51
|
Palmer AL, de Jong A, Leestemaker Y, Geurink PP, Wijdeven RH, Ovaa H, Dolan BP. Inhibition of the Deubiquitinase Usp14 Diminishes Direct MHC Class I Antigen Presentation. THE JOURNAL OF IMMUNOLOGY 2017; 200:928-936. [PMID: 29282303 DOI: 10.4049/jimmunol.1700273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/22/2017] [Indexed: 11/19/2022]
Abstract
Infected or transformed cells must present peptides derived from endogenous proteins on MHC class I molecules to be recognized and targeted for elimination by Ag-specific cytotoxic T cells. In the first step of peptide generation, proteins are degraded by the proteasome. In this study, we investigated the role of the ubiquitin-specific protease 14 (Usp14), a proteasome-associated deubiquitinase, in direct Ag presentation using a ligand-stabilized model protein expressed as a self-antigen. Chemical inhibition of Usp14 diminished direct presentation of the model antigenic peptide, and the effect was especially pronounced when presentation was restricted to the defective ribosomal product (DRiP) form of the protein. Additionally, presentation specifically from DRiP Ags was diminished by expression of a catalytically inactive form of Usp14. Usp14 inhibition did not appreciably alter protein synthesis and only partially delayed protein degradation as measured by a slight increase in the half-life of the model protein when its degradation was induced. Taken together, these data indicate that functional Usp14 enhances direct Ag presentation, preferentially of DRiP-derived peptides, suggesting that the processing of DRiPs is in some ways different from other forms of Ag.
Collapse
Affiliation(s)
- Amy L Palmer
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Annemieke de Jong
- Division of Cell Biology II, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and
| | - Yves Leestemaker
- Division of Cell Biology II, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and.,Department of Chemical Immunology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Paul P Geurink
- Division of Cell Biology II, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and.,Department of Chemical Immunology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Ruud H Wijdeven
- Division of Cell Biology II, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and.,Department of Chemical Immunology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and.,Department of Chemical Immunology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Brian P Dolan
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331;
| |
Collapse
|
52
|
Lysine-Less Variants of Spinal Muscular Atrophy SMN and SMNΔ7 Proteins Are Degraded by the Proteasome Pathway. Int J Mol Sci 2017; 18:ijms18122667. [PMID: 29292768 PMCID: PMC5751269 DOI: 10.3390/ijms18122667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 11/17/2022] Open
Abstract
Spinal muscular atrophy is due to mutations affecting the SMN1 gene coding for the full-length protein (survival motor neuron; SMN) and the SMN2 gene that preferentially generates an exon 7-deleted protein (SMNΔ7) by alternative splicing. To study SMN and SMNΔ7 degradation in the cell, we have used tagged versions at the N- (Flag) or C-terminus (V5) of both proteins. Transfection of those constructs into HeLa cells and treatment with cycloheximide showed that those protein constructs were degraded. Proteasomal degradation usually requires prior lysine ubiquitylation. Surprisingly, lysine-less variants of both proteins tagged either at N- (Flag) or C-terminus (V5) were also degraded. The degradation of the endogenous SMN protein, and the protein constructs mentioned above, was mediated by the proteasome, as it was blocked by lactacystin, a specific and irreversible proteasomal inhibitor. The results obtained allowed us to conclude that SMN and SMNΔ7 proteasomal degradation did not absolutely require internal ubiquitylation nor N-terminal ubiquitylation (prevented by N-terminal tagging). While the above conclusions are firmly supported by the experimental data presented, we discuss and justify the need of deep proteomic techniques for the study of SMN complex components (orphan and bound) turn-over to understand the physiological relevant mechanisms of degradation of SMN and SMNΔ7 in the cell.
Collapse
|
53
|
Mihailovic PM, Lio WM, Yano J, Zhao X, Zhou J, Chyu KY, Shah PK, Cercek B, Dimayuga PC. The cathelicidin protein CRAMP is a potential atherosclerosis self-antigen in ApoE(-/-) mice. PLoS One 2017; 12:e0187432. [PMID: 29091929 PMCID: PMC5665601 DOI: 10.1371/journal.pone.0187432] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/19/2017] [Indexed: 11/18/2022] Open
Abstract
Auto-immunity is believed to contribute to inflammation in atherosclerosis. The antimicrobial peptide LL-37, a fragment of the cathelicidin protein precursor hCAP18, was previously identified as an autoantigen in psoriasis. Given the reported link between psoriasis and coronary artery disease, the biological relevance of the autoantigen to atherosclerosis was tested in vitro using a truncated (t) form of the mouse homolog of hCAP18, CRAMP, on splenocytes from athero-prone ApoE(-/-) mice. Stimulation with tCRAMP resulted in increased CD8+ T cells with Central Memory and Effector Memory phenotypes in ApoE(-/-) mice, differentially activated by feeding with normal chow or high fat diet. Immunization of ApoE(-/-) with different doses of the shortened peptide (Cramp) resulted in differential outcomes with a lower dose reducing atherosclerosis whereas a higher dose exacerbating the disease with increased neutrophil infiltration of the atherosclerotic plaques. Low dose Cramp immunization also resulted in increased splenic CD8+ T cell degranulation and reduced CD11b+CD11c+ conventional dendritic cells (cDCs), whereas high dose increased CD11b+CD11c+ cDCs. Our results identified CRAMP, the mouse homolog of hCAP-18, as a potential self-antigen involved in the immune response to atherosclerosis in the ApoE(-/-) mouse model.
