51
|
Hare PJ, LaGree TJ, Byrd BA, DeMarco AM, Mok WWK. Single-Cell Technologies to Study Phenotypic Heterogeneity and Bacterial Persisters. Microorganisms 2021; 9:2277. [PMID: 34835403 PMCID: PMC8620850 DOI: 10.3390/microorganisms9112277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic persistence is a phenomenon in which rare cells of a clonal bacterial population can survive antibiotic doses that kill their kin, even though the entire population is genetically susceptible. With antibiotic treatment failure on the rise, there is growing interest in understanding the molecular mechanisms underlying bacterial phenotypic heterogeneity and antibiotic persistence. However, elucidating these rare cell states can be technically challenging. The advent of single-cell techniques has enabled us to observe and quantitatively investigate individual cells in complex, phenotypically heterogeneous populations. In this review, we will discuss current technologies for studying persister phenotypes, including fluorescent tags and biosensors used to elucidate cellular processes; advances in flow cytometry, mass spectrometry, Raman spectroscopy, and microfluidics that contribute high-throughput and high-content information; and next-generation sequencing for powerful insights into genetic and transcriptomic programs. We will further discuss existing knowledge gaps, cutting-edge technologies that can address them, and how advances in single-cell microbiology can potentially improve infectious disease treatment outcomes.
Collapse
Affiliation(s)
- Patricia J. Hare
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
- School of Dental Medicine, University of Connecticut, Farmington, CT 06032, USA
| | - Travis J. LaGree
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
| | - Brandon A. Byrd
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
- School of Medicine, University of Connecticut, Farmington, CT 06032, USA
| | - Angela M. DeMarco
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
| | - Wendy W. K. Mok
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, USA; (P.J.H.); (T.J.L.); (B.A.B.); (A.M.D.)
| |
Collapse
|
52
|
Liu Y, Lehnert T, Gijs MAM. Effect of inoculum size and antibiotics on bacterial traveling bands in a thin microchannel defined by optical adhesive. MICROSYSTEMS & NANOENGINEERING 2021; 7:86. [PMID: 34745645 PMCID: PMC8536744 DOI: 10.1038/s41378-021-00309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Phenotypic diversity in bacterial flagella-induced motility leads to complex collective swimming patterns, appearing as traveling bands with transient locally enhanced cell densities. Traveling bands are known to be a bacterial chemotactic response to self-generated nutrient gradients during growth in resource-limited microenvironments. In this work, we studied different parameters of Escherichia coli (E. coli) collective migration, in particular the quantity of bacteria introduced initially in a microfluidic chip (inoculum size) and their exposure to antibiotics (ampicillin, ciprofloxacin, and gentamicin). We developed a hybrid polymer-glass chip with an intermediate optical adhesive layer featuring the microfluidic channel, enabling high-content imaging of the migration dynamics in a single bacterial layer, i.e., bacteria are confined in a quasi-2D space that is fully observable with a high-magnification microscope objective. On-chip bacterial motility and traveling band analysis was performed based on individual bacterial trajectories by means of custom-developed algorithms. Quantifications of swimming speed, tumble bias and effective diffusion properties allowed the assessment of phenotypic heterogeneity, resulting in variations in transient cell density distributions and swimming performance. We found that incubation of isogeneic E. coli with different inoculum sizes eventually generated different swimming phenotype distributions. Interestingly, incubation with antimicrobials promoted bacterial chemotaxis in specific cases, despite growth inhibition. Moreover, E. coli filamentation in the presence of antibiotics was assessed, and the impact on motility was evaluated. We propose that the observation of traveling bands can be explored as an alternative for fast antimicrobial susceptibility testing.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Thomas Lehnert
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
53
|
Villapún VM, Balacco DL, Webber MA, Hall T, Lowther M, Addison O, Kuehne SA, Grover LM, Cox SC. Repeated exposure of nosocomial pathogens to silver does not select for silver resistance but does impact ciprofloxacin susceptibility. Acta Biomater 2021; 134:760-773. [PMID: 34329788 DOI: 10.1016/j.actbio.2021.07.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022]
Abstract
The rise of antimicrobial resistant bacteria coupled with a void in antibiotic development marks Antimicrobial Resistance as one of the biggest current threats to modern medicine. Antimicrobial metals are being developed and used as alternative anti-infectives, however, the existence of known resistance mechanisms and limited data regarding bacterial responses to long-term metal exposure are barriers to widespread implementation. In this study, a panel of reference and clinical strains of major nosocomial pathogens were subjected to serial dosage cycles of silver and ciprofloxacin. Populations exposed to silver initially showed no change in sensitivity, however, increasingly susceptibility was observed after the 25th cycle. A control experiment with ciprofloxacin revealed a selection for resistance over time, with silver treated bacteria showing faster adaptation. Morphological analysis revealed filamentation in Gram negative species suggesting membrane perturbation, while sequencing of isolated strains identified mutations in numerous genes. These included those encoding for efflux systems, chemosensory systems, stress responses, biofilm formation and respiratory chain processes, although no consistent locus was identified that correlated with silver sensitivity. These results suggest that de novo silver resistance is hard to select in a range of nosocomial pathogens, although silver exposure may detrimentally impact sensitivity to antibiotics in the long term. STATEMENT OF SIGNIFICANCE: The adaptability of microbial life continuously calls for the development of novel antibiotic molecules, however, the cost and risk associated with their discovery have led to a drying up in the pipeline, causing antimicrobial resistance (AMR) to be a major threat to healthcare. From all available strategies, antimicrobial metals and, more specifically, silver showcase large bactericidal spectrum and limited toxic effect which coupled with a large range of processes available for their delivery made these materials as a clear candidate to tackle AMR. Previous reports have shown the ability of this metal to enact a synergistic effect with other antimicrobial therapies, nevertheless, the discovery of Ag resistance mechanisms since the early 70s and limited knowledge on the long term influence of silver on AMR poses a threat to their applicability. The present study provides quantitative data on the influence of silver based therapies on AMR development for a panel of reference and clinical strains of major nosocomial pathogens, revealing that prolonged silver exposure may detrimentally impact sensitivity to antibiotics.
Collapse
Affiliation(s)
- Victor M Villapún
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| | - Dario L Balacco
- School of Dentistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ, United Kingdom; Norwich Medical School, University of East Anglia. Norwich Research Park, NR4 7TJ, United Kingdom
| | - Thomas Hall
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Morgan Lowther
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Owen Addison
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom
| | - Sarah A Kuehne
- School of Dentistry, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
54
|
Attrill EL, Claydon R, Łapińska U, Recker M, Meaden S, Brown AT, Westra ER, Harding SV, Pagliara S. Individual bacteria in structured environments rely on phenotypic resistance to phage. PLoS Biol 2021; 19:e3001406. [PMID: 34637438 PMCID: PMC8509860 DOI: 10.1371/journal.pbio.3001406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteriophages represent an avenue to overcome the current antibiotic resistance crisis, but evolution of genetic resistance to phages remains a concern. In vitro, bacteria evolve genetic resistance, preventing phage adsorption or degrading phage DNA. In natural environments, evolved resistance is lower possibly because the spatial heterogeneity within biofilms, microcolonies, or wall populations favours phenotypic survival to lytic phages. However, it is also possible that the persistence of genetically sensitive bacteria is due to less efficient phage amplification in natural environments, the existence of refuges where bacteria can hide, and a reduced spread of resistant genotypes. Here, we monitor the interactions between individual planktonic bacteria in isolation in ephemeral refuges and bacteriophage by tracking the survival of individual cells. We find that in these transient spatial refuges, phenotypic resistance due to reduced expression of the phage receptor is a key determinant of bacterial survival. This survival strategy is in contrast with the emergence of genetic resistance in the absence of ephemeral refuges in well-mixed environments. Predictions generated via a mathematical modelling framework to track bacterial response to phages reveal that the presence of spatial refuges leads to fundamentally different population dynamics that should be considered in order to predict and manipulate the evolutionary and ecological dynamics of bacteria–phage interactions in naturally structured environments. Bacteriophages represent a promising avenue to overcome the current antibiotic resistance crisis, but evolution of phage resistance remains a concern. This study shows that in the presence of spatial refuges, genetic resistance to phage is less of a problem than commonly assumed, but the persistence of genetically susceptible bacteria suggests that eradicating bacterial pathogens from structured environments may require combined phage-antibiotic therapies.
Collapse
Affiliation(s)
- Erin L. Attrill
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rory Claydon
- SUPA, School of Physics and Astronomy, The University of Edinburgh, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Sean Meaden
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, United Kingdom
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Aidan T. Brown
- SUPA, School of Physics and Astronomy, The University of Edinburgh, United Kingdom
| | - Edze R. Westra
- Environment and Sustainability Institute and Biosciences, University of Exeter, Penryn, United Kingdom
| | - Sarah V. Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
55
|
Barr DA, Omollo C, Mason M, Koch A, Wilkinson RJ, Lalloo DG, Meintjes G, Mizrahi V, Warner DF, Davies G. Flow cytometry method for absolute counting and single-cell phenotyping of mycobacteria. Sci Rep 2021; 11:18661. [PMID: 34545154 PMCID: PMC8452731 DOI: 10.1038/s41598-021-98176-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022] Open
Abstract
Detection and accurate quantitation of viable Mycobacterium tuberculosis is fundamental to understanding mycobacterial pathogenicity, tuberculosis (TB) disease progression and outcomes; TB transmission; drug action, efficacy and drug resistance. Despite this importance, methods for determining numbers of viable bacilli are limited in accuracy and precision owing to inherent characteristics of mycobacterial cell biology—including the tendency to clump, and “differential” culturability—and technical challenges consequent on handling an infectious pathogen under biosafe conditions. We developed an absolute counting method for mycobacteria in liquid cultures using a bench-top flow cytometer, and the low-cost fluorescent dyes Calcein-AM (CA) and SYBR-gold (SG). During exponential growth CA + cell counts are highly correlated with CFU counts and can be used as a real-time alternative to simplify the accurate standardisation of inocula for experiments. In contrast to CFU counting, this method can detect and enumerate cell aggregates in samples, which we show are a potential source of variance and bias when using established methods. We show that CFUs comprise a sub-population of intact, metabolically active mycobacterial cells in liquid cultures, with CFU-proportion varying by growth conditions. A pharmacodynamic application of the flow cytometry method, exploring kinetics of fluorescent probe defined subpopulations compared to CFU is demonstrated. Flow cytometry derived Mycobacterium bovis bacillus Calmette-Guérin (BCG) time-kill curves differ for rifampicin and kanamycin versus isoniazid and ethambutol, as do the relative dynamics of discrete morphologically-distinct subpopulations of bacilli revealed by this high-throughput single-cell technique.
