51
|
Gallay K, Blot G, Chahpazoff M, Yajjou-Hamalian H, Confort MP, De Boisséson C, Leroux A, Luengo C, Fiorini F, Lavigne M, Chebloune Y, Gouet P, Moreau K, Blanchard Y, Ronfort C. In vitro, in cellulo and structural characterizations of the interaction between the integrase of Porcine Endogenous Retrovirus A/C and proteins of the BET family. Virology 2019; 532:69-81. [DOI: 10.1016/j.virol.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 01/17/2023]
|
52
|
Nucleosome DNA unwrapping does not affect prototype foamy virus integration efficiency or site selection. PLoS One 2019; 14:e0212764. [PMID: 30865665 PMCID: PMC6415784 DOI: 10.1371/journal.pone.0212764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/09/2019] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic DNA binding proteins must access genomic DNA that is packaged into chromatin in vivo. During a productive infection, retroviral integrases (IN) must similarly interact with chromatin to integrate the viral cDNA genome. Here we examine the role of nucleosome DNA unwrapping in the retroviral integrase search for a target site. These studies utilized PFV intasomes that are comprised of a tetramer of PFV IN with two oligomers mimicking the viral cDNA ends. Modified recombinant human histones were used to generate nucleosomes with increased unwrapping rates at different DNA regions. These modifications included the acetylmimetic H3(K56Q) and the chemically engineered H4(K77ac, K79ac). While transcription factors and DNA damage sensors may search nucleosome bound DNA during transient unwrapping, PFV intasome mediated integration appears to be unaffected by increased nucleosome unwrapping. These studies suggest PFV intasomes do not utilize nucleosome unwrapping to search nucleosome targets.
Collapse
|
53
|
Prototype foamy virus intasome aggregation is mediated by outer protein domains and prevented by protocatechuic acid. Sci Rep 2019; 9:132. [PMID: 30644416 PMCID: PMC6333793 DOI: 10.1038/s41598-018-36725-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/23/2018] [Indexed: 12/01/2022] Open
Abstract
The integrase (IN) enzyme of retrovirus prototype foamy virus (PFV) consists of four domains: amino terminal extension (NED), amino terminus (NTD), catalytic core (CCD), and carboxyl terminus domains (CTD). A tetramer of PFV IN with two viral DNA ends forms the functional intasome. Two inner monomers are catalytically active while the CCDs of the two outer monomers appear to play only structural roles. The NED, NTD, and CTD of the outer monomers are disordered in intasome structures. Truncation mutants reveal that integration to a supercoiled plasmid increases without the outer monomer CTDs present. Deletion of the outer CTDs enhances the lifetime of the intasome compared to full length (FL) IN or deletion of the outer monomer NTDs. High ionic strength buffer or several additives, particularly protocatechuic acid (PCA), enhance the integration of FL intasomes by preventing aggregation. These data confirm previous studies suggesting the disordered outer domains of PFV intasomes are not required for intasome assembly or integration. Instead, the outer CTDs contribute to aggregation of PFV intasomes which may be inhibited by high ionic strength buffer or the small molecule PCA.
Collapse
|
54
|
Shifting Retroviral Vector Integrations Away from Transcriptional Start Sites via DNA-Binding Protein Domain Insertion into Integrase. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:58-70. [PMID: 30534579 PMCID: PMC6278723 DOI: 10.1016/j.omtm.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
The unique ability of retroviruses to integrate genes into host genomes is of great value for long-term expression in gene therapy, but only when integrations occur at safe genomic sites. To reap the benefit of using retroviruses without severe detrimental effects, we developed several murine leukemia virus (MLV)-based gammaretroviral vectors with safer integration patterns by perturbing the structure of the integrase via insertion of DNA-binding zinc-finger domains (ZFDs) into an internal position of the enzyme. ZFD insertion significantly reduced the inherent, strong MLV integration preference for genomic regions near transcriptional start sites (TSSs), which are the most dangerous spots. The altered retroviral integration pattern was related to increased formation of residual primer-binding site sequences at the 3' end of proviruses. Several ZFD insertion mutants showed lower frequencies of integrations into the TSS genome regions when having the residual primer-binding site sequences in the proviruses. Our findings not only can extend the use of retroviruses in biomedical applications, but also provide a glimpse into the mechanisms underlying retroviral integration.
Collapse
|
55
|
Nup153 Unlocks the Nuclear Pore Complex for HIV-1 Nuclear Translocation in Nondividing Cells. J Virol 2018; 92:JVI.00648-18. [PMID: 29997211 DOI: 10.1128/jvi.00648-18] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) displays the unique ability to infect nondividing cells. The capsid of HIV-1 is the viral determinant for viral nuclear import. To understand the cellular factors involved in the ability of HIV-1 to infect nondividing cells, we sought to find capsid mutations that allow the virus to infect dividing but not nondividing cells. Because the interaction of capsid with the nucleoporin protein 153 (Nup153) is important for nuclear import of HIV-1, we solved new crystal structures of hexameric HIV-1 capsid in complex with a Nup153-derived peptide containing a phenylalanine-glycine repeat (FG repeat), which we used to guide structure-based mutagenesis of the capsid-binding interface. HIV-1 viruses with mutations in these capsid residues were tested for their ability to infect dividing and nondividing cells. HIV-1 viruses with capsid N57 substitutions infected dividing but not nondividing cells. Interestingly, HIV-1 viruses with N57 mutations underwent reverse transcription but not nuclear translocation. The mutant capsids also lost the ability to interact with Nup153 and CPSF6. The use of small molecules PF74 and BI-2 prevented the interaction of FG-containing nucleoporins (Nups), such as Nup153, with the HIV-1 core. Analysis of integration sites in HIV-1 viruses with N57 mutations revealed diminished integration into transcriptionally active genes in a manner resembling that of HIV-1 in CPSF6 knockout cells or that of HIV-1-N74D. The integration pattern of the N57 mutant HIV-1 can be explained by loss of capsid interaction with CPSF6, whereas capsid interaction with Nup153 is required for HIV-1 to infect nondividing cells. Additionally, the observed viral integration profiles suggested that integration site selection is a multiparameter process that depends upon nuclear factors and the state of the cellular chromatin.IMPORTANCE One of the key advantages that distinguish lentiviruses, such as HIV-1, from all other retroviruses is its ability to infect nondividing cells. Interaction of the HIV-1 capsid with Nup153 and CPSF6 is important for nuclear entry and integration; however, the contribution of each of these proteins to nuclear import and integration is not clear. Using genetics, we demonstrated that these proteins contribute to different processes: Nup153 is essential for the HIV-1 nuclear import in nondividing cells, and CPSF6 is important for HIV-1 integration. In addition, nuclear factors such as CPSF6 and the state of the chromatin are known to be important for integration site selection; nevertheless, the preferential determinant influencing integration site selection is not known. This work demonstrates that integration site selection is a multiparameter process that depends upon nuclear factors and the state of the cellular chromatin.
Collapse
|
56
|
Mackler RM, Lopez MA, Osterhage MJ, Yoder KE. Prototype foamy virus integrase is promiscuous for target choice. Biochem Biophys Res Commun 2018; 503:1241-1246. [PMID: 30017200 PMCID: PMC6119477 DOI: 10.1016/j.bbrc.2018.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022]
Abstract
Retroviruses have two essential activities: reverse transcription and integration. The viral protein integrase (IN) covalently joins the viral cDNA genome to the host DNA. Prototype foamy virus (PFV) IN has become a model of retroviral intasome structure. However, this retroviral IN has not been well-characterized biochemically. Here we compare PFV IN to previously reported HIV-1 IN activities and discover significant differences. PFV IN is able to utilize the divalent cation calcium during strand transfer while HIV-1 IN is not. HIV-1 IN was shown to completely commit to a target DNA within 1 min, while PFV IN is not fully committed after 60 min. These results suggest that PFV IN is more promiscuous compared to HIV-1 IN in terms of divalent cation and target commitment.
Collapse
Affiliation(s)
- R M Mackler
- Department of Cancer Biology and Genetics, Ohio State University College of Medicine, 460 West 12(th)Ave, Columbus, OH, 43210, USA
| | - M A Lopez
- Department of Cancer Biology and Genetics, Ohio State University College of Medicine, 460 West 12(th)Ave, Columbus, OH, 43210, USA
| | - M J Osterhage
- Department of Cancer Biology and Genetics, Ohio State University College of Medicine, 460 West 12(th)Ave, Columbus, OH, 43210, USA
| | - K E Yoder
- Department of Cancer Biology and Genetics, Ohio State University College of Medicine, 460 West 12(th)Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
57
|
Weydert C, van Heertum B, Dirix L, De Houwer S, De Wit F, Mast J, Husson SJ, Busschots K, König R, Gijsbers R, De Rijck J, Debyser Z. Y-box-binding protein 1 supports the early and late steps of HIV replication. PLoS One 2018; 13:e0200080. [PMID: 29995936 PMCID: PMC6040738 DOI: 10.1371/journal.pone.0200080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
The human immunodeficiency virus (HIV) depends on cellular proteins, so-called cofactors, to complete its replication cycle. In search for new therapeutic targets we identified the DNA and RNA binding protein Y-box-binding Protein 1 (YB-1) as a cofactor supporting early and late steps of HIV replication. YB-1 depletion resulted in a 10-fold decrease in HIV-1 replication in different cell lines. Dissection of the replication defects revealed that knockdown of YB-1 is associated with a 2- to 5-fold decrease in virion production due to interference with the viral RNA metabolism. Using single-round virus infection experiments we demonstrated that early HIV-1 replication also depends on the cellular YB-1 levels. More precisely, using quantitative PCR and an in vivo nuclear import assay with fluorescently labeled viral particles, we showed that YB-1 knockdown leads to a block between reverse transcription and nuclear import of HIV-1. Interaction studies revealed that YB-1 associates with integrase, although a direct interaction with HIV integrase could not be unambiguously proven. In conclusion, our results indicate that YB-1 affects multiple stages of HIV replication. Future research on the interaction between YB-1 and the virus will reveal whether this protein qualifies as a new antiviral target.
