, Cao Y. Mg 2+ -Dependent High Mechanical Anisotropy of Three-Way-Junction pRNA as Revealed by Single-Molecule Force Spectroscopy. Angew Chem Int Ed Engl 2017. [PMID: 28631866 DOI: 10.1002/anie.201704113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three-way-junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg2+ binding. In the absence of Mg2+ , 3WJ-pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg2+ , the unfolding forces can differ by more than 4-fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ-pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ-pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy.
Collapse
Affiliation(s)
- Yang Sun
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiang Su, 210093, P.R. China
| | - Weishuai Di
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiang Su, 210093, P.R. China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiang Su, 210093, P.R. China
| | - Wenmao Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiang Su, 210093, P.R. China
| | - Xin Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiang Su, 210093, P.R. China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiang Su, 210093, P.R. China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiang Su, 210093, P.R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiang Su, 210093, P.R. China
| |
Collapse
|
58
|
Jacobs WM, Shakhnovich EI. Structure-Based Prediction of Protein-Folding Transition Paths. Biophys J 2017; 111:925-36. [PMID: 27602721 PMCID: PMC5018131 DOI: 10.1016/j.bpj.2016.06.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/08/2016] [Accepted: 06/27/2016] [Indexed: 12/24/2022] Open
Abstract
We propose a general theory to describe the distribution of protein-folding transition paths. We show that transition paths follow a predictable sequence of high-free-energy transient states that are separated by free-energy barriers. Each transient state corresponds to the assembly of one or more discrete, cooperative units, which are determined directly from the native structure. We show that the transition state on a folding pathway is reached when a small number of critical contacts are formed between a specific set of substructures, after which folding proceeds downhill in free energy. This approach suggests a natural resolution for distinguishing parallel folding pathways and provides a simple means to predict the rate-limiting step in a folding reaction. Our theory identifies a common folding mechanism for proteins with diverse native structures and establishes general principles for the self-assembly of polymers with specific interactions.
Collapse
Affiliation(s)
- William M Jacobs
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
59
|
Carpinteri A, Lacidogna G, Piana G, Bassani A. Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.02.099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
60
|
Cossio P, Hummer G, Szabo A. Kinetic Ductility and Force-Spike Resistance of Proteins from Single-Molecule Force Spectroscopy. Biophys J 2017; 111:832-840. [PMID: 27558726 DOI: 10.1016/j.bpj.2016.05.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 12/18/2022] Open
Abstract
Ductile materials can absorb spikes in mechanical force, whereas brittle ones fail catastrophically. Here we develop a theory to quantify the kinetic ductility of single molecules from force spectroscopy experiments, relating force-spike resistance to the differential responses of the intact protein and the unfolding transition state to an applied mechanical force. We introduce a class of unistable one-dimensional potential surfaces that encompass previous models as special cases and continuously cover the entire range from ductile to brittle. Compact analytic expressions for force-dependent rates and rupture-force distributions allow us to analyze force-clamp and force-ramp pulling experiments. We find that the force-transmitting protein domains of filamin and titin are kinetically ductile when pulled from their two termini, making them resistant to force spikes. For the mechanostable muscle protein titin, a highly ductile model reconciles data over 10 orders of magnitude in force loading rate from experiment and simulation.
Collapse
Affiliation(s)
- Pilar Cossio
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Attila Szabo
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
61
|
Abaskharon RM, Gai F. Meandering Down the Energy Landscape of Protein Folding: Are We There Yet? Biophys J 2017; 110:1924-32. [PMID: 27166801 DOI: 10.1016/j.bpj.2016.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/11/2022] Open
Abstract
As judged by a single publication metric, the activity in the protein folding field has been declining over the past 5 years, after enjoying a decade-long growth. Does this development indicate that the field is sunsetting or is this decline only temporary? Upon surveying a small territory of its landscape, we find that the protein folding field is still quite active and many important findings have emerged from recent experimental studies. However, it is also clear that only continued development of new techniques and methods, especially those enabling dissection of the fine details and features of the protein folding energy landscape, will fuel this old field to move forward.
Collapse
Affiliation(s)
- Rachel M Abaskharon
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania; The Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
62
|
Quapp W, Bofill JM, Ribas-Ariño J. Analysis of the Acting Forces in a Theory of Catalysis and Mechanochemistry. J Phys Chem A 2017; 121:2820-2838. [PMID: 28338327 DOI: 10.1021/acs.jpca.7b00022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The theoretical description of a chemical process resulting from the application of mechanical or catalytical stress to a molecule is performed by the generation of an effective potential energy surface (PES). Changes for minima and saddle points by the stress are described by Newton trajectories (NTs) on the original PES. From the analysis of the acting forces we postulate the existence of pulling corridors built by families of NTs that connect the same stationary points. For different exit saddles of different height we discuss the corresponding pulling corridors; mainly by simple two-dimensional surface models. If there are different exit saddles then there can exist saddles of index two, at least, between. Then the case that a full pulling corridor crosses a saddle of index two is the normal case. It leads to an intrinsic hysteresis of such pullings for the forward or the backward reaction. Assuming such relations we can explain some results in the literature. A new finding is the existence of roundabout corridors that can switch between different saddle points by a reversion of the direction. The findings concern the mechanochemistry of molecular systems under a mechanical load as well as the electrostatic force and can be extended to catalytic and enzymatic accelerated reactions. The basic and ground ansatz includes both kinds of forces in a natural way without an extra modification.
