51
|
Frösen J, Joutel A. Smooth muscle cells of intracranial vessels: from development to disease. Cardiovasc Res 2019; 114:501-512. [PMID: 29351598 DOI: 10.1093/cvr/cvy002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/12/2018] [Indexed: 02/02/2023] Open
Abstract
Cerebrovascular diseases that cause ischaemic or haemorrhagic stroke with subsequent loss of life or functional capacity due to damage of the brain tissue are among the leading causes of human suffering and economic burden inflicted by diseases in the developed world. Diseases affecting intracranial vessels are significant contributors to ischaemic and haemorrhagic strokes. Brain arteriovenous malformations, which are a collection of abnormal blood vessels connecting arteries to veins, are the most common cause of intracranial haemorrhage in children and young adults. Saccular intracranial aneurysms, which are pathological saccular dilations mainly occurring at bifurcations of the large intracranial arteries near the circle of Willis, are highly prevalent in the middle-aged population, causing significant anxiety and concern; their rupture, although rare, is a significant cause of intracranial haemorrhage in those past middle age that is associated with a very sinister prognosis. Cerebral small-vessel disease, which comprise all pathological processes affecting vessels <500 microns in diameter, account for the majority of intracerebral haemorrhages and ∼25% of ischaemic strokes and 45% of dementias in the elderly. In this review, we summarize the developmental, structural, and functional features of intracranial vessels. We then describe the role of smooth muscle cells in brain arteriovenous malformations, intracranial aneurysms, and small-vessel diseases, and discuss how the peculiar ontogeny, structure, and function of intracranial vessels are related to the development of these diseases.
Collapse
Affiliation(s)
- Juhana Frösen
- Hemorrhagic Brain Pathology Research Group, NeuroCenter, Kuopio University Hospital, Kuopio 70029, Finland.,Department of Neurosurgery, Kuopio University Hospital, Kuopio 70029, Finland
| | - Anne Joutel
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, Université Paris Diderot-Paris 7, 10 av de Verdun, Paris 75010, France.,DHU NeuroVasc, Sorbonne Paris Cité, Paris 75010, France
| |
Collapse
|
52
|
Primary involvement of neurovascular coupling in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J Neurol 2019; 266:1782-1788. [PMID: 31028544 DOI: 10.1007/s00415-019-09331-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/14/2019] [Accepted: 04/21/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most frequent monogenic cause of cerebral ischemia, but reliable biomarkers to monitor the disease are lacking. AIMS AND OBJECTIVES To evaluate cerebral autoregulation (CA), vasoreactivity (VR), and neurovascular coupling (NVC) in CADASIL patients through a battery of dynamic transcranial Doppler tests. METHODS We screened our database for all pre-dementia CADASIL cases. We monitored cerebral blood flow velocity (CBFV) with transcranial Doppler, blood pressure, and expiratory carbon dioxide (CO2) non-invasively. CA was assessed by transfer function from the spontaneous oscillations of blood pressure to CBFV, VR with inhalation of CO2 at 5%, and hyperventilation and NVC by the CBFV response to visual stimulation. RESULTS We included 27 CADASIL patients and 20 healthy controls with similar age and sexes. CA and VR were similar between groups. However, NVC was significantly affected in CADASIL patients, with lower magnitudes of CBFV upsurge (overshoot 19 ± 5 vs 26 ± 6%, p = 0.013; gain 12 ± 7 vs 17 ± 5%, p = 0.003) and altered time behavior during visual stimulation (natural frequency 0.18 ± 0.06 vs 0.24 ± 0.06 Hz, p = 0.005; rate time 0.7 ± 1.7 vs 2.7 ± 3.5 s, p = 0.025). CONCLUSION Our results express a primary and selective involvement of the neurovascular unit in CADASIL rather than a generalized cerebral vasomotor disturbance. Functional cerebrovascular testing could be useful in patient evaluation and monitoring.
Collapse
|
53
|
Hasan R, Jaggar JH. K V channel trafficking and control of vascular tone. Microcirculation 2018; 25. [PMID: 28963858 DOI: 10.1111/micc.12418] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Membrane potential is a principal regulator of arterial contractility. Arterial smooth muscle cells express several different types of ion channel that control membrane potential, including KV channels. KV channel activation leads to membrane hyperpolarization, resulting in inhibition of voltage-dependent Ca2+ channels, a reduction in [Ca2+ ]i , and vasodilation. In contrast, KV channel inhibition leads to membrane depolarization and vasoconstriction. The ability of KV channels to regulate arterial contractility is dependent upon the number of plasma membrane-resident channels and their open probability. Here, we will discuss mechanisms that alter the surface abundance of KV channel proteins in arterial smooth muscle cells and the functional consequences of such regulation. Cellular processes that will be described include those that modulate KV channel transcription, retrograde and anterograde trafficking, and protein degradation.
Collapse
Affiliation(s)
- Raquibul Hasan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
54
|
Koide M, Moshkforoush A, Tsoukias NM, Hill-Eubanks DC, Wellman GC, Nelson MT, Dabertrand F. The yin and yang of K V channels in cerebral small vessel pathologies. Microcirculation 2018; 25. [PMID: 29247493 DOI: 10.1111/micc.12436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Abstract
Cerebral SVDs encompass a group of genetic and sporadic pathological processes leading to brain lesions, cognitive decline, and stroke. There is no specific treatment for SVDs, which progress silently for years before becoming clinically symptomatic. Here, we examine parallels in the functional defects of PAs in CADASIL, a monogenic form of SVD, and in response to SAH, a common type of hemorrhagic stroke that also targets the brain microvasculature. Both animal models exhibit dysregulation of the voltage-gated potassium channel, KV 1, in arteriolar myocytes, an impairment that compromises responses to vasoactive stimuli and impacts CBF autoregulation and local dilatory responses to neuronal activity (NVC). However, the extent to which this channelopathy-like defect ultimately contributes to these pathologies is unknown. Combining experimental data with computational modeling, we describe the role of KV 1 channels in the regulation of myocyte membrane potential at rest and during the modest increase in extracellular potassium associated with NVC. We conclude that PA resting membrane potential and myogenic tone depend strongly on KV 1.2/1.5 channel density, and that reciprocal changes in KV channel density in CADASIL and SAH produce opposite effects on extracellular potassium-mediated dilation during NVC.
