51
|
The Helicobacter pylori CZB Cytoplasmic Chemoreceptor TlpD Forms an Autonomous Polar Chemotaxis Signaling Complex That Mediates a Tactic Response to Oxidative Stress. J Bacteriol 2016; 198:1563-75. [PMID: 27002127 DOI: 10.1128/jb.00071-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/11/2016] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Cytoplasmic chemoreceptors are widespread among prokaryotes but are far less understood than transmembrane chemoreceptors, despite being implicated in many processes. One such cytoplasmic chemoreceptor is Helicobacter pylori TlpD, which is required for stomach colonization and drives a chemotaxis response to cellular energy levels. Neither the signals sensed by TlpD nor its molecular mechanisms of action are known. We report here that TlpD functions independently of the other chemoreceptors. When TlpD is the sole chemoreceptor, it is able to localize to the pole and recruits CheW, CheA, and at least two CheV proteins to this location. It loses the normal membrane association that appears to be driven by interactions with other chemoreceptors and with CheW, CheV1, and CheA. These results suggest that TlpD can form an autonomous signaling unit. We further determined that TlpD mediates a repellent chemotaxis response to conditions that promote oxidative stress, including being in the presence of iron, hydrogen peroxide, paraquat, and metronidazole. Last, we found that all tested H. pylori strains express TlpD, whereas other chemoreceptors were present to various degrees. Our data suggest a model in which TlpD coordinates a signaling complex that responds to oxidative stress and may allow H. pylori to avoid areas of the stomach with high concentrations of reactive oxygen species. IMPORTANCE Helicobacter pylori senses its environment with proteins called chemoreceptors. Chemoreceptors integrate this sensory information to affect flagellum-based motility in a process called chemotaxis. Chemotaxis is employed during infection and presumably aids H. pylori in encountering and colonizing preferred niches. A cytoplasmic chemoreceptor named TlpD is particularly important in this process, and we report here that this chemoreceptor is able to operate independently of other chemoreceptors to organize a chemotaxis signaling complex and mediate a repellent response to oxidative stress conditions. H. pylori encounters and must cope with oxidative stress during infection due to oxygen and reactive oxygen species produced by host cells. TlpD's repellent response may allow the bacteria to escape niches experiencing inflammation and elevated reactive oxygen species (ROS) production.
Collapse
|
52
|
Scholz CFP, Brüggemann H, Lomholt HB, Tettelin H, Kilian M. Genome stability of Propionibacterium acnes: a comprehensive study of indels and homopolymeric tracts. Sci Rep 2016; 6:20662. [PMID: 26857276 PMCID: PMC4746626 DOI: 10.1038/srep20662] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/11/2016] [Indexed: 01/06/2023] Open
Abstract
We present a species-wide comparative analysis of 90 genomes of Propionibacterium acnes that represent the known diversity of the species. Our results are augmented by six high-quality genomes and a manual investigation of all gene-sized indels found in the strains. Overall, the order of genes is conserved throughout the species. A public sybil database for easy comparative analysis of the 90 genomes was established. The analysis of indels revealed a total of 66 loci of non-core genes that correlate with phylogenetic clades. No gene was strain-specific in agreement with our conclusion that the P. acnes pan-genome is closed. An exhaustive search for homopolymeric tracts (HPTs) identified a total of 54 variable-length HPTs almost exclusively of guanine/cytosines located between genes or affecting the reading frame of genes. The repeat variation was consistent with phylogenetic clades suggesting slow accumulation over time rather than active modification. By transcriptome analysis we demonstrate how an HPT variation can affect the gene expression levels. Selected cases of both indels and HPTs are described. The catalogued data and the public P. acnes Sybil database provide a solid foundation for generating hypotheses and facilitate comparative genetic analyses in future P. acnes research.