Collapse
Affiliation(s)
- Wolfgang Quapp
- Mathematisches Institut, Universität Leipzig , PF 100920, D-04009 Leipzig, Germany
| | | | | |
Collapse
|
63
|
Yuan G, Le S, Yao M, Qian H, Zhou X, Yan J, Chen H. Elasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains. Angew Chem Int Ed Engl 2017; 56:5490-5493. [DOI: 10.1002/anie.201700411] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/23/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Guohua Yuan
- Research Institute for Biomimetics and Soft Matter; Fujian Provincial Key Lab for Soft Functional Materials Research; Department of Physics; Xiamen University; Xiamen Fujian 361005 China
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- Department of Physics; National University of Singapore; Singapore 117542 Singapore
- Centre for Bioimaging Sciences; National University of Singapore; Singapore 117546 Singapore
| | - Shimin Le
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- Department of Physics; National University of Singapore; Singapore 117542 Singapore
- Centre for Bioimaging Sciences; National University of Singapore; Singapore 117546 Singapore
| | - Mingxi Yao
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- Department of Physics; National University of Singapore; Singapore 117542 Singapore
- Centre for Bioimaging Sciences; National University of Singapore; Singapore 117546 Singapore
| | - Hui Qian
- Research Institute for Biomimetics and Soft Matter; Fujian Provincial Key Lab for Soft Functional Materials Research; Department of Physics; Xiamen University; Xiamen Fujian 361005 China
| | - Xin Zhou
- College of Physics; University of Chinese Academy of Sciences; Beijing 100190 China
| | - Jie Yan
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- Department of Physics; National University of Singapore; Singapore 117542 Singapore
- Centre for Bioimaging Sciences; National University of Singapore; Singapore 117546 Singapore
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter; Fujian Provincial Key Lab for Soft Functional Materials Research; Department of Physics; Xiamen University; Xiamen Fujian 361005 China
| |
Collapse
|
64
|
Yuan G, Le S, Yao M, Qian H, Zhou X, Yan J, Chen H. Elasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700411] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guohua Yuan
- Research Institute for Biomimetics and Soft Matter; Fujian Provincial Key Lab for Soft Functional Materials Research; Department of Physics; Xiamen University; Xiamen Fujian 361005 China
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- Department of Physics; National University of Singapore; Singapore 117542 Singapore
- Centre for Bioimaging Sciences; National University of Singapore; Singapore 117546 Singapore
| | - Shimin Le
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- Department of Physics; National University of Singapore; Singapore 117542 Singapore
- Centre for Bioimaging Sciences; National University of Singapore; Singapore 117546 Singapore
| | - Mingxi Yao
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- Department of Physics; National University of Singapore; Singapore 117542 Singapore
- Centre for Bioimaging Sciences; National University of Singapore; Singapore 117546 Singapore
| | - Hui Qian
- Research Institute for Biomimetics and Soft Matter; Fujian Provincial Key Lab for Soft Functional Materials Research; Department of Physics; Xiamen University; Xiamen Fujian 361005 China
| | - Xin Zhou
- College of Physics; University of Chinese Academy of Sciences; Beijing 100190 China
| | - Jie Yan
- Mechanobiology Institute; National University of Singapore; Singapore 117411 Singapore
- Department of Physics; National University of Singapore; Singapore 117542 Singapore
- Centre for Bioimaging Sciences; National University of Singapore; Singapore 117546 Singapore
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter; Fujian Provincial Key Lab for Soft Functional Materials Research; Department of Physics; Xiamen University; Xiamen Fujian 361005 China
| |
Collapse
|
65
|
Huang W, Zhu Z, Wen J, Wang X, Qin M, Cao Y, Ma H, Wang W. Single Molecule Study of Force-Induced Rotation of Carbon-Carbon Double Bonds in Polymers. ACS NANO 2017; 11:194-203. [PMID: 28114764 DOI: 10.1021/acsnano.6b07119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Carbon-carbon double bonds (C═C) are ubiquitous in natural and synthetic polymers. In bulk studies, due to limited ways to control applied force, they are thought to be mechanically inert and not to contribute to the extensibility of polymers. Here, we report a single molecule force spectroscopy study on a polymer containing C═C bonds using atomic force microscope. Surprisingly, we found that it is possible to directly observe the cis-to-trans isomerization of C═C bonds at the time scale of ∼1 ms at room temperature by applying a tensile force ∼1.7 nN. The reaction proceeds through a diradical intermediate state, as confirmed by both a free radical quenching experiment and quantum chemical modeling. The force-free activation length to convert the cis C═C bonds to the transition state is ∼0.5 Å, indicating that the reaction rate is accelerated by ∼109 times at the transition force. On the basis of the density functional theory optimized structure, we propose that because the pulling direction is not parallel to C═C double bonds in the polymer, stretching the polymer not only provides tension to lower the transition barrier but also provides torsion to facilitate the rotation of cis C═C bonds. This explains the apparently low transition force for such thermally "forbidden" reactions and offers an additional explanation of the "lever-arm effect" of polymer backbones on the activation force for many mechanophores. This work demonstrates the importance of precisely controlling the force direction at the nanoscale to the force-activated reactions and may have many implications on the design of stress-responsive materials.
Collapse
Affiliation(s)
- Wenmao Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University , Nanjing 210093, P.R. China
| | - Zhenshu Zhu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University , Nanjing 210093, P.R. China
- Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Jing Wen
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Xin Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University , Nanjing 210093, P.R. China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University , Nanjing 210093, P.R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University , Nanjing 210093, P.R. China
| | - Haibo Ma
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University , Nanjing 210093, P.R. China
| |
Collapse
|
66
|
Abstract
Chemical reactions can be accelerated by various means, including applied mechanical forces. If the direction of the force does not project well onto the desired reaction coordinate, then only poor acceleration is achieved. Recent developments in single polymer mechanics illustrate how to overcome this limitation, in a simple cis-trans isomerization reaction. Generalizing the approach, synthetic chemistry can be used to attach tethers to different parts of reacting molecular fragments to direct the force usefully. This Perspective explores the prospects for using applied mechanical forces to create exciting new chemistries. For example, it is possible to imagine making polymers that sense mechanical forces within hard-to-reach places, like biological cells, or using mechanical forces to make nanoscale electrical devices using conjugated polymers.