Collapse
Affiliation(s)
- Peter M. Mihailovic
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Wai Man Lio
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Juliana Yano
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Xiaoning Zhao
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Jianchang Zhou
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Kuang-Yuh Chyu
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Prediman K. Shah
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Bojan Cercek
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
| | - Paul C. Dimayuga
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
54
|
Parker BL, Burchfield JG, Clayton D, Geddes TA, Payne RJ, Kiens B, Wojtaszewski JFP, Richter EA, James DE. Multiplexed Temporal Quantification of the Exercise-regulated Plasma Peptidome. Mol Cell Proteomics 2017; 16:2055-2068. [PMID: 28982716 DOI: 10.1074/mcp.ra117.000020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Indexed: 01/06/2023] Open
Abstract
Exercise is extremely beneficial to whole body health reducing the risk of a number of chronic human diseases. Some of these physiological benefits appear to be mediated via the secretion of peptide/protein hormones into the blood stream. The plasma peptidome contains the entire complement of low molecular weight endogenous peptides derived from secretion, protease activity and PTMs, and is a rich source of hormones. In the current study we have quantified the effects of intense exercise on the plasma peptidome to identify novel exercise regulated secretory factors in humans. We developed an optimized 2D-LC-MS/MS method and used multiple fragmentation methods including HCD and EThcD to analyze endogenous peptides. This resulted in quantification of 5,548 unique peptides during a time course of exercise and recovery. The plasma peptidome underwent dynamic and large changes during exercise on a time-scale of minutes with many rapidly reversible following exercise cessation. Among acutely regulated peptides, many were known hormones including insulin, glucagon, ghrelin, bradykinin, cholecystokinin and secretogranins validating the method. Prediction of bioactive peptides regulated with exercise identified C-terminal peptides from Transgelins, which were increased in plasma during exercise. In vitro experiments using synthetic peptides identified a role for transgelin peptides on the regulation of cell-cycle, extracellular matrix remodeling and cell migration. We investigated the effects of exercise on the regulation of PTMs and proteolytic processing by building a site-specific network of protease/substrate activity. Collectively, our deep peptidomic analysis of plasma revealed that exercise rapidly modulates the circulation of hundreds of bioactive peptides through a network of proteases and PTMs. These findings illustrate that peptidomics is an ideal method for quantifying changes in circulating factors on a global scale in response to physiological perturbations such as exercise. This will likely be a key method for pinpointing exercise regulated factors that generate health benefits.
Collapse
Affiliation(s)
- Benjamin L Parker
- From the ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - James G Burchfield
- From the ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel Clayton
- §School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Thomas A Geddes
- From the ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Richard J Payne
- §School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Bente Kiens
- ¶Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jørgen F P Wojtaszewski
- ¶Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen 2100, Denmark
| | - Erik A Richter
- ¶Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen 2100, Denmark
| | - David E James
- From the ‡Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia; .,‖School of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
55
|
Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W, Sidney J, Stevens J, Lane W, Zhang GL, Eisenhaure TM, Clauser KR, Hacohen N, Rooney MS, Carr SA, Wu CJ. Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction. Immunity 2017; 46:315-326. [PMID: 28228285 DOI: 10.1016/j.immuni.2017.02.007] [Citation(s) in RCA: 450] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/29/2016] [Accepted: 12/29/2016] [Indexed: 12/11/2022]
Abstract
Identification of human leukocyte antigen (HLA)-bound peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS) is poised to provide a deep understanding of rules underlying antigen presentation. However, a key obstacle is the ambiguity that arises from the co-expression of multiple HLA alleles. Here, we have implemented a scalable mono-allelic strategy for profiling the HLA peptidome. By using cell lines expressing a single HLA allele, optimizing immunopurifications, and developing an application-specific spectral search algorithm, we identified thousands of peptides bound to 16 different HLA class I alleles. These data enabled the discovery of subdominant binding motifs and an integrative analysis quantifying the contribution of factors critical to epitope presentation, such as protein cleavage and gene expression. We trained neural-network prediction algorithms with our large dataset (>24,000 peptides) and outperformed algorithms trained on datasets of peptides with measured affinities. We thus demonstrate a strategy for systematically learning the rules of endogenous antigen presentation.
Collapse
Affiliation(s)
| | - Derin B Keskin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA; Department of Computer Science, Metropolitan College, Boston University, Boston, MA, 02215, USA
| | - Siranush Sarkizova
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02142, USA
| | | | - Wandi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, 92037, La Jolla, CA
| | - Jonathan Stevens
- Tissue Typing Laboratory, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - William Lane
- Tissue Typing Laboratory, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Guang Lan Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Harvard Medical School, Boston, MA, 02115, USA; Department of Computer Science, Metropolitan College, Boston University, Boston, MA, 02215, USA
| | | | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Center for Cancer Immunology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - Michael S Rooney
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard/MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, 02139 USA; Neon Therapeutics, Cambridge, MA, 02139, USA.
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Catherine J Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
56
|
Post-Translational Peptide Splicing and T Cell Responses. Trends Immunol 2017; 38:904-915. [PMID: 28830734 DOI: 10.1016/j.it.2017.07.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/10/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022]
Abstract
CD8+ T cell specificity depends on the recognition of MHC class I-epitope complexes at the cell surface. These epitopes are mainly produced via degradation of proteins by the proteasome, generating fragments of the original sequence. However, it is now clear that proteasomes can produce a significant portion of epitopes by reshuffling the antigen sequence, thus expanding the potential antigenic repertoire. MHC class I-restricted spliced epitopes have been described in tumors and infections, suggesting an unpredicted relevance of these peculiar peptides. We review current knowledge about proteasome-catalyzed peptide splicing (PCPS), the emerging rules governing this process, and the potential implications for our understanding and therapeutic use of CD8+ T cells, as well as mechanisms generating other non-canonical antigenic epitopes targeted by the T cell response.