Collapse
Affiliation(s)
- Caroline Weydert
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Bart van Heertum
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Lieve Dirix
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Laboratory for Photochemistry and Spectroscopy, Department of Chemistry, KU Leuven, Belgium
| | - Stéphanie De Houwer
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Flore De Wit
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan Mast
- Veterinary and Agrochemical Research Centre, VAR-CODA-CERVA, Brussels, Belgium
| | - Steven J. Husson
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000 Leuven, Belgium
- Systemic Physiological & Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, 2000 Antwerp, Belgium
| | - Katrien Busschots
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Renate König
- Host-Pathogen-Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Rik Gijsbers
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan De Rijck
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Division of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
58
|
Hogan DJ, Zhu JJ, Diago OR, Gammon D, Haghighi A, Lu G, Das A, Gruber HE, Jolly DJ, Ostertag D. Molecular Analyses Support the Safety and Activity of Retroviral Replicating Vector Toca 511 in Patients. Clin Cancer Res 2018; 24:4680-4693. [DOI: 10.1158/1078-0432.ccr-18-0619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/03/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
|
59
|
Wanaguru M, Barry DJ, Benton DJ, O’Reilly NJ, Bishop KN. Murine leukemia virus p12 tethers the capsid-containing pre-integration complex to chromatin by binding directly to host nucleosomes in mitosis. PLoS Pathog 2018; 14:e1007117. [PMID: 29906285 PMCID: PMC6021111 DOI: 10.1371/journal.ppat.1007117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/27/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022] Open
Abstract
The murine leukaemia virus (MLV) Gag cleavage product, p12, is essential for both early and late steps in viral replication. The N-terminal domain of p12 binds directly to capsid (CA) and stabilises the mature viral core, whereas defects in the C-terminal domain (CTD) of p12 can be rescued by addition of heterologous chromatin binding sequences (CBSs). We and others hypothesised that p12 tethers the pre-integration complex (PIC) to host chromatin ready for integration. Using confocal microscopy, we have observed for the first time that CA localises to mitotic chromatin in infected cells in a p12-dependent manner. GST-tagged p12 alone, however, did not localise to chromatin and mass-spectrometry analysis of its interactions identified only proteins known to bind the p12 region of Gag. Surprisingly, the ability to interact with chromatin was conferred by a single amino acid change, M63I, in the p12 CTD. Interestingly, GST-p12_M63I showed increased phosphorylation in mitosis relative to interphase, which correlated with an increased interaction with mitotic chromatin. Mass-spectrometry analysis of GST-p12_M63I revealed nucleosomal histones as primary interactants. Direct binding of MLV p12_M63I peptides to histones was confirmed by biolayer-interferometry (BLI) assays using highly-avid recombinant poly-nucleosomal arrays. Excitingly, using this method, we also observed binding between MLV p12_WT and nucleosomes. Nucleosome binding was additionally detected with p12 orthologs from feline and gibbon ape leukemia viruses using both pull-down and BLI assays, indicating that this a common feature of gammaretroviral p12 proteins. Importantly, p12 peptides were able to block the binding of the prototypic foamy virus CBS to nucleosomes and vice versa, implying that their docking sites overlap and suggesting a conserved mode of chromatin tethering for different retroviral genera. We propose that p12 is acting in a similar capacity to CPSF6 in HIV-1 infection by facilitating initial chromatin targeting of CA-containing PICs prior to integration.
Collapse
Affiliation(s)
- Madushi Wanaguru
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David J. Barry
- Advanced Light Microscopy Facility, The Francis Crick Institute, London, United Kingdom
| | - Donald J. Benton
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Kate N. Bishop
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
60
|
Abstract
Replication-defective retroviral vectors have been used for more than 25 years as a tool for efficient and stable insertion of therapeutic transgenes in human cells. Patients suffering from severe genetic diseases have been successfully treated by transplantation of autologous hematopoietic stem-progenitor cells (HSPCs) transduced with retroviral vectors, and the first of this class of therapies, Strimvelis, has recently received market authorization in Europe. Some clinical trials, however, resulted in severe adverse events caused by vector-induced proto-oncogene activation, which showed that retroviral vectors may retain a genotoxic potential associated to proviral integration in the human genome. The adverse events sparked a renewed interest in the biology of retroviruses, which led in a few years to a remarkable understanding of the molecular mechanisms underlying retroviral integration site selection within mammalian genomes. This review summarizes the current knowledge on retrovirus-host interactions at the genomic level, and the peculiar mechanisms by which different retroviruses, and their related gene transfer vectors, integrate in, and interact with, the human genome. This knowledge provides the basis for the development of safer and more efficacious retroviral vectors for human gene therapy.
Collapse
Affiliation(s)
| | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
61
|
Proviruses with Long-Term Stable Expression Accumulate in Transcriptionally Active Chromatin Close to the Gene Regulatory Elements: Comparison of ASLV-, HIV- and MLV-Derived Vectors. Viruses 2018. [PMID: 29517993 PMCID: PMC5869509 DOI: 10.3390/v10030116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Individual groups of retroviruses and retroviral vectors differ in their integration site preference and interaction with the host genome. Hence, immediately after infection genome-wide distribution of integrated proviruses is non-random. During long-term in vitro or persistent in vivo infection, the genomic position and chromatin environment of the provirus affects its transcriptional activity. Thus, a selection of long-term stably expressed proviruses and elimination of proviruses, which have been gradually silenced by epigenetic mechanisms, helps in the identification of genomic compartments permissive for proviral transcription. We compare here the extent and time course of provirus silencing in single cell clones of the K562 human myeloid lymphoblastoma cell line that have been infected with retroviral reporter vectors derived from avian sarcoma/leukosis virus (ASLV), human immunodeficiency virus type 1 (HIV) and murine leukaemia virus (MLV). While MLV proviruses remain transcriptionally active, ASLV proviruses are prone to rapid silencing. The HIV provirus displays gradual silencing only after an extended time period in culture. The analysis of integration sites of long-term stably expressed proviruses shows a strong bias for some genomic features-especially integration close to the transcription start sites of active transcription units. Furthermore, complex analysis of histone modifications enriched at the site of integration points to the accumulation of proviruses of all three groups in gene regulatory segments, particularly close to the enhancer loci. We conclude that the proximity to active regulatory chromatin segments correlates with stable provirus expression in various retroviral species.
Collapse
|
62
|
Irigoyen N, Dinan AM, Brierley I, Firth AE. Ribosome profiling of the retrovirus murine leukemia virus. Retrovirology 2018; 15:10. [PMID: 29357872 PMCID: PMC5778647 DOI: 10.1186/s12977-018-0394-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/15/2018] [Indexed: 11/11/2022] Open
Abstract
Background The retrovirus murine leukemia virus (MuLV) has an 8.3 kb RNA genome with a simple 5′-gag-pol-env-3′ architecture. Translation of the pol gene is dependent upon readthrough of the gag UAG stop codon; whereas the env gene is translated from spliced mRNA transcripts. Here, we report the first high resolution analysis of retrovirus gene expression through tandem ribosome profiling (RiboSeq) and RNA sequencing (RNASeq) of MuLV-infected cells. Results Ribosome profiling of MuLV-infected cells was performed, using the translational inhibitors harringtonine and cycloheximide to distinguish initiating and elongating ribosomes, respectively. Meta-analyses of host cell gene expression demonstrated that the RiboSeq datasets specifically captured the footprints of translating ribosomes at high resolution. Direct measurement of ribosomal occupancy of the MuLV genomic RNA indicated that ~ 7% of ribosomes undergo gag stop codon readthrough to access the pol gene. Initiation of translation was found to occur at several additional sites within the 5′ leaders of the gag and env transcripts, upstream of their respective annotated start codons. Conclusions These experiments reveal the existence of a number of previously uncharacterised, ribosomally occupied open reading frames within the MuLV genome, with possible regulatory consequences. In addition, we provide the first direct measurements of stop codon readthrough efficiency during cellular infection. Electronic supplementary material The online version of this article (10.1186/s12977-018-0394-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QP, UK
| | - Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QP, UK
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QP, UK
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QP, UK.
| |
Collapse
|
63
|
Abstract
Integration of the reverse-transcribed viral cDNA into the host's genome is a critical step in the lifecycle of all retroviruses. Retrovirus integration is carried out by integrase (IN), a virus-encoded enzyme that forms an oligomeric 'intasome' complex with both ends of the linear viral DNA to catalyze their concerted insertions into the backbones of the host's DNA. IN also forms a complex with host proteins, which guides the intasome to the host's chromosome. Recent structural studies have revealed remarkable diversity as well as conserved features among the architectures of the intasome assembly from different genera of retroviruses. This chapter will review how IN oligomerizes to achieve its function, with particular focus on alpharetrovirus including the avian retrovirus Rous sarcoma virus. Another chapter (Craigie) will focus on the structure and function of IN from HIV-1.