Collapse
Affiliation(s)
| | | | | | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, USA
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, Denmark
| |
Collapse
|
53
|
Keilberg D, Ottemann KM. HowHelicobacter pylorisenses, targets and interacts with the gastric epithelium. Environ Microbiol 2016; 18:791-806. [DOI: 10.1111/1462-2920.13222] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/05/2016] [Accepted: 01/10/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Daniela Keilberg
- Department of Microbiology and Environmental Toxicology; University of California Santa Cruz; 1156 High Street METX Santa Cruz CA 95064 USA
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology; University of California Santa Cruz; 1156 High Street METX Santa Cruz CA 95064 USA
| |
Collapse
|
54
|
Abstract
RNA family models describe classes of functionally related, non-coding RNAs based on sequence and structure conservation. The most important method for modeling RNA families is the use of covariance models, which are stochastic models that serve in the discovery of yet unknown, homologous RNAs. However, the performance of covariance models in finding remote homologs is poor for RNA families with high sequence conservation, while for families with high structure but low sequence conservation, these models are difficult to built in the first place. A complementary approach to RNA family modeling involves the use of thermodynamic matchers. Thermodynamic matchers are RNA folding programs, based on the established thermodynamic model, but tailored to a specific structural motif. As thermodynamic matchers focus on structure and folding energy, they unfold their potential in discovering homologs, when high structure conservation is paired with low sequence conservation. In contrast to covariance models, construction of thermodynamic matchers does not require an input alignment, but requires human design decisions and experimentation, and hence, model construction is more laborious. Here we report a case study on an RNA family that was constructed by means of thermodynamic matchers. It starts from a set of known but structurally different members of the same RNA family. The consensus secondary structure of this family consists of 2 to 4 adjacent hairpins. Each hairpin loop carries the same motif, CCUCCUCCC, while the stems show high variability in their nucleotide content. The present study describes (1) a novel approach for the integration of the structurally varying family into a single RNA family model by means of the thermodynamic matcher methodology, and (2) provides the results of homology searches that were conducted with this model in a wide spectrum of bacterial species.
Collapse
Key Words
- CIN, conserved intergenic neighborhood
- CM, covariance model
- HMM, hidden Markov model
- MFE, minimum free energy
- OG, orthologous group of genes
- RBS, ribosome binding site
- RFM, RNA family model
- TDM, thermodynamic matcher
- aSD, anti Shine-Dalgarno
- alphaproteobacteria
- cuckoo RNA
- dRNA-seq, differential RNA sequencing
- family model
- homology search
- sRNA, small non-coding RNA
- small RNA
- structural RNA
- thermodynamic matcher
Collapse
Affiliation(s)
- Jan Reinkensmeier
- a Universität Bielefeld ; Technische Fakultät and Center of Biotechnology ; Bielefeld , Germany
| | | |
Collapse
|
55
|
Le MT, van Veldhuizen M, Porcelli I, Bongaerts RJ, Gaskin DJH, Pearson BM, van Vliet AHM. Conservation of σ28-Dependent Non-Coding RNA Paralogs and Predicted σ54-Dependent Targets in Thermophilic Campylobacter Species. PLoS One 2015; 10:e0141627. [PMID: 26512728 PMCID: PMC4626219 DOI: 10.1371/journal.pone.0141627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/09/2015] [Indexed: 12/28/2022] Open
Abstract
Assembly of flagella requires strict hierarchical and temporal control via flagellar sigma and anti-sigma factors, regulatory proteins and the assembly complex itself, but to date non-coding RNAs (ncRNAs) have not been described to regulate genes directly involved in flagellar assembly. In this study we have investigated the possible role of two ncRNA paralogs (CjNC1, CjNC4) in flagellar assembly and gene regulation of the diarrhoeal pathogen Campylobacter jejuni. CjNC1 and CjNC4 are 37/44 nt identical and predicted to target the 5' untranslated region (5' UTR) of genes transcribed from the flagellar sigma factor σ54. Orthologs of the σ54-dependent 5' UTRs and ncRNAs are present in the genomes of other thermophilic Campylobacter species, and transcription of CjNC1 and CNC4 is dependent on the flagellar sigma factor σ28. Surprisingly, inactivation and overexpression of CjNC1 and CjNC4 did not affect growth, motility or flagella-associated phenotypes such as autoagglutination. However, CjNC1 and CjNC4 were able to mediate sequence-dependent, but Hfq-independent, partial repression of fluorescence of predicted target 5' UTRs in an Escherichia coli-based GFP reporter gene system. This hints towards a subtle role for the CjNC1 and CjNC4 ncRNAs in post-transcriptional gene regulation in thermophilic Campylobacter species, and suggests that the currently used phenotypic methodologies are insufficiently sensitive to detect such subtle phenotypes. The lack of a role of Hfq in the E. coli GFP-based system indicates that the CjNC1 and CjNC4 ncRNAs may mediate post-transcriptional gene regulation in ways that do not conform to the paradigms obtained from the Enterobacteriaceae.
Collapse
Affiliation(s)
- My Thanh Le
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Mart van Veldhuizen
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Ida Porcelli
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Roy J. Bongaerts
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Duncan J. H. Gaskin
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Bruce M. Pearson
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Arnoud H. M. van Vliet
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
56
|
Barquist L, Vogel J. Accelerating Discovery and Functional Analysis of Small RNAs with New Technologies. Annu Rev Genet 2015; 49:367-94. [PMID: 26473381 DOI: 10.1146/annurev-genet-112414-054804] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, bacterial small RNAs (sRNAs) have gone from a biological curiosity to being recognized as a major class of regulatory molecules. High-throughput methods for sampling the transcriptional output of bacterial cells demonstrate that sRNAs are universal features of bacterial transcriptomes, are plentiful, and appear to vary extensively over evolutionary time. With ever more bacteria coming under study, the question becomes how can we accelerate the discovery and functional characterization of sRNAs in diverse organisms. New technologies built on high-throughput sequencing are emerging that can rapidly provide global insight into the numbers and functions of sRNAs in bacteria of interest, providing information that can shape hypotheses and guide research. In this review, we describe recent developments in transcriptomics (RNA-seq) and functional genomics that we expect to help us develop an integrated, systems-level view of sRNA biology in bacteria.