Collapse
Affiliation(s)
- Hongbin Li
- Department of Chemistry, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Gilbert C Walker
- Department of Chemistry, University of Toronto , Toronto, ON M5S 3H6, Canada
| |
Collapse
|
67
|
Single-Molecule Chemo-Mechanical Spectroscopy Provides Structural Identity of Folding Intermediates. Biophys J 2016; 110:1280-90. [PMID: 27028638 DOI: 10.1016/j.bpj.2015.12.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/08/2015] [Accepted: 12/31/2015] [Indexed: 12/19/2022] Open
Abstract
Single-molecule force spectroscopy has emerged as a powerful tool for studying the folding of biological macromolecules. Mechanical manipulation has revealed a wealth of mechanistic information on transient and intermediate states. To date, the majority of state assignment of intermediates has relied on empirical demarcation. However, performing such experiments in the presence of different osmolytes provides an alternative approach that reports on the structural properties of intermediates. Here, we analyze the folding and unfolding of T4 lysozyme with optical tweezers under a chemo-mechanical perturbation by adding osmolytes. We find that two unrelated protective osmolytes, sorbitol and trimethylamine-n-oxide, function by marginally decelerating unfolding rates and specifically modulating early events in the folding process, stabilizing formation of an on-pathway intermediate. The chemo-mechanical perturbation provides access to two independent metrics of the relevant states during folding trajectories, the contour length, and the solvent-accessible surface area. We demonstrate that the dependence of the population of the intermediate in different osmolytes, in conjunction with its measured contour length, provides the ability to discriminate between potential structural models of intermediate states. Our study represents a general strategy that may be employed in the structural modeling of equilibrium intermediate states observed in single-molecule experiments.
Collapse
|
68
|
Makarov DE. Perspective: Mechanochemistry of biological and synthetic molecules. J Chem Phys 2016; 144:030901. [PMID: 26801011 DOI: 10.1063/1.4939791] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coupling of mechanical forces and chemical transformations is central to the biophysics of molecular machines, polymer chemistry, fracture mechanics, tribology, and other disciplines. As a consequence, the same physical principles and theoretical models should be applicable in all of those fields; in fact, similar models have been invoked (and often repeatedly reinvented) to describe, for example, cell adhesion, dry and wet friction, propagation of cracks, and action of molecular motors. This perspective offers a unified view of these phenomena, described in terms of chemical kinetics with rates of elementary steps that are force dependent. The central question is then to describe how the rate of a chemical transformation (and its other measurable properties such as the transition path) depends on the applied force. I will describe physical models used to answer this question and compare them with experimental measurements, which employ single-molecule force spectroscopy and which become increasingly common. Multidimensionality of the underlying molecular energy landscapes and the ensuing frequent misalignment between chemical and mechanical coordinates result in a number of distinct scenarios, each showing a nontrivial force dependence of the reaction rate. I will discuss these scenarios, their commonness (or its lack), and the prospects for their experimental validation. Finally, I will discuss open issues in the field.
Collapse
Affiliation(s)
- Dmitrii E Makarov
- Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
69
|
The Power of Force: Insights into the Protein Folding Process Using Single-Molecule Force Spectroscopy. J Mol Biol 2016; 428:4245-4257. [PMID: 27639437 DOI: 10.1016/j.jmb.2016.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 01/03/2023]
Abstract
One of the major challenges in modern biophysics is observing and understanding conformational changes during complex molecular processes, from the fundamental protein folding to the function of molecular machines. Single-molecule techniques have been one of the major driving forces of the huge progress attained in the last few years. Recent advances in resolution of the experimental setups, aided by theoretical developments and molecular dynamics simulations, have revealed a much higher degree of complexity inside these molecular processes than previously reported using traditional ensemble measurements. This review sums up the evolution of these developments and gives an outlook on prospective discoveries.
Collapse
|
70
|
Quapp W, Bofill JM. Reaction rates in a theory of mechanochemical pathways. J Comput Chem 2016; 37:2467-78. [DOI: 10.1002/jcc.24470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/21/2016] [Accepted: 07/25/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Wolfgang Quapp
- Department of Mathematics; University Leipzig; PF 100920 Leipzig D-04009 Germany
| | - Josep Maria Bofill
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica; Universitat de Barcelona; and Institut de Química Teòrica i Computacional, Universitat de Barcelona, (IQTCUB); Martí i Franquès, 1 Barcelona 08028 Spain
| |
Collapse
|
71
|
Hughes ML, Dougan L. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:076601. [PMID: 27309041 DOI: 10.1088/0034-4885/79/7/076601] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the most exciting developments in the field of biological physics in recent years is the ability to manipulate single molecules and probe their properties and function. Since its emergence over two decades ago, single molecule force spectroscopy has become a powerful tool to explore the response of biological molecules, including proteins, DNA, RNA and their complexes, to the application of an applied force. The force versus extension response of molecules can provide valuable insight into its mechanical stability, as well as details of the underlying energy landscape. In this review we will introduce the technique of single molecule force spectroscopy using the atomic force microscope (AFM), with particular focus on its application to study proteins. We will review the models which have been developed and employed to extract information from single molecule force spectroscopy experiments. Finally, we will end with a discussion of future directions in this field.