Collapse
Affiliation(s)
- Masayo Koide
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Arash Moshkforoush
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Nikolaos M Tsoukias
- Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | | | - George C Wellman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT, USA.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
55
|
Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H. Dysfunction of Cerebrovascular Endothelial Cells: Prelude to Vascular Dementia. Front Aging Neurosci 2018; 10:376. [PMID: 30505270 PMCID: PMC6250852 DOI: 10.3389/fnagi.2018.00376] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease (AD), characterized by progressive cognitive impairment, memory loss, and thinking or speech problems. VaD is usually caused by cerebrovascular disease, during which, cerebrovascular endothelial cells (CECs) are vulnerable. CEC dysfunction occurs before the onset of VaD and can eventually lead to dysregulation of cerebral blood flow and blood-brain barrier damage, followed by the activation of glia and inflammatory environment in the brain. White matter, neuronal axons, and synapses are compromised in this process, leading to cognitive impairment. The present review summarizes the mechanisms underlying CEC impairment during hypoperfusion and pathological role of CECs in VaD. Through the comprehensive examination and summarization, endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathway, Ras homolog gene family member A (RhoA) signaling pathway, and CEC-derived caveolin-1 (CAV-1) are proposed to serve as targets of new drugs for the treatment of VaD.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wolf Dieter Rausch
- Department for Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
56
|
Huneau C, Houot M, Joutel A, Béranger B, Giroux C, Benali H, Chabriat H. Altered dynamics of neurovascular coupling in CADASIL. Ann Clin Transl Neurol 2018; 5:788-802. [PMID: 30009197 PMCID: PMC6043774 DOI: 10.1002/acn3.574] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Background and Objective Neurovascular coupling is the complex biological process that underlies use‐dependent increases in blood flow in response to neural activation. Neurovascular coupling was investigated at the early stage of CADASIL, a genetic paradigm of ischemic small vessel disease. Methods Functional hyperemia and evoked potentials during 20‐ and 40‐sec visual and motor stimulations were monitored simultaneously using arterial spin labeling‐functional magnetic resonance imaging (ASL‐fMRI) and electroencephalography. Results Cortical functional hyperemia differed significantly between 19 patients and 19 healthy individuals, whereas evoked potentials were unaltered. Functional hyperemia dynamics, assessed using the difference in the slope of the response curve between 15 and 30 sec, showed a time‐shifted decrease in the response to 40‐sec neural stimulations in CADASIL patients. These results were replicated in a second cohort of 10 patients and 10 controls and confirmed in the whole population. Interpretation Alterations of neurovascular coupling occur early in CADASIL and can be assessed by ASL‐fMRI using a simple marker of vascular dysfunction.
Collapse
Affiliation(s)
- Clément Huneau
- Laboratoire des Sciences du Numérique de Nantes - LS2N Centre National de la Recherche Scientifique UMR6004 Université de Nantes Nantes France.,Laboratoire d'Imagerie Biomédicale Centre de la Recherche Scientifique UMR7371 Inserm UMR1146 Université Pierre et Marie Curie Paris VI Paris France
| | - Marion Houot
- Centre of Excellence of Neurodegenerative Disease - CoEN ICM, APHP Department of Neurology Hôpital Pitié-Salpêtrière Institute of Memory and Alzheimer's Disease - IM2A University Paris 6 Paris France
| | - Anne Joutel
- Sorbonne Paris Cité Inserm UMR1161 Université Denis Diderot Paris VII Paris France
| | - Benoit Béranger
- Centre de Neuro-Imagerie de Recherche - CENIR Institut du Cerveau et de la Moelle épinière - ICM Paris France
| | - Christian Giroux
- Département de Neurologie and DHU NeuroVasc AP-HP Hôpital Lariboisière Paris France
| | - Habib Benali
- Laboratoire d'Imagerie Biomédicale Centre de la Recherche Scientifique UMR7371 Inserm UMR1146 Université Pierre et Marie Curie Paris VI Paris France.,Faculty of Engineering and Computer Science University Concordia Quebec Canada
| | - Hugues Chabriat
- Sorbonne Paris Cité Inserm UMR1161 Université Denis Diderot Paris VII Paris France.,Département de Neurologie and DHU NeuroVasc AP-HP Hôpital Lariboisière Paris France
| |
Collapse
|
57
|
De Silva TM, Modrick ML, Dabertrand F, Faraci FM. Changes in Cerebral Arteries and Parenchymal Arterioles With Aging: Role of Rho Kinase 2 and Impact of Genetic Background. Hypertension 2018. [PMID: 29531174 DOI: 10.1161/hypertensionaha.118.10865] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular aging fundamentally contributes to large and small vessel disease. Despite the importance of such changes for brain function, mechanisms that mediate such changes are poorly defined. We explored mechanisms that underlie changes with age, testing the hypothesis that ROCK (Rho kinase) plays an important role. In C57BL/6 mice, baseline diameters of isolated pressurized parenchymal arterioles were similar in adult (4-5 month) and old mice (22±1 month; ≈15±1 µm). Endothelium-dependent dilation was impaired in old mice compared with adults in a pathway-specific manner. Vasodilation to NS-309 (which activates small- and intermediate-conductance Ca2+ activated K+ channels in endothelial cells) was intact while endothelial nitric oxide synthase-mediated vasodilation was reduced by ≥60%, depending on the concentration (P<0.05). A similar reduction was present in basilar arteries. Inhibiting both ROCK isoforms with Y-27632 restored the majority of endothelial function in old mice. Because genetic background is a determinant of vascular disease, we performed similar studies using FVB/N mice. Endothelial dysfunction was seen with aging in both FVB/N and C57BL/6 mice although the magnitude was increased ≈2-fold in the latter strain (P<0.05). In both strains of mice, age-induced endothelial dysfunction was reversed by inhibition of ROCK2 with SLX-2119. Thus, aging impairs endothelial function in both cerebral arteries and parenchymal arterioles, predominantly via effects on endothelial nitric oxide synthase-dependent regulation of vascular tone. The magnitude of these changes was influenced by genetic background and mediated by ROCK2.