Collapse
Affiliation(s)
- Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; ,
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; ,
| |
Collapse
|
57
|
Huang JY, Sweeney EG, Sigal M, Zhang HC, Remington SJ, Cantrell MA, Kuo CJ, Guillemin K, Amieva MR. Chemodetection and Destruction of Host Urea Allows Helicobacter pylori to Locate the Epithelium. Cell Host Microbe 2015; 18:147-56. [PMID: 26269952 PMCID: PMC4593702 DOI: 10.1016/j.chom.2015.07.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/08/2015] [Accepted: 07/07/2015] [Indexed: 01/10/2023]
Abstract
The gastric pathogen Helicobacter pylori interacts intimately with the gastric mucosa to avoid the microbicidal acid in the stomach lumen. The cues H. pylori senses to locate and colonize the gastric epithelium have not been well defined. We show that metabolites emanating from human gastric organoids rapidly attract H. pylori. This response is largely controlled by the bacterial chemoreceptor TlpB, and the main attractant emanating from epithelia is urea. Our previous structural analyses show that TlpB binds urea with high affinity. Here we demonstrate that this tight binding controls highly sensitive responses, allowing detection of urea concentrations as low as 50 nM. Attraction to urea requires that H. pylori urease simultaneously destroys the signal. We propose that H. pylori has evolved a sensitive urea chemodetection and destruction system that allows the bacterium to dynamically and locally modify the host environment to locate the epithelium.
Collapse
Affiliation(s)
- Julie Y Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Michael Sigal
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hai C Zhang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - S James Remington
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Physics, University of Oregon, Eugene, OR 97403, USA
| | - Michael A Cantrell
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
58
|
Stable isotope labeling by amino acids in cell culture based proteomics reveals differences in protein abundances between spiral and coccoid forms of the gastric pathogen Helicobacter pylori. J Proteomics 2015; 126:34-45. [DOI: 10.1016/j.jprot.2015.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/20/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023]
|
59
|
Bischler T, Tan HS, Nieselt K, Sharma CM. Differential RNA-seq (dRNA-seq) for annotation of transcriptional start sites and small RNAs in Helicobacter pylori. Methods 2015; 86:89-101. [PMID: 26091613 DOI: 10.1016/j.ymeth.2015.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/07/2015] [Accepted: 06/09/2015] [Indexed: 12/29/2022] Open
Abstract
The global mapping of transcription boundaries is a key step in the elucidation of the full complement of transcriptional features of an organism. It facilitates the annotation of operons and untranslated regions as well as novel transcripts, including cis- and trans-encoded small RNAs (sRNAs). So called RNA sequencing (RNA-seq) based on deep sequencing of cDNAs has greatly facilitated transcript mapping with single nucleotide resolution. However, conventional RNA-seq approaches typically cannot distinguish between primary and processed transcripts. Here we describe the recently developed differential RNA-seq (dRNA-seq) approach, which facilitates the annotation of transcriptional start sites (TSS) based on deep sequencing of two differentially treated cDNA library pairs, with one library being enriched for primary transcripts. Using the human pathogen Helicobacter pylori as a model organism, we describe the application of dRNA-seq together with an automated TSS annotation approach for generation of a genome-wide TSS map in bacteria. Besides a description of transcriptome and regulatory features that can be identified by this approach, we discuss the impact of different library preparation protocols and sequencing platforms as well as manual and automated TSS annotation. Moreover, we have set up an easily accessible online browser for visualization of the H. pylori transcriptome data from this and our previous H. pylori dRNA-seq study.