Collapse
Affiliation(s)
- Megan L Hughes
- School of Physics and Astronomy, University of Leeds, LS2 9JT, UK. Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, UK
| | | |
Collapse
|
72
|
Reply to Alberti: Are in vitro folding experiments relevant in vivo? Proc Natl Acad Sci U S A 2016; 113:E3192. [PMID: 27226292 DOI: 10.1073/pnas.1603395113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
73
|
Ding B, Hilaire MR, Gai F. Infrared and Fluorescence Assessment of Protein Dynamics: From Folding to Function. J Phys Chem B 2016; 120:5103-13. [PMID: 27183318 DOI: 10.1021/acs.jpcb.6b03199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While folding or performing functions, a protein can sample a rich set of conformational space. However, experimentally capturing all of the important motions with sufficient detail to allow a mechanistic description of their dynamics is nontrivial since such conformational events often occur over a wide range of time and length scales. Therefore, many methods have been employed to assess protein conformational dynamics, and depending on the nature of the conformational transition in question, some may be more advantageous than others. Herein, we describe our recent efforts, and also those of others, wherever appropriate, to use infrared- and fluorescence-based techniques to interrogate protein folding and functional dynamics. Specifically, we focus on discussing how to use extrinsic spectroscopic probes to enhance the structural resolution of these techniques and how to exploit various cross-linking strategies to acquire dynamic and mechanistic information that was previously difficult to attain.
Collapse
Affiliation(s)
- Bei Ding
- Department of Chemistry and ‡The Ultrafast Optical Processes Laboratory, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Mary Rose Hilaire
- Department of Chemistry and ‡The Ultrafast Optical Processes Laboratory, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Feng Gai
- Department of Chemistry and ‡The Ultrafast Optical Processes Laboratory, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
74
|
Jagannathan B, Marqusee S. Protein folding and unfolding under force. Biopolymers 2016; 99:860-9. [PMID: 23784721 DOI: 10.1002/bip.22321] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/07/2013] [Indexed: 12/27/2022]
Abstract
The recent revolution in optics and instrumentation has enabled the study of protein folding using extremely low mechanical forces as the denaturant. This exciting development has led to the observation of the protein folding process at single molecule resolution and its response to mechanical force. Here, we describe the principles and experimental details of force spectroscopy on proteins, with a focus on the optical tweezers instrument. Several recent results will be discussed to highlight the importance of this technique in addressing a variety of questions in the protein folding field.
Collapse
Affiliation(s)
- Bharat Jagannathan
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA
| | | |
Collapse
|
75
|
Swartjes JJTM, Veeregowda DH. Implications for directionality of nanoscale forces in bacterial attachment. BIOPHYSICS REPORTS 2016; 1:120-126. [PMID: 27340690 PMCID: PMC4871900 DOI: 10.1007/s41048-016-0019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
Adhesion and friction are closely related and play a predominant role in many natural processes. From the wall-clinging feet of the gecko to bacteria forming a biofilm, in many cases adhesion is a necessity to survive. The direction in which forces are applied has shown to influence the bond strength of certain systems tremendously and can mean the difference between adhesion and detachment. The spatula present on the extension of the feet of the gecko can either attach or detach, based on the angle at which they are loaded. Certain proteins are known to unfold at different loads, depending on the direction at which the load is applied and some bacteria have specific receptors which increase their bond strength in the presence of shear. Bacteria adhere to any man-made surface despite the presence of shear forces due to running fluids, air flow, and other causes. In bacterial adhesion research, however, adhesion forces are predominantly measured perpendicularly to surfaces, whereas other directions are often neglected. The angle of shear forces acting on bacteria or biofilms will not be at a 90° angle, as shear induced by flow is often along the surface. Measuring at different angles or even lateral to the surface will give a more complete overview of the adhesion forces and mechanism, perhaps even resulting in alternative means to discourage bacterial adhesion or promote removal.
Collapse
Affiliation(s)
- Jan J. T. M. Swartjes
- />University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Deepak H. Veeregowda
- />Ducom Instruments Europe B.V, Center for Innovation, 9713 GX Groningen, the Netherlands
| |
Collapse
|
76
|
Force-dependent switch in protein unfolding pathways and transition-state movements. Proc Natl Acad Sci U S A 2016; 113:E715-24. [PMID: 26818842 DOI: 10.1073/pnas.1515730113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although it is known that single-domain proteins fold and unfold by parallel pathways, demonstration of this expectation has been difficult to establish in experiments. Unfolding rate, [Formula: see text], as a function of force f, obtained in single-molecule pulling experiments on src SH3 domain, exhibits upward curvature on a [Formula: see text] plot. Similar observations were reported for other proteins for the unfolding rate [Formula: see text]. These findings imply unfolding in these single-domain proteins involves a switch in the pathway as f or [Formula: see text] is increased from a low to a high value. We provide a unified theory demonstrating that if [Formula: see text] as a function of a perturbation (f or [Formula: see text]) exhibits upward curvature then the underlying energy landscape must be strongly multidimensional. Using molecular simulations we provide a structural basis for the switch in the pathways and dramatic shifts in the transition-state ensemble (TSE) in src SH3 domain as f is increased. We show that a single-point mutation shifts the upward curvature in [Formula: see text] to a lower force, thus establishing the malleability of the underlying folding landscape. Our theory, applicable to any perturbation that affects the free energy of the protein linearly, readily explains movement in the TSE in a β-sandwich (I27) protein and single-chain monellin as the denaturant concentration is varied. We predict that in the force range accessible in laser optical tweezer experiments there should be a switch in the unfolding pathways in I27 or its mutants.