Collapse
|
57
|
Wei J, Zanker D, Di Carluccio AR, Smelkinson MG, Takeda K, Seedhom MO, Dersh D, Gibbs JS, Yang N, Jadhav A, Chen W, Yewdell JW. Varied Role of Ubiquitylation in Generating MHC Class I Peptide Ligands. THE JOURNAL OF IMMUNOLOGY 2017; 198:3835-3845. [PMID: 28363906 DOI: 10.4049/jimmunol.1602122] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
CD8+ T cell immunosurveillance is based on recognizing oligopeptides presented by MHC class I molecules. Despite decades of study, the importance of protein ubiquitylation to peptide generation remains uncertain. In this study, we examined the ability of MLN7243, a recently described ubiquitin-activating enzyme E1 inhibitor, to block overall cytosolic peptide generation and generation of specific peptides from vaccinia- and influenza A virus-encoded proteins. We show that MLN7243 rapidly inhibits ubiquitylation in a variety of cell lines and can profoundly reduce the generation of cytosolic peptides. Kinetic analysis of specific peptide generation reveals that ubiquitylation of defective ribosomal products is rate limiting in generating class I peptide complexes. More generally, our findings demonstrate that the requirement for ubiquitylation in MHC class I-restricted Ag processing varies with class I allomorph, cell type, source protein, and peptide context. Thus, ubiquitin-dependent and -independent pathways robustly contribute to MHC class I-based immunosurveillance.
Collapse
Affiliation(s)
- Jiajie Wei
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Damien Zanker
- T Cell Laboratory, School of Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Anthony R Di Carluccio
- T Cell Laboratory, School of Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Margery G Smelkinson
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993; and
| | - Mina O Seedhom
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Devin Dersh
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - James S Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ning Yang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ajit Jadhav
- Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20892
| | - Weisan Chen
- T Cell Laboratory, School of Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
58
|
Barnea E, Melamed Kadosh D, Haimovich Y, Satumtira N, Dorris ML, Nguyen MT, Hammer RE, Tran TM, Colbert RA, Taurog JD, Admon A. The Human Leukocyte Antigen (HLA)-B27 Peptidome in Vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion. Mol Cell Proteomics 2017; 16:642-662. [PMID: 28188227 DOI: 10.1074/mcp.m116.066241] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/05/2017] [Indexed: 01/20/2023] Open
Abstract
HLA-B27 is a class I major histocompatibility (MHC-I) allele that confers susceptibility to the rheumatic disease ankylosing spondylitis (AS) by an unknown mechanism. ERAP1 is an aminopeptidase that trims peptides in the endoplasmic reticulum for binding to MHC-I molecules. ERAP1 shows genetic epistasis with HLA-B27 in conferring susceptibility to AS. Male HLA-B27 transgenic rats develop arthritis and serve as an animal model of AS, whereas female B27 transgenic rats remain healthy. We used large scale quantitative mass spectrometry to identify over 15,000 unique HLA-B27 peptide ligands, isolated after immunoaffinity purification of the B27 molecules from the spleens of HLA-B27 transgenic rats. Heterozygous deletion of Erap1, which reduced the Erap1 level to less than half, had no qualitative or quantitative effects on the B27 peptidome. Homozygous deletion of Erap1 affected approximately one-third of the B27 peptidome but left most of the B27 peptidome unchanged, suggesting the possibility that some of the HLA-B27 immunopeptidome is not processed in the presence of Erap1. Deletion of Erap1 was permissive for the AS-like phenotype, increased mean peptide length and increased the frequency of C-terminal hydrophobic residues and of N-terminal Ala, Ser, or Lys. The presence of Erap1 increased the frequency of C-terminal Lys and Arg, of Glu and Asp at intermediate residues, and of N-terminal Gly. Several peptides of potential interest in AS pathogenesis, previously identified in human cell lines, were isolated. However, rats susceptible to arthritis had B27 peptidomes similar to those of non-susceptible rats, and no peptides were found to be uniquely associated with arthritis. Whether specific B27-bound peptides are required for AS pathogenesis remains to be determined. Data are available via ProteomeXchange with identifier PXD005502.
Collapse
Affiliation(s)
- Eilon Barnea
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Dganit Melamed Kadosh
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Haimovich
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Nimman Satumtira
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Martha L Dorris
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Mylinh T Nguyen
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Robert E Hammer
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Tri M Tran
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Robert A Colbert
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Joel D Taurog
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884;
| | - Arie Admon
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
59
|
Dersh D, Yewdell JW. I've got algorithm: predicting tumor and autoimmune peptide targets for CD8+ T cells. J Clin Invest 2016; 126:4399-4401. [PMID: 27841762 DOI: 10.1172/jci91302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CD8+ T cells play a central role in eradicating intracellular pathogens, but also are important for noninfectious diseases, including cancer and autoimmunity. The ability to clinically manipulate CD8+ T cells to target cancer and autoimmune disease is limited by our ignorance of relevant self-peptide target antigens. In this issue of the JCI, Pearson et al. describe 25,270 MHC class I-associated peptides presented by a wide range of HLA A and B allomorphs expressed by 18 different B cell lines. Via extensive bioinformatic analysis, the authors make surprising conclusions regarding the selective nature of peptide generation at the level of individual gene products and create a predictive algorithm for disease-relevant self-peptides that will be of immediate use for clinical and basic immunological research.