Collapse
Affiliation(s)
- Duane P Grandgenett
- Saint Louis University Health Sciences Center, Department of Microbiology and Immunology, Institute for Molecular Virology, Doisy Research Center, St. Louis, MO, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
64
|
Malhotra S, Winans S, Lam G, Justice J, Morgan R, Beemon K. Selection for avian leukosis virus integration sites determines the clonal progression of B-cell lymphomas. PLoS Pathog 2017; 13:e1006708. [PMID: 29099869 PMCID: PMC5687753 DOI: 10.1371/journal.ppat.1006708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/15/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022] Open
Abstract
Avian leukosis virus (ALV) is a simple retrovirus that causes a wide range of tumors in chickens, the most common of which are B-cell lymphomas. The viral genome integrates into the host genome and uses its strong promoter and enhancer sequences to alter the expression of nearby genes, frequently inducing tumors. In this study, we compare the preferences for ALV integration sites in cultured cells and in tumors, by analysis of over 87,000 unique integration sites. In tissue culture we observed integration was relatively random with slight preferences for genes, transcription start sites and CpG islands. We also observed a preference for integrations in or near expressed and spliced genes. The integration pattern in cultured cells changed over the course of selection for oncogenic characteristics in tumors. In comparison to tissue culture, ALV integrations are more highly selected for proximity to transcription start sites in tumors. There is also a significant selection of ALV integrations away from CpG islands in the highly clonally expanded cells in tumors. Additionally, we utilized a high throughput method to quantify the magnitude of clonality in different stages of tumorigenesis. An ALV-induced tumor carries between 700 and 3000 unique integrations, with an average of 2.3 to 4 copies of proviral DNA per infected cell. We observed increasing tumor clonality during progression of B-cell lymphomas and identified gene players (especially TERT and MYB) and biological processes involved in tumor progression. The Avian Leukosis Virus (ALV) is a simple retrovirus that causes cancer in chickens. The virus integrates its genome into the host genome and induces changes in expression of nearby genes. Here, we determine the sites of viral integrations and their role in the progression of tumors. We report pathways and novel gene players that might cooperate and play a role in the progression of B-cell lymphomas. Our study provides new insights into the changes during lymphoma initiation, progression, and metastasis, as a result of selection for specific ALV integration sites.
Collapse
Affiliation(s)
- Sanandan Malhotra
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shelby Winans
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gary Lam
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - James Justice
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Robin Morgan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Karen Beemon
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
65
|
Biasco L, Rothe M, Schott JW, Schambach A. Integrating Vectors for Gene Therapy and Clonal Tracking of Engineered Hematopoiesis. Hematol Oncol Clin North Am 2017; 31:737-752. [DOI: 10.1016/j.hoc.2017.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
66
|
Liu Q, Wang XF, Du C, Lin YZ, Ma J, Wang YH, Zhou JH, Wang X. The integration of a macrophage-adapted live vaccine strain of equine infectious anaemia virus (EIAV) in the horse genome. J Gen Virol 2017; 98:2596-2606. [PMID: 28884679 DOI: 10.1099/jgv.0.000918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Integration is an important feature of retroviruses and retrovirus-based therapeutic transfection vectors. The non-primate lentivirus equine infectious anaemia virus (EIAV) primarily targets macrophages/monocytes in vivo. Investigation of the integration features of EIAVDLV121 strains, which are adapted to donkey monocyte-derived macrophages (MDMs), is of great interest. In this study, we analysed the integration features of EIAVDLV121 in equine MDMs during in vitro infection. Our previously published integration sites (IS) for EIAVFDDV13 in fetal equine dermal (FED) cells were also analysed in parallel as references. Sequencing of the host genomic regions flanking the viral IS showed that reference sequence (RefSeq) genes were preferentially targeted for integration by EIAVDLV121. Introns, AT-rich regions, long interspersed nuclear elements (LINEs) and DNA transposons were also predominantly biased toward viral insertion, which is consistent with EIAVFDDV13 integration into the horse genome in FED cells. In addition, the most significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, specifically gag junctions for EIAVDLV121 and tight junctions for EIAVFDDV13, are regulators of metabolic function, which is consistent with the common bioprocesses, specifically cell cycle and chromosome/DNA organization, identified by gene ontology (GO) analysis. Our results demonstrate that EIAV integration occurs in regions that harbour structural and topological features of local chromatin in both macrophages and fibroblasts. Our data on EIAV will facilitate further understanding of lentivirus infection and the development of safer and more effective gene therapy vectors.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jian Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Yu-Hong Wang
- Department of Geriatrics, The First Affiliated Clinical College of Harbin Medical University, Harbin, PR China
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, PR China
| |
Collapse
|
67
|
Abstract
Integration is a key feature of the retroviral life cycle. This process involves packaging of the viral genome into chromatin, which is often assumed to occur as a post-integration step. In this issue of Cell Host & Microbe, Wang and colleagues (Wang et al., 2016) show that chromatinization occurs before integration, raising new questions about the role of histones in retroviral integration and transcription.
Collapse
Affiliation(s)
- Ibraheem Ali
- The Gladstone Institutes, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Ryan J Conrad
- The Gladstone Institutes, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Melanie Ott
- The Gladstone Institutes, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA.
| |
Collapse
|
68
|
Abstract
Advances in technology have made it possible to analyze integration sites in cells from HIV-infected patients. A significant fraction of infected cells in patients on long-term therapy are clonally expanded; in some cases the integrated viral DNA contributes to the clonal expansion of the infected cells. Although the large majority (>95%) of the HIV proviruses in treated patients are defective, expanded clones can carry replication-competent proviruses, and cells from these clones can release infectious virus. As discussed in this Perspective, it is likely that cells that produce virus are strongly selected against in vivo, and cells with replication competent proviruses expand and survive because only a small fraction of the cells produce virus. These findings have implications for strategies that are intended to eliminate the reservoir of infected cells that has made it almost impossible to cure HIV-infected patients.
Collapse
Affiliation(s)
- Stephen H Hughes
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA.
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
69
|
Mullins JI, Frenkel LM. Clonal Expansion of Human Immunodeficiency Virus-Infected Cells and Human Immunodeficiency Virus Persistence During Antiretroviral Therapy. J Infect Dis 2017; 215:S119-S127. [PMID: 28520966 DOI: 10.1093/infdis/jiw636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The latent HIV-1 reservoir in blood decays very slowly, even during prolonged suppression of viral replication by antiretroviral therapy (ART). Mechanisms for reservoir persistence include replenishment through low-level viral replication, longevity and homeostatic proliferation of memory T cells, and most recently appreciated, clonal expansion of HIV-infected cells. Clonally expanded cells make up a large and increasing fraction of the residual infected cell population on ART, and insertion of HIV proviruses into certain host cellular genes has been associated with this proliferation. That the vast majority of proviruses are defective clouds our assessment of the degree to which clonally expanded cells harbor infectious viruses, and thus the extent to which they contribute to reservoirs relevant to curing infection. This review summarizes past studies that have defined our current understanding and the gaps in our knowledge of the mechanisms by which proviral integration and clonal expansion sustain the HIV reservoir.
Collapse
Affiliation(s)
- James I Mullins
- Departments of Microbiology, Medicine, Global Health and Laboratory Medicine, University of Washington, Seattle, WA, US
| | - Lisa M Frenkel
- Departments of Pediatrics, Medicine, Global Health and Laboratory Medicine, University of Washington, Seattle, WA, US.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, US
| |
Collapse
|
70
|
Romano O, Cifola I, Poletti V, Severgnini M, Peano C, De Bellis G, Mavilio F, Miccio A. Retroviral Scanning: Mapping MLV Integration Sites to Define Cell-specific Regulatory Regions. J Vis Exp 2017. [PMID: 28605390 DOI: 10.3791/55919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Moloney murine leukemia (MLV) virus-based retroviral vectors integrate predominantly in acetylated enhancers and promoters. For this reason, mLV integration sites can be used as functional markers of active regulatory elements. Here, we present a retroviral scanning tool, which allows the genome-wide identification of cell-specific enhancers and promoters. Briefly, the target cell population is transduced with an mLV-derived vector and genomic DNA is digested with a frequently cutting restriction enzyme. After ligation of genomic fragments with a compatible DNA linker, linker-mediated polymerase chain reaction (LM-PCR) allows the amplification of the virus-host genome junctions. Massive sequencing of the amplicons is used to define the mLV integration profile genome-wide. Finally, clusters of recurrent integrations are defined to identify cell-specific regulatory regions, responsible for the activation of cell-type specific transcriptional programs. The retroviral scanning tool allows the genome-wide identification of cell-specific promoters and enhancers in prospectively isolated target cell populations. Notably, retroviral scanning represents an instrumental technique for the retrospective identification of rare populations (e.g. somatic stem cells) that lack robust markers for prospective isolation.