Collapse
|
77
|
Schoeler C, Bernardi RC, Malinowska KH, Durner E, Ott W, Bayer EA, Schulten K, Nash MA, Gaub HE. Mapping Mechanical Force Propagation through Biomolecular Complexes. NANO LETTERS 2015; 15:7370-6. [PMID: 26259544 PMCID: PMC4721519 DOI: 10.1021/acs.nanolett.5b02727] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Here we employ single-molecule force spectroscopy with an atomic force microscope (AFM) and steered molecular dynamics (SMD) simulations to reveal force propagation pathways through a mechanically ultrastable multidomain cellulosome protein complex. We demonstrate a new combination of network-based correlation analysis supported by AFM directional pulling experiments, which allowed us to visualize stiff paths through the protein complex along which force is transmitted. The results implicate specific force-propagation routes nonparallel to the pulling axis that are advantageous for achieving high dissociation forces.
Collapse
|
78
|
Avdoshenko SM, Makarov DE. Reaction Coordinates and Pathways of Mechanochemical Transformations. J Phys Chem B 2015; 120:1537-45. [PMID: 26401617 DOI: 10.1021/acs.jpcb.5b07613] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The notions of a reaction path and a reaction coordinate are central to chemistry as they provide low-dimensional descriptions of complex molecular processes. Here we discuss how to define, compute, and use the reaction paths for chemical transformations in molecules that are subjected to mechanical stress and thus driven toward regions of conformational space that are otherwise inaccessible both in computational studies and in reality. We further show that the circuitous nature of mechanochemical pathways often makes their one-dimensional description impossible and describe how multidimensional effects can be detected experimentally.
Collapse
Affiliation(s)
- Stanislav M Avdoshenko
- Institute for Computational Engineering and Sciences and ‡Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Dmitrii E Makarov
- Institute for Computational Engineering and Sciences and ‡Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
79
|
Giannotti MI, Cabeza de Vaca I, Artés JM, Sanz F, Guallar V, Gorostiza P. Direct Measurement of the Nanomechanical Stability of a Redox Protein Active Site and Its Dependence upon Metal Binding. J Phys Chem B 2015; 119:12050-8. [DOI: 10.1021/acs.jpcb.5b06382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marina I. Giannotti
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Physical
Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain
| | - Israel Cabeza de Vaca
- Joint
BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, Barcelona 08034, Spain
| | - Juan M. Artés
- Physical
Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain
| | - Fausto Sanz
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Physical
Chemistry Department, Universitat de Barcelona, Barcelona 08028, Spain
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain
| | - Victor Guallar
- Joint
BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Jordi Girona 29, Barcelona 08034, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Pau Gorostiza
- Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
80
|
Ritchie DB, Woodside MT. Probing the structural dynamics of proteins and nucleic acids with optical tweezers. Curr Opin Struct Biol 2015; 34:43-51. [PMID: 26189090 PMCID: PMC7126019 DOI: 10.1016/j.sbi.2015.06.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/09/2015] [Accepted: 06/25/2015] [Indexed: 01/15/2023]
Abstract
Conformational changes are an essential feature of most molecular processes in biology. Optical tweezers have emerged as a powerful tool for probing conformational dynamics at the single-molecule level because of their high resolution and sensitivity, opening new windows on phenomena ranging from folding and ligand binding to enzyme function, molecular machines, and protein aggregation. By measuring conformational changes induced in a molecule by forces applied by optical tweezers, new insight has been gained into the relationship between dynamics and function. We discuss recent advances from studies of how structure forms in proteins and RNA, including non-native structures, fluctuations in disordered proteins, and interactions with chaperones assisting native folding. We also review the development of assays probing the dynamics of complex protein-nucleic acid and protein-protein assemblies that reveal the dynamic interactions between biomolecular machines and their substrates.
Collapse
Affiliation(s)
- Dustin B Ritchie
- Department of Physics, University of Alberta, Edmonton, AB T6G2E1 Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G2E1 Canada; National Institute for Nanotechnology, National Research Council, Edmonton, AB T6G2M9, Canada.
| |
Collapse
|
81
|
Direct Observation of the Reversible Two-State Unfolding and Refolding of an α/β Protein by Single-Molecule Atomic Force Microscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
82
|
He C, Hu C, Hu X, Hu X, Xiao A, Perkins TT, Li H. Direct Observation of the Reversible Two‐State Unfolding and Refolding of an α/β Protein by Single‐Molecule Atomic Force Microscopy. Angew Chem Int Ed Engl 2015; 54:9921-5. [DOI: 10.1002/anie.201502938] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/06/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Chengzhi He
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 (Canada)
| | - Chunguang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| | - Xiaodong Hu
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| | - Xiaotang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| | - Adam Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 (Canada)
| | - Thomas T. Perkins
- JILA, NIST and University of Colorado Boulder, Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, 440 UCB Boulder, CO 80309 (USA)
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1 (Canada)
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072 (China)
| |
Collapse
|
83
|
Zhong Z, Soh LH, Lim MH, Chen G. A U⋅U Pair-to-U⋅C Pair Mutation-Induced RNA Native Structure Destabilisation and Stretching-Force-Induced RNA Misfolding. Chempluschem 2015; 80:1267-1278. [PMID: 31973291 DOI: 10.1002/cplu.201500144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/21/2015] [Indexed: 12/21/2022]
Abstract
Little is known about how a non-Watson-Crick pair affects the RNA folding dynamics. We studied the effects of a U⋅U-to-U⋅C pair mutation on the folding of a hairpin in human telomerase RNA. The ensemble thermal melting of the hairpins shows an on-pathway intermediate with the disruption of the internal loop structure containing the U⋅U/U⋅C pairs. By using optical tweezers, we applied a stretching force on the terminal ends of the hairpins to probe directly the non-nearest-neighbour effects upon the mutations. The single U⋅U to U⋅C mutations are observed to 1) lower the mechanical unfolding force by approximately 1 picoNewton (pN) per mutation without affecting the unfolding reaction transition-state position (thus suggesting that removing a single hydrogen bond affects the structural dynamics at least two base pairs away), 2) result in more frequent misfolding into a small hairpin at approximately 10 pN and 3) shift the folding reaction transition-state position towards the native hairpin structure and slightly increase the mechanical folding kinetics (thus suggesting that untrapping from the misfolded state is not the rate-limiting step).