Collapse
|
60
|
Caron E, Kowalewski DJ, Chiek Koh C, Sturm T, Schuster H, Aebersold R. Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry. Mol Cell Proteomics 2016; 14:3105-17. [PMID: 26628741 DOI: 10.1074/mcp.o115.052431] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The myriad of peptides presented at the cell surface by class I and class II major histocompatibility complex (MHC) molecules are referred to as the immunopeptidome and are of great importance for basic and translational science. For basic science, the immunopeptidome is a critical component for understanding the immune system; for translational science, exact knowledge of the immunopeptidome can directly fuel and guide the development of next-generation vaccines and immunotherapies against autoimmunity, infectious diseases, and cancers. In this mini-review, we summarize established isolation techniques as well as emerging mass spectrometry-based platforms (i.e. SWATH-MS) to identify and quantify MHC-associated peptides. We also highlight selected biological applications and discuss important current technical limitations that need to be solved to accelerate the development of this field.
Collapse
Affiliation(s)
- Etienne Caron
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland;
| | - Daniel J Kowalewski
- §Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Ching Chiek Koh
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Theo Sturm
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Heiko Schuster
- §Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Ruedi Aebersold
- From the ‡Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland; ¶Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
61
|
Kinetic Analysis of Protein Stability Reveals Age-Dependent Degradation. Cell 2016; 167:803-815.e21. [PMID: 27720452 DOI: 10.1016/j.cell.2016.09.015] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/19/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022]
Abstract
Do young and old protein molecules have the same probability to be degraded? We addressed this question using metabolic pulse-chase labeling and quantitative mass spectrometry to obtain degradation profiles for thousands of proteins. We find that >10% of proteins are degraded non-exponentially. Specifically, proteins are less stable in the first few hours of their life and stabilize with age. Degradation profiles are conserved and similar in two cell types. Many non-exponentially degraded (NED) proteins are subunits of complexes that are produced in super-stoichiometric amounts relative to their exponentially degraded (ED) counterparts. Within complexes, NED proteins have larger interaction interfaces and assemble earlier than ED subunits. Amplifying genes encoding NED proteins increases their initial degradation. Consistently, decay profiles can predict protein level attenuation in aneuploid cells. Together, our data show that non-exponential degradation is common, conserved, and has important consequences for complex formation and regulation of protein abundance.
Collapse
|
62
|
Analysis of Major Histocompatibility Complex-Bound HIV Peptides Identified from Various Cell Types Reveals Common Nested Peptides and Novel T Cell Responses. J Virol 2016; 90:8605-20. [PMID: 27440904 DOI: 10.1128/jvi.00599-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/13/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Despite the critical role of epitope presentation for immune recognition, we still lack a comprehensive definition of HIV peptides presented by HIV-infected cells. Here we identified 107 major histocompatibility complex (MHC)-bound HIV peptides directly from the surface of live HIV-transfected 293T cells, HIV-infected B cells, and primary CD4 T cells expressing a variety of HLAs. The majority of peptides were 8 to 12 amino acids (aa) long and mostly derived from Gag and Pol. The analysis of the total MHC-peptidome and of HLA-A02-bound peptides identified new noncanonical HIV peptides of up to 16 aa that could not be predicted by HLA anchor scanning and revealed an heterogeneous surface peptidome. Nested sets of surface HIV peptides included optimal and extended HIV epitopes and peptides partly overlapping or distinct from known epitopes, revealing new immune responses in HIV-infected persons. Surprisingly, in all three cell types, a majority of Gag peptides derived from p15 rather than from the most immunogenic p24. The cytosolic degradation of peptide precursors in corresponding cells confirmed the generation of identified surface-nested peptides. Cytosolic degradation revealed peptides commonly produced in all cell types and displayed by various HLAs, peptides commonly produced in all cell types and selectively displayed by specific HLAs, and peptides produced in only one cell type. Importantly, we identified areas of proteins leading to common presentations of noncanonical peptides by several cell types with distinct HLAs. These peptides may benefit the design of immunogens, focusing T cell responses on relevant markers of HIV infection in the context of HLA diversity. IMPORTANCE The recognition of HIV-infected cells by immune T cells relies on the presentation of HIV-derived peptides by diverse HLA molecules at the surface of cells. The landscape of HIV peptides displayed by HIV-infected cells is not well defined. Considering the diversity of HLA molecules in the human population, it is critical for vaccine design to identify HIV peptides that may be displayed despite the HLA diversity. We identified 107 HIV peptides directly from the surface of three cell types infected with HIV. They corresponded to nested sets of HIV peptides of canonical and novel noncanonical lengths not predictable by the presence of HLA anchors. Importantly, we identified areas of HIV proteins leading to presentation of noncanonical peptides by several cell types with distinct HLAs. Including such peptides in vaccine immunogen may help to focus immune responses on common markers of HIV infection in the context of HLA diversity.
Collapse
|
63
|
Shraibman B, Kadosh DM, Barnea E, Admon A. Human Leukocyte Antigen (HLA) Peptides Derived from Tumor Antigens Induced by Inhibition of DNA Methylation for Development of Drug-facilitated Immunotherapy. Mol Cell Proteomics 2016; 15:3058-70. [PMID: 27412690 DOI: 10.1074/mcp.m116.060350] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Indexed: 11/06/2022] Open
Abstract
Treatment of cancer cells with anticancer drugs often fails to achieve complete remission. Yet, such drug treatments may induce alteration in the tumor's gene expression patterns, including those of Cancer/Testis Antigens (CTA). The degradation products of such antigens can be presented as HLA peptides on the surface of the tumor cells and be developed into anticancer immunotherapeutics. For example, the DNA methyl transferase inhibitor, 5-aza-2'-deoxycytidine (Decitabine) has limited antitumor efficacy, yet it induces the expression of many genes, including CTAs that are normally silenced in the healthy adult tissues. In this study, the presentation of many new HLA peptides derived from CTAs and induced by Decitabine was demonstrated in three human Glioblastoma cell lines. Such presentation of CTA-derived HLA peptides can be exploited for development of new treatment modalities, combining drug treatment with anti-CTA targeted immunotherapy. The Decitabine-induced HLA peptidomes include many CTAs that are not normally detected in healthy tissues or in cancer cells, unless treated with the drug. In addition, the study included large-scale analyses of the simultaneous effects of Decitabine on the transcriptomes, proteomes and HLA peptidomes of the human Glioblastoma cells. It demonstrates the poor correlations between these three levels of gene expression, both in their total levels and in their response to the drug. The proteomics and HLA peptidomics data are available via ProteomeXchange with identifier PXD003790 and the transcriptomics data are available via GEO with identifier GSE80137.