Collapse
Affiliation(s)
- T Michael De Silva
- From the Departments of Internal Medicine (T.M.D.S., M.L.M., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; Iowa City Veterans Affairs Healthcare System (F.M.F.); Department of Pharmacology, College of Medicine, University of Vermont, Burlington, (F.D.); and Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia (T.M.D.S.)
| | - Mary L Modrick
- From the Departments of Internal Medicine (T.M.D.S., M.L.M., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; Iowa City Veterans Affairs Healthcare System (F.M.F.); Department of Pharmacology, College of Medicine, University of Vermont, Burlington, (F.D.); and Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia (T.M.D.S.)
| | - Fabrice Dabertrand
- From the Departments of Internal Medicine (T.M.D.S., M.L.M., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; Iowa City Veterans Affairs Healthcare System (F.M.F.); Department of Pharmacology, College of Medicine, University of Vermont, Burlington, (F.D.); and Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia (T.M.D.S.)
| | - Frank M Faraci
- From the Departments of Internal Medicine (T.M.D.S., M.L.M., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa; Iowa City Veterans Affairs Healthcare System (F.M.F.); Department of Pharmacology, College of Medicine, University of Vermont, Burlington, (F.D.); and Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia (T.M.D.S.).
| |
Collapse
|
58
|
The spectrum of adult-onset heritable white-matter disorders. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-64076-5.00043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
59
|
Abstract
Cerebral small-vessel disease is a prevalent condition that is strongly associated with ischemic stroke and dementia. The most prevalent inherited cause of cerebral small-vessel disease is CADASIL, cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy, a disorder linked to mutations in NOTCH3. The most common symptoms of CADASIL are small ischemic strokes and/or transient ischemic attacks and cognitive impairment, appearing in middle age, that may progress to frank vascular dementia. However, it is increasingly recognized that individual symptom types, onset, and disease severity span a wide spectrum, even among individuals in the same family. Magnetic resonance imaging in CADASIL reveals severe white-matter hyperintensities, evidence of prior subcortical strokes, and, in some cases, microhemorrhages. Several hundred mutations in NOTCH3 have been described worldwide in CADASIL, and virtually all of these mutations alter the cysteine content of the extracellular NOTCH3 gene product. This molecular genetic signature of CADASIL has led to the hypothesis that structural abnormalities in the vascular smooth-muscle protein NOTCH3 trigger arterial degeneration, vascular protein accumulation, and cerebrovascular failure.
Collapse
|
60
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 674] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
61
|
Borghetti G, Eisenberg CA, Signore S, Sorrentino A, Kaur K, Andrade-Vicenty A, Edwards JG, Nerkar M, Qanud K, Sun D, Goichberg P, Leri A, Anversa P, Eisenberg LM, Jacobson JT, Hintze TH, Rota M. Notch signaling modulates the electrical behavior of cardiomyocytes. Am J Physiol Heart Circ Physiol 2017; 314:H68-H81. [PMID: 28939651 DOI: 10.1152/ajpheart.00587.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Notch receptor signaling is active during cardiac development and silenced in myocytes after birth. Conversely, outward K+ Kv currents progressively appear in postnatal myocytes leading to shortening of the action potential (AP) and acquisition of the mature electrical phenotype. In the present study, we tested the possibility that Notch signaling modulates the electrical behavior of cardiomyocytes by interfering with Kv currents. For this purpose, the effects of Notch receptor activity on electrophysiological properties of myocytes were evaluated using transgenic mice with inducible expression of the Notch1 intracellular domain (NICD), the functional fragment of the activated Notch receptor, and in neonatal myocytes after inhibition of the Notch transduction pathway. By patch clamp, NICD-overexpressing cells presented prolonged AP duration and reduced upstroke amplitude, properties that were coupled with reduced rapidly activating Kv and fast Na+ currents, compared with cells obtained from wild-type mice. In cultured neonatal myocytes, inhibition of the proteolitic release of NICD with a γ-secretase antagonist increased transcript levels of the Kv channel-interacting proteins 2 (KChIP2) and enhanced the density of Kv currents. Collectively, these results indicate that Notch signaling represents an important regulator of the electrophysiological behavior of developing and adult myocytes by repressing, at least in part, repolarizing Kv currents. NEW & NOTEWORTHY We investigated the effects of Notch receptor signaling on the electrical properties of cardiomyocytes. Our results indicate that the Notch transduction pathway interferes with outward K+ Kv currents, critical determinants of the electrical repolarization of myocytes.