Collapse
Affiliation(s)
- Oriana Romano
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia; Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute
| | | | | | | | | | | | - Fulvio Mavilio
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia; Généthon
| | - Annarita Miccio
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia; Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute; Généthon; Sorbonne Paris Cité - Université Paris Descartes;
| |
Collapse
|
71
|
Abstract
The interactions between a retrovirus and host cell chromatin that underlie integration and provirus expression are poorly understood. The prototype foamy virus (PFV) structural protein GAG associates with chromosomes via a chromatin-binding sequence (CBS) located within its C-terminal region. Here, we show that the PFV CBS is essential and sufficient for a direct interaction with nucleosomes and present a crystal structure of the CBS bound to a mononucleosome. The CBS interacts with the histone octamer, engaging the H2A-H2B acidic patch in a manner similar to other acidic patch-binding proteins such as herpesvirus latency-associated nuclear antigen (LANA). Substitutions of the invariant arginine anchor residue in GAG result in global redistribution of PFV and macaque simian foamy virus (SFVmac) integration sites toward centromeres, dampening the resulting proviral expression without affecting the overall efficiency of integration. Our findings underscore the importance of retroviral structural proteins for integration site selection and the avoidance of genomic junkyards.
Collapse
|
72
|
Ackloo S, Brown PJ, Müller S. Chemical probes targeting epigenetic proteins: Applications beyond oncology. Epigenetics 2017; 12:378-400. [PMID: 28080202 PMCID: PMC5453191 DOI: 10.1080/15592294.2017.1279371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 12/15/2022] Open
Abstract
Epigenetic chemical probes are potent, cell-active, small molecule inhibitors or antagonists of specific domains in a protein; they have been indispensable for studying bromodomains and protein methyltransferases. The Structural Genomics Consortium (SGC), comprising scientists from academic and pharmaceutical laboratories, has generated most of the current epigenetic chemical probes. Moreover, the SGC has shared about 4 thousand aliquots of these probes, which have been used primarily for phenotypic profiling or to validate targets in cell lines or primary patient samples cultured in vitro. Epigenetic chemical probes have been critical tools in oncology research and have uncovered mechanistic insights into well-established targets, as well as identify new therapeutic starting points. Indeed, the literature primarily links epigenetic proteins to oncology, but applications in inflammation, viral, metabolic and neurodegenerative diseases are now being reported. We summarize the literature of these emerging applications and provide examples where existing probes might be used.
Collapse
Affiliation(s)
- Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straβe 15, Frankfurt am Main, Germany
| |
Collapse
|
73
|
El Ashkar S, Van Looveren D, Schenk F, Vranckx LS, Demeulemeester J, De Rijck J, Debyser Z, Modlich U, Gijsbers R. Engineering Next-Generation BET-Independent MLV Vectors for Safer Gene Therapy. MOLECULAR THERAPY-NUCLEIC ACIDS 2017. [PMID: 28624199 PMCID: PMC5415309 DOI: 10.1016/j.omtn.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retroviral vectors have shown their curative potential in clinical trials correcting monogenetic disorders. However, therapeutic benefits were compromised due to vector-induced dysregulation of cellular genes and leukemia development in a subset of patients. Bromodomain and extraterminal domain (BET) proteins act as cellular cofactors that tether the murine leukemia virus (MLV) pre-integration complex to host chromatin via interaction with the MLV integrase (IN) and thereby define the typical gammaretroviral integration distribution. We engineered next-generation BET-independent (Bin) MLV vectors to retarget their integration to regions where they are less likely to dysregulate nearby genes. We mutated MLV IN to uncouple BET protein interaction and fused it with chromatin-binding peptides. The addition of the CBX1 chromodomain to MLV INW390A efficiently targeted integration away from gene regulatory elements. The retargeted vector produced at high titers and efficiently transduced CD34+ hematopoietic stem cells, while fewer colonies were detected in a serial colony-forming assay, a surrogate test for genotoxicity. Our findings underscore the potential of the engineered vectors to reduce the risk of insertional mutagenesis without compromising transduction efficiency. Ultimately, combined with other safety features in vector design, next-generation BinMLV vectors can improve the safety of gammaretroviral vectors for gene therapy.
Collapse
Affiliation(s)
- Sara El Ashkar
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Franziska Schenk
- RG Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Lenard S Vranckx
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Jonas Demeulemeester
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Jan De Rijck
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Ute Modlich
- RG Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
74
|
The FACT Complex Promotes Avian Leukosis Virus DNA Integration. J Virol 2017; 91:JVI.00082-17. [PMID: 28122976 DOI: 10.1128/jvi.00082-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/25/2022] Open
Abstract
All retroviruses need to integrate a DNA copy of their genome into the host chromatin. Cellular proteins regulating and targeting lentiviral and gammaretroviral integration in infected cells have been discovered, but the factors that mediate alpharetroviral avian leukosis virus (ALV) integration are unknown. In this study, we have identified the FACT protein complex, which consists of SSRP1 and Spt16, as a principal cellular binding partner of ALV integrase (IN). Biochemical experiments with purified recombinant proteins show that SSRP1 and Spt16 are able to individually bind ALV IN, but only the FACT complex effectively stimulates ALV integration activity in vitro Likewise, in infected cells, the FACT complex promotes ALV integration activity, with proviral integration frequency varying directly with cellular expression levels of the FACT complex. An increase in 2-long-terminal-repeat (2-LTR) circles in the depleted FACT complex cell line indicates that this complex regulates the ALV life cycle at the level of integration. This regulation is shown to be specific to ALV, as disruption of the FACT complex did not inhibit either lentiviral or gammaretroviral integration in infected cells.IMPORTANCE The majority of human gene therapy approaches utilize HIV-1- or murine leukemia virus (MLV)-based vectors, which preferentially integrate near genes and regulatory regions; thus, insertional mutagenesis is a substantial risk. In contrast, ALV integrates more randomly throughout the genome, which decreases the risks of deleterious integration. Understanding how ALV integration is regulated could facilitate the development of ALV-based vectors for use in human gene therapy. Here we show that the FACT complex directly binds and regulates ALV integration efficiency in vitro and in infected cells.
Collapse
|
75
|
Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 2017; 18:292-308. [PMID: 28286338 DOI: 10.1038/nrg.2017.7] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposable elements and retroviruses are found in most genomes, can be pathogenic and are widely used as gene-delivery and functional genomics tools. Exploring whether these genetic elements target specific genomic sites for integration and how this preference is achieved is crucial to our understanding of genome evolution, somatic genome plasticity in cancer and ageing, host-parasite interactions and genome engineering applications. High-throughput profiling of integration sites by next-generation sequencing, combined with large-scale genomic data mining and cellular or biochemical approaches, has revealed that the insertions are usually non-random. The DNA sequence, chromatin and nuclear context, and cellular proteins cooperate in guiding integration in eukaryotic genomes, leading to a remarkable diversity of insertion site distribution and evolutionary strategies.
Collapse
|
76
|
Yoshida J, Akagi K, Misawa R, Kokubu C, Takeda J, Horie K. Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus. Sci Rep 2017; 7:43613. [PMID: 28252665 PMCID: PMC5333637 DOI: 10.1038/srep43613] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/26/2017] [Indexed: 12/31/2022] Open
Abstract
DNA transposons and retroviruses are versatile tools in functional genomics and gene therapy. To facilitate their application, we conducted a genome-wide insertion site profiling of the piggyBac (PB), Tol2 and Sleeping Beauty (SB) transposons and the murine leukemia virus (MLV) in mouse embryonic stem cells (ESCs). PB and MLV preferred highly expressed genes, whereas Tol2 and SB preferred weakly expressed genes. However, correlations with DNase I hypersensitive sites were different for all vectors, indicating that chromatin accessibility is not the sole determinant. Therefore, we analysed various chromatin states. PB and MLV highly correlated with Cohesin, Mediator and ESC-specific transcription factors. Notably, CTCF sites were correlated with PB but not with MLV, suggesting MLV prefers smaller promoter-enhancer loops, whereas PB insertion encompasses larger chromatin loops termed topologically associating domains. Tol2 also correlated with Cohesin and CTCF. However, correlations with ESC-specific transcription factors were weaker, suggesting that Tol2 prefers transcriptionally weak chromatin loops. Consistently, Tol2 insertions were associated with bivalent histone modifications characteristic of silent and inducible loci. SB showed minimum preference to all chromatin states, suggesting the least adverse effect on adjacent genes. These results will be useful for vector selection for various applications.