Collapse
Affiliation(s)
- Bracha Shraibman
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Dganit Melamed Kadosh
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Eilon Barnea
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Arie Admon
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
64
|
Duvallet E, Boulpicante M, Yamazaki T, Daskalogianni C, Prado Martins R, Baconnais S, Manoury B, Fahraeus R, Apcher S. Exosome-driven transfer of tumor-associated Pioneer Translation Products (TA-PTPs) for the MHC class I cross-presentation pathway. Oncoimmunology 2016; 5:e1198865. [PMID: 27757298 PMCID: PMC5048765 DOI: 10.1080/2162402x.2016.1198865] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022] Open
Abstract
Cellular immune reactions against non-self-epitopes require activation of cytotoxic CD8+ T-cells via cross-presentation of MHC class I-restricted peptides by professional antigen presenting cells (pAPCs), with the consequent detection and elimination of cells expressing the same antigens via the endogenous (direct) pathway. The source of peptides for the endogenous pathway is constituted of alternative mRNA translation products; however, it is still unclear which source of peptides is used for cross-presentation. Furthermore, the presentation of non-canonical translation products, produced during a non-conventional translation event, on class I molecules of tumor cells has been reported but how these peptides are generated, presented to pAPCs, and their capacity to stimulate CD8+ T cells is still not known. Here, we report that pioneer translation peptides (PTPs) derived from intron or exon pre-mRNAs can serve as tumor-associated antigens (TA-PTPs) and are delivered from the producing tumor cells to pAPCs via exosomes where they are processed by the cytosolic pathway. Injection of TA-PTPs and tumor-derived exosomes efficiently induce CD8+ T-cell proliferation and prevent tumor growth in mice. Our results show that TA-PTPs represent an efficient source of antigenic peptides for CD8+ T cell activation and that full-length proteins are not required for cross-presentation. These findings can have interesting implications for generating tolerance and for designing vectors to generate vaccines.
Collapse
Affiliation(s)
- Emilie Duvallet
- Institut Gustave Roussy, Université Paris Sud, Université Paris Saclay, Unité 1015 département d'immunologie , Villejuif, France
| | - Mathilde Boulpicante
- Institut Gustave Roussy, Université Paris Sud, Université Paris Saclay, Unité 1015 département d'immunologie , Villejuif, France
| | - Takahiro Yamazaki
- Institut Gustave Roussy, Université Paris Sud, Université Paris Saclay, Unité 1015 département d'immunologie , Villejuif, France
| | - Chrysoula Daskalogianni
- Equipe Labellisée la Ligue Contre le Cancer, Inserm UMR1162, Université Paris 7, Institut de Génétique Moléculaire , Paris, France and RECAMO, Masaryk Memorial Cancer Institute , Brno, Czech Republic
| | - Rodrigo Prado Martins
- Equipe Labellisée la Ligue Contre le Cancer, Inserm UMR1162, Université Paris 7, Institut de Génétique Moléculaire , Paris, France and RECAMO, Masaryk Memorial Cancer Institute , Brno, Czech Republic
| | - Sonia Baconnais
- Signalisations, Noyaux et Innovations en Cancérologie, CNRS UMR8126, Université Paris Sud, Université Paris Saclay , Villejuif, France
| | - Bénédicte Manoury
- INEM, U1151-CNRS UMR8253 , Paris, France and Université Paris Descartes, Sorbonne Paris Cité, Faculté de medicine , Paris, France
| | - Robin Fahraeus
- Equipe Labellisée la Ligue Contre le Cancer, Inserm UMR1162, Université Paris 7, Institut de Génétique Moléculaire , Paris, France and RECAMO, Masaryk Memorial Cancer Institute , Brno, Czech Republic
| | - Sébastien Apcher
- Institut Gustave Roussy, Université Paris Sud, Université Paris Saclay, Unité 1015 département d'immunologie , Villejuif, France
| |
Collapse
|
65
|
Argüello RJ, Reverendo M, Gatti E, Pierre P. Regulation of protein synthesis and autophagy in activated dendritic cells: implications for antigen processing and presentation. Immunol Rev 2016; 272:28-38. [DOI: 10.1111/imr.12427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rafael J. Argüello
- Centre d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2; Institut National de la Santé et de la Recherche Médicale U1104; Centre National de la Recherche Scientifique UMR7280; Marseille France
| | - Marisa Reverendo
- Centre d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2; Institut National de la Santé et de la Recherche Médicale U1104; Centre National de la Recherche Scientifique UMR7280; Marseille France
| | - Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2; Institut National de la Santé et de la Recherche Médicale U1104; Centre National de la Recherche Scientifique UMR7280; Marseille France
- Institute for Research in Biomedicine (iBiMED), Aveiro; Health Sciences Program; University of Aveiro; Aveiro Portugal
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2; Institut National de la Santé et de la Recherche Médicale U1104; Centre National de la Recherche Scientifique UMR7280; Marseille France
- Institute for Research in Biomedicine (iBiMED), Aveiro; Health Sciences Program; University of Aveiro; Aveiro Portugal
| |
Collapse
|
66
|
Servín-Blanco R, Zamora-Alvarado R, Gevorkian G, Manoutcharian K. Antigenic variability: Obstacles on the road to vaccines against traditionally difficult targets. Hum Vaccin Immunother 2016; 12:2640-2648. [PMID: 27295540 DOI: 10.1080/21645515.2016.1191718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Despite the impressive impact of vaccines on public health, the success of vaccines targeting many important pathogens and cancers has to date been limited. The burden of infectious diseases today is mainly caused by antigenically variable pathogens (AVPs), which escape immune responses induced by prior infection or vaccination through changes in molecular structures recognized by antibodies or T cells. Extensive genetic and antigenic variability is the major obstacle for the development of new or improved vaccines against "difficult" targets. Alternative, qualitatively new approaches leading to the generation of disease- and patient-specific vaccine immunogens that incorporate complex permanently changing epitope landscapes of intended targets accompanied by appropriate immunomodulators are urgently needed. In this review, we highlight some of the most critical common issues related to the development of vaccines against many pathogens and cancers that escape protective immune responses owing to antigenic variation, and discuss recent efforts to overcome the obstacles by applying alternative approaches for the rational design of new types of immunogens.
