51
|
Khanduja JS, Tripathi P, Muniyappa K. Mycobacterium tuberculosis RuvA induces two distinct types of structural distortions between the homologous and heterologous Holliday junctions. Biochemistry 2009; 48:27-40. [PMID: 19072585 DOI: 10.1021/bi8016526] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A central step in the process of homologous genetic recombination is the strand exchange between two homologous DNA molecules, leading to the formation of the Holliday junction intermediate. Several lines of evidence, both in vitro and in vivo, suggest a concerted role for the Escherichia coli RuvABC protein complex in the process of branch migration and the resolution of the Holliday junctions. A number of investigations have examined the role of RuvA protein in branch migration of the Holliday junction in conjunction with its natural cellular partner, RuvB. However, it remains unclear whether the RuvABC protein complex or its individual subunits function differently in the context of DNA repair and homologous recombination. In this study, we have specifically investigated the function of RuvA protein using Holliday junctions containing either homologous or heterologous arms. Our data show that Mycobacterium tuberculosis ruvA complements E. coli DeltaruvA mutants for survival to genotoxic stress caused by different DNA-damaging agents, and the purified RuvA protein binds HJ in preference to any other substrates. Strikingly, our analysis revealed two distinct types of structural distortions caused by M. tuberculosis RuvA between the homologous and heterologous Holliday junctions. We interpret these data as evidence that local distortion of base pairing in the arms of homologous Holliday junctions by RuvA might augment branch migration catalyzed by RuvB. The biological significance of two modes of structural distortion caused by M. tuberculosis RuvA and the implications for its role in DNA repair and homologous recombination are discussed.
Collapse
|
52
|
Le Masson M, Baharoglu Z, Michel B. ruvA and ruvB mutants specifically impaired for replication fork reversal. Mol Microbiol 2008; 70:537-48. [PMID: 18942176 PMCID: PMC2628435 DOI: 10.1111/j.1365-2958.2008.06431.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Replication fork reversal (RFR) is a reaction that takes place in Escherichia coli at replication forks arrested by the inactivation of a replication protein. Fork reversal involves the annealing of the leading and lagging strand ends; it results in the formation of a Holliday junction adjacent to DNA double-strand end, both of which are processed by recombination enzymes. In several replication mutants, replication fork reversal is catalysed by the RuvAB complex, originally characterized for its role in the last steps of homologous recombination, branch migration and resolution of Holliday junctions. We present here the isolation and characterization of ruvA and ruvB single mutants that are impaired for RFR at forks arrested by the inactivation of polymerase III, while they remain capable of homologous recombination. The positions of the mutations in the proteins and the genetic properties of the mutants suggest that the mutations affect DNA binding, RuvA-RuvB interaction and/or RuvB-helicase activity. These results show that a partial RuvA or RuvB defect affects primarily RFR, implying that RFR is a more demanding reaction than Holliday junction resolution.
Collapse
Affiliation(s)
- Marie Le Masson
- CNRS, Centre de Génétique Moléculaire, UPR 2167, Gif-sur-Yvette, F-91198, France
| | | | | |
Collapse
|
53
|
Abstract
Rad54, a key protein of homologous recombination, physically interacts with a DNA structure-specific endonuclease, Mus81-Eme1. Genetic data indicate that Mus81-Eme1 and Rad54 might function together in the repair of damaged DNA. In vitro, Rad54 promotes branch migration of Holliday junctions, whereas the Mus81-Eme1 complex resolves DNA junctions by endonucleolytic cleavage. Here, we show that human Rad54 stimulates Mus81-Eme1 endonuclease activity on various Holliday junction-like intermediates. This stimulation is the product of specific interactions between the human Rad54 (hRad54) and Mus81 proteins, considering that Saccharomyces cerevisiae Rad54 protein does not stimulate human Mus81-Eme1 endonuclease activity. Stimulation of Mus81-Eme1 cleavage activity depends on formation of specific Rad54 complexes on DNA substrates occurring in the presence of ATP and, to a smaller extent, of other nucleotide cofactors. Thus, our results demonstrate a functional link between the branch migration activity of hRad54 and the structure-specific endonuclease activity of hMus81-Eme1, suggesting that the Rad54 and Mus81-Eme1 proteins may cooperate in the processing of Holliday junction-like intermediates during homologous recombination or DNA repair.
Collapse
|
54
|
Karymov MA, Chinnaraj M, Bogdanov A, Srinivasan AR, Zheng G, Olson WK, Lyubchenko YL. Structure, dynamics, and branch migration of a DNA Holliday junction: a single-molecule fluorescence and modeling study. Biophys J 2008; 95:4372-83. [PMID: 18658216 PMCID: PMC2567953 DOI: 10.1529/biophysj.108.135103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 07/18/2008] [Indexed: 11/18/2022] Open
Abstract
The Holliday junction (HJ) is a central intermediate of various genetic processes, including homologous and site-specific DNA recombination and DNA replication. Elucidating the structure and dynamics of HJs provides the basis for understanding the molecular mechanisms of these genetic processes. Our previous single-molecule fluorescence studies led to a model according to which branch migration is a stepwise process consisting of consecutive migration and folding steps. These data led us to the conclusion that one hop can be more than 1 basepair (bp); moreover, we hypothesized that continuous runs over the entire sequence homology (5 bp) can occur. Direct measurements of the dependence of the fluorescence resonance energy transfer (FRET) value on the donor-acceptor (D-A) distance are required to justify this model and are the major goal of this article. To accomplish this goal, we performed single-molecule FRET experiments with a set of six immobile HJ molecules with varying numbers of bps between fluorescent dyes placed on opposite arms. The designs were made in such a way that the distances between the donor and acceptor were equal to the distances between the dyes formed upon 1-bp migration hops of a HJ having 10-bp homology. Using these designs, we confirmed our previous hypothesis that the migration of the junction can be measured with bp accuracy. Moreover, the FRET values determined for each acceptor-donor separation corresponded very well to the values for the steps on the FRET time trajectories, suggesting that each step corresponds to the migration of the branch at a defined depth. We used the dependence of the FRET value on the D-A distance to measure directly the size for each step on the FRET time trajectories. These data showed that one hop is not necessarily 1 bp. The junction is able to migrate over several bps, detected as one hop and confirming our model. The D-A distances extracted from the FRET properties of the immobile junctions formed the basis for modeling the HJ structures. The composite data fit a partially opened, side-by-side model with adjacent double-helical arms slightly kinked at the four-way junction and the junction as a whole adopting a global X-shaped form that mimics the coaxially stacked-X structure implicated in previous solution studies.
Collapse
Affiliation(s)
- Mikhail A Karymov
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
DNA binding to RecD: role of the 1B domain in SF1B helicase activity. EMBO J 2008; 27:2222-9. [PMID: 18668125 DOI: 10.1038/emboj.2008.144] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 06/30/2008] [Indexed: 11/08/2022] Open
Abstract
The molecular mechanism of superfamily 1Balpha helicases remains unclear. We present here the crystal structure of the RecD2 helicase from Deinococcus radiodurans at 2.2-A resolution. The structure reveals the folds of the 1B and 2B domains of RecD that were poorly ordered in the structure of the Escherichia coli RecBCD enzyme complex reported previously. The 2B domain adopts an SH3 fold which, although common in eukaryotes, is extremely rare in bacterial systems. In addition, the D. radiodurans RecD2 structure has aided us in deciphering lower resolution (3.6 A) electron density maps for the E. coli RecBCD enzyme in complex with a long DNA substrate that interacts with the RecD subunit. Taken together, these structures indicated an important role for the 1B domain of RecD, a beta-hairpin that extends from the surface of the 1A domain and interacts with the DNA substrate. On the basis of these structural data, we designed a mutant RecD2 helicase that lacks this pin. The 'pin-less' mutant protein is a fully active ssDNA-dependent ATPase but totally lacks helicase activity.