Collapse
Affiliation(s)
- Zhensheng Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| | - Lai Huat Soh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| | - Ming Hui Lim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| |
Collapse
|
84
|
Single-molecule chemo-mechanical unfolding reveals multiple transition state barriers in a small single-domain protein. Nat Commun 2015; 6:6861. [PMID: 25882479 PMCID: PMC4410640 DOI: 10.1038/ncomms7861] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/05/2015] [Indexed: 12/16/2022] Open
Abstract
A fundamental question in protein folding is whether proteins fold through one or multiple trajectories. While most experiments indicate a single pathway, simulations suggest proteins can fold through many parallel pathways. Here, we use a combination of chemical denaturant, mechanical force and site-directed mutations to demonstrate the presence of multiple unfolding pathways in a simple, two-state folding protein. We show that these multiple pathways have structurally different transition states, and that seemingly small changes in protein sequence and environment can strongly modulate the flux between the pathways. These results suggest that in vivo, the crowded cellular environment could strongly influence the mechanisms of protein folding and unfolding. Our study resolves the apparent dichotomy between experimental and theoretical studies, and highlights the advantage of using a multipronged approach to reveal the complexities of a protein's free-energy landscape. Although most protein folding experiments can be explained by a single pathway, theoretical evidence suggests the presence of multiple pathways. Here, the authors resolve this using a combination of force, chemical denaturation and mutagenesis to modulate the flux between parallel pathways.
Collapse
|
85
|
Neupane K, Manuel AP, Lambert J, Woodside MT. Transition-Path Probability as a Test of Reaction-Coordinate Quality Reveals DNA Hairpin Folding Is a One-Dimensional Diffusive Process. J Phys Chem Lett 2015; 6:1005-10. [PMID: 26262860 DOI: 10.1021/acs.jpclett.5b00176] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemical reactions are typically described in terms of progress along a reaction coordinate. However, the quality of reaction coordinates for describing reaction dynamics is seldom tested experimentally. We applied a framework for gauging reaction-coordinate quality based on transition-path analysis to experimental data for the first time, looking at folding trajectories of single DNA hairpin molecules measured under tension applied by optical tweezers. The conditional probability for being on a reactive transition path was compared with the probability expected for ideal diffusion over a 1D energy landscape based on the committor function. Analyzing measurements and simulations of hairpin folding where end-to-end extension is the reaction coordinate, after accounting for instrumental effects on the analysis, we found good agreement between transition-path and committor analyses for model two-state hairpins, demonstrating that folding is well-described by 1D diffusion. This work establishes transition-path analysis as a powerful new tool for testing experimental reaction-coordinate quality.
Collapse
Affiliation(s)
- Krishna Neupane
- †Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, Alberta T6G 2E1, Canada
| | - Ajay P Manuel
- †Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, Alberta T6G 2E1, Canada
| | - John Lambert
- †Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, Alberta T6G 2E1, Canada
| | - Michael T Woodside
- †Department of Physics, University of Alberta, 4-181 CCIS, Edmonton, Alberta T6G 2E1, Canada
- ‡National Institute for Nanotechnology, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9, Canada
| |
Collapse
|
86
|
Chen Y, Radford SE, Brockwell DJ. Force-induced remodelling of proteins and their complexes. Curr Opin Struct Biol 2015; 30:89-99. [PMID: 25710390 PMCID: PMC4499843 DOI: 10.1016/j.sbi.2015.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 11/23/2022]
Abstract
Force can drive conformational changes in proteins, as well as modulate their stability and the affinity of their complexes, allowing a mechanical input to be converted into a biochemical output. These properties have been utilised by nature and force is now recognised to be widely used at the cellular level. The effects of force on the biophysical properties of biological systems can be large and varied. As these effects are only apparent in the presence of force, studies on the same proteins using traditional ensemble biophysical methods can yield apparently conflicting results. Where appropriate, therefore, force measurements should be integrated with other experimental approaches to understand the physiological context of the system under study.
Collapse
Affiliation(s)
- Yun Chen
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
87
|
Glyakina AV, Likhachev IV, Balabaev NK, Galzitskaya OV. Mechanical stability analysis of the protein L immunoglobulin-binding domain by full alanine screening using molecular dynamics simulations. Biotechnol J 2014; 10:386-94. [PMID: 25425165 DOI: 10.1002/biot.201400231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/07/2014] [Accepted: 11/24/2014] [Indexed: 11/10/2022]
Abstract
This article is the first to study the mechanical properties of the immunoglobulin-binding domain of protein L (referred to as protein L) and its mutants at the atomic level. In the structure of protein L, each amino acid residue (except for alanines and glycines) was replaced sequentially by alanine. Thus, 49 mutants of protein L were obtained. The proteins were stretched at their termini at constant velocity using molecular dynamics simulations in water, i.e. by forced unfolding. 19 out of 49 mutations resulted in a large decrease of mechanical protein stability. These amino acids were affecting either the secondary structure (11 mutations) or loop structures (8 mutations) of protein L. Analysis of mechanical unfolding of the generated protein that has the same topology as protein L but consists of only alanines and glycines allows us to suggest that the mechanical stability of proteins, and specifically protein L, is determined by interactions between certain amino acid residues, although the unfolding pathway depends on the protein topology. This insight can now be used to modulate the mechanical properties of proteins and their unfolding pathways in the desired direction for using them in various biochips, biosensors and biomaterials for medicine, industry, and household purposes.