Collapse
Affiliation(s)
- David A Barr
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa. .,Institute of Infection and Global Health, University of Liverpool, Liverpool, L7 3EA, UK. .,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Charles Omollo
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mandy Mason
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Anastasia Koch
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa.,The Francis Crick Institute, London, NW11AT, UK.,Department of Medicine, Imperial College, London, W12 0NN, UK
| | - David G Lalloo
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Gerry Davies
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L7 3EA, UK
| |
Collapse
|
56
|
Oguchi M, Tanaka S, Pan X, Kikusui T, Moriya-Ito K, Kato S, Kobayashi K, Sakagami M. Chemogenetic inactivation reveals the inhibitory control function of the prefronto-striatal pathway in the macaque brain. Commun Biol 2021; 4:1088. [PMID: 34531520 PMCID: PMC8446038 DOI: 10.1038/s42003-021-02623-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
The lateral prefrontal cortex (LPFC) has a strong monosynaptic connection with the caudate nucleus (CdN) of the striatum. Previous human MRI studies have suggested that this LPFC-CdN pathway plays an important role in inhibitory control and working memory. We aimed to validate the function of this pathway at a causal level by pathway-selective manipulation of neural activity in non-human primates. To this end, we trained macaque monkeys on a delayed oculomotor response task with reward asymmetry and expressed an inhibitory type of chemogenetic receptors selectively to LPFC neurons that project to the CdN. Ligand administration reduced the inhibitory control of impulsive behavior, as well as the task-related neuronal responses observed in the local field potentials from the LPFC and CdN. These results show that we successfully suppressed pathway-selective neural activity in the macaque brain, and the resulting behavioral changes suggest that the LPFC-CdN pathway is involved in inhibitory control.
Collapse
Affiliation(s)
- Mineki Oguchi
- grid.412905.b0000 0000 9745 9416Brain Science Institute, Tamagawa University, Tokyo, Japan ,grid.252643.40000 0001 0029 6233School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Shingo Tanaka
- grid.412905.b0000 0000 9745 9416Brain Science Institute, Tamagawa University, Tokyo, Japan ,grid.260975.f0000 0001 0671 5144Department of Physiology, School of Medicine, Niigata University, Niigata, Japan
| | - Xiaochuan Pan
- grid.28056.390000 0001 2163 4895Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai, China
| | - Takefumi Kikusui
- grid.252643.40000 0001 0029 6233School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Keiko Moriya-Ito
- grid.272456.0Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shigeki Kato
- grid.411582.b0000 0001 1017 9540Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Kazuto Kobayashi
- grid.411582.b0000 0001 1017 9540Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Masamichi Sakagami
- grid.412905.b0000 0000 9745 9416Brain Science Institute, Tamagawa University, Tokyo, Japan
| |
Collapse
|
57
|
Liu Y, Lehnert T, Mayr T, Gijs MAM. Antimicrobial susceptibility testing by measuring bacterial oxygen consumption on an integrated platform. LAB ON A CHIP 2021; 21:3520-3531. [PMID: 34286790 DOI: 10.1039/d1lc00296a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cellular respiration is a fundamental feature of metabolic activity and oxygen consumption can be considered as a reliable indicator of bacterial aerobic respiration, including for facultative anaerobic bacteria like E. coli. Addressing the emerging global health challenge of antimicrobial resistance, we performed antimicrobial susceptibility testing using the bacterial oxygen consumption rate (OCR) as a phenotypic indicator. We demonstrated that microbial exposure to antibiotics showed systematic OCR variations, which enabled determining minimum inhibitory concentrations for three clinically relevant antibiotics, ampicillin, ciprofloxacin, and gentamicin, within a few hours. Our study was performed by using photoluminescence-based oxygen sensing in a microchamber format, which enabled reducing the sample volume to a few hundred microliters. OCR modeling based on exponential bacterial growth allowed estimating the bacterial doubling time for various culture conditions (different types of media, different culture temperature and antibiotic concentrations). Furthermore, correlating metabolic heat production data, as obtained by nanocalorimetry in the same type of microchamber, and OCR measurements provided further insight on the actual metabolic state and activity of a microbial sample. This approach represents a new path towards more comprehensive microbiological studies performed on integrated miniaturized systems.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Thomas Lehnert
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, 80 Graz, Austria
| | - Martin A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
58
|
Rillema R, Hoang Y, MacCready JS, Vecchiarelli AG. Carboxysome Mispositioning Alters Growth, Morphology, and Rubisco Level of the Cyanobacterium Synechococcus elongatus PCC 7942. mBio 2021; 12:e0269620. [PMID: 34340540 PMCID: PMC8406218 DOI: 10.1128/mbio.02696-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Cyanobacteria are the prokaryotic group of phytoplankton responsible for a significant fraction of global CO2 fixation. Like plants, cyanobacteria use the enzyme ribulose 1,5-bisphosphate carboxylase/oxidase (Rubisco) to fix CO2 into organic carbon molecules via the Calvin-Benson-Bassham cycle. Unlike plants, cyanobacteria evolved a carbon-concentrating organelle called the carboxysome-a proteinaceous compartment that encapsulates and concentrates Rubisco along with its CO2 substrate. In the rod-shaped cyanobacterium Synechococcus elongatus PCC 7942, we recently identified the McdAB system responsible for uniformly distributing carboxysomes along the cell length. It remains unknown what role carboxysome positioning plays with respect to cellular physiology. Here, we show that a failure to distribute carboxysomes leads to slower cell growth, cell elongation, asymmetric cell division, and elevated levels of cellular Rubisco. Unexpectedly, we also report that even wild-type S. elongatus undergoes cell elongation and asymmetric cell division when grown at the cool, but environmentally relevant, growth temperature of 20°C or when switched from a high- to ambient-CO2 environment. The findings suggest that carboxysome positioning by the McdAB system functions to maintain the carbon fixation efficiency of Rubisco by preventing carboxysome aggregation, which is particularly important under growth conditions where rod-shaped cyanobacteria adopt a filamentous morphology. IMPORTANCE Photosynthetic cyanobacteria are responsible for almost half of global CO2 fixation. Due to eutrophication, rising temperatures, and increasing atmospheric CO2 concentrations, cyanobacteria have gained notoriety for their ability to form massive blooms in both freshwater and marine ecosystems across the globe. Like plants, cyanobacteria use the most abundant enzyme on Earth, Rubisco, to provide the sole source of organic carbon required for its photosynthetic growth. Unlike plants, cyanobacteria have evolved a carbon-concentrating organelle called the carboxysome that encapsulates and concentrates Rubisco with its CO2 substrate to significantly increase carbon fixation efficiency and cell growth. We recently identified the positioning system that distributes carboxysomes in cyanobacteria. However, the physiological consequence of carboxysome mispositioning in the absence of this distribution system remains unknown. Here, we find that carboxysome mispositioning triggers changes in cell growth and morphology as well as elevated levels of cellular Rubisco.
Collapse
Affiliation(s)
- Rees Rillema
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Joshua S. MacCready
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony G. Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
59
|
Sridhar S, Forrest S, Pickard D, Cormie C, Lees EA, Thomson NR, Dougan G, Baker S. Inhibitory Concentrations of Ciprofloxacin Induce an Adaptive Response Promoting the Intracellular Survival of Salmonella enterica Serovar Typhimurium. mBio 2021; 12:e0109321. [PMID: 34154399 PMCID: PMC8262899 DOI: 10.1128/mbio.01093-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial resistance (AMR) is a pressing global health crisis, which has been fueled by the sustained use of certain classes of antimicrobials, including fluoroquinolones. While the genetic mutations responsible for decreased fluoroquinolone (ciprofloxacin) susceptibility are known, the implications of ciprofloxacin exposure on bacterial growth, survival, and interactions with host cells are not well described. Aiming to understand the influence of inhibitory concentrations of ciprofloxacin in vitro, we subjected three clinical isolates of Salmonella enterica serovar Typhimurium to differing concentrations of ciprofloxacin, dependent on their MICs, and assessed the impact on bacterial growth, morphology, and transcription. We further investigated the differential morphology and transcription that occurred following ciprofloxacin exposure and measured the ability of ciprofloxacin-treated bacteria to invade and replicate in host cells. We found that ciprofloxacin-exposed S. Typhimurium is able to recover from inhibitory concentrations of ciprofloxacin and that the drug induces specific morphological and transcriptional signatures associated with the bacterial SOS response, DNA repair, and intracellular survival. In addition, ciprofloxacin-treated S. Typhimurium has increased capacity for intracellular replication in comparison to that of untreated organisms. These data suggest that S. Typhimurium undergoes an adaptive response under ciprofloxacin perturbation that promotes cellular survival, a consequence that may justify more measured use of ciprofloxacin for Salmonella infections. The combination of multiple experimental approaches provides new insights into the collateral effects that ciprofloxacin and other antimicrobials have on invasive bacterial pathogens. IMPORTANCE Antimicrobial resistance is a critical concern in global health. In particular, there is rising resistance to fluoroquinolones, such as ciprofloxacin, a first-line antimicrobial for many Gram-negative pathogens. We investigated the adaptive response of clinical isolates of Salmonella enterica serovar Typhimurium to ciprofloxacin, finding that the bacteria adapt in short timespans to high concentrations of ciprofloxacin in a way that promotes intracellular survival during early infection. Importantly, by studying three clinically relevant isolates, we were able to show that individual isolates respond differently to ciprofloxacin and that for each isolate, there was a heterogeneous response under ciprofloxacin treatment. The heterogeneity that arises from ciprofloxacin exposure may drive survival and proliferation of Salmonella during treatment and lead to drug resistance.