Collapse
Affiliation(s)
- Giulia Borghetti
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Carol A Eisenberg
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Sergio Signore
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Andrea Sorrentino
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Keerat Kaur
- Department of Physiology, New York Medical College, Valhalla, New York
| | | | - John G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Mriganka Nerkar
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Khaled Qanud
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Polina Goichberg
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Annarosa Leri
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Piero Anversa
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | | | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York.,Department of Cardiology, Westchester Medical Center, Valhalla, New York
| | - Thomas H Hintze
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
62
|
Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin Sci (Lond) 2017; 131:2257-2274. [PMID: 28798076 DOI: 10.1042/cs20160381] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/09/2017] [Accepted: 07/24/2017] [Indexed: 01/12/2023]
Abstract
Cerebral small vessel diseases (SVDs) range broadly in etiology but share remarkably overlapping pathology. Features of SVD including enlarged perivascular spaces (EPVS) and formation of abluminal protein deposits cannot be completely explained by the putative pathophysiology. The recently discovered glymphatic system provides a new perspective to potentially address these gaps. This work provides a comprehensive review of the known factors that regulate glymphatic function and the disease mechanisms underlying glymphatic impairment emphasizing the role that aquaporin-4 (AQP4)-lined perivascular spaces (PVSs), cerebrovascular pulsatility, and metabolite clearance play in normal CNS physiology. This review also discusses the implications that glymphatic impairment may have on SVD inception and progression with the aim of exploring novel therapeutic targets and highlighting the key questions that remain to be answered.
Collapse
|
63
|
Cadasil. Neurologia 2017. [DOI: 10.1016/s1634-7072(17)85562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
64
|
Capillary K +-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci 2017; 20:717-726. [PMID: 28319610 PMCID: PMC5404963 DOI: 10.1038/nn.4533] [Citation(s) in RCA: 380] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/19/2017] [Indexed: 12/21/2022]
Abstract
Blood flow into the brain is dynamically regulated to satisfy the changing metabolic requirements of neurons, but how this is accomplished has remained unclear. Here, we demonstrate a central role for capillary endothelial cells in sensing neural activity and communicating it to upstream arterioles in the form of an electrical vasodilatory signal. We further demonstrate that this signal is initiated by extracellular potassium (K+)—a byproduct of neural activity—which activates capillary endothelial cell inward-rectifier K+ (KIR2.1) channels to produce a rapidly propagating retrograde hyperpolarization that causes upstream arteriolar dilation, increasing blood flow into the capillary bed. Our results establish brain capillaries as an active sensory web that converts changes in external K+ into rapid, ‘inside-out’ electrical signaling to direct blood flow to active brain regions.
Collapse
|
65
|
New insights into mechanisms of small vessel disease stroke from genetics. Clin Sci (Lond) 2017; 131:515-531. [DOI: 10.1042/cs20160825] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 02/02/2023]
Abstract
Cerebral small vessel disease (SVD) is a common cause of lacunar strokes, vascular cognitive impairment (VCI) and vascular dementia. SVD is thought to result in reduced cerebral blood flow, impaired cerebral autoregulation and increased blood–brain barrier (BBB) permeability. However, the molecular mechanisms underlying SVD are incompletely understood. Recent studies in monogenic forms of SVD, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and ‘sporadic’ SVD have shed light on possible disease mechanisms in SVD. Proteomic and biochemical studies in post-mortem monogenic SVD patients, as well as in animal models of monogenic disease have suggested that disease pathways are shared between different types of monogenic disease, often involving the impairment of extracellular matrix (ECM) function. In addition, genetic studies in ‘sporadic’ SVD have also shown that the disease is highly heritable, particularly among young-onset stroke patients, and that common variants in monogenic disease genes may contribute to disease processes in some SVD subtypes. Genetic studies in sporadic lacunar stroke patients have also suggested distinct genetic mechanisms between subtypes of SVD. Genome-wide association studies (GWAS) have also shed light on other potential disease mechanisms that may be shared with other diseases involving the white matter, or with pathways implicated in monogenic disease. This review brings together recent data from studies in monogenic SVD and genetic studies in ‘sporadic’ SVD. It aims to show how these provide new insights into the pathogenesis of SVD, and highlights the possible convergence of disease mechanisms in monogenic and sporadic SVD.
Collapse
|
66
|
Hainsworth AH, Allan SM, Boltze J, Cunningham C, Farris C, Head E, Ihara M, Isaacs JD, Kalaria RN, Lesnik Oberstein SAMJ, Moss MB, Nitzsche B, Rosenberg GA, Rutten JW, Salkovic-Petrisic M, Troen AM. Translational models for vascular cognitive impairment: a review including larger species. BMC Med 2017; 15:16. [PMID: 28118831 PMCID: PMC5264492 DOI: 10.1186/s12916-017-0793-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/12/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Clinical Neurosciences (J-0B) Molecular and Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK. .,Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK.
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Johannes Boltze
- Department of Translational Medicine and Cell Technology, University of Lübeck, Lübeck, Germany.,Neurovascular Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Catriona Cunningham
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Chad Farris
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Elizabeth Head
- Department of Pharmacology & Nutritional Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jeremy D Isaacs
- Clinical Neurosciences (J-0B) Molecular and Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.,Department of Neurology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Raj N Kalaria
- Institute of Neuroscience, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
| | | | - Mark B Moss
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Björn Nitzsche
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,Clinic for Nuclear Medicine, University of Leipzig, Leipzig, Germany.,Institute for Anatomy, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gary A Rosenberg
- Department of Neurology, Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Aron M Troen
- Institute of Biochemistry Food and Nutrition Science, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
67
|
Li Y, Brayden JE. Rho kinase activity governs arteriolar myogenic depolarization. J Cereb Blood Flow Metab 2017; 37:140-152. [PMID: 26661251 PMCID: PMC5363734 DOI: 10.1177/0271678x15621069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 11/15/2022]
Abstract
Cerebral arterioles contribute critically to regulation of local and global blood flow within the brain. Dysfunction of these blood vessels is implicated in numerous cardiovascular diseases. However, treatments are limited due to incomplete understanding of fundamental control mechanisms at this level of circulation. Emerging evidence points to a key role of Rho-associated protein kinase in regulation of microvascular contractility. This study sought to decipher the mechanisms of Rho-associated protein kinase-mediated myogenic vasoconstriction in cerebral parenchymal arterioles. Here, we report that the Rho-associated protein kinase inhibitor H1152 strongly attenuated pressure-induced constriction, cytosolic [Ca2+] increases, and depolarization of isolated parenchymal arterioles. Further, the RhoA activator CN03 potentiated parenchymal arteriole myogenic constriction and depolarization, indicating important involvement of RhoA/Rho-associated protein kinase signaling in myogenic excitation-contraction mechanisms. Because of the well-established role of TRPM4 in pressure-induced depolarization, possible modulatory effects of Rho-associated protein kinase on TRPM4 currents were explored using patch clamp electrophysiology. TRPM4 currents were suppressed by H1152 and enhanced by CN03. Finally, H1152 elevated the apparent [Ca2+]-threshold for TRPM4 activation, suggesting that Rho-associated protein kinase activates TRPM4 by increasing its Ca2+-sensitivity. Our results support a novel mechanism whereby Rho-associated protein kinase-mediated myogenic vasoconstriction occurs primarily through activation of TRPM4 channels, smooth muscle depolarization, and cytosolic [Ca2+] increases in cerebral arterioles.