Collapse
|
56
|
Rasnik I, Jeong YJ, McKinney SA, Rajagopal V, Patel SS, Ha T. Branch migration enzyme as a Brownian ratchet. EMBO J 2008; 27:1727-35. [PMID: 18511910 PMCID: PMC2435128 DOI: 10.1038/emboj.2008.106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 04/30/2008] [Indexed: 11/08/2022] Open
Abstract
In recent years, it has been shown that helicases are able to perform functions beyond their traditional role in unwinding of double-stranded nucleic acids; yet the mechanistic aspects of these different activities are not clear. Our kinetic studies of Holliday junction branch migration catalysed by a ring-shaped helicase, T7 gp4, show that heterology of as little as a single base stalls catalysed branch migration. Using single-molecule analysis, one can locate the stall position to within a few base pairs of the heterology. Our data indicate that the presence of helicase alone promotes junction unfolding, which accelerates spontaneous branch migration, and individual time traces reveal complex trajectories consistent with random excursions of the branch point. Our results suggest that instead of actively unwinding base pairs as previously thought, the helicase exploits the spontaneous random walk of the junction and acts as a Brownian ratchet, which walks along duplex DNA while facilitating and biasing branch migration in a specific direction.
Collapse
Affiliation(s)
- Ivan Rasnik
- Physics Department, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
| | | | | | | | | | | |
Collapse
|
57
|
Witte G, Hartung S, Büttner K, Hopfner KP. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell 2008; 30:167-78. [PMID: 18439896 DOI: 10.1016/j.molcel.2008.02.020] [Citation(s) in RCA: 322] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/25/2008] [Accepted: 02/20/2008] [Indexed: 12/27/2022]
Abstract
To reveal mechanisms of DNA damage checkpoint initiation, we structurally and biochemically analyzed DisA, a protein that controls a Bacillus subtilis sporulation checkpoint in response to DNA double-strand breaks. We find that DisA forms a large octamer that consists of an array of an uncharacterized type of nucleotide-binding domain along with two DNA-binding regions related to the Holliday junction recognition protein RuvA. Remarkably, the nucleotide-binding domains possess diadenylate cyclase activity. The resulting cyclic diadenosine phosphate, c-di-AMP, is reminiscent but distinct from c-di-GMP, an emerging prokaryotic regulator of complex cellular processes. Diadenylate cyclase activity is unaffected by linear DNA or DNA ends but strongly suppressed by branched nucleic acids such as Holliday junctions. Our data indicate that DisA signals DNA structures that interfere with chromosome segregation via c-di-AMP. Identification of the diadenylate cyclase domain in other eubacterial and archaeal proteins implies a more general role for c-di-AMP in prokaryotes.
Collapse
Affiliation(s)
- Gregor Witte
- Munich Center for Advanced Photonics, Department of Chemistry and Biochemistry, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
58
|
Das D, Tripsianes K, Jaspers NGJ, Hoeijmakers JHJ, Kaptein R, Boelens R, Folkers GE. The HhH domain of the human DNA repair protein XPF forms stable homodimers. Proteins 2008; 70:1551-63. [PMID: 17912758 DOI: 10.1002/prot.21635] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human XPF-ERCC1 protein complex plays an essential role in nucleotide excision repair by catalysing positioned nicking of a DNA strand at the 5' side of the damage. We have recently solved the structure of the heterodimeric complex of the C-terminal domains of XPF and ERCC1 (Tripsianes et al., Structure 2005;13:1849-1858). We found that this complex comprises a pseudo twofold symmetry axis and that the helix-hairpin-helix motif of ERCC1 is required for DNA binding, whereas the corresponding domain of XPF is functioning as a scaffold for complex formation with ERCC1. Despite the functional importance of heterodimerization, the C-terminal domain of XPF can also form homodimers in vitro. We here compare the stabilities of homodimeric and heterodimeric complexes of the C-terminal domains of XPF and ERCC1. The higher stability of the XPF HhH complexes under various experimental conditions, determined using CD and NMR spectroscopy and mass spectrometry, is well explained by the structural differences that exist between the HhH domains of the two complexes. The XPF HhH homodimer has a larger interaction interface, aromatic stacking interactions, and additional hydrogen bond contacts as compared to the XPF/ERCC1 HhH complex, which accounts for its higher stability.
Collapse
Affiliation(s)
- Devashish Das
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
59
|
Croteau DL, Peng Y, Van Houten B. DNA repair gets physical: mapping an XPA-binding site on ERCC1. DNA Repair (Amst) 2008; 7:819-26. [PMID: 18343204 DOI: 10.1016/j.dnarep.2008.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 11/27/2022]
Abstract
Two recent reports provide new physical information on how the XPA protein recruits the ERCC1-XPF heterodimer to the site of damage during the process of mammalian nucleotide excision repair (NER). Using chemical shift perturbation NMR experiments, the contact sites between a central fragment of ERCC1 and an XPA fragment have been mapped. While both studies agree with regard to the XPA-binding site, they differ on whether the ERCC1-XPA complex can simultaneously bind DNA. These studies have important implications for both the molecular process and the design of potential inhibitors of NER.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | | | | |
Collapse
|
60
|
Baharoglu Z, Bradley AS, Le Masson M, Tsaneva I, Michel B. ruvA Mutants that resolve Holliday junctions but do not reverse replication forks. PLoS Genet 2008; 4:e1000012. [PMID: 18369438 PMCID: PMC2265524 DOI: 10.1371/journal.pgen.1000012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 01/28/2008] [Indexed: 01/08/2023] Open
Abstract
RuvAB and RuvABC complexes catalyze branch migration and resolution of Holliday junctions (HJs) respectively. In addition to their action in the last steps of homologous recombination, they process HJs made by replication fork reversal, a reaction which occurs at inactivated replication forks by the annealing of blocked leading and lagging strand ends. RuvAB was recently proposed to bind replication forks and directly catalyze their conversion into HJs. We report here the isolation and characterization of two separation-of-function ruvA mutants that resolve HJs, based on their capacity to promote conjugational recombination and recombinational repair of UV and mitomycin C lesions, but have lost the capacity to reverse forks. In vivo and in vitro evidence indicate that the ruvA mutations affect DNA binding and the stimulation of RuvB helicase activity. This work shows that RuvA's actions at forks and at HJs can be genetically separated, and that RuvA mutants compromised for fork reversal remain fully capable of homologous recombination. DNA replication is the process by which DNA strands are copied to ensure the transmission of the genetic material to daughter cells. Chromosome replication is not a continuous process but is subjected to accidental arrests, owing to the encounter of obstacles or to the dysfunctioning of a replication protein. In bacteria, inactivated replication forks restart but they are most often remodeled before restarting. Interestingly, enzymes involved in homologous recombination, the process that rearranges chromosomes, are also involved in fork-remodeling reactions. The subject of the present study is RuvAB, a highly conserved bacterial complex used as the model enzyme for resolution of recombination intermediates, which we found to also act at blocked forks. We describe here the isolation and characterization of ruvA mutants that have specifically lost the capability to act at inactivated replication forks, although they remain fully capable of homologous recombination. The existence of such ruvA mutants, their properties and those of the purified RuvA mutant proteins, indicate that the action of RuvAB at replication forks is more demanding that its action at recombination intermediates, but have nevertheless been preserved during evolution.
Collapse
Affiliation(s)
- Zeynep Baharoglu
- CNRS, Centre de Génétique Moléculaire, UPR 2167, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
- Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Alison Sylvia Bradley
- UCL Department of Biochemistry and Molecular Biology, University College London, London, United Kingdom
| | - Marie Le Masson
- CNRS, Centre de Génétique Moléculaire, UPR 2167, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
- Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Irina Tsaneva
- UCL Department of Biochemistry and Molecular Biology, University College London, London, United Kingdom
| | - Bénédicte Michel
- CNRS, Centre de Génétique Moléculaire, UPR 2167, Gif-sur-Yvette, France
- Université Paris-Sud, Orsay, France
- Université Pierre et Marie Curie-Paris 6, Paris, France
- * E-mail:
| |
Collapse
|
61
|
Fujiwara Y, Mayanagi K, Morikawa K. Functional significance of octameric RuvA for a branch migration complex from Thermus thermophilus. Biochem Biophys Res Commun 2007; 366:426-31. [PMID: 18068124 DOI: 10.1016/j.bbrc.2007.11.149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 11/26/2007] [Indexed: 11/25/2022]
Abstract
The RuvAB complex promotes migration of Holliday junction at the late stage of homologous recombination. The RuvA tetramer specifically recognizes Holliday junction to form two types of complexes. A single tetramer is bound to the open configuration of the junction DNA in complex I, while the octameric RuvA core structure sandwiches the same junction in complex II. The hexameric RuvB rings, symmetrically bound to both sides of RuvA on Holliday junction, pump out DNA duplexes, depending upon ATP hydrolysis. We investigated functional differences between the wild-type RuvA from Thermus thermophilus and mutants impaired the ability of complex II formation. These mutant RuvA, exclusively forming complex I, reduced activities of branch migration and ATP hydrolysis, suggesting that the octameric RuvA is essential for efficient branch migration. Together with our recent electron microscopic analysis, this finding provides important insights into functional roles of complex II in the coordinated branch migration mechanism.