Collapse
Affiliation(s)
- Sushmita Sridhar
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Sally Forrest
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Derek Pickard
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Claire Cormie
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Emily A. Lees
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas R. Thomson
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gordon Dougan
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Stephen Baker
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| |
Collapse
|
60
|
Vishwakarma A, Dang F, Ferrell A, Barton HA, Joy A. Peptidomimetic Polyurethanes Inhibit Bacterial Biofilm Formation and Disrupt Surface Established Biofilms. J Am Chem Soc 2021; 143:9440-9449. [PMID: 34133169 DOI: 10.1021/jacs.1c02324] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over 80% of all chronic bacterial infections in humans are associated with biofilms, which are surface-associated bacterial communities encased within a secreted exopolysaccharide matrix that can provide resistance to environmental and chemical insults. Biofilm formation triggers broad adaptive changes in the bacteria, allowing them to be almost 1000-fold more resistant to conventional antibiotic treatments and host immune responses. The failure of antibiotics to eliminate biofilms leads to persistent chronic infections and can promote the development of antibiotic-resistant strains. Therefore, there is an urgent need to develop agents that effectively prevent biofilm formation and eradicate established biofilms. Herein, we present water-soluble synthetic peptidomimetic polyurethanes that can disrupt surface established biofilms of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, all of which show tolerance to the conventional antibiotics polymyxin B and ciprofloxacin. Furthermore, while these polyurethanes show poor antimicrobial activity against planktonic bacteria, they prevent surface attachment and stimulate bacterial surface motility to inhibit biofilm formation of both Gram-positive and Gram-negative bacteria at subinhibitory concentrations, without being toxic to mammalian cells. Our results show that these polyurethanes show promise as a platform for the development of therapeutics that target biofilms and modulate surface interactions of bacteria for the treatment of chronic biofilm-associated infections and as antibiofilm agents.
Collapse
|
61
|
Identification of a Novel Ciprofloxacin Tolerance Gene, aciT, Which Contributes to Filamentation in Acinetobacter baumannii. Antimicrob Agents Chemother 2021; 65:AAC.01400-20. [PMID: 33820764 PMCID: PMC8316044 DOI: 10.1128/aac.01400-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/20/2021] [Indexed: 01/19/2023] Open
Abstract
Fluoroquinolones are one of the most prescribed broad-spectrum antibiotics. However, their effectiveness is being compromised by high rates of resistance in clinically important organisms, including Acinetobacter baumannii. We sought to investigate the transcriptomic and proteomic responses of the clinical A. baumannii strain AB5075-UW upon exposure to subinhibitory concentrations of ciprofloxacin. Our transcriptomics and proteomics analyses found that the most highly expressed genes and proteins were components of the intact prophage phiOXA. The next most highly expressed gene (and its protein product) under ciprofloxacin stress was a hypothetical gene, ABUW_0098, named here the Acinetobacterciprofloxacin tolerance (aciT) gene. Disruption of this gene resulted in higher susceptibility to ciprofloxacin, and complementation of the mutant with a cloned aciT gene restored ciprofloxacin tolerance to parental strain levels. Microscopy studies revealed that aciT is essential for filamentation during ciprofloxacin stress in A. baumannii. Sequence analysis of aciT indicates the encoded protein is likely to be localized to the cell membrane. Orthologs of aciT are found widely in the genomes of species from the Moraxellaceae family and are well conserved in Acinetobacter species, suggesting an important role. With these findings taken together, this study has identified a new gene conferring tolerance to ciprofloxacin, likely by enabling filamentation in response to the antibiotic.
Collapse
|
62
|
Edelmann D, Leinberger FH, Schmid NE, Oberpaul M, Schäberle TF, Berghoff BA. Elevated Expression of Toxin TisB Protects Persister Cells against Ciprofloxacin but Enhances Susceptibility to Mitomycin C. Microorganisms 2021; 9:943. [PMID: 33925723 PMCID: PMC8145889 DOI: 10.3390/microorganisms9050943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
Bacterial chromosomes harbor toxin-antitoxin (TA) systems, some of which are implicated in the formation of multidrug-tolerant persister cells. In Escherichia coli, toxin TisB from the tisB/istR-1 TA system depolarizes the inner membrane and causes ATP depletion, which presumably favors persister formation. Transcription of tisB is induced upon DNA damage due to activation of the SOS response by LexA degradation. Transcriptional activation of tisB is counteracted on the post-transcriptional level by structural features of tisB mRNA and RNA antitoxin IstR-1. Deletion of the regulatory RNA elements (mutant Δ1-41 ΔistR) uncouples TisB expression from LexA-dependent SOS induction and causes a 'high persistence' (hip) phenotype upon treatment with different antibiotics. Here, we demonstrate by the use of fluorescent reporters that TisB overexpression in mutant Δ1-41 ΔistR inhibits cellular processes, including the expression of SOS genes. The failure in SOS gene expression does not affect the hip phenotype upon treatment with the fluoroquinolone ciprofloxacin, likely because ATP depletion avoids strong DNA damage. By contrast, Δ1-41 ΔistR cells are highly susceptible to the DNA cross-linker mitomycin C, likely because the expression of SOS-dependent repair systems is impeded. Hence, the hip phenotype of the mutant is conditional and strongly depends on the DNA-damaging agent.
Collapse
Affiliation(s)
- Daniel Edelmann
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| | - Florian H. Leinberger
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| | - Nicole E. Schmid
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| | - Markus Oberpaul
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany; (M.O.); (T.F.S.)
| | - Till F. Schäberle
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany; (M.O.); (T.F.S.)
- Institute for Insect Biotechnology, Justus Liebig University Giessen, 35392 Giessen, Germany
- Partner Site Giessen-Marburg-Langen, German Center for Infection Research (DZIF), 35392 Giessen, Germany
| | - Bork A. Berghoff
- Institute for Microbiology and Molecular Biology, Justus Liebig University Giessen, 35392 Giessen, Germany; (D.E.); (F.H.L.); (N.E.S.)
| |
Collapse
|
63
|
Wong F, Stokes JM, Cervantes B, Penkov S, Friedrichs J, Renner LD, Collins JJ. Cytoplasmic condensation induced by membrane damage is associated with antibiotic lethality. Nat Commun 2021; 12:2321. [PMID: 33875652 PMCID: PMC8055701 DOI: 10.1038/s41467-021-22485-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
Bactericidal antibiotics kill bacteria by perturbing various cellular targets and processes. Disruption of the primary antibiotic-binding partner induces a cascade of molecular events, leading to overproduction of reactive metabolic by-products. It remains unclear, however, how these molecular events contribute to bacterial cell death. Here, we take a single-cell physical biology approach to probe antibiotic function. We show that aminoglycosides and fluoroquinolones induce cytoplasmic condensation through membrane damage and subsequent outflow of cytoplasmic contents as part of their lethality. A quantitative model of membrane damage and cytoplasmic leakage indicates that a small number of nanometer-scale membrane defects in a single bacterium can give rise to the cellular-scale phenotype of cytoplasmic condensation. Furthermore, cytoplasmic condensation is associated with the accumulation of reactive metabolic by-products and lipid peroxidation, and pretreatment of cells with the antioxidant glutathione attenuates cytoplasmic condensation and cell death. Our work expands our understanding of the downstream molecular events that are associated with antibiotic lethality, revealing cytoplasmic condensation as a phenotypic feature of antibiotic-induced bacterial cell death. The detailed mechanisms of action of bactericidal antibiotics remain unclear. Here, Wong et al. show that these antibiotics induce cytoplasmic condensation through membrane damage and outflow of cytoplasmic contents, as well as accumulation of reactive metabolic by-products and lipid peroxidation, as part of their lethality.
Collapse
Affiliation(s)
- Felix Wong
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan M Stokes
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bernardo Cervantes
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sider Penkov
- Institute for Clinical Chemistry and Laboratory Medicine at the University Clinic and Medical Faculty of TU Dresden, Dresden, Germany
| | - Jens Friedrichs
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany.
| | - James J Collins
- Institute for Medical Engineering & Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
64
|
Ewunkem AJ, Rodgers L, Campbell D, Staley C, Subedi K, Boyd S, Graves JL. Experimental Evolution of Magnetite Nanoparticle Resistance in Escherichia coli. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:790. [PMID: 33808798 PMCID: PMC8003623 DOI: 10.3390/nano11030790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023]
Abstract
Both ionic and nanoparticle iron have been proposed as materials to control multidrug-resistant (MDR) bacteria. However, the potential bacteria to evolve resistance to nanoparticle bacteria remains unexplored. To this end, experimental evolution was utilized to produce five magnetite nanoparticle-resistant (FeNP1-5) populations of Escherichia coli. The control populations were not exposed to magnetite nanoparticles. The 24-h growth of these replicates was evaluated in the presence of increasing concentrations magnetite NPs as well as other ionic metals (gallium III, iron II, iron III, and silver I) and antibiotics (ampicillin, chloramphenicol, rifampicin, sulfanilamide, and tetracycline). Scanning electron microscopy was utilized to determine cell size and shape in response to magnetite nanoparticle selection. Whole genome sequencing was carried out to determine if any genomic changes resulted from magnetite nanoparticle resistance. After 25 days of selection, magnetite resistance was evident in the FeNP treatment. The FeNP populations also showed a highly significantly (p < 0.0001) greater 24-h growth as measured by optical density in metals (Fe (II), Fe (III), Ga (III), Ag, and Cu II) as well as antibiotics (ampicillin, chloramphenicol, rifampicin, sulfanilamide, and tetracycline). The FeNP-resistant populations also showed a significantly greater cell length compared to controls (p < 0.001). Genomic analysis of FeNP identified both polymorphisms and hard selective sweeps in the RNA polymerase genes rpoA, rpoB, and rpoC. Collectively, our results show that E. coli can rapidly evolve resistance to magnetite nanoparticles and that this result is correlated resistances to other metals and antibiotics. There were also changes in cell morphology resulting from adaptation to magnetite NPs. Thus, the various applications of magnetite nanoparticles could result in unanticipated changes in resistance to both metal and antibiotics.
Collapse
Affiliation(s)
- Akamu J. Ewunkem
- Department of Nanoscience, University of North Carolina at Greensboro, Greensboro, NC 27401, USA;
| | - LaShunta Rodgers
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA;
| | - Daisha Campbell
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Constance Staley
- Department of Chemistry, Bennett College, Greensboro, NC 27401, USA;
| | - Kiran Subedi
- College of Agricultural and Environmental Sciences (CAES), North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Sada Boyd
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA;
| | - Joseph L. Graves
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA
| |
Collapse
|
65
|
Abstract
Biofilms are structured communities formed by a single or multiple microbial species. Within biofilms, bacteria are embedded into extracellular matrix, allowing them to build macroscopic objects. Biofilm structure can respond to environmental changes such as the presence of antibiotics or predators. By adjusting expression levels of surface and extracellular matrix components, bacteria tune cell-to-cell interactions. One major challenge in the field is the fact that these components are very diverse among different species. Deciphering how physical interactions within biofilms are affected by changes in gene expression is a promising approach to obtaining a more unified picture of how bacteria modulate biofilms. This review focuses on recent advances in characterizing attractive and repulsive forces between bacteria in correlation with biofilm structure, dynamics, and spreading. How bacteria control physical interactions to maximize their fitness is an emerging theme.