Collapse
Affiliation(s)
- Yao Li
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Joseph E Brayden
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
68
|
Baron-Menguy C, Domenga-Denier V, Ghezali L, Faraci FM, Joutel A. Increased Notch3 Activity Mediates Pathological Changes in Structure of Cerebral Arteries. Hypertension 2016; 69:60-70. [PMID: 27821617 DOI: 10.1161/hypertensionaha.116.08015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/07/2016] [Accepted: 08/26/2016] [Indexed: 01/24/2023]
Abstract
CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy), the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels, as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred before myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3R170C/R170C) exhibited similar reductions in arterial lumen, and both TgNotch3R169C and Notch3R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow.
Collapse
Affiliation(s)
- Celine Baron-Menguy
- From the Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, and Univ Paris Diderot, Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); DHU NeuroVasc Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); and Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Valérie Domenga-Denier
- From the Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, and Univ Paris Diderot, Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); DHU NeuroVasc Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); and Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Lamia Ghezali
- From the Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, and Univ Paris Diderot, Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); DHU NeuroVasc Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); and Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Frank M Faraci
- From the Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, and Univ Paris Diderot, Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); DHU NeuroVasc Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); and Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.)
| | - Anne Joutel
- From the Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, UMRS 1161, and Univ Paris Diderot, Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); DHU NeuroVasc Sorbonne Paris Cité, Paris, France (C.B.-M., V.D.-D., L.G., A.J.); and Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine, Iowa City Veterans Affairs Healthcare System (F.M.F.).
| |
Collapse
|
69
|
De Silva TM, Kinzenbaw DA, Modrick ML, Reinhardt LD, Faraci FM. Heterogeneous Impact of ROCK2 on Carotid and Cerebrovascular Function. Hypertension 2016; 68:809-17. [PMID: 27432870 PMCID: PMC4982851 DOI: 10.1161/hypertensionaha.116.07430] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/11/2016] [Indexed: 01/05/2023]
Abstract
Rho kinase (ROCK) has been implicated in physiological and pathophysiological processes, including regulation of vascular function. ROCK signaling is thought to be a critical contributor to cardiovascular disease, including hypertension and effects of angiotensin II (Ang II). Two isoforms of ROCK (1 and 2) have been identified and are expressed in vascular cells. In this study, we examined the importance of ROCK2 in relation to vessel function using several models and a novel inhibitor of ROCK2. First, incubation of carotid arteries with the direct RhoA activator CN-03 or Ang II impaired endothelium-dependent relaxation by ≈40% to 50% (P<0.05) without altering endothelium-independent relaxation. Both CN-03- and Ang II-induced endothelial dysfunction was prevented by Y-27632 (an inhibitor of both ROCK isoforms) or the selective ROCK2 inhibitor SLX-2119. In contrast, SLX-2119 had little effect on contraction of carotid arteries to receptor-mediated agonists (serotonin, phenylephrine, vasopressin, or U46619). Second, in basilar arteries, SLX-2119 inhibited constriction to Ang II by ≈90% without significantly affecting responses to serotonin or KCl. Third, in isolated pressurized brain parenchymal arterioles, SLX-2119 inhibited myogenic tone in a concentration-dependent manner (eg, 1 μmol/L SLX-2119 dilated by 79±4%). Finally, SLX-2119 dilated small pial arterioles in vivo, an effect that was augmented by inhibition of nitric oxide synthase. These findings suggest that ROCK2 has major, but heterogeneous, effects on function of endothelium and vascular muscle. The data support the concept that aberrant ROCK2 signaling may be a key contributor to select aspects of large and small vessel disease, including Ang II-induced endothelial dysfunction.
Collapse
Affiliation(s)
- T Michael De Silva
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., L.D.R., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; Iowa City Veterans Affairs Healthcare System (F.M.F.); and Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Australia (T.M.D.S.)
| | - Dale A Kinzenbaw
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., L.D.R., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; Iowa City Veterans Affairs Healthcare System (F.M.F.); and Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Australia (T.M.D.S.)
| | - Mary L Modrick
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., L.D.R., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; Iowa City Veterans Affairs Healthcare System (F.M.F.); and Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Australia (T.M.D.S.)
| | - Lindsey D Reinhardt
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., L.D.R., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; Iowa City Veterans Affairs Healthcare System (F.M.F.); and Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Australia (T.M.D.S.)
| | - Frank M Faraci
- From the Departments of Internal Medicine (T.M.D.S., D.A.K., M.L.M., L.D.R., F.M.F.) and Pharmacology (F.M.F.), Francois M. Abboud Cardiovascular Center, The University of Iowa Carver College of Medicine; Iowa City Veterans Affairs Healthcare System (F.M.F.); and Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Australia (T.M.D.S.).