Collapse
Affiliation(s)
- R Servín-Blanco
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| | - R Zamora-Alvarado
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| | - G Gevorkian
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| | - K Manoutcharian
- a Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Cuidad Universitaria , México DF , México
| |
Collapse
|
67
|
Yang N, Gibbs JS, Hickman HD, Reynoso GV, Ghosh AK, Bennink JR, Yewdell JW. Defining Viral Defective Ribosomal Products: Standard and Alternative Translation Initiation Events Generate a Common Peptide from Influenza A Virus M2 and M1 mRNAs. THE JOURNAL OF IMMUNOLOGY 2016; 196:3608-17. [PMID: 27016602 DOI: 10.4049/jimmunol.1502303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
Abstract
Influenza A virus gene segment 7 encodes two proteins: the M1 protein translated from unspliced mRNA and the M2 protein produced by mRNA splicing and largely encoded by the M1 +1 reading frame. To better understand the generation of defective ribosomal products relevant to MHC class I Ag presentation, we engineered influenza A virus gene segment 7 to encode the model H-2 K(b) class I peptide ligand SIINFEKL at the M2 protein C terminus. Remarkably, after treating virus-infected cells with the RNA splicing inhibitor spliceostatin A to prevent M2 mRNA generation, K(b)-SIINFEKL complexes were still presented on the cell surface at levels ≤60% of untreated cells. Three key findings indicate that SIINFEKL is produced by cytoplasmic translation of unspliced M1 mRNA initiating at CUG codons within the +1 reading frame: 1) synonymous mutation of CUG codons in the M2-reading frame reduced K(b)-SIINFEKL generation; 2) K(b)-SIINFEKL generation was not affected by drug-mediated inhibition of AUG-initiated M1 synthesis; and 3) K(b)-SIINFEKL was generated in vitro and in vivo from mRNA synthesized in the cytoplasm by vaccinia virus, and hence cannot be spliced. These findings define a viral defective ribosomal product generated by cytoplasmic noncanonical translation and demonstrate the participation of CUG-codon-based translation initiation in pathogen immunosurveillance.
Collapse
Affiliation(s)
- Ning Yang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - James S Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Heather D Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Glennys V Reynoso
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Arun K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Jack R Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
68
|
Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat Commun 2016; 7:10238. [PMID: 26728094 PMCID: PMC4728431 DOI: 10.1038/ncomms10238] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022] Open
Abstract
In view of recent reports documenting pervasive translation outside of canonical protein-coding sequences, we wished to determine the proportion of major histocompatibility complex (MHC) class I-associated peptides (MAPs) derived from non-canonical reading frames. Here we perform proteogenomic analyses of MAPs eluted from human B cells using high-throughput mass spectrometry to probe the six-frame translation of the B-cell transcriptome. We report that ∼10% of MAPs originate from allegedly noncoding genomic sequences or exonic out-of-frame translation. The biogenesis and properties of these ‘cryptic MAPs' differ from those of conventional MAPs. Cryptic MAPs come from very short proteins with atypical C termini, and are coded by transcripts bearing long 3′UTRs enriched in destabilizing elements. Relative to conventional MAPs, cryptic MAPs display different MHC class I-binding preferences and harbour more genomic polymorphisms, some of which are immunogenic. Cryptic MAPs increase the complexity of the MAP repertoire and enhance the scope of CD8 T-cell immunosurveillance. Cryptic translation of the 'non-coding' genome is increasingly recognised, however its biological significance remains unclear. Laumont et al. employ proteogenomic techniques to map the human immunoproteome, and find that approximately 10% of MHC class I-associated peptides are cryptic.
Collapse
|
69
|
Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection. Infect Immun 2015; 84:480-90. [PMID: 26597986 DOI: 10.1128/iai.01254-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022] Open
Abstract
The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8(+) cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8(+) T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8(+) killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins.
Collapse
|
70
|
Bitzer A, Basler M, Groettrup M. Chaperone BAG6 is dispensable for MHC class I antigen processing and presentation. Mol Immunol 2015; 69:99-105. [PMID: 26598275 DOI: 10.1016/j.molimm.2015.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
Abstract
Antigen processing for direct presentation on MHC class I molecules is a multistep process requiring the concerted activity of several cellular complexes. The essential steps at the beginning of this pathway, namely protein synthesis at the ribosome and degradation via the proteasome, have been known for years. Nevertheless, there is a considerable lack of factors identified to function between protein synthesis and degradation during antigen processing. Here, we analyzed the impact of the chaperone BAG6 on MHC class I cell surface expression and presentation of virus-derived peptides. Although an essential role of BAG6 in antigen processing has been proposed previously, we found BAG6 to be dispensable in this pathway. Still, interaction of BAG6 and the model antigen tyrosinase was enhanced during proteasome inhibition pointing towards a role of BAG6 in antigen degradation. Redundant chaperone pathways potentially mask the contribution of BAG6 to antigen processing and presentation.