Collapse
Affiliation(s)
- Junko Yoshida
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keiko Akagi
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, USA
| | - Ryo Misawa
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Chikara Kokubu
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Junji Takeda
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
77
|
Guan R, Aiyer S, Cote ML, Xiao R, Jiang M, Acton TB, Roth MJ, Montelione GT. X-ray crystal structure of the N-terminal region of Moloney murine leukemia virus integrase and its implications for viral DNA recognition. Proteins 2017; 85:647-656. [PMID: 28066922 DOI: 10.1002/prot.25245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/15/2016] [Accepted: 11/23/2016] [Indexed: 01/26/2023]
Abstract
The retroviral integrase (IN) carries out the integration of a dsDNA copy of the viral genome into the host DNA, an essential step for viral replication. All IN proteins have three general domains, the N-terminal domain (NTD), the catalytic core domain, and the C-terminal domain. The NTD includes an HHCC zinc finger-like motif, which is conserved in all retroviral IN proteins. Two crystal structures of Moloney murine leukemia virus (M-MuLV) IN N-terminal region (NTR) constructs that both include an N-terminal extension domain (NED, residues 1-44) and an HHCC zinc-finger NTD (residues 45-105), in two crystal forms are reported. The structures of IN NTR constructs encoding residues 1-105 (NTR1-105 ) and 8-105 (NTR8-105 ) were determined at 2.7 and 2.15 Å resolution, respectively and belong to different space groups. While both crystal forms have similar protomer structures, NTR1-105 packs as a dimer and NTR8-105 packs as a tetramer in the asymmetric unit. The structure of the NED consists of three anti-parallel β-strands and an α-helix, similar to the NED of prototype foamy virus (PFV) IN. These three β-strands form an extended β-sheet with another β-strand in the HHCC Zn2+ binding domain, which is a unique structural feature for the M-MuLV IN. The HHCC Zn2+ binding domain structure is similar to that in HIV and PFV INs, with variations within the loop regions. Differences between the PFV and MLV IN NEDs localize at regions identified to interact with the PFV LTR and are compared with established biochemical and virological data for M-MuLV. Proteins 2017; 85:647-656. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rongjin Guan
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Sriram Aiyer
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Marie L Cote
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway, New Jersey, 08854
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Mei Jiang
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Thomas B Acton
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Monica J Roth
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854.,Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, Piscataway, New Jersey, 08854
| |
Collapse
|
78
|
The benefits of integration. Clin Microbiol Infect 2017; 22:324-332. [PMID: 27107301 DOI: 10.1016/j.cmi.2016.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 02/21/2016] [Accepted: 02/21/2016] [Indexed: 01/06/2023]
Abstract
Retroviruses, including the human immunodeficiency virus (HIV), are notorious for two essential steps of their viral replication: reverse transcription and integration. This latter property is considered to be essential for productive replication and ensures the stable long-term insertion of the viral genome sequence in the host chromatin, thereby leading to the life-long association of the virus with the infected cell. Using HIV as a prototypic example, the present review aims to provide an overview of how and where integration occurs, as well as presenting general consequences for both the virus and the infected host.
Collapse
|
79
|
Albagli O, Pelczar H. Le rôle des protéines BET dans l’intégration des γ-rétrovirus. Med Sci (Paris) 2017; 32:1071-1075. [DOI: 10.1051/medsci/20163212009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
80
|
Neil JC, Gilroy K, Borland G, Hay J, Terry A, Kilbey A. The RUNX Genes as Conditional Oncogenes: Insights from Retroviral Targeting and Mouse Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:247-264. [PMID: 28299662 DOI: 10.1007/978-981-10-3233-2_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The observation that the Runx genes act as targets for transcriptional activation by retroviral insertion identified a new family of dominant oncogenes. However, it is now clear that Runx genes are 'conditional' oncogenes whose over-expression is growth inhibitory unless accompanied by another event such as concomitant over-expression of MYC or loss of p53 function. Remarkably, while the oncogenic activities of either MYC or RUNX over-expression are suppressed while p53 is intact, the combination of both neutralises p53 tumour suppression in vivo by as yet unknown mechanisms. Moreover, there is emerging evidence that endogenous, basal RUNX activity is important to maintain the viability and proliferation of MYC-driven lymphoma cells. There is also growing evidence that the human RUNX genes play a similar conditional oncogenic role and are selected for over-expression in end-stage cancers of multiple types. Paradoxically, reduced RUNX activity can also predispose to cell immortalisation and transformation, particularly by mutant Ras. These apparently conflicting observations may be reconciled in a stage-specific model of RUNX involvement in cancer. A question that has yet to be fully addressed is the extent to which the three Runx genes are functionally redundant in cancer promotion and suppression.
Collapse
Affiliation(s)
- James C Neil
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK.
| | - Kathryn Gilroy
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Gillian Borland
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Jodie Hay
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Anne Terry
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Anna Kilbey
- Molecular Oncology Laboratory, Centre for Virus Research, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| |
Collapse
|
81
|
Sherman E, Nobles C, Berry CC, Six E, Wu Y, Dryga A, Malani N, Male F, Reddy S, Bailey A, Bittinger K, Everett JK, Caccavelli L, Drake MJ, Bates P, Hacein-Bey-Abina S, Cavazzana M, Bushman FD. INSPIIRED: A Pipeline for Quantitative Analysis of Sites of New DNA Integration in Cellular Genomes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 4:39-49. [PMID: 28344990 PMCID: PMC5363316 DOI: 10.1016/j.omtm.2016.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/15/2016] [Indexed: 01/24/2023]
Abstract
Integration of new DNA into cellular genomes mediates replication of retroviruses and transposons; integration reactions have also been adapted for use in human gene therapy. Tracking the distributions of integration sites is important to characterize populations of transduced cells and to monitor potential outgrow of pathogenic cell clones. Here, we describe a pipeline for quantitative analysis of integration site distributions named INSPIIRED (integration site pipeline for paired-end reads). We describe optimized biochemical steps for site isolation using Illumina paired-end sequencing, including new technology for suppressing recovery of unwanted contaminants, then software for alignment, quality control, and management of integration site sequences. During library preparation, DNAs are broken by sonication, so that after ligation-mediated PCR the number of ligation junction sites can be used to infer abundance of gene-modified cells. We generated integration sites of known positions in silico, and we describe optimization of sample processing parameters refined by comparison to truth. We also present a novel graph-theory-based method for quantifying integration sites in repeated sequences, and we characterize the consequences using synthetic and experimental data. In an accompanying paper, we describe an additional set of statistical tools for data analysis and visualization. Software is available at https://github.com/BushmanLab/INSPIIRED.
Collapse
Affiliation(s)
- Eric Sherman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Christopher Nobles
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Charles C Berry
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emmanuelle Six
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, 75014 Paris, France; Laboratory of Human Lymphohematopoiesis, INSERM 24, 75014 Paris, France
| | - Yinghua Wu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Anatoly Dryga
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Frances Male
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Shantan Reddy
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Aubrey Bailey
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Kyle Bittinger
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Laure Caccavelli
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Mary J Drake
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Salima Hacein-Bey-Abina
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| |
Collapse
|
82
|
Repression of the Chromatin-Tethering Domain of Murine Leukemia Virus p12. J Virol 2016; 90:11197-11207. [PMID: 27707926 DOI: 10.1128/jvi.01084-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/28/2016] [Indexed: 12/28/2022] Open
Abstract
Murine leukemia virus (MLV) p12, encoded within Gag, binds the viral preintegration complex (PIC) to the mitotic chromatin. This acts to anchor the viral PIC in the nucleus as the nuclear envelope re-forms postmitosis. Mutations within the p12 C terminus (p12 PM13 to PM15) block early stages in viral replication. Within the p12 PM13 region (p12 60PSPMA65), our studies indicated that chromatin tethering was not detected when the wild-type (WT) p12 protein (M63) was expressed as a green fluorescent protein (GFP) fusion; however, constructs bearing p12-I63 were tethered. N-terminal truncations of the activated p12-I63-GFP indicated that tethering increased further upon deletion of p12 25DLLTEDPPPY34, which includes the late domain required for viral assembly. The p12 PM15 sequence (p12 70RREPP74) is critical for wild-type viral viability; however, virions bearing the PM15 mutation (p12 70AAAAA74) with a second M63I mutant were viable, with a titer 18-fold lower than that of the WT. The p12 M63I mutation amplified chromatin tethering and compensated for the loss of chromatin binding of p12 PM15. Rescue of the p12-M63-PM15 nonviable mutant with prototype foamy virus (PFV) and Kaposi's sarcoma herpesvirus (KSHV) tethering sequences confirmed the function of p1270-74 in chromatin binding. Minimally, full-strength tethering was seen with only p12 61SPIASRLRGRR71 fused to GFP. These results indicate that the p12 C terminus alone is sufficient for chromatin binding and that the presence of the p12 25DLLTEDPPPY34 motif in the N terminus suppresses the ability to tether. IMPORTANCE This study defines a regulatory mechanism controlling the differential roles of the MLV p12 protein in early and late replication. During viral assembly and egress, the late domain within the p12 N terminus functions to bind host vesicle release factors. During viral entry, the C terminus of p12 is required for tethering to host mitotic chromosomes. Our studies indicate that the p12 domain including the PPPY late sequence temporally represses the p12 chromatin tethering motif. Maximal p12 tethering was identified with only an 11-amino-acid minimal chromatin tethering motif encoded at p1261-71 Within this region, the p12-M63I substitution switches p12 into a tethering-competent state, partially rescuing the p12-PM15 tethering mutant. A model for how this conformational change regulates early versus late functions is presented.