| |
Collapse
|
70
|
Capone C, Dabertrand F, Baron-Menguy C, Chalaris A, Ghezali L, Domenga-Denier V, Schmidt S, Huneau C, Rose-John S, Nelson MT, Joutel A. Mechanistic insights into a TIMP3-sensitive pathway constitutively engaged in the regulation of cerebral hemodynamics. eLife 2016; 5. [PMID: 27476853 PMCID: PMC4993587 DOI: 10.7554/elife.17536] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/30/2016] [Indexed: 12/14/2022] Open
Abstract
Cerebral small vessel disease (SVD) is a leading cause of stroke and dementia. CADASIL, an inherited SVD, alters cerebral artery function, compromising blood flow to the working brain. TIMP3 (tissue inhibitor of metalloproteinase 3) accumulation in the vascular extracellular matrix in CADASIL is a key contributor to cerebrovascular dysfunction. However, the linkage between elevated TIMP3 and compromised cerebral blood flow (CBF) remains unknown. Here, we show that TIMP3 acts through inhibition of the metalloprotease ADAM17 and HB-EGF to regulate cerebral arterial tone and blood flow responses. In a clinically relevant CADASIL mouse model, we show that exogenous ADAM17 or HB-EGF restores cerebral arterial tone and blood flow responses, and identify upregulated voltage-dependent potassium channel (KV) number in cerebral arterial myocytes as a heretofore-unrecognized downstream effector of TIMP3-induced deficits. These results support the concept that the balance of TIMP3 and ADAM17 activity modulates CBF through regulation of myocyte KV channel number. DOI:http://dx.doi.org/10.7554/eLife.17536.001 There are currently no effective treatments or cures for small blood vessel diseases of the brain, which lead to strokes and subsequent decreases in mental abilities. Normally, smooth muscle cells that surround the vessels relax or contract to regulate blood flow and ensure the right amount of oxygen and nutrients reaches the different regions of the brain. In a syndrome called CADASIL, which is the most common form of inherited small vessel disease, a genetic mutation causes the smooth muscle cells to weaken over time. The accumulation of several proteins – including one called TIMP3 – around the smooth muscle cells plays a key role in the smooth muscle cell weakening seen in CADASIL. Capone et al. have now studied mice that display the symptoms of CADASIL to investigate how TIMP3 decreases blood flow through blood vessels in the brain. This revealed that TIMP3 inactivates another protein called ADAM17. The latter protein is normally responsible for starting a signaling pathway that helps smooth muscle cells to regulate blood flow according to the needs of the brain cells. Artificially adding more ADAM17 to the brains of the CADASIL mice reduced their symptoms of small vessel disease. Using smooth muscle cells freshly isolated from the brains of CADASIL mice, Capone et al. also demonstrated that abnormal TIMP3-ADAM17 signaling increases the number of voltage-dependent potassium channels in the membrane of the muscle cells. Having too many of these channels impairs the flow of blood through vessels in the brain. Further experiments are needed to investigate whether correcting TIMP3-ADAM17 signaling could prevent strokes in people with inherited CADASIL. It also remains to be seen whether similar signaling mechanisms are at play in other small vessel diseases. DOI:http://dx.doi.org/10.7554/eLife.17536.002
Collapse
Affiliation(s)
- Carmen Capone
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, U1161, Université Paris Diderot, Sorbonne Paris Cité, UMRS 1161, Paris, France.,DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Fabrice Dabertrand
- Department of Pharmacology, University of Vermont, Burlington, United States.,College of Medicine, University of Vermont, United States
| | - Celine Baron-Menguy
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, U1161, Université Paris Diderot, Sorbonne Paris Cité, UMRS 1161, Paris, France.,DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Athena Chalaris
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany.,Medical Faculty, Christian Albrechts University, Kiel, Germany
| | - Lamia Ghezali
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, U1161, Université Paris Diderot, Sorbonne Paris Cité, UMRS 1161, Paris, France.,DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Valérie Domenga-Denier
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, U1161, Université Paris Diderot, Sorbonne Paris Cité, UMRS 1161, Paris, France.,DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Stefanie Schmidt
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany.,Medical Faculty, Christian Albrechts University, Kiel, Germany
| | - Clément Huneau
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, U1161, Université Paris Diderot, Sorbonne Paris Cité, UMRS 1161, Paris, France.,DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Stefan Rose-John
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany.,Medical Faculty, Christian Albrechts University, Kiel, Germany
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, United States.,College of Medicine, University of Vermont, United States.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Anne Joutel
- Genetics and Pathogenesis of Cerebrovascular Diseases, INSERM, U1161, Université Paris Diderot, Sorbonne Paris Cité, UMRS 1161, Paris, France.,DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
71
|
Pires PW, Dabertrand F, Earley S. Isolation and Cannulation of Cerebral Parenchymal Arterioles. J Vis Exp 2016. [PMID: 27286481 DOI: 10.3791/53835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intracerebral parenchymal arterioles (PAs), which include parenchymal arterioles, penetrating arterioles and pre-capillary arterioles, are high resistance blood vessels branching out from pial arteries and arterioles and diving into the brain parenchyma. Individual PA perfuse a discrete cylindrical territory of the parenchyma and the neurons contained within. These arterioles are a central player in the regulation of cerebral blood flow both globally (cerebrovascular autoregulation) and locally (functional hyperemia). PAs are part of the neurovascular unit, a structure that matches regional blood flow to metabolic activity within the brain and also includes neurons, interneurons, and astrocytes. Perfusion through PAs is directly linked to the activity of neurons in that particular territory and increases in neuronal metabolism lead to an augmentation in local perfusion caused by dilation of the feed PA. Regulation of PAs differs from that of better-characterized pial arteries. Pressure-induced vasoconstriction is greater in PAs and vasodilatory mechanisms vary. In addition, PAs do not receive extrinsic innervation from perivascular nerves - innervation is intrinsic and indirect in nature through contact with astrocytic endfeet. Thus, data regarding contractile regulation accumulated by studies using pial arteries does not directly translate to understanding PA function. Further, it remains undetermined how pathological states, such as hypertension and diabetes, affect PA structure and reactivity. This knowledge gap is in part a consequence of the technical difficulties pertaining to PA isolation and cannulation. In this manuscript we present a protocol for isolation and cannulation of rodent PAs. Further, we show examples of experiments that can be performed with these arterioles, including agonist-induced constriction and myogenic reactivity. Although the focus of this manuscript is on PA cannulation and pressure myography, isolated PAs can also be used for biochemical, biophysical, molecular, and imaging studies.
