51
|
Schneider JD, Marillonnet S, Castilho A, Gruber C, Werner S, Mach L, Klimyuk V, Mor TS, Steinkellner H. Oligomerization status influences subcellular deposition and glycosylation of recombinant butyrylcholinesterase in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:832-9. [PMID: 24618259 PMCID: PMC4265266 DOI: 10.1111/pbi.12184] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/15/2013] [Indexed: 05/20/2023]
Abstract
Plants have a proven track record for the expression of biopharmaceutically interesting proteins. Importantly, plants and mammals share a highly conserved secretory pathway that allows similar folding, assembly and posttranslational modifications of proteins. Human butyrylcholinesterase (BChE) is a highly sialylated, tetrameric serum protein, investigated as a bioscavenger for organophosphorous nerve agents. Expression of recombinant BChE (rBChE) in Nicotiana benthamiana results in accumulation of both monomers as well as assembled oligomers. In particular, we show here that co-expression of BChE with a novel gene-stacking vector, carrying six mammalian genes necessary for in planta protein sialylation, resulted in the generation of rBChE decorated with sialylated N-glycans. The N-glycosylation profile of monomeric rBChE secreted to the apoplast largely resembles the plasma-derived orthologue. In contrast, rBChE purified from total soluble protein extracts was decorated with a significant portion of ER-typical oligomannosidic structures. Biochemical analyses and live-cell imaging experiments indicated that impaired N-glycan processing is due to aberrant deposition of rBChE oligomers in the endoplasmic reticulum or endoplasmic-reticulum-derived compartments. In summary, we show the assembly of rBChE multimers, however, also points to the need for in-depth studies to explain the unexpected subcellular targeting of oligomeric BChE in plants.
Collapse
Affiliation(s)
- Jeannine D Schneider
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | | | - Alexandra Castilho
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Clemens Gruber
- Department of Chemistry, University of Natural Resources and Life SciencesVienna, Austria
| | | | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | | | - Tsafrir S Mor
- The Biodesign Institute, Arizona State UniversityTempe, Arizona, USA
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| |
Collapse
|
52
|
Schneider JD, Castilho A, Neumann L, Altmann F, Loos A, Kannan L, Mor TS, Steinkellner H. Expression of human butyrylcholinesterase with an engineered glycosylation profile resembling the plasma-derived orthologue. Biotechnol J 2014; 9:501-10. [PMID: 24130173 PMCID: PMC3975692 DOI: 10.1002/biot.201300229] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/26/2013] [Accepted: 10/14/2013] [Indexed: 11/07/2022]
Abstract
Human butyrylcholinesterase (BChE) is considered a candidate bioscavenger of nerve agents for use in pre- and post-exposure treatment. However, the presence and functional necessity of complex N-glycans (i.e. sialylated structures) is a challenging issue in respect to its recombinant expression. Here we transiently co-expressed BChE cDNA in the model plant Nicotiana benthamiana with vectors carrying the genes necessary for in planta protein sialylation. Site-specific sugar profiling of secreted recombinant BChE (rBChE) collected from the intercellular fluid revealed the presence of mono- and di-sialylated N-glycans, which largely resembles to the plasma-derived orthologue. Attempts to increase that sialylation content of rBChE by the over-expression of an additional glycosylation enzyme that generates branched N-glycans (i.e. β1,4-N-acetylglucosaminyl-transferase IV), allowed the production of rBChE decorated with tri-sialylated structures (up to 70%). Sialylated and non-sialylated plant-derived rBChE exhibited functional in vitro activity comparable to that of its commercially available equine-derived counterpart. These results demonstrate the ability of plants to generate valuable proteins with designed sialylated glycosylation profiles optimized for therapeutic efficacy. Moreover, the efficient synthesis of carbohydrates present only in minute amounts on the native protein (tri-sialylated N-glycans) facilitates the generation of a product with superior efficacies and/or new therapeutic functions.