Collapse
Affiliation(s)
- Yoshie Fujiwara
- Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | | | | |
Collapse
|
62
|
Mayanagi K, Fujiwara Y, Miyata T, Morikawa K. Electron microscopic single particle analysis of a tetrameric RuvA/RuvB/Holliday junction DNA complex. Biochem Biophys Res Commun 2007; 365:273-8. [PMID: 17981150 DOI: 10.1016/j.bbrc.2007.10.165] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 10/25/2007] [Indexed: 11/30/2022]
Abstract
During the late stage of homologous recombination in prokaryotes, RuvA binds to the Holliday junction intermediate and executes branch migration in association with RuvB. The RuvA subunits form two distinct complexes with the Holliday junction: complex I with the single RuvA tetramer on one side of the four way junction DNA, and complex II with two tetramers on both sides. To investigate the functional roles of complexes I and II, we mutated two residues of RuvA (L125D and E126K) to prevent octamer formation. An electron microscopic analysis indicated that the mutant RuvA/RuvB/Holliday junction DNA complex formed the characteristic tripartite structure, with only one RuvA tetramer bound to one side of the Holliday junction, demonstrating the unexpected stability of this complex. The novel bent images of the complex revealed an intriguing morphological similarity to the structure of SV40 large T antigen, which belongs to the same AAA+ family as RuvB.
Collapse
Affiliation(s)
- Kouta Mayanagi
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan.
| | | | | | | |
Collapse
|
63
|
Biertümpfel C, Yang W, Suck D. Crystal structure of T4 endonuclease VII resolving a Holliday junction. Nature 2007; 449:616-20. [PMID: 17873859 DOI: 10.1038/nature06152] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 08/07/2007] [Indexed: 11/08/2022]
Abstract
Holliday proposed a four-way DNA junction as an intermediate in homologous recombination, and such Holliday junctions have since been identified as a central component in DNA recombination and repair. Phage T4 endonuclease VII (endo VII) was the first enzyme shown to resolve Holliday junctions into duplex DNAs by introducing symmetrical nicks in equivalent strands. Several Holliday junction resolvases have since been characterized, but an atomic structure of a resolvase complex with a Holliday junction remained elusive. Here we report the crystal structure of an inactive T4 endo VII(N62D) complexed with an immobile four-way junction with alternating arm lengths of 10 and 14 base pairs. The junction is a hybrid of the conventional square-planar and stacked-X conformation. Endo VII protrudes into the junction point from the minor groove side, opening it to a 14 A x 32 A parallelogram. This interaction interrupts the coaxial stacking, yet every base pair surrounding the junction remains intact. Additional interactions involve the positively charged protein and DNA phosphate backbones. Each scissile phosphate that is two base pairs from the crossover interacts with a Mg2+ ion in the active site. The similar overall shape and surface charge potential of the Holliday junction resolvases endo VII, RuvC, Ydc2, Hjc and RecU, despite having different folds, active site composition and DNA sequence preference, suggest a conserved binding mode for Holliday junctions.
Collapse
Affiliation(s)
- Christian Biertümpfel
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Molecular Biology, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
64
|
Hadden JM, Déclais AC, Carr SB, Lilley DMJ, Phillips SEV. The structural basis of Holliday junction resolution by T7 endonuclease I. Nature 2007; 449:621-4. [PMID: 17873858 DOI: 10.1038/nature06158] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 08/07/2007] [Indexed: 11/09/2022]
Abstract
The four-way (Holliday) DNA junction is the central intermediate in homologous recombination, a ubiquitous process that is important in DNA repair and generation of genetic diversity. The penultimate stage of recombination requires resolution of the DNA junction into nicked-duplex species by the action of a junction-resolving enzyme, examples of which have been identified in a wide variety of organisms. These enzymes are nucleases that are highly selective for the structure of branched DNA. The mechanism of this selectivity has, however, been unclear in the absence of structural data. Here we present the crystal structure of the junction-resolving enzyme phage T7 endonuclease I in complex with a synthetic four-way DNA junction. Although the enzyme is structure-selective, significant induced fit occurs in the interaction, with changes in the structure of both the protein and the junction. The dimeric enzyme presents two binding channels that contact the backbones of the junction's helical arms over seven nucleotides. These interactions effectively measure the relative orientations and positions of the arms of the junction, thereby ensuring that binding is selective for branched DNA that can achieve this geometry.
Collapse
Affiliation(s)
- Jonathan M Hadden
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
65
|
Model for RuvAB-mediated branch migration of Holliday junctions. J Theor Biol 2007; 249:566-73. [PMID: 17919660 DOI: 10.1016/j.jtbi.2007.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 08/27/2007] [Accepted: 08/27/2007] [Indexed: 11/21/2022]
Abstract
During RuvAB-mediated Holliday-junction migration two opposite arms of double-stranded DNA (dsDNA) are driven to translocate unidirectional by two respective ring-like hexameric RuvB proteins. However, how the RuvB protein, powered by ATP hydrolysis, drives unidirectional translocation of dsDNA is not clear. Here a model is presented for this mechanochemical-coupling mechanism. In the model, the unidirectional translocation is resulted from both the ATP hydrolysis-induced rotation (power stroke) of the RuvB subunits and the passage of the strong DNA binding from the previous to next RuvB subunits during the sequential ATPase activities around the ring. Using the model, the relationship between the power-stroke size, the step size of DNA translocation and the ratio of the rotational rate of DNA over that of RuvB relative to RuvA is predicted.
Collapse
|
66
|
Mazina OM, Rossi MJ, Thomaä NH, Mazin AV. Interactions of human rad54 protein with branched DNA molecules. J Biol Chem 2007; 282:21068-80. [PMID: 17545145 DOI: 10.1074/jbc.m701992200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Rad54 protein plays an important role during homologous recombination in eukaryotes. The protein belongs to the Swi2/Snf2 family of ATP-dependent DNA translocases. We previously showed that yeast and human Rad54 (hRad54) specifically bind to Holliday junctions and promote branch migration. Here we examined the minimal DNA structural requirements for optimal hRad54 ATPase and branch migration activity. Although a 12-bp double-stranded DNA region of branched DNA is sufficient to induce ATPase activity, the minimal substrate that gave rise to optimal stimulation of the ATP hydrolysis rate consisted of two short double-stranded DNA arms, 15 bp each, combined with a 45-nucleotide single-stranded DNA branch. We showed that hRad54 binds preferentially to the open and not to the stacked conformation of branched DNA. Stoichiometric titration of hRad54 revealed formation of two types of hRad54 complexes with branched DNA substrates. The first of them, a dimer, is responsible for the ATPase activity of the protein. However, branch migration activity requires a significantly higher stoichiometry of hRad54, approximately 10 +/- 2 protein monomers/DNA molecule. This pleomorphism of hRad54 in formation of oligomeric complexes with DNA may correspond to multiple functions of the protein in homologous recombination.