Collapse
Affiliation(s)
- Annegret Bitzer
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany; Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany; Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
| |
Collapse
|
71
|
Affiliation(s)
- Jayajit Das
- Battelle Center for Mathematical Medicine; The Research Institute at the Nationwide Children's Hospital and the Departments of Pediatrics and Physics; The Ohio State University; Columbus OH USA
| | - Salim I. Khakoo
- Clinical and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
72
|
Abstract
Herpesviral mRNAs are produced and translated by cellular machinery, rendering them susceptible to the network of regulatory events that impact translation. In response, these viruses have evolved to infiltrate and hijack translational control pathways as well as to integrate specialized host translation strategies into their own repertoire. They are robust systems to dissect mechanisms of mammalian translational regulation and continue to offer insight into cis-acting mRNA features that impact assembly and activity of the translation apparatus. Here, I discuss recent advances revealing the extent to which the three herpesvirus subfamilies regulate both host and viral translation, thereby dramatically impacting the landscape of protein synthesis in infected cells.
Collapse
Affiliation(s)
- Britt A Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720;
| |
Collapse
|
73
|
Dubrovsky L, Dao T, Gejman RS, Brea EJ, Chang AY, Oh CY, Casey E, Pankov D, Scheinberg DA. T cell receptor mimic antibodies for cancer therapy. Oncoimmunology 2015; 5:e1049803. [PMID: 26942058 DOI: 10.1080/2162402x.2015.1049803] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/06/2015] [Indexed: 01/01/2023] Open
Abstract
The major hurdle to the creation of cancer-specific monoclonal antibodies (mAb) exhibiting limited cross-reactivity with healthy human cells is the paucity of known tumor-specific or mutated protein epitopes expressed on the cancer cell surface. Mutated and overexpressed oncoproteins are typically cytoplasmic or nuclear. Cells can present peptides from these distinguishing proteins on their cell surface in the context of human leukocyte antigen (HLA). T cell receptor mimic (TCRm) mAb can be discovered that react specifically to these complexes, allowing for selective targeting of cancer cells. The state-of-the-art for TCRm and the challenges and opportunities are discussed. Several such TCRm are moving toward clinical trials now.
Collapse
Affiliation(s)
| | - Tao Dao
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Ron S Gejman
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Elliott J Brea
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Aaron Y Chang
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Claire Y Oh
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Emily Casey
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Dmitry Pankov
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | | |
Collapse
|
74
|
Early Kinetics of the HLA Class I-Associated Peptidome of MVA.HIVconsv-Infected Cells. J Virol 2015; 89:5760-71. [PMID: 25810538 PMCID: PMC4442425 DOI: 10.1128/jvi.03627-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/09/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Cytotoxic T cells substantially contribute to the control of intracellular pathogens such as human immunodeficiency virus type 1 (HIV-1). Here, we evaluated the immunopeptidome of Jurkat cells infected with the vaccine candidate MVA.HIVconsv, which delivers HIV-1 conserved antigenic regions by using modified vaccinia virus Ankara (MVA). We employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify 6,358 unique peptides associated with the class I human leukocyte antigen (HLA), of which 98 peptides were derived from the MVA vector and 7 were derived from the HIVconsv immunogen. Human vaccine recipients responded to the peptide sequences identified by LC-MS/MS. Peptides derived from the conserved HIV-1 regions were readily detected as early as 1.5 h after MVA.HIVconsv infection. Four of the seven conserved peptides were monitored between 0 and 3.5 h of infection by using quantitative mass spectrometry (Q-MS), and their abundance in HLA class I associations reflected levels of the whole HIVconsv protein in the cell. While immunopeptides delivered by the incoming MVA vector proteins could be detected, all early HIVconsv-derived immunopeptides were likely synthesized de novo. MVA.HIVconsv infection generally altered the composition of HLA class I-associated human (self) peptides, but these changes corresponded only partially to changes in the whole cell host protein abundance. IMPORTANCE The vast changes in cellular antigen presentation after infection of cells with a vectored vaccine, as shown here for MVA.HIVconsv, highlight the complexity of factors that need to be considered for efficient antigen delivery and presentation. Identification and quantitation of HLA class I-associated peptides by Q-MS will not only find broad application in T-cell epitope discovery but also inform vaccine design and allow evaluation of efficient epitope presentation using different delivery strategies.
Collapse
|
75
|
Transport and quality control of MHC class I molecules in the early secretory pathway. Curr Opin Immunol 2015; 34:83-90. [PMID: 25771183 DOI: 10.1016/j.coi.2015.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 12/26/2022]
Abstract
Folding and peptide binding of major histocompatibility complex (MHC) class I molecules have been thoroughly researched, but the mechanistic connection between these biochemical events and the progress of class I through the early secretory pathway is much less well understood. This review focuses on the question how the partially assembled forms of class I (which lack high-affinity peptide and/or the light chain beta-2 microglobulin) are retained inside the cell. Such investigations offer researchers exciting chances to understand the connections between class I structure, conformational dynamics, peptide binding kinetics and thermodynamics, intracellular transport, and antigen presentation.