Collapse
Affiliation(s)
- Berenike Maier
- Institute for Biological Physics and Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany;
| |
Collapse
|
66
|
Zhou M, Li C, Zhao L, Ning J, Pan X, Cai G, Zhu G. Synergetic effect of nano zero-valent iron and activated carbon on high-level ciprofloxacin removal in hydrolysis-acidogenesis of anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142261. [PMID: 33207529 DOI: 10.1016/j.scitotenv.2020.142261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Ciprofloxacin is the most commonly prescribed antibiotic, and its widespread use poses threat to environmental safety. The removal of ciprofloxacin from contaminated water has remained a major challenge. The present study investigated adding nanoscale zero-valent iron (NZVI) and activated carbon (AC) on high-level ciprofloxacin removal in hydrolysis-acidogenesis stage of anaerobic digestion. The results showed that the degradation rate of ciprofloxacin increased from 22.61% (Blank group) to 72.41% after adding NZVI/AC with concentration of ciprofloxacin in effluent decreasing from 8.25 mg L-1 to 3.48 mg L-1. The volatile fatty acids (VFAs) yield increased by 173.7% compared with the Blank group. In addition, the NZVI/AC group achieved the highest chemical oxygen demand (COD) removal rate and acidogenesis rate. The microbial community analysis presented that hydrolytic and acidogenic bacteria and microorganisms related to degrading ciprofloxacin were obviously improved in the NZVI/AC group. Moreover, eleven transformation products and the main degradation pathways were proposed based on mass spectrometry information. In summary, the NZVI/AC addition supplied promising approach for ciprofloxacin wastewater treatment.
Collapse
Affiliation(s)
- Mingdian Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100084, China
| | - Jing Ning
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
67
|
Bos J, Cisneros LH, Mazel D. Real-time tracking of bacterial membrane vesicles reveals enhanced membrane traffic upon antibiotic exposure. SCIENCE ADVANCES 2021; 7:7/4/eabd1033. [PMID: 33523924 PMCID: PMC7817102 DOI: 10.1126/sciadv.abd1033] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/01/2020] [Indexed: 05/03/2023]
Abstract
Membrane vesicles are ubiquitous carriers of molecular information. A broad understanding of the biological functions of membrane vesicles in bacteria remains elusive because of the imaging challenges during real-time in vivo experiments. Here, we provide a quantitative analysis of the motion of individual vesicles in living microbes using fluorescence microscopy, and we show that while vesicle free diffusion in the intercellular space is rare, vesicles mostly disperse along the bacterial surfaces. Most remarkably, when bacteria are challenged with low doses of antibiotics, vesicle production and traffic, quantified by instantaneous vesicle speeds and total traveled distance per unit time, are significantly enhanced. Furthermore, the enhanced vesicle movement is independent of cell clustering properties but rather is associated with a reduction of the density of surface appendages in response to antibiotics. Together, our results provide insights into the emerging field of spatial organization and dynamics of membrane vesicles in microcolonies.
Collapse
Affiliation(s)
- Julia Bos
- Unité Plasticité du Génome Bactérien, Institut Pasteur, UMR3525, CNRS, Paris 75015, France.
| | - Luis H Cisneros
- The Biodesign Center for Biocomputing, Security and Society, and BEYOND Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ, USA.
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, Institut Pasteur, UMR3525, CNRS, Paris 75015, France
| |
Collapse
|
68
|
Effects of Curcumin and Its Analogues on Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:75-101. [PMID: 34331685 DOI: 10.1007/978-3-030-56153-6_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infectious diseases (IDs) are life-threatening illnesses, which result from the spread of pathogenic microorganisms such as bacteria, viruses, fungi, and parasites. IDs are a major challenge for the healthcare systems around the world, leading to a wide variety of clinical manifestations and complications. Despite the capability of frontline-approved medications to partially prevent or mitigate the invasion and subsequent damage of IDs to host tissues and cells, problems such as drug resistance, insufficient efficacy, unpleasant side effects, and high expenses stand in the way of their beneficial applications. One strategy is to evaluate currently explored and available bioactive compounds as possible anti-microbial agents. The natural polyphenol curcumin has been postulated to possess various properties including anti-microbial activities. Studies have shown that it possess pleiotropic effects against bacterial- and parasitic-associating IDs including drug-resistant strains. Curcumin can also potentiate the efficacy of available anti-bacterial and anti-parasitic drugs in a synergistic fashion. In this review, we summarize the findings of these studies along with reported controversies of native curcumin and its analogues, alone and in combination, toward its application in future studies as a natural anti-bacterial and anti-parasitic agent.
Collapse
|
69
|
Developmental asymmetries in learning to adjust to cooperative and uncooperative environments. Sci Rep 2020; 10:21761. [PMID: 33303840 PMCID: PMC7729944 DOI: 10.1038/s41598-020-78546-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/20/2020] [Indexed: 11/28/2022] Open
Abstract
Learning to successfully navigate social environments is a critical developmental goal, predictive of long-term wellbeing. However, little is known about how people learn to adjust to different social environments, and how this behaviour emerges across development. Here, we use a series of economic games to assess how children, adolescents, and young adults learn to adjust to social environments that differ in their level of cooperation (i.e., trust and coordination). Our results show an asymmetric developmental pattern: adjustment requiring uncooperative behaviour remains constant across adolescence, but adjustment requiring cooperative behaviour improves markedly across adolescence. Behavioural and computational analyses reveal that age-related differences in this social learning are shaped by age-related differences in the degree of inequality aversion and in the updating of beliefs about others. Our findings point to early adolescence as a phase of rapid change in cooperative behaviours, and highlight this as a key developmental window for interventions promoting well-adjusted social behaviour.
Collapse
|
70
|
Unique Mode of Cell Division by the Mycobacterial Genetic Resister Clones Emerging De Novo from the Antibiotic-Surviving Population. mSphere 2020; 5:5/6/e00994-20. [PMID: 33208519 PMCID: PMC7677009 DOI: 10.1128/msphere.00994-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The bacterial pathogens that are tolerant to antibiotics and survive in the continued presence of antibiotics have the chance to acquire genetically resistant mutations against the antibiotics and emerge de novo as antibiotic resisters. Once the antibiotic resister clone has emerged, often with compromise on growth characteristics, for the protection of the species, it is important to establish an antibiotic-resistant population quickly in the continued presence of the antibiotic. In this regard, the present study has unraveled multinucleation and multiseptation followed by multiple constrictions as the cellular processes used by the bacteria for quick multiplication to establish antibiotic-resistant populations. The study also points out the same phenomenon occurring in other bacterial systems investigated in our laboratory and others’ laboratories. Identification of these specific cellular events involved in quick multiplication offers additional cellular processes that can be targeted in combination with the existing antibiotics’ targets to preempt the emergence of antibiotic-resistant bacterial strains. The emergence of antibiotic genetic resisters of pathogenic bacteria poses a major public health challenge. The mechanism by which bacterial antibiotic genetic resister clones formed de novo multiply and establish a resister population remained unknown. Here, we delineated the unique mode of cell division of the antibiotic genetic resisters of Mycobacterium smegmatis and Mycobacterium tuberculosis formed de novo from the population surviving in the presence of bactericidal concentrations of rifampicin or moxifloxacin. The cells in the rifampicin/moxifloxacin-surviving population generated elevated levels of hydroxyl radical-inflicting mutations. The genetic mutants selected against rifampicin/moxifloxacin became multinucleated and multiseptated and developed multiple constrictions. These cells stochastically divided multiple times, producing sister-daughter cells phenomenally higher in number than what could be expected from their generation time. This caused an abrupt, unexpectedly high increase in the rifampicin/moxifloxacin resister colonies. This unique cell division behavior was not shown by the rifampicin resisters formed naturally in the actively growing cultures. We could detect such abrupt increases in the antibiotic resisters in others’ and our earlier data on the antibiotic-exposed laboratory/clinical M. tuberculosis strains, M. smegmatis and other bacteria in in vitro cultures, infected macrophages/animals, and tuberculosis patients. However, it went unnoticed/unreported in all those studies. This phenomenon occurring in diverse bacteria surviving against different antibiotics revealed the broad significance of the present study. We speculate that the antibiotic-resistant bacillary clones, which emerge in patients with diverse bacterial infections, might be using the same mechanism to establish an antibiotic resister population quickly in the continued presence of antibiotics. IMPORTANCE The bacterial pathogens that are tolerant to antibiotics and survive in the continued presence of antibiotics have the chance to acquire genetically resistant mutations against the antibiotics and emerge de novo as antibiotic resisters. Once the antibiotic resister clone has emerged, often with compromise on growth characteristics, for the protection of the species, it is important to establish an antibiotic-resistant population quickly in the continued presence of the antibiotic. In this regard, the present study has unraveled multinucleation and multiseptation followed by multiple constrictions as the cellular processes used by the bacteria for quick multiplication to establish antibiotic-resistant populations. The study also points out the same phenomenon occurring in other bacterial systems investigated in our laboratory and others’ laboratories. Identification of these specific cellular events involved in quick multiplication offers additional cellular processes that can be targeted in combination with the existing antibiotics’ targets to preempt the emergence of antibiotic-resistant bacterial strains.