Collapse
Affiliation(s)
- Jeannine D. Schneider
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Laura Neumann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andreas Loos
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Latha Kannan
- The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Tsafrir S. Mor
- The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
53
|
Terekhov SS, Smirnov IV, Shamborant OG, Zenkova MA, Chernolovskaya EL, Gladkikh DV, Murashev AN, Dyachenko IA, Knorre VD, Belogurov AA, Ponomarenko NA, Deyev SM, Vlasov VV, Gabibov AG. Excessive Labeling Technique Provides a Highly Sensitive Fluorescent Probe for Real-time Monitoring of Biodegradation of Biopolymer Pharmaceuticals in vivo. Acta Naturae 2014; 6:54-9. [PMID: 25558395 PMCID: PMC4273092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recombinant proteins represent a large sector of the biopharma market. Determination of the main elimination pathways raises the opportunities to significantly increase their half-lives in vivo. However, evaluation of biodegradation of pharmaceutical biopolymers performed in the course of pre-clinical studies is frequently complicated. Noninvasive pharmacokinetic and biodistribution studies in living organism are possible using proteins conjugated with near-infrared dyes. In the present study we designed a highly efficient probe based on fluorescent dye self-quenching for monitoring of in vivo biodegradation of recombinant human butyrylcholinesterase. The maximum enhancement of integral fluorescence in response to degradation of an intravenously administered enzyme was observed 6 h after injection. Importantly, excessive butyrylcholinesterase labeling with fluorescent dye results in significant changes in the pharmacokinetic properties of the obtained conjugate. This fact must be taken into consideration during future pharmacokinetic studies using in vivo bioimaging.
Collapse
Affiliation(s)
- S. S. Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, GSP-7, Moscow, Russia, 117997
| | - I. V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, GSP-7, Moscow, Russia, 117997,Kazan Federal University, Kremlevskaya str. 18, 420008, Kazan, Republic of Tatarstan, Russia
| | - O. G. Shamborant
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, GSP-7, Moscow, Russia, 117997
| | - M. A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
| | - E. L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
| | - D. V. Gladkikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
| | - A. N. Murashev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Moscow region, Russia
| | - I. A. Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, 142290, Moscow region, Russia
| | - V. D. Knorre
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, GSP-7, Moscow, Russia, 117997
| | - A. A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, GSP-7, Moscow, Russia, 117997,Kazan Federal University, Kremlevskaya str. 18, 420008, Kazan, Republic of Tatarstan, Russia,Institute of Gene Biology, Russian Academy of Sciences, Vavilova Str., 34/5, 119334, Moscow, Russia
| | - N. A. Ponomarenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, GSP-7, Moscow, Russia, 117997
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, GSP-7, Moscow, Russia, 117997
| | - V. V. Vlasov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, 630090, Novosibirsk, Russia
| | - A. G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, GSP-7, Moscow, Russia, 117997,Kazan Federal University, Kremlevskaya str. 18, 420008, Kazan, Republic of Tatarstan, Russia,Institute of Gene Biology, Russian Academy of Sciences, Vavilova Str., 34/5, 119334, Moscow, Russia
| |
Collapse
|
54
|
Bavaro T, Filice M, Temporini C, Tengattini S, Serra I, Morelli CF, Massolini G, Terreni M. Chemoenzymatic synthesis of neoglycoproteins driven by the assessment of protein surface reactivity. RSC Adv 2014. [DOI: 10.1039/c4ra11131a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient chemoenzymatic strategy followed by an integrated in silico and proteomic analysis for the preparation of neoglycoproteins was described.
Collapse
Affiliation(s)
- T. Bavaro
- Department of Drug Sciences and Italian Biocatalysis Center
- University of Pavia
- I-27100 Pavia, Italy
| | - M. Filice
- Departamento de Biocatalisis
- Instituto de Catalisis (ICP-CSIC)
- 28049 Madrid, Spain
| | - C. Temporini
- Department of Drug Sciences and Italian Biocatalysis Center
- University of Pavia
- I-27100 Pavia, Italy
| | - S. Tengattini
- Department of Drug Sciences and Italian Biocatalysis Center
- University of Pavia
- I-27100 Pavia, Italy
| | - I. Serra
- Department of Drug Sciences and Italian Biocatalysis Center
- University of Pavia
- I-27100 Pavia, Italy
| | - C. F. Morelli
- Department of Chemistry and Italian Biocatalysis Center
- University of Milano
- I-20133 Milano, Italy
| | - G. Massolini
- Department of Drug Sciences and Italian Biocatalysis Center
- University of Pavia
- I-27100 Pavia, Italy
| | - M. Terreni
- Department of Drug Sciences and Italian Biocatalysis Center
- University of Pavia
- I-27100 Pavia, Italy
| |
Collapse
|
55
|
Elsinghorst PW, Worek F, Thiermann H, Wille T. Drug development for the management of organophosphorus poisoning. Expert Opin Drug Discov 2013; 8:1467-77. [PMID: 24125474 DOI: 10.1517/17460441.2013.847920] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The continuous application of organophosphate pesticides in developing countries, in addition to the remaining stock piles of chemical warfare nerve agents and their possible use is a significant threat to the public. Yet, today's options for a treatment of organophosphorus poisonings are still inadequate. AREAS COVERED This article provides a concise overview of current and future research trying to improve both prophylaxis and treatment of organophosphorus intoxications. The authors provide a summary of current oxime therapy and highlight several new concepts to overcome existing gaps. This overview of therapeutic options is accompanied by two sections on cyclodextrins, related compounds and bioscavengers, which may be used for either prophylaxis or treatment. For both groups, the authors review current drug design and screening approaches, the resulting developments and future challenges. EXPERT OPINION While the search for one multipotent oxime has been a fruitless endeavor, combination of multiple oximes with complemental and systemic reactivity appears as a valuable concept. Development of potential scavengers, be it cyclodextrins or bioscavengers, is still hampered by insufficient efficacy of these compounds. Future strategies will aim at improving their catalytic efficacy while minimizing immunogenicity.