Collapse
Affiliation(s)
- Olga M Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102-1192, USA
| | | | | | | |
Collapse
|
67
|
Macmaster R, Sedelnikova S, Baker PJ, Bolt EL, Lloyd RG, Rafferty JB. RusA Holliday junction resolvase: DNA complex structure--insights into selectivity and specificity. Nucleic Acids Res 2006; 34:5577-84. [PMID: 17028102 PMCID: PMC1636454 DOI: 10.1093/nar/gkl447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have determined the structure of a catalytically inactive D70N variant of the Escherichia coli RusA resolvase bound to a duplex DNA substrate that reveals critical protein-DNA interactions and permits a much clearer understanding of the interaction of the enzyme with a Holliday junction (HJ). The RusA enzyme cleaves HJs, the fourway DNA branchpoints formed by homologous recombination, by introducing symmetrical cuts in the phosphodiester backbone in a Mg2+ dependent reaction. Although, RusA shows a high level of selectivity for DNA junctions, preferring to bind fourway junctions over other substrates in vitro, it has also been shown to have appreciable affinity for duplex DNA. However, RusA does not show DNA cleavage activity with duplex substrates. Our structure suggests the possible basis for structural selectivity as well as sources of the sequence specificity observed for DNA cleavage by RusA.
Collapse
Affiliation(s)
| | | | | | - Edward L. Bolt
- Institute of Genetics, University of NottinghamQueen's Medical Centre, Nottingham NG7 2UH, UK
| | - Robert G. Lloyd
- Institute of Genetics, University of NottinghamQueen's Medical Centre, Nottingham NG7 2UH, UK
| | - John B. Rafferty
- To whom correspondence should be addressed. Tel: +44 114 222 2809; Fax: +44 114 222 2800;
| |
Collapse
|
68
|
Malo J, Mitchell JC, Vénien-Bryan C, Harris JR, Wille H, Sherratt DJ, Turberfield AJ. Engineering a 2D protein-DNA crystal. Angew Chem Int Ed Engl 2006; 44:3057-61. [PMID: 15828044 DOI: 10.1002/anie.200463027] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jonathan Malo
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | | | | | | | | | | | | |
Collapse
|
69
|
Hartung F, Suer S, Bergmann T, Puchta H. The role of AtMUS81 in DNA repair and its genetic interaction with the helicase AtRecQ4A. Nucleic Acids Res 2006; 34:4438-48. [PMID: 16945961 PMCID: PMC1636358 DOI: 10.1093/nar/gkl576] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The endonuclease MUS81 has been shown in a variety of organisms to be involved in DNA repair in mitotic and meiotic cells. Homologues of the MUS81 gene exist in the genomes of all eukaryotes, pointing to a conserved role of the protein. However, the biological role of MUS81 varies between different eukaryotes. For example, while loss of the gene results in strongly impaired fertility in Saccharomyces cerevisiae and nearly complete sterility in Schizosaccharomyces pombe, it is not essential for meiosis in mammals. We identified a functional homologue (AtMUS81/At4g30870) in the genome of Arabidopsis thaliana and isolated a full-length cDNA of this gene. Analysing two independent T-DNA insertion lines of AtMUS81, we found that they are sensitive to the mutagens MMS and MMC. Both mutants have a deficiency in homologous recombination in somatic cells but only after induction by genotoxic stress. In contrast to yeast, no meiotic defect of AtMUS81 mutants was detectable and the mutants are viable. Crosses with a hyperrecombinogenic mutant of the AtRecQ4A helicase resulted in synthetic lethality in the double mutant. Thus, the nuclease AtMUS81 and the helicase AtRecQ4A seem to be involved in two alternative pathways of resolution of replicative DNA structures in somatic cells.
Collapse
Affiliation(s)
| | | | | | - H. Puchta
- To whom correspondence should be addressed. Tel: +49 721 6088894; Fax: +49 721 6084874;
| |
Collapse
|
70
|
Singh S, Hager MH, Zhang C, Griffith BR, Lee MS, Hallenga K, Markley JL, Thorson JS. Structural insight into the self-sacrifice mechanism of enediyne resistance. ACS Chem Biol 2006; 1:451-60. [PMID: 17168523 DOI: 10.1021/cb6002898] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recent discovery of the first "self-sacrifice" mechanism for bacterial resistance to the enediyne antitumor antibiotics, where enediyne-induced proteolysis of the resistance protein CalC inactivates both the highly reactive metabolite and the resistance protein, revealed yet another ingenious bacterial mechanism for controlling reactive metabolites. As reported herein, the first 3D structures of CalC and CalC in complex with calicheamicin (CLM) divulge CalC to be a member of the steroidogenic acute regulatory protein (StAR)-related transfer (START) domain superfamily. In contrast to previous studies of proteins known to bind DNA-damaging natural products ( e.g ., bleomycins, mitomycins, and nine-membered chromoprotein enediynes), this is the first demonstrated involvement of a START domain fold. Consistent with the CalC self-sacrifice mechanism, CLM in complex with CalC is positioned for direct hydrogen abstraction from Gly113 to initiate the oxidative proteolysis-based resistance mechanism. These structural studies also illuminate, for the first time, a small DNA-binding region within CalC that may serve to localize CalC to the enediyne target (DNA). Given the role of START domains in nuclear/cytosolic transport and translocation, this structural study also may implicate START domains as post-endocytotic intracellular chaperones for enediyne-based therapeutics such as MyloTarg.
Collapse
Affiliation(s)
- Shanteri Singh
- Center for Eukaryotic Structural Genomics, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Prabu JR, Thamotharan S, Khanduja JS, Alipio EZ, Kim CY, Waldo GS, Terwilliger TC, Segelke B, Lekin T, Toppani D, Hung LW, Yu M, Bursey E, Muniyappa K, Chandra NR, Vijayan M. Structure of Mycobacterium tuberculosis RuvA, a protein involved in recombination. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:731-4. [PMID: 16880543 PMCID: PMC2242936 DOI: 10.1107/s1744309106024791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 06/27/2006] [Indexed: 11/10/2022]
Abstract
The process of recombinational repair is crucial for maintaining genomic integrity and generating biological diversity. In association with RuvB and RuvC, RuvA plays a central role in processing and resolving Holliday junctions, which are a critical intermediate in homologous recombination. Here, the cloning, purification and structure determination of the RuvA protein from Mycobacterium tuberculosis (MtRuvA) are reported. Analysis of the structure and comparison with other known RuvA proteins reveal an octameric state with conserved subunit-subunit interaction surfaces, indicating the requirement of octamer formation for biological activity. A detailed analysis of plasticity in the RuvA molecules has led to insights into the invariant and variable regions, thus providing a framework for understanding regional flexibility in various aspects of RuvA function.
Collapse
Affiliation(s)
- J. Rajan Prabu
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - S. Thamotharan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | - Chang-Yub Kim
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, USA
| | - Geoffrey S. Waldo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, USA
| | | | - Brent Segelke
- Biology and Biotechnology Program, Lawrence Livermore National Laboratory, Livermore, USA
| | - Tim Lekin
- Biology and Biotechnology Program, Lawrence Livermore National Laboratory, Livermore, USA
| | - Dominique Toppani
- Biology and Biotechnology Program, Lawrence Livermore National Laboratory, Livermore, USA
| | - Li-Wei Hung
- Physics Division, Los Alamos National Laboratory, Los Alamos, USA
| | - Minmin Yu
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - Evan Bursey
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
| | - K. Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Nagasuma R. Chandra
- Bioinformatics Centre and Super Computer Education and Research Centre, Indian Institute of Science, Bangalore, India
- Correspondence e-mail: ,
| | - M. Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Correspondence e-mail: ,
| |
Collapse
|
72
|
Ishino Y, Nishino T, Morikawa K. Mechanisms of maintaining genetic stability by homologous recombination. Chem Rev 2006; 106:324-39. [PMID: 16464008 DOI: 10.1021/cr0404803] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshizumi Ishino
- Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, Fukukoka-shi, Fukuoka, Japan.