Collapse
Affiliation(s)
- Paulo W Pires
- Department of Pharmacology, University of Nevada School of Medicine
| | | | - Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine;
| |
Collapse
|
72
|
De Silva TM, Faraci FM. Microvascular Dysfunction and Cognitive Impairment. Cell Mol Neurobiol 2016; 36:241-58. [PMID: 26988697 PMCID: PMC4846472 DOI: 10.1007/s10571-015-0308-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022]
Abstract
The impact of vascular risk factors on cognitive function has garnered much interest in recent years. The appropriate distribution of oxygen, glucose, and other nutrients by the cerebral vasculature is critical for proper cognitive performance. The cerebral microvasculature is a key site of vascular resistance and a preferential target for small vessel disease. While deleterious effects of vascular risk factors on microvascular function are known, the contribution of this dysfunction to cognitive deficits is less clear. In this review, we summarize current evidence for microvascular dysfunction in brain. We highlight effects of select vascular risk factors (hypertension, diabetes, and hyperhomocysteinemia) on the pial and parenchymal circulation. Lastly, we discuss potential links between microvascular disease and cognitive function, highlighting current gaps in our understanding.
Collapse
Affiliation(s)
- T Michael De Silva
- Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa City Veterans Affairs Healthcare System, Iowa City, IA, USA
- Biomedicine Discovery Institute, Department of Pharmacology, Monash University, 9 Ancora Imparo Way, Clayton, VIC, Australia
| | - Frank M Faraci
- Departments of Internal Medicine and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Iowa City Veterans Affairs Healthcare System, Iowa City, IA, USA.
- Department of Internal Medicine, 340F EMRB, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242-1081, USA.
| |
Collapse
|
73
|
Capone C, Cognat E, Ghezali L, Baron-Menguy C, Aubin D, Mesnard L, Stöhr H, Domenga-Denier V, Nelson MT, Joutel A. Reducing Timp3 or vitronectin ameliorates disease manifestations in CADASIL mice. Ann Neurol 2016; 79:387-403. [PMID: 26648042 PMCID: PMC5359978 DOI: 10.1002/ana.24573] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVE CADASIL is a genetic paradigm of cerebral small vessel disease caused by NOTCH3 mutations that stereotypically lead to the extracellular deposition of NOTCH3 ectodomain (Notch3(ECD) ) on the vessels. TIMP3 and vitronectin are 2 extracellular matrix proteins that abnormally accumulate in Notch3(ECD) -containing deposits on brain vessels of mice and patients with CADASIL. Herein, we investigated whether increased levels of TIMP3 and vitronectin are responsible for aspects of CADASIL disease phenotypes. METHODS Timp3 and vitronectin expression were genetically reduced in TgNotch3(R169C) mice, a well-established preclinical model of CADASIL. A mouse overexpressing human TIMP3 (TgBAC-TIMP3) was developed. Disease-related phenotypes, including cerebral blood flow (CBF) deficits, white matter lesions, and Notch3(ECD) deposition, were evaluated between 6 and 20 months of age. RESULTS CBF responses to neural activity (functional hyperemia), topical application of vasodilators, and decreases in blood pressure (CBF autoregulation) were similarly reduced in TgNotch3(R169C) and TgBAC-TIMP3 mice, and myogenic responses of brain arteries were likewise attenuated. These defects were rescued in TgNotch3(R169C) mice by haploinsufficiency of Timp3, although the number of white matter lesions was unaffected. In contrast, haploinsufficiency or loss of vitronectin in TgNotch3(R169C) mice ameliorated white matter lesions, although CBF responses were unchanged. Amelioration of cerebrovascular reactivity or white matter lesions in these mice was not associated with reduced Notch3(ECD) deposition in brain vessels. INTERPRETATION Elevated levels of TIMP3 and vitronectin, acting downstream of Notch3(ECD) deposition, play a role in CADASIL, producing divergent influences on early CBF deficits and later white matter lesions.