Collapse
|
83
|
Ngure M, Issur M, Shkriabai N, Liu HW, Cosa G, Kvaratskhelia M, Götte M. Interactions of the Disordered Domain II of Hepatitis C Virus NS5A with Cyclophilin A, NS5B, and Viral RNA Show Extensive Overlap. ACS Infect Dis 2016; 2:839-851. [PMID: 27676132 DOI: 10.1021/acsinfecdis.6b00143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Domain II of the nonstructural protein 5 (NS5A) of the hepatitis C virus (HCV) is involved in intermolecular interactions with the viral RNA genome, the RNA-dependent RNA polymerase NS5B, and the host factor cyclophilin A (CypA). However, domain II of NS5A (NS5ADII) is largely disordered, which makes it difficult to characterize the protein-protein or protein-nucleic acid interfaces. Here we utilized a mass spectrometry-based protein footprinting approach in attempts to characterize regions forming contacts between NS5ADII and its binding partners. In particular, we compared surface topologies of lysine and arginine residues in the context of free and bound NS5ADII. These experiments have led to the identification of an RNA binding motif (305RSRKFPR311) in an arginine-rich region of NS5ADII. Furthermore, we show that K308 is indispensable for both RNA and NS5B binding, whereas W316, further downstream, is essential for protein-protein interactions with CypA and NS5B. Most importantly, NS5ADII binding to NS5B involves a region associated with RNA binding within NS5B. This interaction down-regulated RNA synthesis by NS5B, suggesting that NS5ADII modulates the activity of NS5B and potentially regulates HCV replication.
Collapse
Affiliation(s)
- Marianne Ngure
- Department of Medical Microbiology and
Immunology, University of Alberta, 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Moheshwarnath Issur
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Nikoloz Shkriabai
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hsiao-Wei Liu
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
| | - Gonzalo Cosa
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Quebec H3A 0B8, Canada
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Matthias Götte
- Department of Medical Microbiology and
Immunology, University of Alberta, 6-020 Katz Group Centre, Edmonton, Alberta T6G 2E1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Quebec H3A 2B4, Canada
- Department
of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montréal, Quebec H3G 1Y6, Canada
| |
Collapse
|
84
|
Hotspots of MLV integration in the hematopoietic tumor genome. Oncogene 2016; 36:1169-1175. [PMID: 27721401 PMCID: PMC5340798 DOI: 10.1038/onc.2016.285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 01/16/2023]
Abstract
Extensive research has been performed regarding the integration sites of murine leukemia retrovirus (MLV) for the identification of proto-oncogenes. To date, the overlap of mutations within specific oligonucleotides across different tumor genomes has been regarded as a rare event; however, a recent study of MLV integration into the oncogene Zfp521 suggested the existence of a hotspot oligonucleotide for MLV integration. In the current review, we discuss the hotspots of MLV integration into several genes: c-Myc, Stat5a and N-myc, as well as ZFP521, as examined in tumor genomes. From this, MLV integration convergence within specific oligonucleotides is not necessarily a rare event. This short review aims to promote re-consideration of MLV integration within the tumor genome, which involves both well-known and potentially newly identified and novel mechanisms and specifications.
Collapse
|
85
|
Retargeted Foamy Virus Vectors Integrate Less Frequently Near Proto-oncogenes. Sci Rep 2016; 6:36610. [PMID: 27812034 PMCID: PMC5095648 DOI: 10.1038/srep36610] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
Retroviral gene therapy offers immense potential to treat many genetic diseases and has already shown efficacy in clinical trials. However, retroviral vector mediated genotoxicity remains a major challenge and clinically relevant approaches to reduce integration near genes and proto-oncogenes are needed. Foamy retroviral vectors have several advantages over gammaretroviral and lentiviral vectors including a potentially safer integration profile and a lower propensity to activate nearby genes. Here we successfully retargeted foamy retroviral vectors away from genes and into satellite regions enriched for trimethylated histone H3 at lysine 9 by modifying the foamy virus Gag and Pol proteins. Retargeted foamy retroviral vectors integrated near genes and proto-oncogenes less often (p < 0.001) than controls. Importantly, retargeted foamy retroviral vectors can be produced at high, clinically relevant titers (>107 transducing units/ml), and unlike other reported retargeting approaches engineered target cells are not needed to achieve retargeting. As proof of principle for use in the clinic we show efficient transduction and retargeting in human cord blood CD34+ cells. The modified Gag and Pol helper constructs we describe will allow any investigator to simply use these helper plasmids during vector production to retarget therapeutic foamy retroviral vectors.
Collapse
|
86
|
Towards a Safer, More Randomized Lentiviral Vector Integration Profile Exploring Artificial LEDGF Chimeras. PLoS One 2016; 11:e0164167. [PMID: 27788138 PMCID: PMC5082951 DOI: 10.1371/journal.pone.0164167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/20/2016] [Indexed: 11/19/2022] Open
Abstract
The capacity to integrate transgenes into the host cell genome makes retroviral vectors an interesting tool for gene therapy. Although stable insertion resulted in successful correction of several monogenic disorders, it also accounts for insertional mutagenesis, a major setback in otherwise successful clinical gene therapy trials due to leukemia development in a subset of treated patients. Despite improvements in vector design, their use is still not risk-free. Lentiviral vector (LV) integration is directed into active transcription units by LEDGF/p75, a host-cell protein co-opted by the viral integrase. We engineered LEDGF/p75-based hybrid tethers in an effort to elicit a more random integration pattern to increase biosafety, and potentially reduce proto-oncogene activation. We therefore truncated LEDGF/p75 by deleting the N-terminal chromatin-reading PWWP-domain, and replaced this domain with alternative pan-chromatin binding peptides. Expression of these LEDGF-hybrids in LEDGF-depleted cells efficiently rescued LV transduction and resulted in LV integrations that distributed more randomly throughout the host-cell genome. In addition, when considering safe harbor criteria, LV integration sites for these LEDGF-hybrids distributed more safely compared to LEDGF/p75-mediated integration in wild-type cells. This approach should be broadly applicable to introduce therapeutic or suicide genes for cell therapy, such as patient-specific iPS cells.
Collapse
|
87
|
Narayanavari SA, Chilkunda SS, Ivics Z, Izsvák Z. Sleeping Beauty transposition: from biology to applications. Crit Rev Biochem Mol Biol 2016; 52:18-44. [PMID: 27696897 DOI: 10.1080/10409238.2016.1237935] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host-transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications.
Collapse
Affiliation(s)
- Suneel A Narayanavari
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Shreevathsa S Chilkunda
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| | - Zoltán Ivics
- b Division of Medical Biotechnology , Paul Ehrlich Institute , Langen , Germany
| | - Zsuzsanna Izsvák
- a Mobile DNA , Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
| |
Collapse
|
88
|
Devaiah BN, Gegonne A, Singer DS. Bromodomain 4: a cellular Swiss army knife. J Leukoc Biol 2016; 100:679-686. [PMID: 27450555 DOI: 10.1189/jlb.2ri0616-250r] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022] Open
Abstract
Bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator that plays a pivotal role in cancer and inflammatory diseases. BRD4 binds and stays associated with chromatin during mitosis, bookmarking early G1 genes and reactivating transcription after mitotic silencing. BRD4 plays an important role in transcription, both as a passive scaffold via its recruitment of vital transcription factors and as an active kinase that phosphorylates RNA polymerase II, directly and indirectly regulating transcription. Through its HAT activity, BRD4 contributes to the maintenance of chromatin structure and nucleosome clearance. This review summarizes the known functions of BRD4 and proposes a model in which BRD4 actively coordinates chromatin structure and transcription.
Collapse
Affiliation(s)
- Ballachanda N Devaiah
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne Gegonne
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dinah S Singer
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
89
|
Abstract
The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3'-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications.