| | | | | |
Collapse
|
73
|
Truglio JJ, Croteau DL, Van Houten B, Kisker C. Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev 2006; 106:233-52. [PMID: 16464004 DOI: 10.1021/cr040471u] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James J Truglio
- Department of Pharmacological Sciences, State University of New York at Stony Brook, 11794-5115, USA
| | | | | | | |
Collapse
|
74
|
Oleksy A, Oleksi A, Blanco AG, Boer R, Usón I, Aymamí J, Rodger A, Hannon MJ, Coll M. Molecular Recognition of a Three-Way DNA Junction by a Metallosupramolecular Helicate. Angew Chem Int Ed Engl 2006; 45:1227-31. [PMID: 16463312 DOI: 10.1002/anie.200503822] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aneta Oleksy
- Institut de Biologia Molecular de Barcelona-CSIC and Institut de Recerca Biomèdica, Parc Científic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Oleksi A, Blanco AG, Boer R, Usón I, Aymamí J, Rodger A, Hannon MJ, Coll M. Molecular Recognition of a Three-Way DNA Junction by a Metallosupramolecular Helicate. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503822] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
76
|
Tripsianes K, Folkers G, Ab E, Das D, Odijk H, Jaspers NGJ, Hoeijmakers JHJ, Kaptein R, Boelens R. The structure of the human ERCC1/XPF interaction domains reveals a complementary role for the two proteins in nucleotide excision repair. Structure 2006; 13:1849-58. [PMID: 16338413 DOI: 10.1016/j.str.2005.08.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/26/2005] [Accepted: 08/28/2005] [Indexed: 11/21/2022]
Abstract
The human ERCC1/XPF complex is a structure-specific endonuclease with defined polarity that participates in multiple DNA repair pathways. We report the heterodimeric structure of the C-terminal domains of both proteins responsible for ERCC1/XPF complex formation. Both domains exhibit the double helix-hairpin-helix motif (HhH)2, and they are related by a pseudo-2-fold symmetry axis. In the XPF domain, the hairpin of the second motif is replaced by a short turn. The ERCC1 domain folds properly only in the presence of the XPF domain, which implies a role for XPF as a scaffold for the folding of ERCC1. The intersubunit interactions are largely hydrophobic in nature. NMR titration data show that only the ERCC1 domain of the ERCC1/XPF complex is involved in DNA binding. On the basis of these findings, we propose a model for the targeting of XPF nuclease via ERCC1-mediated interactions in the context of nucleotide excision repair.
Collapse
Affiliation(s)
- Konstantinos Tripsianes
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Oberstrass FC, Lee A, Stefl R, Janis M, Chanfreau G, Allain FHT. Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nat Struct Mol Biol 2006; 13:160-7. [PMID: 16429156 DOI: 10.1038/nsmb1038] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 11/15/2005] [Indexed: 01/25/2023]
Abstract
Although the abundant sterile alpha motif (SAM) domain was originally classified as a protein-protein interaction domain, it has recently been shown that certain SAM domains have the ability to bind RNA, defining a new type of post-transcriptional gene regulator. To further understand the function of SAM-RNA recognition, we determined the solution structures of the SAM domain of the Saccharomyces cerevisiae Vts1p (Vts1p-SAM) and the Smaug response element (SRE) stem-loop RNA as a complex and in isolation. The structures show that Vts1p-SAM recognizes predominantly the shape of the SRE rather than its sequence, with the exception of a G located at the tip of the pentaloop. Using microarray gene profiling, we identified several genes in S. cerevisiae that seem to be regulated by Vts1p and contain one or more copies of the SRE.
Collapse
Affiliation(s)
- Florian C Oberstrass
- Institute for Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
78
|
Taneja B, Patel A, Slesarev A, Mondragón A. Structure of the N-terminal fragment of topoisomerase V reveals a new family of topoisomerases. EMBO J 2006; 25:398-408. [PMID: 16395333 PMCID: PMC1383508 DOI: 10.1038/sj.emboj.7600922] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 11/23/2005] [Indexed: 11/08/2022] Open
Abstract
Topoisomerases are involved in controlling and maintaining the topology of DNA and are present in all kingdoms of life. Unlike all other types of topoisomerases, similar type IB enzymes have only been identified in bacteria and eukarya. The only putative type IB topoisomerase in archaea is represented by Methanopyrus kandleri topoisomerase V. Despite several common functional characteristics, topoisomerase V shows no sequence similarity to other members of the same type. The structure of the 61 kDa N-terminal fragment of topoisomerase V reveals no structural similarity to other topoisomerases. Furthermore, the structure of the active site region is different, suggesting no conservation in the cleavage and religation mechanism. Additionally, the active site is buried, indicating the need of a conformational change for activity. The presence of a topoisomerase in archaea with a unique structure suggests the evolution of a separate mechanism to alter DNA.
Collapse
Affiliation(s)
- Bhupesh Taneja
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL, USA
| | - Asmita Patel
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL, USA
| | | | - Alfonso Mondragón
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL, USA
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500, USA. Tel.: +1 847 491 7726; Fax: +1 847 467 6489; E-mail:
| |
Collapse
|
79
|
Kaplan DL, O'Donnell M. RuvA is a sliding collar that protects Holliday junctions from unwinding while promoting branch migration. J Mol Biol 2005; 355:473-90. [PMID: 16324713 DOI: 10.1016/j.jmb.2005.10.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/25/2005] [Accepted: 10/26/2005] [Indexed: 11/25/2022]
Abstract
The RuvAB proteins catalyze branch migration of Holliday junctions during DNA recombination in Escherichia coli. RuvA binds tightly to the Holliday junction, and then recruits two RuvB pumps to power branch migration. Previous investigations have studied RuvA in conjunction with its cellular partner RuvB. The replication fork helicase DnaB catalyzes branch migration like RuvB but, unlike RuvB, is not dependent on RuvA for activity. In this study, we specifically analyze the function of RuvA by studying RuvA in conjunction with DnaB, a DNA pump that does not work with RuvA in the cell. Thus, we use DnaB as a tool to dissect RuvA function from RuvB. We find that RuvA does not inhibit DnaB-catalyzed branch migration of a homologous junction, even at high concentrations of RuvA. Hence, specific protein-protein interaction is not required for RuvA mobilization during branch migration, in contrast to previous proposals. However, low concentrations of RuvA block DnaB unwinding at a Holliday junction. RuvA even blocks DnaB-catalyzed unwinding when two DnaB rings are acting in concert on opposite sides of the junction. These findings indicate that RuvA is intrinsically mobile at a Holliday junction when the DNA is undergoing branch migration, but RuvA is immobile at the same junction during DNA unwinding. We present evidence that suggests that RuvA can slide along a Holliday junction structure during DnaB-catalyzed branch migration, but not during unwinding. Thus, RuvA may act as a sliding collar at Holliday junctions, promoting DNA branch migration activity while blocking other DNA remodeling activities. Finally, we show that RuvA is less mobile at a heterologous junction compared to a homologous junction, as two opposing DnaB pumps are required to mobilize RuvA over heterologous DNA.
Collapse
Affiliation(s)
- Daniel L Kaplan
- Rockefeller University, Laboratory of DNA Replication, New York, NY 10021, USA.
| | | |
Collapse
|
80
|
Yamada K, Ariyoshi M, Morikawa K. Three-dimensional structural views of branch migration and resolution in DNA homologous recombination. Curr Opin Struct Biol 2005; 14:130-7. [PMID: 15093826 DOI: 10.1016/j.sbi.2004.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The processing of the Holliday junction by various proteins is a major event in DNA homologous recombination and is crucial to the maintenance of genome stability and biological diversity. The proteins RuvA, RuvB and RuvC play central roles in the late stage of recombination in prokaryotes. Recent atomic views of these proteins, including protein-protein and protein-junction DNA complexes, provide new insights into branch migration mechanisms: RuvA is likely to be responsible for base-pair rearrangements, whereas RuvB, classified as a member of the AAA(+) family, functions as a pump to pull DNA duplex arms without segmental unwinding. The mechanism of junction resolution by RuvC in the RuvABC resolvasome remains to be elucidated.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | |
Collapse
|
81
|
Malo J, Mitchell JC, Vénien-Bryan C, Harris JR, Wille H, Sherratt DJ, Turberfield AJ. Engineering a 2D Protein-DNA Crystal. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200463027] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
82
|
Newman M, Murray-Rust J, Lally J, Rudolf J, Fadden A, Knowles PP, White MF, McDonald NQ. Structure of an XPF endonuclease with and without DNA suggests a model for substrate recognition. EMBO J 2005; 24:895-905. [PMID: 15719018 PMCID: PMC554130 DOI: 10.1038/sj.emboj.7600581] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 01/19/2005] [Indexed: 11/09/2022] Open
Abstract
The XPF/Mus81 structure-specific endonucleases cleave double-stranded DNA (dsDNA) within asymmetric branched DNA substrates and play an essential role in nucleotide excision repair, recombination and genome integrity. We report the structure of an archaeal XPF homodimer alone and bound to dsDNA. Superposition of these structures reveals a large domain movement upon binding DNA, indicating how the (HhH)(2) domain and the nuclease domain are coupled to allow the recognition of double-stranded/single-stranded DNA junctions. We identify two nonequivalent DNA-binding sites and propose a model in which XPF distorts the 3' flap substrate in order to engage both binding sites and promote strand cleavage. The model rationalises published biochemical data and implies a novel role for the ERCC1 subunit of eukaryotic XPF complexes.