Collapse
|
71
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
72
|
Activation of the Cell Wall Stress Response in Pseudomonas aeruginosa Infected by a Pf4 Phage Variant. Microorganisms 2020; 8:microorganisms8111700. [PMID: 33143386 PMCID: PMC7693463 DOI: 10.3390/microorganisms8111700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa PAO1 has an integrated Pf4 prophage in its genome, encoding a relatively well-characterized filamentous phage, which contributes to the bacterial biofilm organization and maturation. Pf4 variants are considered as superinfectives when they can re-infect and kill the prophage-carrying host. Herein, the response of P. aeruginosa H103 to Pf4 variant infection was investigated. This phage variant caused partial lysis of the bacterial population and modulated H103 physiology. We show by confocal laser scanning microscopy that a Pf4 variant-infection altered P. aeruginosa H103 biofilm architecture either in static or dynamic conditions. Interestingly, in the latter condition, numerous cells displayed a filamentous morphology, suggesting a link between this phenotype and flow-related forces. In addition, Pf4 variant-infection resulted in cell envelope stress response, mostly mediated by the AlgU and SigX extracytoplasmic function sigma factors (ECFσ). AlgU and SigX involvement may account, at least partly, for the enhanced expression level of genes involved in the biosynthesis pathways of two matrix exopolysaccharides (Pel and alginates) and bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) metabolism.
Collapse
|
73
|
Raghunathan S, Chimthanawala A, Krishna S, Vecchiarelli AG, Badrinarayanan A. Asymmetric chromosome segregation and cell division in DNA damage-induced bacterial filaments. Mol Biol Cell 2020; 31:2920-2931. [PMID: 33112716 PMCID: PMC7927188 DOI: 10.1091/mbc.e20-08-0547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Faithful propagation of life requires coordination of DNA replication and segregation with cell growth and division. In bacteria, this results in cell size homeostasis and periodicity in replication and division. The situation is perturbed under stress such as DNA damage, which induces filamentation as cell cycle progression is blocked to allow for repair. Mechanisms that release this morphological state for reentry into wild-type growth are unclear. Here we show that damage-induced Escherichia coli filaments divide asymmetrically, producing short daughter cells that tend to be devoid of damage and have wild-type size and growth dynamics. The Min-system primarily determines division site location in the filament, with additional regulation of division completion by chromosome segregation. Collectively, we propose that coordination between chromosome (and specifically terminus) segregation and cell division may result in asymmetric division in damage-induced filaments and facilitate recovery from a stressed state.
Collapse
Affiliation(s)
- Suchitha Raghunathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore 560064, India
| | - Afroze Chimthanawala
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and.,SASTRA University, Thanjavur, Tamil Nadu 613401, India
| | - Sandeep Krishna
- National Centre for Biological Sciences, Tata Institute of Fundamental Research and.,Simons Centre for the Study of Living Machines, Bangalore 560065, India
| | - Anthony G Vecchiarelli
- Molecular, Cellular, and Developmental Biology Department, Biological Sciences Building, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
74
|
Revitt-Mills SA, Robinson A. Antibiotic-Induced Mutagenesis: Under the Microscope. Front Microbiol 2020; 11:585175. [PMID: 33193230 PMCID: PMC7642495 DOI: 10.3389/fmicb.2020.585175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
The development of antibiotic resistance poses an increasing threat to global health. Understanding how resistance develops in bacteria is critical for the advancement of new strategies to combat antibiotic resistance. In the 1980s, it was discovered that certain antibiotics induce elevated rates of mutation in bacteria. From this, an “increased evolvability” hypothesis was proposed: antibiotic-induced mutagenesis increases the genetic diversity of bacterial populations, thereby increasing the rate at which bacteria develop antibiotic resistance. However, antibiotic-induced mutagenesis is one of multiple competing factors that act on bacterial populations exposed to antibiotics. Its relative importance in shaping evolutionary outcomes, including the development of antibiotic resistance, is likely to depend strongly on the conditions. Presently, there is no quantitative model that describes the relative contribution of antibiotic-induced mutagenesis to bacterial evolution. A far more complete understanding could be reached if we had access to technology that enabled us to study antibiotic-induced mutagenesis at the molecular-, cellular-, and population-levels simultaneously. Direct observations would, in principle, allow us to directly link molecular-level events with outcomes in individual cells and cell populations. In this review, we highlight microscopy studies which have allowed various aspects of antibiotic-induced mutagenesis to be directly visualized in individual cells for the first time. These studies have revealed new links between error-prone DNA polymerases and recombinational DNA repair, evidence of spatial regulation occurring during the SOS response, and enabled real-time readouts of mismatch and mutation rates. Further, we summarize the recent discovery of stochastic population fluctuations in cultures exposed to sub-inhibitory concentrations of bactericidal antibiotics and discuss the implications of this finding for the study of antibiotic-induced mutagenesis. The studies featured here demonstrate the potential of microscopy to provide direct observation of phenomena relevant to evolution under antibiotic-induced mutagenesis.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
75
|
Spencer DC, Paton TF, Mulroney KT, Inglis TJJ, Sutton JM, Morgan H. A fast impedance-based antimicrobial susceptibility test. Nat Commun 2020; 11:5328. [PMID: 33087704 PMCID: PMC7578651 DOI: 10.1038/s41467-020-18902-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to develop simple and fast antimicrobial susceptibility tests (ASTs) that allow informed prescribing of antibiotics. Here, we describe a label-free AST that can deliver results within an hour, using an actively dividing culture as starting material. The bacteria are incubated in the presence of an antibiotic for 30 min, and then approximately 105 cells are analysed one-by-one with microfluidic impedance cytometry for 2-3 min. The measured electrical characteristics reflect the phenotypic response of the bacteria to the mode of action of a particular antibiotic, in a 30-minute incubation window. The results are consistent with those obtained by classical broth microdilution assays for a range of antibiotics and bacterial species.
Collapse
Affiliation(s)
- Daniel C Spencer
- Department of Electronics and Computer Science, and Institute for Life Science, University of Southampton, Hampshire, SO17 1BJ, UK
| | - Teagan F Paton
- Department of Microbiology, PathWest Laboratory Medicine, Nedlands, WA, 6009, Australia
| | - Kieran T Mulroney
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Timothy J J Inglis
- Department of Microbiology, PathWest Laboratory Medicine, Nedlands, WA, 6009, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, WA, 6009, Australia
| | - J Mark Sutton
- Public Health England, National Infection Service, Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Hywel Morgan
- Department of Electronics and Computer Science, and Institute for Life Science, University of Southampton, Hampshire, SO17 1BJ, UK.
| |
Collapse
|
76
|
Noble D. The role of stochasticity in biological communication processes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 162:122-128. [DOI: 10.1016/j.pbiomolbio.2020.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
|
77
|
Ojkic N, Lilja E, Direito S, Dawson A, Allen RJ, Waclaw B. A Roadblock-and-Kill Mechanism of Action Model for the DNA-Targeting Antibiotic Ciprofloxacin. Antimicrob Agents Chemother 2020; 64:e02487-19. [PMID: 32601161 PMCID: PMC7449190 DOI: 10.1128/aac.02487-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Fluoroquinolones, antibiotics that cause DNA damage by inhibiting DNA topoisomerases, are clinically important, but their mechanism of action is not yet fully understood. In particular, the dynamical response of bacterial cells to fluoroquinolone exposure has hardly been investigated, although the SOS response, triggered by DNA damage, is often thought to play a key role. Here, we investigated the growth inhibition of the bacterium Escherichia coli by the fluoroquinolone ciprofloxacin at low concentrations. We measured the long-term and short-term dynamical response of the growth rate and DNA production rate to ciprofloxacin at both the population and single-cell levels. We show that, despite the molecular complexity of DNA metabolism, a simple roadblock-and-kill model focusing on replication fork blockage and DNA damage by ciprofloxacin-poisoned DNA topoisomerase II (gyrase) quantitatively reproduces long-term growth rates in the presence of ciprofloxacin. The model also predicts dynamical changes in the DNA production rate in wild-type E. coli and in a recombination-deficient mutant following a step-up of ciprofloxacin. Our work highlights that bacterial cells show a delayed growth rate response following fluoroquinolone exposure. Most importantly, our model explains why the response is delayed: it takes many doubling times to fragment the DNA sufficiently to inhibit gene expression. We also show that the dynamical response is controlled by the timescale of DNA replication and gyrase binding/unbinding to the DNA rather than by the SOS response, challenging the accepted view. Our work highlights the importance of including detailed biophysical processes in biochemical-systems models to quantitatively predict the bacterial response to antibiotics.
Collapse
Affiliation(s)
- Nikola Ojkic
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Elin Lilja
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Susana Direito
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Angela Dawson
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Rosalind J Allen
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology, Edinburgh, United Kingdom
| | - Bartlomiej Waclaw
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology, Edinburgh, United Kingdom
| |
Collapse
|
78
|
Dutta J, Mala AA. Removal of antibiotic from the water environment by the adsorption technologies: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:401-426. [PMID: 32960788 DOI: 10.2166/wst.2020.335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Antibiotics are known as emergent pollutants because of their toxicological properties. Due to continuous discharge and persistence in the aquatic environment, antibiotics are detected almost in every environmental matrix. Therefore antibiotics that are polluting the aquatic environment have gained significant research interest for their removal. Several techniques have been used to remove pollutants, but appropriate technology is still to be found. This review addresses the use of modified and cheap materials for antibiotic removal from the environment.
Collapse
Affiliation(s)
- Joydeep Dutta
- Department of Zoology School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India E-mail:
| | - Aijaz Ahmad Mala
- Department of Zoology School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India E-mail:
| |
Collapse
|
79
|
Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng 2020; 21:267-297. [PMID: 31167103 DOI: 10.1146/annurev-bioeng-062117-121224] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to their early-recognized functions in host defense and the clearance of apoptotic cell debris, macrophages play vital roles in tissue development, homeostasis, and repair. If misregulated, they steer the progression of many inflammatory diseases. Much progress has been made in understanding the mechanisms underlying macrophage signaling, transcriptomics, and proteomics, under physiological and pathological conditions. Yet, the detailed mechanisms that tune circulating monocytes/macrophages and tissue-resident macrophage polarization, differentiation, specification, and their functional plasticity remain elusive. We review how physical factors affect macrophage phenotype and function, including how they hunt for particles and pathogens, as well as the implications for phagocytosis, autophagy, and polarization from proinflammatory to prohealing phenotype. We further discuss how this knowledge can be harnessed in regenerative medicine and for the design of new drugs and immune-modulatory drug delivery systems, biomaterials, and tissue scaffolds.