Collapse
Affiliation(s)
- Paul Lesbats
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School , 450 Brookline Avenue, Boston, Massachusetts 02215 United States
| | - Peter Cherepanov
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K.,Imperial College London , St-Mary's Campus, Norfolk Place, London, W2 1PG, U.K
| |
Collapse
|
90
|
Comparative Analysis of HIV-1 and Murine Leukemia Virus Three-Dimensional Nuclear Distributions. J Virol 2016; 90:5205-5209. [PMID: 26962222 DOI: 10.1128/jvi.03188-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/03/2016] [Indexed: 12/24/2022] Open
Abstract
Recent advances in fluorescence microscopy allow three-dimensional analysis of HIV-1 preintegration complexes in the nuclei of infected cells. To extend this investigation to gammaretroviruses, we engineered a fluorescent Moloney murine leukemia virus (MLV) system consisting of MLV-integrase fused to enhanced green fluorescent protein (MLV-IN-EGFP). A comparative analysis of lentiviral (HIV-1) and gammaretroviral (MLV) fluorescent complexes in the nuclei of infected cells revealed their different spatial distributions. This research tool has the potential to achieve new insight into the nuclear biology of these retroviruses.
Collapse
|
91
|
Morgan RA, Boyerinas B. Genetic Modification of T Cells. Biomedicines 2016; 4:biomedicines4020009. [PMID: 28536376 PMCID: PMC5344249 DOI: 10.3390/biomedicines4020009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Gene transfer technology and its application to human gene therapy greatly expanded in the last decade. One area of investigation that appears particularly promising is the transfer of new genetic material into T cells for the potential treatment of cancer. Herein, we describe several core technologies that now yield high-efficiency gene transfer into primary human T cells. These gene transfer techniques include viral-based gene transfer methods based on modified Retroviridae and non-viral methods such as DNA-based transposons and direct transfer of mRNA by electroporation. Where specific examples are cited, we emphasize the transfer of chimeric antigen receptors (CARs) to T cells, which permits engineered T cells to recognize potential tumor antigens.
Collapse
|
92
|
Romano O, Peano C, Tagliazucchi GM, Petiti L, Poletti V, Cocchiarella F, Rizzi E, Severgnini M, Cavazza A, Rossi C, Pagliaro P, Ambrosi A, Ferrari G, Bicciato S, De Bellis G, Mavilio F, Miccio A. Transcriptional, epigenetic and retroviral signatures identify regulatory regions involved in hematopoietic lineage commitment. Sci Rep 2016; 6:24724. [PMID: 27095295 PMCID: PMC4837375 DOI: 10.1038/srep24724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
Genome-wide approaches allow investigating the molecular circuitry wiring the genetic and epigenetic programs of human somatic stem cells. Hematopoietic stem/progenitor cells (HSPC) give rise to the different blood cell types; however, the molecular basis of human hematopoietic lineage commitment is poorly characterized. Here, we define the transcriptional and epigenetic profile of human HSPC and early myeloid and erythroid progenitors by a combination of Cap Analysis of Gene Expression (CAGE), ChIP-seq and Moloney leukemia virus (MLV) integration site mapping. Most promoters and transcripts were shared by HSPC and committed progenitors, while enhancers and super-enhancers consistently changed upon differentiation, indicating that lineage commitment is essentially regulated by enhancer elements. A significant fraction of CAGE promoters differentially expressed upon commitment were novel, harbored a chromatin enhancer signature, and may identify promoters and transcribed enhancers driving cell commitment. MLV-targeted genomic regions co-mapped with cell-specific active enhancers and super-enhancers. Expression analyses, together with an enhancer functional assay, indicate that MLV integration can be used to identify bona fide developmentally regulated enhancers. Overall, this study provides an overview of transcriptional and epigenetic changes associated to HSPC lineage commitment, and a novel signature for regulatory elements involved in cell identity.
Collapse
Affiliation(s)
- Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.,INSERM UMR 1163, Laboratory of chromatin and gene regulation during development, Paris, France
| | - Clelia Peano
- Institute of Biomedical Technologies, CNR, Milan, Italy
| | | | - Luca Petiti
- Institute of Biomedical Technologies, CNR, Milan, Italy
| | | | | | - Ermanno Rizzi
- Institute of Biomedical Technologies, CNR, Milan, Italy.,Telethon Foundation, Milan, Italy
| | | | - Alessia Cavazza
- Dana Farber Cancer Institute, Harvard Medical School, Boston, US
| | - Claudia Rossi
- San Raffaele-Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Pasqualepaolo Pagliaro
- Az. Osp. Policlinico Universitario di Bologna, Policlinico S. Orsola-Malpighi, Unità Operativa di Immunoematologia e Trasfusionale, Bologna, Italy
| | | | - Giuliana Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Silvio Bicciato
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Genethon, Evry, France
| | - Annarita Miccio
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,INSERM UMR 1163, Laboratory of chromatin and gene regulation during development, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
93
|
Gilroy KL, Terry A, Naseer A, de Ridder J, Allahyar A, Wang W, Carpenter E, Mason A, Wong GKS, Cameron ER, Kilbey A, Neil JC. Gamma-Retrovirus Integration Marks Cell Type-Specific Cancer Genes: A Novel Profiling Tool in Cancer Genomics. PLoS One 2016; 11:e0154070. [PMID: 27097319 PMCID: PMC4838236 DOI: 10.1371/journal.pone.0154070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/10/2016] [Indexed: 01/09/2023] Open
Abstract
Retroviruses have been foundational in cancer research since early studies identified proto-oncogenes as targets for insertional mutagenesis. Integration of murine gamma-retroviruses into the host genome favours promoters and enhancers and entails interaction of viral integrase with host BET/bromodomain factors. We report that this integration pattern is conserved in feline leukaemia virus (FeLV), a gamma-retrovirus that infects many human cell types. Analysis of FeLV insertion sites in the MCF-7 mammary carcinoma cell line revealed strong bias towards active chromatin marks with no evidence of significant post-integration growth selection. The most prominent FeLV integration targets had little overlap with the most abundantly expressed transcripts, but were strongly enriched for annotated cancer genes. A meta-analysis based on several gamma-retrovirus integration profiling (GRIP) studies in human cells (CD34+, K562, HepG2) revealed a similar cancer gene bias but also remarkable cell-type specificity, with prominent exceptions including a universal integration hotspot at the long non-coding RNA MALAT1. Comparison of GRIP targets with databases of super-enhancers from the same cell lines showed that these have only limited overlap and that GRIP provides unique insights into the upstream drivers of cell growth. These observations elucidate the oncogenic potency of the gamma-retroviruses and support the wider application of GRIP to identify the genes and growth regulatory circuits that drive distinct cancer types.
Collapse
Affiliation(s)
- Kathryn L. Gilroy
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (JCN); (KLG)
| | - Anne Terry
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Asif Naseer
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jeroen de Ridder
- Delft Bioinformatics Lab, Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Amin Allahyar
- Delft Bioinformatics Lab, Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Weiwei Wang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Eric Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew Mason
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada
| | - Gane K-S. Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ewan R. Cameron
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anna Kilbey
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James C. Neil
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (JCN); (KLG)
| |
Collapse
|
94
|
Genome-Wide Analysis of Transposon and Retroviral Insertions Reveals Preferential Integrations in Regions of DNA Flexibility. G3-GENES GENOMES GENETICS 2016; 6:805-17. [PMID: 26818075 PMCID: PMC4825651 DOI: 10.1534/g3.115.026849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA transposons and retroviruses are important transgenic tools for genome engineering. An important consideration affecting the choice of transgenic vector is their insertion site preferences. Previous large-scale analyses of Ds transposon integration sites in plants were done on the basis of reporter gene expression or germ-line transmission, making it difficult to discern vertebrate integration preferences. Here, we compare over 1300 Ds transposon integration sites in zebrafish with Tol2 transposon and retroviral integration sites. Genome-wide analysis shows that Ds integration sites in the presence or absence of marker selection are remarkably similar and distributed throughout the genome. No strict motif was found, but a preference for structural features in the target DNA associated with DNA flexibility (Twist, Tilt, Rise, Roll, Shift, and Slide) was observed. Remarkably, this feature is also found in transposon and retroviral integrations in maize and mouse cells. Our findings show that structural features influence the integration of heterologous DNA in genomes, and have implications for targeted genome engineering.