Collapse
Affiliation(s)
- Matthew Newman
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Judith Murray-Rust
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - John Lally
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Jana Rudolf
- Centre for Biomolecular Sciences, University of St Andrews, Fife, UK
| | - Andrew Fadden
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Philip P Knowles
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Malcolm F White
- Centre for Biomolecular Sciences, University of St Andrews, Fife, UK
| | - Neil Q McDonald
- Structural Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
- School of Crystallography, Birkbeck College, London, UK
| |
Collapse
|
83
|
Abstract
In 1964, the geneticist Robin Holliday proposed a mechanism of DNA-strand exchange that attempted to explain gene-conversion events that occur during meiosis in fungi. His proposal marked the birthday of the now famous cross-stranded DNA structure, or Holliday junction. To understand the importance of the Holliday model we must look back in the history of science beyond the last 40 years, to a time when theories of heredity were being proposed by Gregor Johann Mendel.
Collapse
Affiliation(s)
- Yilun Liu
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK
| | | |
Collapse
|
84
|
Privezentzev CV, Keeley A, Sigala B, Tsaneva IR. The role of RuvA octamerization for RuvAB function in vitro and in vivo. J Biol Chem 2004; 280:3365-75. [PMID: 15556943 DOI: 10.1074/jbc.m409256200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RuvA plays an essential role in branch migration of the Holliday junction by RuvAB as part of the RuvABC pathway for processing Holliday junctions in Escherichia coli. Two types of RuvA-Holliday junction complexes have been characterized: 1) complex I containing a single RuvA tetramer and 2) complex II in which the junction is sandwiched between two RuvA tetramers. The functional differences between the two forms are still not clear. To investigate the role of RuvA octamerization, we introduced three amino acid substitutions designed to disrupt the E. coli RuvA tetramer-tetramer interface as identified by structural studies. The mutant RuvA was tetrameric and interacted with both RuvB and junction DNA but, as predicted, formed complex I only at protein concentrations up to 500 nm. We present biochemical and surface plasmon resonance evidence for functional and physical interactions of the mutant RuvA with RuvB and RuvC on synthetic junctions. The mutant RuvA with RuvB showed DNA helicase activity and could support branch migration of synthetic four-way and three-way junctions. However, junction binding and the efficiency of branch migration of four-way junctions were affected. The activity of the RuvA mutant was consistent with a RuvAB complex driven by one RuvB hexamer only and lead us to propose that one RuvA tetramer can only support the activity of one RuvB hexamer. Significantly, the mutant failed to complement the UV sensitivity of E. coli DeltaruvA cells. These results indicate strongly that RuvA octamerization is essential for the full biological activity of RuvABC.
Collapse
Affiliation(s)
- Cyril V Privezentzev
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
85
|
Dickman MJ, Sedelnikova SE, Rafferty JB, Hornby DP. Rapid analysis of protein-nucleic acid complexes using MALDI TOF mass spectrometry and ion pair reverse phase liquid chromatography. ACTA ACUST UNITED AC 2004; 58:39-48. [PMID: 14597187 DOI: 10.1016/s0165-022x(03)00146-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The RuvABC resolvasome of Escherichia coli typifies nucleoprotein complexes involved in genetic transactions. This molecular assembly catalyses the resolution of Holliday junctions that arise during genetic recombination and DNA repair. This process involves two key steps: branch migration, catalysed by the RuvB protein that is targeted to the Holliday junction by the structure specific RuvA protein, and resolution, which is catalysed by the RuvC endonuclease. We have used matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF MS) to rapidly identify the binding of RuvA to an immobilised synthetic Holliday junction; unambiguous identification was verified using tryptic digest of the bound protein. In conjunction with a novel fluorescent-based technique incorporating ion pair reverse phase liquid chromatography, a "footprint" of the RuvA:Holliday complex was obtained. These two complementary techniques offer a generic approach to the analysis of nucleoprotein complexes.
Collapse
Affiliation(s)
- Mark J Dickman
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
86
|
Dawid A, Croquette V, Grigoriev M, Heslot F. Single-molecule study of RuvAB-mediated Holliday-junction migration. Proc Natl Acad Sci U S A 2004; 101:11611-6. [PMID: 15292508 PMCID: PMC511028 DOI: 10.1073/pnas.0404369101] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Branch migration of Holliday junctions is an important step of genetic recombination and DNA repair. In Escherichia coli, this process is driven by the RuvAB complex acting as a molecular motor. Using magnetic tweezers, we studied the RuvAB-directed migration of individual Holliday junctions formed between two approximately 6-kb DNA molecules of identical sequence, and we measured the migration rate at 37 degrees C and 1 mM ATP. We directly demonstrate that RuvAB is a highly processive DNA motor protein that is able to drive continuous and unidirectional branch migration of Holliday junctions at a well defined average speed over several kilobases through homologous sequences. We observed directional inversions of the migration at the DNA molecule boundaries leading to forth-and-back migration of the branch point and allowing us to measure the migration rate in the presence of negative or positive loads. The average migration rate at zero load was found to be approximately 43 bp/sec. Furthermore, the load dependence of the migration rate is small, within the force range of -3.4 pN (hindering force) to +3.4 pN (assisting force).
Collapse
Affiliation(s)
- A Dawid
- Laboratoire Pierre Aigrain, Unité Mixte de Recherche 8551, Ecole Normale Supérieure, 24 Rue Lhomond, 75005 Paris, France
| | | | | | | |
Collapse
|
87
|
Sharples GJ, Curtis FA, McGlynn P, Bolt EL. Holliday junction binding and resolution by the Rap structure-specific endonuclease of phage lambda. J Mol Biol 2004; 340:739-51. [PMID: 15223317 DOI: 10.1016/j.jmb.2004.05.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 05/10/2004] [Accepted: 05/12/2004] [Indexed: 11/20/2022]
Abstract
Rap endonuclease targets recombinant joint molecules arising from phage lambda Red-mediated genetic exchange. Previous studies revealed that Rap nicks DNA at the branch point of synthetic Holliday junctions and other DNA structures with a branched component. However, on X junctions incorporating a three base-pair core of homology or with a fixed crossover, Rap failed to make the bilateral strand cleavages characteristic of a Holliday junction resolvase. Here, we demonstrate that Rap can mediate symmetrical resolution of 50 bp and chi Holliday structures containing larger homologous cores. On two different mobile 50 bp junctions Rap displays a weak preference for cleaving the phosphodiester backbone between 5'-GC dinucleotides. The products of resolution on both large and small DNA substrates can be sealed by T4 DNA ligase, confirming the formation of nicked duplexes. Rap protein was also assessed for its capacity to influence the global conformation of junctions in the presence or absence of magnesium ions. Unlike the known Holliday junction binding proteins, Rap does not affect the angle of duplex arms, implying an unorthodox mode of junction binding. The results demonstrate that Rap can function as a Holliday junction resolvase in addition to eliminating other branched structures that may arise during phage recombination.