Collapse
Affiliation(s)
- Nikhil Jain
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Jens Moeller
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
80
|
Dhara L, Tripathi A. The use of eugenol in combination with cefotaxime and ciprofloxacin to combat ESBL-producing quinolone-resistant pathogenic Enterobacteriaceae. J Appl Microbiol 2020; 129:1566-1576. [PMID: 32502298 DOI: 10.1111/jam.14737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/05/2020] [Accepted: 05/19/2020] [Indexed: 11/29/2022]
Abstract
AIM Emergence of extended-spectrum beta-lactamase (ESBL) producing with quinolone-resistant (QR) pathogenic Enterobacteriaceae augmented the need to establish therapeutic options against them. Present study aimed towards determination of synergistic combination of eugenol (EG) with cefotaxime (CTX) and ciprofloxacin (CIP) to combat against this resistance and potentiation of antibacterial drugs by EG against these bacteria. METHODS AND RESULTS Synergistic interaction between EG and CTX/CIP (FICI: 0·08-0·5) were observed among ESBL-QR bacteria using checkerboard assay. Approximately, 2- to 1024-fold minimum inhibitory concentration value reduction and 17- to 165 030-fold dose reduction index strongly suggested synergistic interaction between EG and antibiotics. Cell viability assay showed reduction in log10 CFU per ml from 16·6 to 3·1 at synergistic concentration. Scanning electron microscopy further proved disruptive effect of EG on cell architecture. Eugenol and/or its combination also altered genes' expressions that imparted antibiotic resistance by ~1·6 to ~1226 folds. CONCLUSIONS Reduced doses of antibiotics, bacterial morphological alterations, efflux pump down regulation, porin over expression and beta-lactamase gene inhibition of ESBL-QR bacteria by EG alone or in combination with CTX/CIP might have reversed antibiotic resistance profile of ESBL-QR bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY This study provided a molecular insight into action of EG and/with CTX and CIP, which might have potentiated antibiotic's activity against ESBL-QR bacteria.
Collapse
Affiliation(s)
- L Dhara
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, India
| | - A Tripathi
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, India
| |
Collapse
|
81
|
Brown VM, Wilson J, Hallquist MN, Szanto K, Dombrovski AY. Ventromedial prefrontal value signals and functional connectivity during decision-making in suicidal behavior and impulsivity. Neuropsychopharmacology 2020; 45:1034-1041. [PMID: 32035425 PMCID: PMC7162923 DOI: 10.1038/s41386-020-0632-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/16/2019] [Accepted: 01/26/2020] [Indexed: 11/09/2022]
Abstract
Suicide is linked to impaired value-based decision-making and impulsivity, but whether these risk factors share neural underpinnings is unclear. Disrupted ventromedial prefrontal cortex (vmPFC) value signals may underlie this behavioral phenotype. We investigated vmPFC value signals, vmPFC-frontoparietal connectivity, and the impact of impulsivity during decision-making in depressed individuals with and without suicidal behavior. Middle-aged and older adults (n = 116; 35 with a history of suicide attempts, 25 with ideation only, 25 depressed controls with no ideation, and 31 nonpsychiatric controls) completed a decision-making task with drifting reward probabilities during fMRI. Values of choices, estimated by a reinforcement learning model, were regressed against BOLD signal. VmPFC value activation was compared between groups. Moderating effects of impulsivity on vmPFC-frontoparietal connectivity were assessed in nonpsychiatric controls and compared among patient groups. VmPFC value responses in participants with a history of suicide attempts were reduced relative to nonpsychiatric controls (p < 0.05). In nonpsychiatric controls, vmPFC-frontoparietal connectivity was negatively moderated by impulsivity (pFWE corrected < 0.05). This effect was preserved in comparison patient groups but abolished in suicide attempters (p < 0.001). This change in neural connectivity patterns also affected behavior: people with a history of suicide attempts showed a disrupted effect of vmPFC-frontoparietal connectivity, impulsivity, and reinforcement on choice quality (p < 0.001). These effects were specific to vmPFC and not to striatum. In summary, findings from this study largely support disrupted vmPFC value signals in suicidal behavior. In addition, it uncovers an altered pattern of vmPFC-frontoparietal connectivity in impulsive people with suicidal behavior, which may underlie disrupted choice processes in a suicidal crisis.
Collapse
Affiliation(s)
- Vanessa M Brown
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Wilson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael N Hallquist
- Department of Psychology, Pennsylvania State University, State College, PA, USA
| | - Katalin Szanto
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
82
|
Regulation of filamentation by bacteria and its impact on the productivity of compounds in biotechnological processes. Appl Microbiol Biotechnol 2020; 104:4631-4642. [DOI: 10.1007/s00253-020-10590-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022]
|
83
|
Zahir T, Wilmaerts D, Franke S, Weytjens B, Camacho R, Marchal K, Hofkens J, Fauvart M, Michiels J. Image-Based Dynamic Phenotyping Reveals Genetic Determinants of Filamentation-Mediated β-Lactam Tolerance. Front Microbiol 2020; 11:374. [PMID: 32231648 PMCID: PMC7082316 DOI: 10.3389/fmicb.2020.00374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 12/02/2022] Open
Abstract
Antibiotic tolerance characterized by slow killing of bacteria in response to a drug can lead to treatment failure and promote the emergence of resistance. β-lactam antibiotics inhibit cell wall growth in bacteria and many of them cause filamentation followed by cell lysis. Hence delayed cell lysis can lead to β-lactam tolerance. Systematic discovery of genetic factors that affect β-lactam killing kinetics has not been performed before due to challenges in high-throughput, dynamic analysis of viability of filamented cells during bactericidal action. We implemented a high-throughput time-resolved microscopy approach in a gene deletion library of Escherichia coli to monitor the response of mutants to the β-lactam cephalexin. Changes in frequency of lysed and intact cells due to the antibiotic action uncovered several strains with atypical lysis kinetics. Filamentation confers tolerance because antibiotic removal before lysis leads to recovery through numerous concurrent divisions of filamented cells. Filamentation-mediated tolerance was not associated with resistance, and therefore this phenotype is not discernible through most antibiotic susceptibility methods. We find that deletion of Tol-Pal proteins TolQ, TolR, or Pal but not TolA, TolB, or CpoB leads to rapid killing by β-lactams. We also show that the timing of cell wall degradation determines the lysis and killing kinetics after β-lactam treatment. Altogether, this study uncovers numerous genetic determinants of hitherto unappreciated filamentation-mediated β-lactam tolerance and support the growing call for considering antibiotic tolerance in clinical evaluation of pathogens. More generally, the microscopy screening methodology described here can easily be adapted to study lysis in large numbers of strains.
Collapse
Affiliation(s)
- Taiyeb Zahir
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center of Microbiology, Leuven, Belgium
| | - Dorien Wilmaerts
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center of Microbiology, Leuven, Belgium
| | - Sabine Franke
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bram Weytjens
- Department of Information Technology, IDLab Group, Ghent University, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Rafael Camacho
- Department of Chemistry, KU Leuven - University of Leuven, Leuven, Belgium
| | - Kathleen Marchal
- Department of Information Technology, IDLab Group, Ghent University, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Johan Hofkens
- Department of Chemistry, KU Leuven - University of Leuven, Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center of Microbiology, Leuven, Belgium.,Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,VIB-KU Leuven Center of Microbiology, Leuven, Belgium
| |
Collapse
|
84
|
Laparoscopic sleeve gastrectomy improves brain connectivity in obese patients. J Neurol 2020; 267:1931-1940. [DOI: 10.1007/s00415-020-09780-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
|
85
|
Kim K, You L. Bacterial Aggregation Leads to Collective Elimination. Trends Microbiol 2020; 28:243-244. [PMID: 31917071 DOI: 10.1016/j.tim.2019.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022]
Abstract
Faster growing bacteria tend to be killed faster by antibiotics. In a complex environment exposed to antibiotics, however, the fate of a bacterial population depends on diverse factors. In a new study, Schlomann et al. describes how sublethal antibiotics can trigger the purging of bacteria by the zebrafish.
Collapse
Affiliation(s)
- Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Center for Genomic and Computational Biology, Duke University, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, School of Medicine, Durham, NC, USA.
| |
Collapse
|
86
|
Noble D. Editorial for Progress in Biophysics and Molecular Biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:1-2. [DOI: 10.1016/j.pbiomolbio.2019.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
87
|
Fleiszig SMJ, Kroken AR, Nieto V, Grosser MR, Wan SJ, Metruccio MME, Evans DJ. Contact lens-related corneal infection: Intrinsic resistance and its compromise. Prog Retin Eye Res 2019; 76:100804. [PMID: 31756497 DOI: 10.1016/j.preteyeres.2019.100804] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
Contact lenses represent a widely utilized form of vision correction with more than 140 million wearers worldwide. Although generally well-tolerated, contact lenses can cause corneal infection (microbial keratitis), with an approximate annualized incidence ranging from ~2 to ~20 cases per 10,000 wearers, and sometimes resulting in permanent vision loss. Research suggests that the pathogenesis of contact lens-associated microbial keratitis is complex and multifactorial, likely requiring multiple conspiring factors that compromise the intrinsic resistance of a healthy cornea to infection. Here, we outline our perspective of the mechanisms by which contact lens wear sometimes renders the cornea susceptible to infection, focusing primarily on our own research efforts during the past three decades. This has included studies of host factors underlying the constitutive barrier function of the healthy cornea, its response to bacterial challenge when intrinsic resistance is not compromised, pathogen virulence mechanisms, and the effects of contact lens wear that alter the outcome of host-microbe interactions. For almost all of this work, we have utilized the bacterium Pseudomonas aeruginosa because it is the leading cause of lens-related microbial keratitis. While not yet common among corneal isolates, clinical isolates of P. aeruginosa have emerged that are resistant to virtually all currently available antibiotics, leading the United States CDC (Centers for Disease Control) to add P. aeruginosa to its list of most serious threats. Compounding this concern, the development of advanced contact lenses for biosensing and augmented reality, together with the escalating incidence of myopia, could portent an epidemic of vision-threatening corneal infections in the future. Thankfully, technological advances in genomics, proteomics, metabolomics and imaging combined with emerging models of contact lens-associated P. aeruginosa infection hold promise for solving the problem - and possibly life-threatening infections impacting other tissues.