Collapse
|
76
|
Dallas DC, Guerrero A, Parker EA, Robinson RC, Gan J, German JB, Barile D, Lebrilla CB. Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics 2015; 15:1026-38. [PMID: 25429922 PMCID: PMC4371869 DOI: 10.1002/pmic.201400310] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 10/08/2014] [Accepted: 11/24/2014] [Indexed: 12/28/2022]
Abstract
Peptidomics is an emerging field branching from proteomics that targets endogenously produced protein fragments. Endogenous peptides are often functional within the body-and can be both beneficial and detrimental. This review covers the use of peptidomics in understanding digestion, and identifying functional peptides and biomarkers. Various techniques for peptide and glycopeptide extraction, both at analytical and preparative scales, and available options for peptide detection with MS are discussed. Current algorithms for peptide sequence determination, and both analytical and computational techniques for quantification are compared. Techniques for statistical analysis, sequence mapping, enzyme prediction, and peptide function, and structure prediction are explored.
Collapse
Affiliation(s)
- David C. Dallas
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Andres Guerrero
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Evan A. Parker
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Randall C. Robinson
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Junai Gan
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - J. Bruce German
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA, USA
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | - Carlito B. Lebrilla
- Foods for Health Institute, University of California, Davis, One Shields Avenue, Davis, CA, USA
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
| |
Collapse
|
77
|
Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion. J Mol Biol 2015; 427:1102-18. [DOI: 10.1016/j.jmb.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/23/2022]
|
78
|
Hassan C, Chabrol E, Jahn L, Kester MGD, de Ru AH, Drijfhout JW, Rossjohn J, Falkenburg JHF, Heemskerk MHM, Gras S, van Veelen PA. Naturally processed non-canonical HLA-A*02:01 presented peptides. J Biol Chem 2014; 290:2593-603. [PMID: 25505266 DOI: 10.1074/jbc.m114.607028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human leukocyte antigen (HLA) class I molecules generally present peptides (p) of 8 to 11 amino acids (aa) in length. Although an increasing number of examples with lengthy (>11 aa) peptides, presented mostly by HLA-B alleles, have been reported. Here we characterize HLA-A*02:01 restricted, in addition to the HLA-B*0702 and HLA-B*4402 restricted, lengthy peptides (>11 aa) arising from the B-cell ligandome. We analyzed a number of 15-mer peptides presented by HLA-A*02:01, and confirmed pHLA-I formation by HLA folding and thermal stability assays. Surprisingly the binding affinity and stability of the 15-mer epitopes in complex with HLA-A*02:01 were comparable with the values observed for canonical length (8 to 11 aa) HLA-A*02:01-restricted peptides. We solved the structures of two 15-mer epitopes in complex with HLA-A*02:01, within which the peptides adopted distinct super-bulged conformations. Moreover, we demonstrate that T-cells can recognize the 15-mer peptides in the context of HLA-A*02:01, indicating that these 15-mer peptides represent immunogenic ligands. Collectively, our data expand our understanding of longer epitopes in the context of HLA-I, highlighting that they are not limited to the HLA-B family, but can bind the ubiquitous HLA-A*02:01 molecule, and play an important role in T-cell immunity.
Collapse
Affiliation(s)
- Chopie Hassan
- From the Departments of Immunohematology and Blood Transfusion and
| | - Eric Chabrol
- the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton 3800, Australia
| | - Lorenz Jahn
- Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Michel G D Kester
- Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Arnoud H de Ru
- From the Departments of Immunohematology and Blood Transfusion and
| | - Jan W Drijfhout
- From the Departments of Immunohematology and Blood Transfusion and
| | - Jamie Rossjohn
- the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton 3800, Australia, and the Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, Wales, United Kingdom
| | | | | | - Stephanie Gras
- the Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton 3800, Australia, the ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton 3800, Australia, and
| | | |
Collapse
|
79
|
The nature of self for T cells-a systems-level perspective. Curr Opin Immunol 2014; 34:1-8. [PMID: 25466393 DOI: 10.1016/j.coi.2014.10.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/16/2014] [Accepted: 10/28/2014] [Indexed: 11/24/2022]
Abstract
T-cell development and function are regulated by MHC-associated self peptides, collectively referred to as the immunopeptidome. Large-scale mass spectrometry studies have highlighted three key features of the immunopeptidome. First, it is not a mirror of the proteome or the transcriptome, and its content cannot be predicted with currently available bioinformatic tools. Second, the immunopeptidome is more plastic than previously anticipated, and is molded by several cell-intrinsic and cell-extrinsic factors. Finally, the complexity of the immunopeptidome goes beyond the 20-amino acids alphabet encoded in the germline, and is not restricted to canonical reading frames. The large amounts of 'dark matter' in the immunopeptidome, such as polymorphic, cryptic and mutant peptides, can now be explored using novel proteogenomic approaches that combine mass spectrometry and next-generation sequencing.
Collapse
|
80
|
Lymphocyte repertoire selection and intracellular self/non-self-discrimination: historical overview. Immunol Cell Biol 2014; 93:297-304. [PMID: 25385066 DOI: 10.1038/icb.2014.96] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/19/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023]
Abstract
Immunological self/non-self-discrimination is conventionally seen as an extracellular event, involving interactions been receptors on T cells pre-educated to discriminate and peptides bound to major histocompatibility complex proteins (pMHCs). Mechanisms by which non-self peptides might first be sorted intracellularly to distinguish them from the vast excess of self-peptides have long been called for. Recent demonstrations of endogenous peptide-specific clustering of pMHCs on membrane rafts are indicative of intracellular enrichment before surface display. The clustering could follow the specific aggregation of a foreign protein that exceeded its solubility limit in the crowded intracellular environment. Predominantly entropy-driven, this homoaggregation would colocalize identical peptides, thus facilitating their collective presentation. Concentrations of self-proteins are fine-tuned over evolutionary time to avoid this. Disparate observations, such as pyrexia and female susceptibility to autoimmune disease, can be explained in terms of the need to cosegregate cognate pMHC complexes internally before extracellular display.
Collapse
|