Collapse
Affiliation(s)
- Gary J Sharples
- Centre for Infectious Diseases, Wolfson Research Institute, University of Durham, Queen's Campus, Stockton-on-Tees TS17 6BH, UK.
| | | | | | | |
Collapse
|
88
|
Snowden T, Acharya S, Butz C, Berardini M, Fishel R. hMSH4-hMSH5 Recognizes Holliday Junctions and Forms a Meiosis-Specific Sliding Clamp that Embraces Homologous Chromosomes. Mol Cell 2004; 15:437-51. [PMID: 15304223 DOI: 10.1016/j.molcel.2004.06.040] [Citation(s) in RCA: 299] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/17/2004] [Accepted: 05/28/2004] [Indexed: 11/22/2022]
Abstract
Five MutS homologs (MSH), which form three heterodimeric protein complexes, have been identified in eukaryotes. While the human hMSH2-hMSH3 and hMSH2-hMSH6 heterodimers operate primarily in mitotic mismatch repair (MMR), the biochemical function(s) of the meiosis-specific hMSH4-hMSH5 heterodimer is unknown. Here, we demonstrate that purified hMSH4-hMSH5 binds uniquely to Holliday Junctions. Holliday Junctions stimulate the hMSH4-hMSH5 ATP hydrolysis (ATPase) activity, which is controlled by Holliday Junction-provoked ADP-->ATP exchange. ATP binding by hMSH4-hMSH5 induces the formation of a hydrolysis-independent sliding clamp that dissociates from the Holliday Junction crossover region, embracing two homologous duplex DNA arms. Fundamental differences between hMSH2-hMSH6 and hMSH4-hMSH5 Holliday Junction recognition are detailed. Our results support the attractive possibility that hMSH4-hMSH5 stabilizes and preserves a meiotic bimolecular double-strand break repair (DSBR) intermediate.
Collapse
Affiliation(s)
- Timothy Snowden
- Genetics and Molecular Biology Program, Kimmel Cancer Center, BLSB 933, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
89
|
Abstract
DNA helicases are molecular 'motor' enzymes that use the energy of NTP hydrolysis to separate transiently energetically stable duplex DNA into single strands. They are therefore essential in nearly all DNA metabolic transactions. They act as essential molecular tools for the cellular machinery. Since the discovery of the first DNA helicase in Escherichia coli in 1976, several have been isolated from both prokaryotic and eukaryotic systems. DNA helicases generally bind to ssDNA or ssDNA/dsDNA junctions and translocate mainly unidirectionally along the bound strand and disrupt the hydrogen bonds between the duplexes. Most helicases contain conserved motifs which act as an engine to drive DNA unwinding. Crystal structures have revealed an underlying common structural fold for their function. These structures suggest the role of the helicase motifs in catalytic function and offer clues as to how these proteins can translocate and unwind DNA. The genes containing helicase motifs may have evolved from a common ancestor. In this review we cover the conserved motifs, structural information, mechanism of DNA unwinding and translocation, and functional aspects of DNA helicases.
Collapse
Affiliation(s)
- Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| | | |
Collapse
|
90
|
Rudolph MG, Kraus I, Dickmanns A, Eickmann M, Garten W, Ficner R. Crystal structure of the borna disease virus nucleoprotein. Structure 2004; 11:1219-26. [PMID: 14527390 DOI: 10.1016/j.str.2003.08.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Borna disease virus (BDV) causes an infection of the central nervous system in a wide range of vertebrates, which can fatally progress to an immune-mediated disease, called Borna disease. BDV is a member of the Mononegavirales, which also includes the highly infectious measles and Ebola viruses. The viral nucleoproteins are central to transcription, replication, and packaging of the RNA genome. We present the X-ray structure of the BDV nucleoprotein determined at 1.76 A resolution. The structure reveals a novel fold, organized into two distinct domains, and an assembly into a planar homotetramer. Surface potential calculations strongly support an RNA binding model with the RNA wrapping around the outside of the tetramer, although a positively charged central channel in the tetramer could fit single-stranded RNA in an alternative binding mode. This first structure of an RNA virus nucleoprotein provides a paradigmatic model for RNA packaging and replication of single-stranded RNA viruses.
Collapse
Affiliation(s)
- Markus G Rudolph
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, GZMB, Georg-August University, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
91
|
Dennis C, Fedorov A, Käs E, Salomé L, Grigoriev M. RuvAB-directed branch migration of individual Holliday junctions is impeded by sequence heterology. EMBO J 2004; 23:2413-22. [PMID: 15167893 PMCID: PMC423290 DOI: 10.1038/sj.emboj.7600249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 04/29/2004] [Indexed: 11/09/2022] Open
Abstract
The Holliday junction, the key intermediate of recombination, is generated by strand exchange resulting in a covalent connection between two recombining DNA molecules. Translocation of a Holliday junction along DNA, or branch migration, progressively exchanges one DNA strand for another and determines the amount of information that is transferred between two recombining partners. In Escherichia coli, the RuvAB protein complex promotes rapid and unidirectional branch migration of Holliday junctions. We have studied translocation of Holliday junctions using a quantitative biochemical system together with a 'single-molecule' branch migration assay. We demonstrate that RuvAB translocates the junctions through identical DNA sequences in a processive manner with a broad distribution of individual branch migration rates. However, when the complex encounters short heterologous sequences, translocation of the Holliday junctions is impeded. We conclude that translocation of the junctions through a sequence heterology occurs with a probability of bypass being determined both by the length of the heterologous region and the lifetime of the stalled RuvAB complex.
Collapse
Affiliation(s)
- Cynthia Dennis
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099 CNRS and Université Paul Sabatier, Toulouse, France
| | - Andrei Fedorov
- Centre d'Etude Spatiale des Rayonnements, UPR 8002 CNRS, Toulouse, France
| | - Emmanuel Käs
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099 CNRS and Université Paul Sabatier, Toulouse, France
| | - Laurence Salomé
- Institut de Pharmacologie et Biologie Structurale, UMR 5089 CNRS, Toulouse, France
| | - Mikhail Grigoriev
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099 CNRS and Université Paul Sabatier, Toulouse, France
- Laboratoire de Biologie Mol Eucaryote, UMR 5099 CNRS, Institut d'Exploration Fonctionelle des Génomes, 118 route de Narbonne, 31062 Toulouse, France. Tel.: +33 5 61 33 58 08; Fax: +33 5 61 33 58 86; E-mail:
| |
Collapse
|
92
|
Lee YC, Flora R, McCafferty JA, Gor J, Tsaneva IR, Perkins SJ. A Tetramer–Octamer Equilibrium in Mycobacterium leprae and Escherichia coli RuvA by Analytical Ultracentrifugation. J Mol Biol 2003; 333:677-82. [PMID: 14568529 DOI: 10.1016/j.jmb.2003.08.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the context of the bacterial RuvABC system, RuvA protein binds to and is involved in the subsequent processing of a four-way DNA structure called Holliday junction that is formed during homologous recombination. Four crystal structures of RuvA from Escherichia coli (EcoRuvA) showed that it was tetrameric, while neutron scattering and two other crystal structures for RuvA from Mycobacterium leprae (MleRuvA) and EcoRuvA showed that it was an octamer. To clarify this discrepancy, sedimentation equilibrium experiments by analytical ultracentrifugation were carried out and the results showed that MleRuvA existed as a tetramer-octamer equilibrium between 0.2-0.5 mg/ml in 0.1 M NaCl with a dissociation constant of 4 muM, and is octameric at higher concentrations. The same experiments in 0.3 M NaCl showed that MleRuvA is a tetramer up to 3.5 mg/ml, indicating that salt bridges are involved in octamer formation. Sedimentation equilibrium experiments with EcoRuvA showed that it was tetrameric at low concentration in both salt buffers but the protein was insoluble at high-protein concentrations in 0.1 M NaCl. It is concluded that free RuvA exists in an equilibrium between tetrameric and octameric forms in the typical concentration range and buffer found in bacterial cells.