Collapse
Affiliation(s)
- Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, CA, USA; Graduate Group in Vision Science, University of California, Berkeley, CA, USA; Graduate Groups in Microbiology and Infectious Diseases & Immunity, University of California, Berkeley, CA, USA.
| | - Abby R Kroken
- School of Optometry, University of California, Berkeley, CA, USA
| | - Vincent Nieto
- School of Optometry, University of California, Berkeley, CA, USA
| | | | - Stephanie J Wan
- Graduate Group in Vision Science, University of California, Berkeley, CA, USA
| | | | - David J Evans
- School of Optometry, University of California, Berkeley, CA, USA; College of Pharmacy, Touro University California, Vallejo, CA, USA
| |
Collapse
|
88
|
Behera S, Pattnaik S. Persister cell development among Enterobacteriaceae, Pseudomonadaceae, Mycobacteriaceae and Staphylococcaceae biotypes: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
89
|
Yoshioka KI, Matsuno Y, Hyodo M, Fujimori H. Genomic-Destabilization-Associated Mutagenesis and Clonal Evolution of Cells with Mutations in Tumor-Suppressor Genes. Cancers (Basel) 2019; 11:cancers11111643. [PMID: 31653100 PMCID: PMC6895985 DOI: 10.3390/cancers11111643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
The development of cancer is driven by genomic instability and mutations. In general, cancer develops via multiple steps. Each step involves the clonal evolution of cells with abrogated defense systems, such as cells with mutations in cancer-suppressor genes. However, it remains unclear how cellular defense systems are abrogated and the associated clonal evolution is triggered and propagated. In this manuscript, we review current knowledge regarding mutagenesis associated with genomic destabilization and its relationship with the clonal evolution of cells over the course of cancer development, focusing especially on mechanistic aspects.
Collapse
Affiliation(s)
- Ken-Ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yusuke Matsuno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Mai Hyodo
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Haruka Fujimori
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Biological Science and Technology, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
90
|
Dhara L, Tripathi A. Cinnamaldehyde: a compound with antimicrobial and synergistic activity against ESBL-producing quinolone-resistant pathogenic Enterobacteriaceae. Eur J Clin Microbiol Infect Dis 2019; 39:65-73. [PMID: 31624984 DOI: 10.1007/s10096-019-03692-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 10/25/2022]
Abstract
Usage of cephalosporin and quinolone antibiotics has aggravated the development of extended-spectrum beta-lactamase (ESBL)-producing quinolone-resistant (QR) pathogenic Enterobacteriaceae. The present study aims to determine antimicrobial activity of cinnamaldehyde alone or in combination with cefotaxime/ciprofloxacin to reverse the drug resistance and evaluations of efficacy, and possible molecular mechanism of action of the combination was also evaluated using in vitro assays. Broth microdilution assay was used to determine minimum inhibitory concentrations (MICs) of cinnamaldehyde and antibiotics against ESBL-QR Enterobacteriaceae. Synergistic effect and dynamic interaction with antibiotics were further examined by checkerboard assay, isobologram analysis, and time-kill assay, respectively. Cellular morphology of bacteria was viewed with scanning electron microscopy (SEM). Effects of cinnamaldehyde and its combination on the expression of gene encoding-porins (ompC, ompF, ompK35, and ompK36), efflux pump genes (acrB-E. coli, acrB-K. pneumoniae), and antibiotic-resistant genes (blaTEM, blaSHV, blaCTXM, and QnrB) were evaluated using real-time quantitative PCR (RT-qPCR). Majority of the E. coli (32.1%) and K. pneumoniae (24.2%) isolates demonstrated MIC of cinnamaldehyde at 7.34 μg/mL and 0.91 g/mL, respectively. Synergism between cinnamaldehyde and cefotaxime was noted among 75% E. coli and 60.6% K. pneumoniae. Similarly, synergism with ciprofloxacin was observed among 39.6% and 42.4% of the bacteria, respectively. Thus, cinnamaldehyde reduced MIC of cefotaxime and ciprofloxacin 2-1024-fold with bactericidal and/synergistic effect after 24 h. Cinnamaldehyde and its combination altered gene expression by ~ 1.6 to ~ 400-fold. Distorted bacterial cell structures were visible after treatment with cinnamaldehyde and/or with cefotaxime/ciprofloxacin. The results indicated the potential efficacy and mode of action of cinnamaldehyde alone and in combination with antibiotics against pathogenic ESBL-QR bacteria.
Collapse
Affiliation(s)
- Lena Dhara
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India
| | - Anusri Tripathi
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India.
| |
Collapse
|
91
|
Filamentation initiated by Cas2 and its association with the acquisition process in cells. Int J Oral Sci 2019; 11:29. [PMID: 31578319 PMCID: PMC6802651 DOI: 10.1038/s41368-019-0063-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/18/2019] [Accepted: 07/07/2019] [Indexed: 12/15/2022] Open
Abstract
Cas1-and-Cas2-mediated new spacer acquisition is an essential process for bacterial adaptive immunity. The process is critical for the ecology of the oral microflora and oral health. Although molecular mechanisms for spacer acquisition are known, it has never been established if this process is associated with the morphological changes of bacteria. In this study, we demonstrated a novel Cas2-induced filamentation phenotype in E. coli that was regulated by co-expression of the Cas1 protein. A 30 amino acid motif at the carboxyl terminus of Cas2 is necessary for this function. By imaging analysis, we provided evidence to argue that Cas-induced filamentation is a step coupled with new spacer acquisition during which filaments are characterised by polyploidy with asymmetric cell division. This work may open new opportunities to investigate the adaptive immune response and microbial balance for oral health.
Collapse
|
92
|
A Rapid ATP Bioluminescence-based Test for Detecting Levofloxacin Resistance Starting from Positive Blood Culture Bottles. Sci Rep 2019; 9:13565. [PMID: 31578343 PMCID: PMC6775087 DOI: 10.1038/s41598-019-49358-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023] Open
Abstract
Administering appropriate antimicrobial therapy as early as possible is important for rescuing bacteremic patients. Therefore, rapid antimicrobial susceptibility tests in positive blood culture specimens have been diligently sought. Adenosine triphosphate (ATP) bioluminescence-based methods have been used for rapid antimicrobial susceptibility tests. However, blood culture specimens have not been examined in many studies, possibly due to abundant intracellular ATP in blood corpuscles resulting in false-susceptible results. In this study, we developed a rapid ATP bioluminescence-based method for detecting antibiotic resistance starting from positive blood culture. To minimize background ATP originating from blood corpuscles, specimens were centrifuged and the supernatant diluted with broth, and an ATP-eliminating reagent was then added to the bacterial suspension at the beginning of incubation. This newly devised procedure reduced the background ATP by more than five orders of magnitude. In a pilot study using levofloxacin, no false-susceptible results were observed in 15 clinical specimens. Furthermore, the results indicated that the rapid method provided additional information about bacterial activities with high resolution, in contrast to the less-thorough findings with the conventional turbidity method. Therefore, our approach will contribute to the treatment of infectious diseases as a rapid antimicrobial susceptibility test.
Collapse
|
93
|
Sun J, Wang B, Warden AR, Cui D, Ding X. Overcoming Multidrug-Resistance in Bacteria with a Two-Step Process to Repurpose and Recombine Established Drugs. Anal Chem 2019; 91:13562-13569. [DOI: 10.1021/acs.analchem.9b02690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiahui Sun
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Boqian Wang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Antony R. Warden
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Thin Film and Microfabrication Key Laboratory of Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
94
|
Ames JR, Muthuramalingam M, Murphy T, Najar FZ, Bourne CR. Expression of different ParE toxins results in conserved phenotypes with distinguishable classes of toxicity. Microbiologyopen 2019; 8:e902. [PMID: 31309747 PMCID: PMC6813445 DOI: 10.1002/mbo3.902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/12/2019] [Accepted: 06/18/2019] [Indexed: 01/10/2023] Open
Abstract
Toxin–antitoxin (TA) systems are found on both chromosomes and plasmids. These systems are unique in that they can confer both fatal and protective effects on bacterial cells—a quality that could potentially be harnessed given further understanding of these TA mechanisms. The current work focuses on the ParE subfamily, which is found throughout proteobacteria and has a sequence identity on average of approximately 12% (similarity at 30%–80%). Our aim is to evaluate the equivalency of chromosomally derived ParE toxin activity depending on its bacterial species of origin. Nine ParE toxins were analyzed, originating from six different bacterial species. Based on the resulting toxicity, three categories can be established: ParE toxins that do not exert toxicity under the experimental conditions, toxins that exert toxicity within the first four hours, and those that exert toxicity only after 10–12 hr of exposure. All tested ParE toxins produce a cellular morphologic change from rods to filaments, consistent with disruption of DNA topology. Analysis of the distribution of filamented cells within a population reveals a correlation between the extent of filamentation and toxicity. No membrane septation is visible along the length of the cell filaments, whereas aberrant lipid blebs are evident. Potent ParE‐mediated toxicity is also correlated with a hallmark signature of abortive DNA replication, consistent with the inhibition of DNA gyrase.
Collapse
Affiliation(s)
- Jessica R Ames
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | | | - Tamiko Murphy
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Fares Z Najar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
95
|
Pribis JP, García-Villada L, Zhai Y, Lewin-Epstein O, Wang AZ, Liu J, Xia J, Mei Q, Fitzgerald DM, Bos J, Austin RH, Herman C, Bates D, Hadany L, Hastings PJ, Rosenberg SM. Gamblers: An Antibiotic-Induced Evolvable Cell Subpopulation Differentiated by Reactive-Oxygen-Induced General Stress Response. Mol Cell 2019; 74:785-800.e7. [PMID: 30948267 PMCID: PMC6553487 DOI: 10.1016/j.molcel.2019.02.037] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/17/2019] [Accepted: 02/26/2019] [Indexed: 11/23/2022]
Abstract
Antibiotics can induce mutations that cause antibiotic resistance. Yet, despite their importance, mechanisms of antibiotic-promoted mutagenesis remain elusive. We report that the fluoroquinolone antibiotic ciprofloxacin (cipro) induces mutations by triggering transient differentiation of a mutant-generating cell subpopulation, using reactive oxygen species (ROS). Cipro-induced DNA breaks activate the Escherichia coli SOS DNA-damage response and error-prone DNA polymerases in all cells. However, mutagenesis is limited to a cell subpopulation in which electron transfer together with SOS induce ROS, which activate the sigma-S (σS) general-stress response, which allows mutagenic DNA-break repair. When sorted, this small σS-response-"on" subpopulation produces most antibiotic cross-resistant mutants. A U.S. Food and Drug Administration (FDA)-approved drug prevents σS induction, specifically inhibiting antibiotic-promoted mutagenesis. Further, SOS-inhibited cell division, which causes multi-chromosome cells, promotes mutagenesis. The data support a model in which within-cell chromosome cooperation together with development of a "gambler" cell subpopulation promote resistance evolution without risking most cells.