Collapse
Affiliation(s)
- Carmen Capone
- Genetics and Pathogenesis of Cerebrovascular Diseases, Inserm, U1161 and Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1161, F-75010, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Emmanuel Cognat
- Genetics and Pathogenesis of Cerebrovascular Diseases, Inserm, U1161 and Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1161, F-75010, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Lamia Ghezali
- Genetics and Pathogenesis of Cerebrovascular Diseases, Inserm, U1161 and Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1161, F-75010, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Céline Baron-Menguy
- Genetics and Pathogenesis of Cerebrovascular Diseases, Inserm, U1161 and Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1161, F-75010, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Déborah Aubin
- Genetics and Pathogenesis of Cerebrovascular Diseases, Inserm, U1161 and Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1161, F-75010, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Laurent Mesnard
- Rare and Common Kidney Diseases, Matrix Remodeling and Tissue Repair, Inserm U1155 and Pierre and Marie Curie University, Sorbonne Universities UMR-S 1155, F-75020, Paris, France
- Department of Emergency Nephrological and Renal Transplantation, Tenon Hospital, AP-HP, F-75020, Paris, France
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Valérie Domenga-Denier
- Genetics and Pathogenesis of Cerebrovascular Diseases, Inserm, U1161 and Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1161, F-75010, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| | - Mark T Nelson
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Anne Joutel
- Genetics and Pathogenesis of Cerebrovascular Diseases, Inserm, U1161 and Univ Paris Diderot, Sorbonne Paris Cité, UMRS 1161, F-75010, Paris, France
- DHU NeuroVasc, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
74
|
Longden TA, Hill-Eubanks DC, Nelson MT. Ion channel networks in the control of cerebral blood flow. J Cereb Blood Flow Metab 2016; 36:492-512. [PMID: 26661232 PMCID: PMC4794103 DOI: 10.1177/0271678x15616138] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/17/2015] [Accepted: 10/14/2015] [Indexed: 12/26/2022]
Abstract
One hundred and twenty five years ago, Roy and Sherrington made the seminal observation that neuronal stimulation evokes an increase in cerebral blood flow.(1) Since this discovery, researchers have attempted to uncover how the cells of the neurovascular unit-neurons, astrocytes, vascular smooth muscle cells, vascular endothelial cells and pericytes-coordinate their activity to control this phenomenon. Recent work has revealed that ionic fluxes through a diverse array of ion channel species allow the cells of the neurovascular unit to engage in multicellular signaling processes that dictate local hemodynamics.In this review we center our discussion on two major themes: (1) the roles of ion channels in the dynamic modulation of parenchymal arteriole smooth muscle membrane potential, which is central to the control of arteriolar diameter and therefore must be harnessed to permit changes in downstream cerebral blood flow, and (2) the striking similarities in the ion channel complements employed in astrocytic endfeet and endothelial cells, enabling dual control of smooth muscle from either side of the blood-brain barrier. We conclude with a discussion of the emerging roles of pericyte and capillary endothelial cell ion channels in neurovascular coupling, which will provide fertile ground for future breakthroughs in the field.
Collapse
Affiliation(s)
- Thomas A Longden
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT, USA Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
75
|
Abstract
Vascular cognitive impairment (VCI) is the diagnostic term used to describe a heterogeneous group of sporadic and hereditary diseases of the large and small blood vessels. Subcortical small vessel disease (SVD) leads to lacunar infarcts and progressive damage to the white matter. Patients with progressive damage to the white matter, referred to as Binswanger's disease (BD), constitute a spectrum from pure vascular disease to a mixture with neurodegenerative changes. Binswanger's disease patients are a relatively homogeneous subgroup with hypoxic hypoperfusion, lacunar infarcts, and inflammation that act synergistically to disrupt the blood-brain barrier (BBB) and break down myelin. Identification of this subgroup can be facilitated by multimodal disease markers obtained from clinical, cerebrospinal fluid, neuropsychological, and imaging studies. This consensus statement identifies a potential set of biomarkers based on underlying pathologic changes that could facilitate diagnosis and aid patient selection for future collaborative treatment trials.
Collapse
|
76
|
Perturbations of the cerebrovascular matrisome: A convergent mechanism in small vessel disease of the brain? J Cereb Blood Flow Metab 2016; 36:143-57. [PMID: 25853907 PMCID: PMC4758555 DOI: 10.1038/jcbfm.2015.62] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/17/2015] [Indexed: 02/08/2023]
Abstract
The term matrisome refers to the ensemble of proteins constituting the extracellular matrix (ECM) (core matrisome) as well as the proteins associated with the ECM. Every organ has an ECM with a unique composition that not only provides the support and anchorage for cells, but also controls fundamental cellular processes as diverse as differentiation, survival, proliferation, and polarity. The current knowledge of the matrisome of small brain vessels is reviewed with a focus on the basement membrane (BM), a specialized form of ECM located at the interface between endothelial cells, contractile cells (smooth muscle cells and pericytes), and astrocyte endfeet—a very strategic location in the communication pathway between the cerebral microcirculation and astrocytes. We discuss some of the most recent genetic data and relevant findings from experimental models of nonamyloid cerebral small vessel disease (SVD). We propose the concept that perturbations of the cerebrovascular matrisome is a convergent pathologic pathway in monogenic forms of SVD, and is likely relevant to the sporadic disease.
Collapse
|
77
|
Biessels GJ. Diagnosis and treatment of vascular damage in dementia. Biochim Biophys Acta Mol Basis Dis 2015; 1862:869-77. [PMID: 26612719 DOI: 10.1016/j.bbadis.2015.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/04/2023]
Abstract
This paper provides an overview of cognitive impairment due to vascular brain damage, which is referred to as vascular cognitive impairment (VCI). Over the past decades, we have seen marked progress in detecting VCI, both through maturation of diagnostic concepts and through advances in brain imaging, especially MRI. Yet in daily practice, it is often challenging to establish the diagnosis, particularly in patients where there is no evident temporal relation between a cerebrovascular event and cognitive dysfunction. Because vascular damage is such a common cause of cognitive dysfunction, it provides an obvious target for treatment. In patients whose cognitive dysfunction follows directly after a stroke, the etiological classification of this stroke will direct treatment. In many patients however, VCI develops due to so-called "silent vascular damage," without evident cerebrovascular events. In these patients, small vessel diseases (SVDs) are the most common cause. Yet no SVD-specific treatments currently exist, which is due to incomplete understanding of the pathophysiology. This review addresses developments in this field. It offers a framework to translate diagnostic criteria to daily practice, addresses treatment, and highlights some future perspectives. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau, and Donna M. Wilcock.
Collapse
Affiliation(s)
- Geert Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center, Utrecht, The Netherlands.
| |
Collapse
|