Collapse
Affiliation(s)
- Thorsten Bischler
- Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2/Bau D15, 97080 Würzburg, Germany
| | - Hock Siew Tan
- Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2/Bau D15, 97080 Würzburg, Germany
| | - Kay Nieselt
- Integrative Transcriptomics, ZBIT (Center for Bioinformatics Tübingen), University of Tübingen, Sand 14, D-72076 Tübingen, Germany
| | - Cynthia M Sharma
- Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2/Bau D15, 97080 Würzburg, Germany.
| |
Collapse
|
60
|
|
61
|
Sengar A, Heddi B, Phan AT. Formation of G-quadruplexes in poly-G sequences: structure of a propeller-type parallel-stranded G-quadruplex formed by a G₁₅ stretch. Biochemistry 2014; 53:7718-23. [PMID: 25375976 DOI: 10.1021/bi500990v] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly-G sequences are found in different genomes including human and have the potential to form higher-order structures with various applications. Previously, long poly-G sequences were thought to lead to multiple possible ways of G-quadruplex folding, rendering their structural characterization challenging. Here we investigate the structure of G-quadruplexes formed by poly-G sequences d(TTG(n)T), where n = 12 to 19. Our data show the presence of multiple and/or higher-order G-quadruplex structures in most sequences. Strikingly, NMR spectra of the TTG₁₅T sequence containing a stretch of 15 continuous guanines are exceptionally well-resolved and indicate the formation of a well-defined G-quadruplex structure. The NMR solution structure of this sequence revealed a propeller-type parallel-stranded G-quadruplex containing three G-tetrad layers and three single-guanine propeller loops. The same structure can potentially form anywhere along a long G(n) stretch, making it unique for molecular recognition by other cellular molecules.
Collapse
Affiliation(s)
- Anjali Sengar
- School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore 637371, Singapore
| | | | | |
Collapse
|
62
|
Sharma CM, Vogel J. Differential RNA-seq: the approach behind and the biological insight gained. Curr Opin Microbiol 2014; 19:97-105. [PMID: 25024085 DOI: 10.1016/j.mib.2014.06.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/15/2014] [Accepted: 06/19/2014] [Indexed: 01/14/2023]
Abstract
RNA-sequencing has revolutionized the quantitative and qualitative analysis of transcriptomes in both prokaryotes and eukaryotes. It provides a generic approach for gene expression profiling, annotation of transcript boundaries and operons, as well as identifying novel transcripts including small noncoding RNA molecules and antisense RNAs. We recently developed a differential RNA-seq (dRNA-seq) method which in addition to the above, yields information as to whether a given RNA is a primary or processed transcript. Originally applied to describe the primary transcriptome of the gastric pathogen Helicobacter pylori, dRNA-seq has since provided global maps of transcriptional start sites in diverse species, informed new biology in the CRISPR-Cas9 system, advanced to a tool for comparative transcriptomics, and inspired simultaneous RNA-seq of pathogen and host.
Collapse
Affiliation(s)
- Cynthia M Sharma
- University of Würzburg, Institute for Molecular Infection Biology & Research Center for Infectious Diseases, Josef-Schneider-Straße 2/D15, D-97080 Würzburg, Germany.
| | - Jörg Vogel
- University of Würzburg, Institute for Molecular Infection Biology & Research Center for Infectious Diseases, Josef-Schneider-Straße 2/D15, D-97080 Würzburg, Germany.
| |
Collapse
|
63
|
A repetitive DNA element regulates expression of the Helicobacter pylori sialic acid binding adhesin by a rheostat-like mechanism. PLoS Pathog 2014; 10:e1004234. [PMID: 24991812 PMCID: PMC4081817 DOI: 10.1371/journal.ppat.1004234] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022] Open
Abstract
During persistent infection, optimal expression of bacterial factors is required to match the ever-changing host environment. The gastric pathogen Helicobacter pylori has a large set of simple sequence repeats (SSR), which constitute contingency loci. Through a slipped strand mispairing mechanism, the SSRs generate heterogeneous populations that facilitate adaptation. Here, we present a model that explains, in molecular terms, how an intergenically located T-tract, via slipped strand mispairing, operates with a rheostat-like function, to fine-tune activity of the promoter that drives expression of the sialic acid binding adhesin, SabA. Using T-tract variants, in an isogenic strain background, we show that the length of the T-tract generates multiphasic output from the sabA promoter. Consequently, this alters the H. pylori binding to sialyl-Lewis x receptors on gastric mucosa. Fragment length analysis of post-infection isolated clones shows that the T-tract length is a highly variable feature in H. pylori. This mirrors the host-pathogen interplay, where the bacterium generates a set of clones from which the best-fit phenotypes are selected in the host. In silico and functional in vitro analyzes revealed that the length of the T-tract affects the local DNA structure and thereby binding of the RNA polymerase, through shifting of the axial alignment between the core promoter and UP-like elements. We identified additional genes in H. pylori, with T- or A-tracts positioned similar to that of sabA, and show that variations in the tract length likewise acted as rheostats to modulate cognate promoter output. Thus, we propose that this generally applicable mechanism, mediated by promoter-proximal SSRs, provides an alternative mechanism for transcriptional regulation in bacteria, such as H. pylori, which possesses a limited repertoire of classical trans-acting regulatory factors.
Collapse
|
64
|
|