Collapse
Affiliation(s)
- John P Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Libertad García-Villada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yin Zhai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ohad Lewin-Epstein
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv, Israel
| | - Anthony Z Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77030, USA
| | - Jingjing Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qian Mei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
| | - Devon M Fitzgerald
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julia Bos
- Department of Physics, Princeton University, Princeton, NJ 08544-0708, USA; Lewis Sigler Institute, Princeton University, Princeton, NJ 08544-0708, USA
| | - Robert H Austin
- Lewis Sigler Institute, Princeton University, Princeton, NJ 08544-0708, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lilach Hadany
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv, Israel
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77030, USA; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
96
|
Multiple Lines of Evidences Reveal Mechanisms Underpinning Mercury Resistance and Volatilization by Stenotrophomonas sp. MA5 Isolated from the Savannah River Site (SRS), USA. Cells 2019; 8:cells8040309. [PMID: 30987227 PMCID: PMC6523443 DOI: 10.3390/cells8040309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 11/17/2022] Open
Abstract
A largely understudied microbially mediated mercury (Hg) bioremediative pathway includes the volatilization of Hg2+ to Hg0. Therefore, studies on Hg resistant bacteria (HgR), isolated from historically long-term contaminated environments, can serve as models to understand mechanisms underpinning Hg cycling. Towards this end, a mercury resistant bacterial strain, identified as Stenotrophomonas sp., strain MA5, was isolated from Mill Branch on the Savannah River Site (SRS); an Hg-impacted ecosystem. Minimum inhibitory concentration (MIC) analysis showed Hg resistance of up to 20 µg/mL by MA5 with 95% of cells retaining viability. Microcosm studies showed that the strain depleted more than 90% of spiked Hg2+ within the first 24 h of growth and the detection of volatilized mercury indicated that the strain was able to reduce Hg2+ to Hg0. To understand molecular mechanisms of Hg volatilization, a draft whole genome sequence was obtained, annotated and analyzed, which revealed the presence of a transposon-derived mer operon (merRTPADE) in MA5, known to transport and reduce Hg2+ into Hg0. Based on the whole genome sequence of strain MA5, qRT-PCR assays were designed on merRTPADE, we found a ~40-fold higher transcription of mer T, P, A, D and E when cells were exposed to 5 µg/mL Hg2+. Interestingly, strain MA5 increased cellular size as a function of increasing Hg concentrations, which is likely an evolutionary response mechanism to cope with Hg stress. Moreover, metal contaminated environments are shown to co-select for antibiotic resistance. When MA5 was screened for antibiotic resistance, broad resistance against penicillin, streptomycin, tetracycline, ampicillin, rifampicin, and erythromycin was found; this correlated with the presence of multiple gene determinants for antibiotic resistance within the whole genome sequence of MA5. Overall, this study provides an in-depth understanding of the underpinnings of Stenotrophomonas-mercury interactions that facilitate cellular survival in a contaminated soil habitat.
Collapse
|
97
|
Barrett TC, Mok WWK, Murawski AM, Brynildsen MP. Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nat Commun 2019; 10:1177. [PMID: 30862812 PMCID: PMC6414640 DOI: 10.1038/s41467-019-09058-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Bacterial persisters are able to tolerate high levels of antibiotics and give rise to new populations. Persister tolerance is generally attributed to minimally active cellular processes that prevent antibiotic-induced damage, which has led to the supposition that persister offspring give rise to antibiotic-resistant mutants at comparable rates to normal cells. Using time-lapse microscopy to monitor Escherichia coli populations following ofloxacin treatment, we find that persisters filament extensively and induce impressive SOS responses before returning to a normal appearance. Further, populations derived from fluoroquinolone persisters contain significantly greater quantities of antibiotic-resistant mutants than those from untreated controls. We confirm that resistance is heritable and that the enhancement requires RecA, SOS induction, an opportunity to recover from treatment, and the involvement of error-prone DNA polymerase V (UmuDC). These findings show that fluoroquinolones damage DNA in persisters and that the ensuing SOS response accelerates the development of antibiotic resistance from these survivors. Fluoroquinolone (FQ)-induced DNA damage in persisters could promote antibiotic resistance. Here, using time-lapse microscopy and genetic analyses, the authors show that after a single round of FQ treatment, SOS response in persisters accelerates the development of resistance to unrelated antibiotics.
Collapse
Affiliation(s)
- Theresa C Barrett
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.,Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Wendy W K Mok
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.,Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, 06032-3305, USA
| | - Allison M Murawski
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.,Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Mark P Brynildsen
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA. .,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
98
|
Alcalde RE, Michelson K, Zhou L, Schmitz EV, Deng J, Sanford RA, Fouke BW, Werth CJ. Motility of Shewanella oneidensis MR-1 Allows for Nitrate Reduction in the Toxic Region of a Ciprofloxacin Concentration Gradient in a Microfluidic Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2778-2787. [PMID: 30673286 DOI: 10.1021/acs.est.8b04838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Subsurface environments often contain mixtures of contaminants in which the microbial degradation of one pollutant may be inhibited by the toxicity of another. Agricultural settings exemplify these complex environments, where antimicrobial leachates may inhibit nitrate bioreduction, and are the motivation to address this fundamental ecological response. In this study, a microfluidic reactor was fabricated to create diffusion-controlled concentration gradients of nitrate and ciprofloxacin under anoxic conditions in order to evaluate the ability of Shewanella oneidenisis MR-1 to reduce the former in the presence of the latter. Results show a surprising ecological response, where swimming motility allow S. oneidensis MR-1 to accumulate and maintain metabolic activity for nitrate reduction in regions with toxic ciprofloxacin concentrations (i.e., 50× minimum inhibitory concentration, MIC), despite the lack of observed antibiotic resistance. Controls with limited nutrient flux and a nonmotile mutant (Δ flag) show that cells cannot colonize antibiotic rich microenvironments, and this results in minimal metabolic activity for nitrate reduction. These results demonstrate that under anoxic, nitrate-reducing conditions, motility can control microbial habitability and metabolic activity in spatially heterogeneous toxic environments.
Collapse
Affiliation(s)
- Reinaldo E Alcalde
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 301 E. Dean Keeton Street , Austin , Texas 78712 , United States
| | - Kyle Michelson
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 301 E. Dean Keeton Street , Austin , Texas 78712 , United States
| | - Lang Zhou
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 301 E. Dean Keeton Street , Austin , Texas 78712 , United States
| | - Emily V Schmitz
- McKetta Department of Chemical Engineering , University of Texas at Austin , 200 E Dean Keeton St , Austin , Texas 78712 , United States
| | - Jinzi Deng
- Carl R. Woese Institute of Genomic Biology , University of Illinois Urbana-Champaign , 1206 W Gregory Dr , Urbana , Illinois 61801 United States
| | - Robert A Sanford
- Department of Geology , University of Illinois at Urbana-Champaign , 1301 West Green Street , Urbana , Illinois 61801 , United States
| | - Bruce W Fouke
- Carl R. Woese Institute of Genomic Biology , University of Illinois Urbana-Champaign , 1206 W Gregory Dr , Urbana , Illinois 61801 United States
- Department of Geology , University of Illinois at Urbana-Champaign , 1301 West Green Street , Urbana , Illinois 61801 , United States
- Department of Microbiology , University of Illinois at Urbana-Champaign , 601 South Goodwin Avenue , Urbana , Illinois 61801 , United States
| | - Charles J Werth
- Department of Civil, Architectural, and Environmental Engineering , University of Texas at Austin , 301 E. Dean Keeton Street , Austin , Texas 78712 , United States
| |
Collapse
|
99
|
Lin KC, Torga G, Sun Y, Axelrod R, Pienta KJ, Sturm JC, Austin RH. The role of heterogeneous environment and docetaxel gradient in the emergence of polyploid, mesenchymal and resistant prostate cancer cells. Clin Exp Metastasis 2019; 36:97-108. [PMID: 30810874 DOI: 10.1007/s10585-019-09958-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/19/2019] [Indexed: 12/01/2022]
Abstract
The ability of a population of PC3 prostate epithelial cancer cells to become resistant to docetaxel therapy and progress to a mesenchymal state remains a fundamental problem. The progression towards resistance is difficult to directly study in heterogeneous ecological environments such as tumors. In this work, we use a micro-fabricated "evolution accelerator" environment to create a complex heterogeneous yet controllable in-vitro environment with a spatially-varying drug concentration. With such a structure we observe the rapid emergence of a surprisingly large number of polyploid giant cancer cells (PGCCs) in regions of very high drug concentration, which does not occur in conventional cell culture of uniform concentration. This emergence of PGCCs in a high drug environment is due to migration of diploid epithelial cells from regions of low drug concentration, where they proliferate, to regions of high drug concentration, where they rapidly convert to PGCCs. Such a mechanism can only occur in spatially-varying rather than homogeneous environments. Further, PGCCs exhibit increased expression of the mesenchymal marker ZEB1 in the same high-drug regions where they are formed, suggesting the possible induction of an epithelial to mesenchymal transition (EMT) in these cells. This is consistent with prior work suggesting the PGCC cells are mediators of resistance in response to chemotherapeutic stress. Taken together, this work shows the key role of spatial heterogeneity and the migration of proliferative diploid cells to form PGCCs as a survival strategy for the cancer population, with implications for new therapies.
Collapse
Affiliation(s)
| | | | - Yusha Sun
- Princeton University, Princeton, NJ, USA
| | | | | | | | | |
Collapse
|
100
|
Zhang D, Yang Y, Qin Q, Xu J, Wang B, Chen J, Liu B, Zhang W, Qiao L. MALDI-TOF Characterization of Protein Expression Mutation During Morphological Changes of Bacteria Under the Impact of Antibiotics. Anal Chem 2019; 91:2352-2359. [PMID: 30628781 DOI: 10.1021/acs.analchem.8b05080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dongxue Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Yi Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Qin Qin
- Changhai Hospital, The Naval Military Medical University, Shanghai 200433, China
| | - Juan Xu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Bing Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Weijia Zhang
- Shanghai Institute of Cardiovascular Diseases and Institute of Biomedical Sciences, Zhongshan Hospital, Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, Shanghai Medical College of Fudan University, Shanghai 200032, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|