Collapse
|
95
|
Cavazza A, Miccio A, Romano O, Petiti L, Malagoli Tagliazucchi G, Peano C, Severgnini M, Rizzi E, De Bellis G, Bicciato S, Mavilio F. Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation. Stem Cell Reports 2016; 6:618-632. [PMID: 27050947 PMCID: PMC4834057 DOI: 10.1016/j.stemcr.2016.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 12/20/2022] Open
Abstract
Human skin is maintained by the differentiation and maturation of interfollicular stem and progenitors cells. We used DeepCAGE, genome-wide profiling of histone modifications and retroviral integration analysis, to map transcripts, promoters, enhancers, and super-enhancers (SEs) in prospectively isolated keratinocytes and transit-amplifying progenitors, and retrospectively defined keratinocyte stem cells. We show that >95% of the active promoters are in common and differentially regulated in progenitors and differentiated keratinocytes, while approximately half of the enhancers and SEs are stage specific and account for most of the epigenetic changes occurring during differentiation. Transcription factor (TF) motif identification and correlation with TF binding site maps allowed the identification of TF circuitries acting on enhancers and SEs during differentiation. Overall, our study provides a broad, genome-wide description of chromatin dynamics and differential enhancer and promoter usage during epithelial differentiation, and describes a novel approach to identify active regulatory elements in rare stem cell populations. Differentiation of epidermal progenitors is accompanied by enhancer remodeling A TF circuitry operating on super-enhancers regulates epidermal differentiation TP63 is a key master regulator of stage-specific super-enhancers MLV integration marks enhancers in retrospectively defined epidermal stem cells
Collapse
Affiliation(s)
- Alessia Cavazza
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luca Petiti
- Institute for Biomedical Technologies, National Research Council, 20132 Milan, Italy
| | | | - Clelia Peano
- Institute for Biomedical Technologies, National Research Council, 20132 Milan, Italy
| | - Marco Severgnini
- Institute for Biomedical Technologies, National Research Council, 20132 Milan, Italy
| | - Ermanno Rizzi
- Institute for Biomedical Technologies, National Research Council, 20132 Milan, Italy
| | - Gianluca De Bellis
- Institute for Biomedical Technologies, National Research Council, 20132 Milan, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; Genethon, 1bis rue de l'Internationale, 91002 Evry, France.
| |
Collapse
|
96
|
Serrao E, Cherepanov P, Engelman AN. Amplification, Next-generation Sequencing, and Genomic DNA Mapping of Retroviral Integration Sites. J Vis Exp 2016. [PMID: 27023428 DOI: 10.3791/53840] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Retroviruses exhibit signature integration preferences on both the local and global scales. Here, we present a detailed protocol for (1) generation of diverse libraries of retroviral integration sites using ligation-mediated PCR (LM-PCR) amplification and next-generation sequencing (NGS), (2) mapping the genomic location of each virus-host junction using BEDTools, and (3) analyzing the data for statistical relevance. Genomic DNA extracted from infected cells is fragmented by digestion with restriction enzymes or by sonication. After suitable DNA end-repair, double-stranded linkers are ligated onto the DNA ends, and semi-nested PCR is conducted using primers complementary to both the long terminal repeat (LTR) end of the virus and the ligated linker DNA. The PCR primers carry sequences required for DNA clustering during NGS, negating the requirement for separate adapter ligation. Quality control (QC) is conducted to assess DNA fragment size distribution and adapter DNA incorporation prior to NGS. Sequence output files are filtered for LTR-containing reads, and the sequences defining the LTR and the linker are cropped away. Trimmed host cell sequences are mapped to a reference genome using BLAT and are filtered for minimally 97% identity to a unique point in the reference genome. Unique integration sites are scrutinized for adjacent nucleotide (nt) sequence and distribution relative to various genomic features. Using this protocol, integration site libraries of high complexity can be constructed from genomic DNA in three days. The entire protocol that encompasses exogenous viral infection of susceptible tissue culture cells to integration site analysis can therefore be conducted in approximately one to two weeks. Recent applications of this technology pertain to longitudinal analysis of integration sites from HIV-infected patients.
Collapse
Affiliation(s)
- Erik Serrao
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute
| | | | - Alan N Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute;
| |
Collapse
|
97
|
Abstract
Long terminal repeat (LTR) retrotransposons constitute significant fractions of many eukaryotic genomes. Two ancient families are Ty1/Copia (Pseudoviridae) and Ty3/Gypsy (Metaviridae). The Ty3/Gypsy family probably gave rise to retroviruses based on the domain order, similarity of sequences, and the envelopes encoded by some members. The Ty3 element of Saccharomyces cerevisiae is one of the most completely characterized elements at the molecular level. Ty3 is induced in mating cells by pheromone stimulation of the mitogen-activated protein kinase pathway as cells accumulate in G1. The two Ty3 open reading frames are translated into Gag3 and Gag3-Pol3 polyprotein precursors. In haploid mating cells Gag3 and Gag3-Pol3 are assembled together with Ty3 genomic RNA into immature virus-like particles in cellular foci containing RNA processing body proteins. Virus-like particle Gag3 is then processed by Ty3 protease into capsid, spacer, and nucleocapsid, and Gag3-Pol3 into those proteins and additionally, protease, reverse transcriptase, and integrase. After haploid cells mate and become diploid, genomic RNA is reverse transcribed into cDNA. Ty3 integration complexes interact with components of the RNA polymerase III transcription complex resulting in Ty3 integration precisely at the transcription start site. Ty3 activation during mating enables proliferation of Ty3 between genomes and has intriguing parallels with metazoan retrotransposon activation in germ cell lineages. Identification of nuclear pore, DNA replication, transcription, and repair host factors that affect retrotransposition has provided insights into how hosts and retrotransposons interact to balance genome stability and plasticity.
Collapse
|
98
|
Structure of the Brd4 ET domain bound to a C-terminal motif from γ-retroviral integrases reveals a conserved mechanism of interaction. Proc Natl Acad Sci U S A 2016; 113:2086-91. [PMID: 26858406 DOI: 10.1073/pnas.1516813113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The bromodomain and extraterminal domain (BET) protein family are promising therapeutic targets for a range of diseases linked to transcriptional activation, cancer, viral latency, and viral integration. Tandem bromodomains selectively tether BET proteins to chromatin by engaging cognate acetylated histone marks, and the extraterminal (ET) domain is the focal point for recruiting a range of cellular and viral proteins. BET proteins guide γ-retroviral integration to transcription start sites and enhancers through bimodal interaction with chromatin and the γ-retroviral integrase (IN). We report the NMR-derived solution structure of the Brd4 ET domain bound to a conserved peptide sequence from the C terminus of murine leukemia virus (MLV) IN. The complex reveals a protein-protein interaction governed by the binding-coupled folding of disordered regions in both interacting partners to form a well-structured intermolecular three-stranded β sheet. In addition, we show that a peptide comprising the ET binding motif (EBM) of MLV IN can disrupt the cognate interaction of Brd4 with NSD3, and that substitutions of Brd4 ET residues essential for binding MLV IN also impair interaction of Brd4 with a number of cellular partners involved in transcriptional regulation and chromatin remodeling. This suggests that γ-retroviruses have evolved the EBM to mimic a cognate interaction motif to achieve effective integration in host chromatin. Collectively, our findings identify key structural features of the ET domain of Brd4 that allow for interactions with both cellular and viral proteins.
Collapse
|
99
|
Genome-wide Profiling Reveals Remarkable Parallels Between Insertion Site Selection Properties of the MLV Retrovirus and the piggyBac Transposon in Primary Human CD4(+) T Cells. Mol Ther 2016; 24:592-606. [PMID: 26755332 PMCID: PMC4786924 DOI: 10.1038/mt.2016.11] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/06/2016] [Indexed: 12/17/2022] Open
Abstract
The inherent risks associated with vector insertion in gene therapy need to be carefully assessed. We analyzed the genome-wide distributions of Sleeping Beauty (SB) and piggyBac (PB) transposon insertions as well as MLV retrovirus and HIV lentivirus insertions in human CD4+ T cells with respect to a panel of 40 chromatin states. The distribution of SB transposon insertions displayed the least deviation from random, while the PB transposon and the MLV retrovirus showed unexpected parallels across all chromatin states. Both MLV and PB insertions are enriched at transcriptional start sites (TSSs) and co-localize with BRD4-associated sites. We demonstrate physical interaction between the PB transposase and bromodomain and extraterminal domain proteins (including BRD4), suggesting convergent evolution of a tethering mechanism that directs integrating genetic elements into TSSs. We detect unequal biases across the four systems with respect to targeting genes whose deregulation has been previously linked to serious adverse events in gene therapy clinical trials. The SB transposon has the highest theoretical chance of targeting a safe harbor locus in the human genome. The data underscore the significance of vector choice to reduce the mutagenic load on cells in clinical applications.
Collapse
|
100
|
Abstract
Avian leukosis virus (ALV) induces B-cell lymphoma and other neoplasms in chickens by integrating within or near cancer genes and perturbing their expression. Four genes—MYC, MYB, Mir-155, and TERT—have previously been identified as common integration sites in these virus-induced lymphomas and are thought to play a causal role in tumorigenesis. In this study, we employ high-throughput sequencing to identify additional genes driving tumorigenesis in ALV-induced B-cell lymphomas. In addition to the four genes implicated previously, we identify other genes as common integration sites, including TNFRSF1A, MEF2C, CTDSPL, TAB2, RUNX1, MLL5, CXorf57, and BACH2. We also analyze the genome-wide ALV integration landscape in vivo and find increased frequency of ALV integration near transcriptional start sites and within transcripts. Previous work has shown ALV prefers a weak consensus sequence for integration in cultured human cells. We confirm this consensus sequence for ALV integration in vivo in the chicken genome. Avian leukosis virus induces B-cell lymphomas in chickens. Earlier studies showed that ALV can induce tumors through insertional mutagenesis, and several genes have been implicated in the development of these tumors. In this study, we use high-throughput sequencing to reveal the genome-wide ALV integration landscape in ALV-induced B-cell lymphomas. We find elevated levels of ALV integration near transcription start sites and use common integration site analysis to greatly expand the number of genes implicated in the development of these tumors. Interestingly, we identify several genes targeted by viral insertions that have not been previously shown to be involved in cancer.
Collapse
|