Collapse
Affiliation(s)
- Paul Wilhelm Elsinghorst
- Bundeswehr Institute of Pharmacology and Toxicology , Neuherbergstraße 11, D-80937 München , Germany +49 89 3168 2305 ; +49 89 3168 2333 ;
| | | | | | | |
Collapse
|
56
|
Nachon F, Brazzolotto X, Trovaslet M, Masson P. Progress in the development of enzyme-based nerve agent bioscavengers. Chem Biol Interact 2013; 206:536-44. [PMID: 23811386 DOI: 10.1016/j.cbi.2013.06.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 11/17/2022]
Abstract
Acetylcholinesterase is the physiological target for acute toxicity of nerve agents. Attempts to protect acetylcholinesterase from phosphylation by nerve agents, is currently achieved by reversible inhibitors that transiently mask the enzyme active site. This approach either protects only peripheral acetylcholinesterase or may cause side effects. Thus, an alternative strategy consists in scavenging nerve agents in the bloodstream before they can reach acetylcholinesterase. Pre- or post-exposure administration of bioscavengers, enzymes that neutralize and detoxify organophosphorus molecules, is one of the major developments of new medical counter-measures. These enzymes act either as stoichiometric or catalytic bioscavengers. Human butyrylcholinesterase is the leading stoichiometric bioscavenger. Current efforts are devoted to its mass production with care to pharmacokinetic properties of the final product for extended lifetime. Development of specific reactivators of phosphylated butyrylcholinesterase, or variants with spontaneous reactivation activity is also envisioned for rapid in situ regeneration of the scavenger. Human paraoxonase 1 is the leading catalytic bioscavenger under development. Research efforts focus on improving its catalytic efficiency toward the most toxic isomers of nerve agents, by means of directed evolution-based strategies. Human prolidase appears to be another promising human enzyme. Other non-human efficient enzymes like bacterial phosphotriesterases or squid diisopropylfluorophosphatase are also considered though their intrinsic immunogenic properties remain challenging for use in humans. Encapsulation, PEGylation and other modifications are possible solutions to address this problem as well as that of their limited lifetime. Finally, gene therapy for in situ generation and delivery of bioscavengers is for the far future, but its proof of concept has been established.
Collapse
Affiliation(s)
- Florian Nachon
- Institut de Recherche Biomédicale des Armées, BP87, 38702 La Tronche Cédex, France.
| | | | | | | |
Collapse
|
57
|
Jiang W, Murashko EA, Dubrovskii YA, Podolskaya EP, Babakov VN, Mikler J, Nachon F, Masson P, Schopfer LM, Lockridge O. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of titanium oxide-enriched peptides for detection of aged organophosphorus adducts on human butyrylcholinesterase. Anal Biochem 2013; 439:132-41. [PMID: 23624322 DOI: 10.1016/j.ab.2013.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 10/26/2022]
Abstract
Exposure to nerve agents or organophosphorus (OP) pesticides can have life-threatening effects. Human plasma butyrylcholinesterase (BChE) inactivates these poisons by binding them to Ser198. After hours or days, these OP adducts acquire a negative charge by dealkylation in a process called aging. Our goal was to develop a method for enriching the aged adduct to facilitate detection of exposure. Human BChE inhibited by OP toxicants was incubated for 4 days to 6 years. Peptides produced by digestion with pepsin were enriched by binding to titanium oxide (TiO2) and analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. It was found that with two exceptions, all aged OP adducts in peptide FGES198AGAAS were enriched by binding to Titansphere tips. Cresyl saligenin phosphate yielded two types of aged adduct, cresylphosphate and phosphate, but only the phosphate adduct bound to Titansphere. The nerve agent VR yielded no aged adduct, supporting crystal structure findings that the VR adduct on BChE does not age. The irreversible nature of aged OP adducts was demonstrated by the finding that after 6 years at room temperature in sterile pH 7.0 buffer, the adducts were still detectable. It was concluded that TiO2 microcolumns can be used to enrich aged OP-modified BChE peptide.
Collapse
Affiliation(s)
- Wei Jiang
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|