Collapse
Affiliation(s)
- Anna V Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia; Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | |
Collapse
|
88
|
Banerjee PR, Deniz AA. Shedding light on protein folding landscapes by single-molecule fluorescence. Chem Soc Rev 2014; 43:1172-88. [PMID: 24336839 DOI: 10.1039/c3cs60311c] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-molecule (SM) fluorescence methods have been increasingly instrumental in our current understanding of a number of key aspects of protein folding and aggregation landscapes over the past decade. With the advantage of a model free approach and the power of probing multiple subpopulations and stochastic dynamics directly in a heterogeneous structural ensemble, SM methods have emerged as a principle technique for studying complex systems such as intrinsically disordered proteins (IDPs), globular proteins in the unfolded basin and during folding, and early steps of protein aggregation in amyloidogenesis. This review highlights the application of these methods in investigating the free energy landscapes, folding properties and dynamics of individual protein molecules and their complexes, with an emphasis on inherently flexible systems such as IDPs.
Collapse
Affiliation(s)
- Priya R Banerjee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
| | | |
Collapse
|
89
|
Abstract
Folding may be described conceptually in terms of trajectories over a landscape of free energies corresponding to different molecular configurations. In practice, energy landscapes can be difficult to measure. Single-molecule force spectroscopy (SMFS), whereby structural changes are monitored in molecules subjected to controlled forces, has emerged as a powerful tool for probing energy landscapes. We summarize methods for reconstructing landscapes from force spectroscopy measurements under both equilibrium and nonequilibrium conditions. Other complementary, but technically less demanding, methods provide a model-dependent characterization of key features of the landscape. Once reconstructed, energy landscapes can be used to study critical folding parameters, such as the characteristic transition times required for structural changes and the effective diffusion coefficient setting the timescale for motions over the landscape. We also discuss issues that complicate measurement and interpretation, including the possibility of multiple states or pathways and the effects of projecting multiple dimensions onto a single coordinate.
Collapse
Affiliation(s)
- Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta T6G2E1, Canada;
| | | |
Collapse
|
90
|
Zhuravlev PI, Reddy G, Straub JE, Thirumalai D. Propensity to form amyloid fibrils is encoded as excitations in the free energy landscape of monomeric proteins. J Mol Biol 2014; 426:2653-66. [PMID: 24846645 PMCID: PMC4100209 DOI: 10.1016/j.jmb.2014.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/03/2014] [Accepted: 05/12/2014] [Indexed: 02/05/2023]
Abstract
Protein aggregation, linked to many of diseases, is initiated when monomers access rogue conformations that are poised to form amyloid fibrils. We show, using simulations of src SH3 domain, that mechanical force enhances the population of the aggregation-prone (N(⁎)) states, which are rarely populated under force free native conditions but are encoded in the spectrum of native fluctuations. The folding phase diagrams of SH3 as a function of denaturant concentration ([C]), mechanical force (f), and temperature exhibit an apparent two-state behavior, without revealing the presence of the elusive N(⁎) states. Interestingly, the phase boundaries separating the folded and unfolded states at all [C] and f fall on a master curve, which can be quantitatively described using an analogy to superconductors in a magnetic field. The free energy profiles as a function of the molecular extension (R), which are accessible in pulling experiments, (R), reveal the presence of a native-like N(⁎) with a disordered solvent-exposed amino-terminal β-strand. The structure of the N(⁎) state is identical with that found in Fyn SH3 by NMR dispersion experiments. We show that the timescale for fibril formation can be estimated from the population of the N(⁎) state, determined by the free energy gap separating the native structure and the N(⁎) state, a finding that can be used to assess fibril forming tendencies of proteins. The structures of the N(⁎) state are used to show that oligomer formation and likely route to fibrils occur by a domain-swap mechanism in SH3 domain.
Collapse
Affiliation(s)
- Pavel I Zhuravlev
- Biophysics Program, Institute for Physical Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215-2521, USA
| | - D Thirumalai
- Biophysics Program, Institute for Physical Science and Technology, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
91
|
Glyakina AV, Balabaev NK, Galzitskaya OV. Experimental and theoretical studies of mechanical unfolding of different proteins. BIOCHEMISTRY (MOSCOW) 2014; 78:1216-27. [PMID: 24460936 DOI: 10.1134/s0006297913110023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanical properties of proteins are important for a wide range of biological processes including cell adhesion, muscle contraction, and protein translocation across biological membranes. It is necessary to reveal how proteins achieve their required mechanical stability under natural conditions in order to understand the biological processes and also to use the knowledge for constructing new biomaterials for medical and industrial purposes. In this connection, it is important to know how a protein will behave in response to various impacts. Theoretical and experimental works on mechanical unfolding of globular proteins will be considered in detail in this review.