Collapse
Affiliation(s)
- Yie Chia Lee
- Department of Biochemistry and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
93
|
Shin DS, Pellegrini L, Daniels DS, Yelent B, Craig L, Bates D, Yu DS, Shivji MK, Hitomi C, Arvai AS, Volkmann N, Tsuruta H, Blundell TL, Venkitaraman AR, Tainer JA. Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. EMBO J 2003; 22:4566-76. [PMID: 12941707 PMCID: PMC202371 DOI: 10.1093/emboj/cdg429] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To clarify RAD51 interactions controlling homologous recombination, we report here the crystal structure of the full-length RAD51 homolog from Pyrococcus furiosus. The structure reveals how RAD51 proteins assemble into inactive heptameric rings and active DNA-bound filaments matching three-dimensional electron microscopy reconstructions. A polymerization motif (RAD51-PM) tethers individual subunits together to form assemblies. Subunit interactions support an allosteric 'switch' promoting ATPase activity and DNA binding roles for the N-terminal domain helix-hairpin-helix (HhH) motif. Structural and mutational results characterize RAD51 interactions with the breast cancer susceptibility protein BRCA2 in higher eukaryotes. A designed P.furiosus RAD51 mutant binds BRC repeats and forms BRCA2-dependent nuclear foci in human cells in response to gamma-irradiation-induced DNA damage, similar to human RAD51. These results show that BRCA2 repeats mimic the RAD51-PM and imply analogous RAD51 interactions with RAD52 and RAD54. Both BRCA2 and RAD54 may act as antagonists and chaperones for RAD51 filament assembly by coupling RAD51 interface exchanges with DNA binding. Together, these structural and mutational results support an interface exchange hypothesis for coordinated protein interactions in homologous recombination.
Collapse
Affiliation(s)
- David S Shin
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
|
95
|
Bharath MMS, Chandra NR, Rao MRS. Molecular modeling of the chromatosome particle. Nucleic Acids Res 2003; 31:4264-74. [PMID: 12853645 PMCID: PMC167642 DOI: 10.1093/nar/gkg481] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2002] [Revised: 03/26/2003] [Accepted: 05/08/2003] [Indexed: 11/12/2022] Open
Abstract
In an effort to understand the role of the linker histone in chromatin folding, its structure and location in the nucleosome has been studied by molecular modeling methods. The structure of the globular domain of the rat histone H1d, a highly conserved part of the linker histone, built by homology modeling methods, revealed a three-helical bundle fold that could be described as a helix-turn-helix variant with its characteristic properties of binding to DNA at the major groove. Using the information of its preferential binding to four-way Holliday junction (HJ) DNA, a model of the domain complexed to HJ was built, which was subsequently used to position the globular domain onto the nucleosome. The model revealed that the primary binding site of the domain interacts with the extra 20 bp of DNA of the entering duplex at the major groove while the secondary binding site interacts with the minor groove of the central gyre of the DNA superhelix of the nucleosomal core. The positioning of the globular domain served as an anchor to locate the C-terminal domain onto the nucleosome to obtain the structure of the chromatosome particle. The resulting structure had a stem-like appearance, resembling that observed by electron microscopic studies. The C-terminal domain which adopts a high mobility group (HMG)-box-like fold, has the ability to bend DNA, causing DNA condensation or compaction. It was observed that the three S/TPKK motifs in the C-terminal domain interact with the exiting duplex, thus defining the path of linker DNA in the chromatin fiber. This study has provided an insight into the probable individual roles of globular and the C-terminal domains of histone H1 in chromatin organization.
Collapse
Affiliation(s)
- M M Srinivas Bharath
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
96
|
Abstract
The efficient repair of double-strand breaks in DNA is critical for the maintenance of genome stability and cell survival. Homologous recombination provides an efficient and faithful pathway of repair, especially in replicating cells, in which it plays a major role in tumour avoidance. Many of the enzymes that are involved in recombination have been isolated, and the details of this pathway are now being unravelled at the molecular level.
Collapse
Affiliation(s)
- Stephen C West
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
97
|
Abstract
DNA is a dynamic molecule that undergoes constant changes in the cell through interactions with numerous proteins. Several classes of enzyme are specialized in promoting DNA rearrangements, including site-specific recombinases, DNA helicases, transposases and DNA topoisomerases. Recent structures of protein-DNA reaction intermediates trapped in various states of DNA remodeling, complemented by biochemical and biophysical functional studies, have enhanced our understanding of their respective mechanistic pathways.
Collapse
Affiliation(s)
- Anita Changela
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2153 Sheridan Road, Evanston, IL 60208-3500, USA
| | | | | | | |
Collapse
|
98
|
Yokoyama H, Kurumizaka H, Ikawa S, Yokoyama S, Shibata T. Holliday junction binding activity of the human Rad51B protein. J Biol Chem 2003; 278:2767-72. [PMID: 12441335 DOI: 10.1074/jbc.m210899200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human Rad51B protein is involved in the recombinational repair of damaged DNA. Chromosomal rearrangements of the Rad51B gene have been found in uterine leiomyoma patients, suggesting that the Rad51B gene suppresses tumorigenesis. In the present study, we found that the purified Rad51B protein bound to single-stranded DNA and double-stranded DNA in the presence of ATP and either Mg(2+) or Mn(2+) and hydrolyzed ATP in a DNA-dependent manner. When the synthetic Holliday junction was present along with the half-cruciform and double-stranded oligonucleotides, the Rad51B protein only bound to the synthetic Holliday junction, which mimics a key intermediate in homologous recombination. In contrast, the human Rad51 protein bound to all three DNA substrates with no obvious preference. Therefore, the Rad51B protein may have a specific function in Holliday junction processing in the homologous recombinational repair pathway in humans.
Collapse
Affiliation(s)
- Hiroshi Yokoyama
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| | | | | | | | | |
Collapse
|
99
|
Singh S, Folkers G, Bonvin A, Boelens R, Wechselberger R, Niztayev A, Kaptein R. Solution structure and DNA-binding properties of the C-terminal domain of UvrC from E.coli. EMBO J 2002; 21:6257-66. [PMID: 12426397 PMCID: PMC137216 DOI: 10.1093/emboj/cdf627] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The C-terminal domain of the UvrC protein (UvrC CTD) is essential for 5' incision in the prokaryotic nucleotide excision repair process. We have determined the three-dimensional structure of the UvrC CTD using heteronuclear NMR techniques. The structure shows two helix-hairpin-helix (HhH) motifs connected by a small connector helix. The UvrC CTD is shown to mediate structure-specific DNA binding. The domain binds to a single-stranded-double-stranded junction DNA, with a strong specificity towards looped duplex DNA that contains at least six unpaired bases per loop ("bubble DNA"). Using chemical shift perturbation experiments, the DNA-binding surface is mapped to the first hairpin region encompassing the conserved glycine-valine-glycine residues followed by lysine-arginine-arginine, a positively charged surface patch and the second hairpin region consisting of glycine-isoleucine-serine. A model for the protein-DNA complex is proposed that accounts for this specificity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - R. Kaptein
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
Corresponding author e-mail:
| |
Collapse
|
100
|
Dickman MJ, Ingleston SM, Sedelnikova SE, Rafferty JB, Lloyd RG, Grasby JA, Hornby DP. The RuvABC resolvasome. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5492-501. [PMID: 12423347 DOI: 10.1046/j.1432-1033.2002.03250.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RuvABC resolvasome of Escherichia coli catalyses the resolution of Holliday junctions that arise during genetic recombination and DNA repair. This process involves two key steps: branch migration, catalysed by the RuvB protein that is targeted to the Holliday junction by the structure specific RuvA protein, and resolution, which is catalysed by the RuvC endonuclease. We have quantified the interaction of the RuvA protein with synthetic Holliday junctions and have shown that the binding of the protein is highly structure-specific, and leads to the formation of a complex containing two tetramers of RuvA per Holliday junction. Our data are consistent with two tetramers of RuvA binding to the DNA recombination intermediate in a co-operative manner. Once formed this complex prevents the binding of RuvC to the Holliday junction. However, the formation of a RuvAC complex can be observed following sequential addition of the RuvC and RuvA proteins. Moreover, by examining the DNA recognition properties of a mutant RuvA protein (E55R, D56K) we show that the charge on the central pin is critical for directing the structure-specific binding by RuvA.
Collapse
Affiliation(s)
- Mark J Dickman
- Transgenomic Research Laboratory, Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|