Collapse
Affiliation(s)
- A V Glyakina
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | |
Collapse
|
92
|
Neupane K, Solanki A, Sosova I, Belov M, Woodside MT. Diverse metastable structures formed by small oligomers of α-synuclein probed by force spectroscopy. PLoS One 2014; 9:e86495. [PMID: 24475132 PMCID: PMC3901707 DOI: 10.1371/journal.pone.0086495] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 12/12/2013] [Indexed: 11/18/2022] Open
Abstract
Oligomeric aggregates are widely suspected as toxic agents in diseases caused by protein aggregation, yet they remain poorly characterized, partly because they are challenging to isolate from a heterogeneous mixture of species. We developed an assay for characterizing structure, stability, and kinetics of individual oligomers at high resolution and sensitivity using single-molecule force spectroscopy, and applied it to observe the formation of transient structured aggregates within single oligomers of α-synuclein, an intrinsically-disordered protein linked to Parkinson's disease. Measurements of the molecular extension as the proteins unfolded under tension in optical tweezers revealed that even small oligomers could form numerous metastable structures, with a surprisingly broad range of sizes. Comparing the structures formed in monomers, dimers and tetramers, we found that the average mechanical stability increased with oligomer size. Most structures formed within a minute, with size-dependent rates. These results provide a new window onto the complex α-synuclein aggregation landscape, characterizing the microscopic structural heterogeneity and kinetics of different pathways.
Collapse
Affiliation(s)
- Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Allison Solanki
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Iveta Sosova
- National Institute for Nanotechnology, National Research Council Canada, Edmonton, Alberta, Canada
| | - Miro Belov
- National Institute for Nanotechnology, National Research Council Canada, Edmonton, Alberta, Canada
| | - Michael T. Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- National Institute for Nanotechnology, National Research Council Canada, Edmonton, Alberta, Canada
| |
Collapse
|
93
|
Brucale M, Schuler B, Samorì B. Single-molecule studies of intrinsically disordered proteins. Chem Rev 2014; 114:3281-317. [PMID: 24432838 DOI: 10.1021/cr400297g] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marco Brucale
- Institute for the Study of Nanostructured Materials (ISMN), Italian National Council of Research (CNR) , Area della Ricerca Roma1, Via Salaria km 29.3 00015 Monterotondo (Rome), Italy
| | | | | |
Collapse
|
94
|
Zheng P, Chou CC, Guo Y, Wang Y, Li H. Single Molecule Force Spectroscopy Reveals the Molecular Mechanical Anisotropy of the FeS4 Metal Center in Rubredoxin. J Am Chem Soc 2013; 135:17783-92. [DOI: 10.1021/ja406695g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Peng Zheng
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
| | - Chih-Chung Chou
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
| | - Ying Guo
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
| | - Yanyan Wang
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 30072 P. R. China
| | - Hongbin Li
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 30072 P. R. China
| |
Collapse
|
95
|
Kreuzer SM, Moon TJ, Elber R. Catch bond-like kinetics of helix cracking: network analysis by molecular dynamics and milestoning. J Chem Phys 2013; 139:121902. [PMID: 24089714 PMCID: PMC3716791 DOI: 10.1063/1.4811366] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/29/2013] [Indexed: 12/29/2022] Open
Abstract
The first events of unfolding of secondary structure under load are considered with Molecular Dynamics simulations and Milestoning analysis of a long helix (126 amino acids). The Mean First Passage Time is a non-monotonic function of the applied load with a maximum of 3.6 ns at about 20 pN. Network analysis of the reaction space illustrates the opening and closing of an off-pathway trap that slows unfolding at intermediate load levels. It is illustrated that the nature of the reaction networks changes as a function of load, demonstrating that the process is far from one-dimensional.
Collapse
Affiliation(s)
- Steven M Kreuzer
- Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
96
|
Glyakina AV, Likhachev IV, Balabaev NK, Galzitskaya OV. Right- and left-handed three-helix proteins. II. Similarity and differences in mechanical unfolding of proteins. Proteins 2013; 82:90-102. [PMID: 23873665 DOI: 10.1002/prot.24373] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/26/2013] [Accepted: 07/09/2013] [Indexed: 11/11/2022]
Abstract
Here, we study mechanical properties of eight 3-helix proteins (four right-handed and four left-handed ones), which are similar in size under stretching at a constant speed and at a constant force on the atomic level using molecular dynamics simulations. The analysis of 256 trajectories from molecular dynamics simulations with explicit water showed that the right-handed three-helix domains are more mechanically resistant than the left-handed domains. Such results are observed at different extension velocities studied (192 trajectories obtained at the following conditions: v = 0.1, 0.05, and 0.01 Å ps(-1) , T = 300 K) and under constant stretching force (64 trajectories, F = 800 pN, T = 300 K). We can explain this by the fact, at least in part, that the right-handed domains have a larger number of contacts per residue and the radius of cross section than the left-handed domains.
Collapse
Affiliation(s)
- Anna V Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia; Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | | | |
Collapse
|
97
|
Konda SSM, Brantley JN, Varghese BT, Wiggins KM, Bielawski CW, Makarov DE. Molecular Catch Bonds and the Anti-Hammond Effect in Polymer Mechanochemistry. J Am Chem Soc 2013; 135:12722-9. [DOI: 10.1021/ja4051108] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sai Sriharsha M. Konda
- Department of Chemistry and
Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Johnathan N. Brantley
- Department of Chemistry and
Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Bibin T. Varghese
- Department of Chemistry and
Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kelly M. Wiggins
- Department of Chemistry and
Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Christopher W. Bielawski
- Department of Chemistry and
Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Dmitrii E. Makarov
- Department of Chemistry and
Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Computational
Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
98
|
Heidarsson PO, Naqvi MM, Sonar P, Valpapuram I, Cecconi C. Conformational Dynamics of Single Protein Molecules Studied by Direct Mechanical Manipulation. DYNAMICS OF PROTEINS AND NUCLEIC ACIDS 2013; 92:93-133. [DOI: 10.1016/b978-0-12-411636-8.00003-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
99
|
|