51
|
Pack LR, Daigh LH, Meyer T. Putting the brakes on the cell cycle: mechanisms of cellular growth arrest. Curr Opin Cell Biol 2019; 60:106-113. [PMID: 31252282 PMCID: PMC7187785 DOI: 10.1016/j.ceb.2019.05.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023]
Abstract
Precise regulation of cellular proliferation is critical to tissue homeostasis and development, but misregulation leads to diseases of excess proliferation or cell loss. To achieve precise control, cells utilize distinct mechanisms of growth arrest such as quiescence and senescence. The decision to enter these growth-arrested states or proliferate is mediated by the core cell-cycle machinery that responds to diverse external and internal signals. Recent advances have revealed the molecular underpinnings of these cell-cycle decisions, highlighting the unique nature of cell-cycle entry from quiescence, identifying endogenous DNA damage as a quiescence-inducing signal, and establishing how persistent arrest is achieved in senescence.
Collapse
Affiliation(s)
- Lindsey R Pack
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leighton H Daigh
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
52
|
Sonneville R, Bhowmick R, Hoffmann S, Mailand N, Hickson ID, Labib K. TRAIP drives replisome disassembly and mitotic DNA repair synthesis at sites of incomplete DNA replication. eLife 2019; 8:e48686. [PMID: 31545170 PMCID: PMC6773462 DOI: 10.7554/elife.48686] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/20/2019] [Indexed: 11/13/2022] Open
Abstract
The faithful segregation of eukaryotic chromosomes in mitosis requires that the genome be duplicated completely prior to anaphase. However, cells with large genomes sometimes fail to complete replication during interphase and instead enter mitosis with regions of incompletely replicated DNA. These regions are processed in early mitosis via a process known as mitotic DNA repair synthesis (MiDAS), but little is known about how cells switch from conventional DNA replication to MiDAS. Using the early embryo of the nematode Caenorhabditis elegans as a model system, we show that the TRAIP ubiquitin ligase drives replisome disassembly in response to incomplete DNA replication, thereby providing access to replication forks for other factors. Moreover, TRAIP is essential for MiDAS in human cells, and is important in both systems to prevent mitotic segregation errors. Our data indicate that TRAIP is a master regulator of the processing of incomplete DNA replication during mitosis in metazoa.
Collapse
Affiliation(s)
- Remi Sonneville
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Rahul Bhowmick
- Department of Cellular and Molecular Medicine, Center for Chromosome StabilityUniversity of CopenhagenCopenhagenDenmark
| | - Saskia Hoffmann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ian D Hickson
- Department of Cellular and Molecular Medicine, Center for Chromosome StabilityUniversity of CopenhagenCopenhagenDenmark
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| |
Collapse
|
53
|
Feng W, Simpson DA, Carvajal-Garcia J, Price BA, Kumar RJ, Mose LE, Wood RD, Rashid N, Purvis JE, Parker JS, Ramsden DA, Gupta GP. Genetic determinants of cellular addiction to DNA polymerase theta. Nat Commun 2019; 10:4286. [PMID: 31537809 PMCID: PMC6753077 DOI: 10.1038/s41467-019-12234-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Polymerase theta (Pol θ, gene name Polq) is a widely conserved DNA polymerase that mediates a microhomology-mediated, error-prone, double strand break (DSB) repair pathway, referred to as Theta Mediated End Joining (TMEJ). Cells with homologous recombination deficiency are reliant on TMEJ for DSB repair. It is unknown whether deficiencies in other components of the DNA damage response (DDR) also result in Pol θ addiction. Here we use a CRISPR genetic screen to uncover 140 Polq synthetic lethal (PolqSL) genes, the majority of which were previously unknown. Functional analyses indicate that Pol θ/TMEJ addiction is associated with increased levels of replication-associated DSBs, regardless of the initial source of damage. We further demonstrate that approximately 30% of TCGA breast cancers have genetic alterations in PolqSL genes and exhibit genomic scars of Pol θ/TMEJ hyperactivity, thereby substantially expanding the subset of human cancers for which Pol θ inhibition represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dennis A Simpson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Juan Carvajal-Garcia
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brandon A Price
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rashmi J Kumar
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lisle E Mose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Naim Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
54
|
Galata E, Georgakopoulou EA, Kassalia ME, Papadopoulou-Fermeli N, Pavlatou EA. Development of Smart Composites Based on Doped-TiO 2 Nanoparticles with Visible Light Anticancer Properties. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2589. [PMID: 31416238 PMCID: PMC6719932 DOI: 10.3390/ma12162589] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 02/07/2023]
Abstract
In this study, the synthesis of smart, polymerically embedded titanium dioxide (TiO2) nanoparticles aimed to exhibit photo-induced anticancer properties under visible light irradiation is investigated. The TiO2 nanoparticles were prepared by utilizing the sol gel method with different dopants, including nitrogen (N-doped), iron (Fe-doped), and nitrogen and iron (Fe,N-doped). The dopants were embedded in an interpenetrating (IP) network microgel synthesized by stimuli responsive poly (N-Isopropylacrylamide-co-polyacrylicacid)-pNipam-co-PAA forming composite particles. All the types of produced particles were characterized by X-ray powder diffraction, micro-Raman, Fourier-transform infrared, X-ray photoelectron, ultra-violet-visible spectroscopy, Field Emission Scanning Electron, Transmission Electron microscopy, and Dynamic Light Scattering techniques. The experimental findings indicate that the doped TiO2 nanoparticles were successfully embedded in the microgel. The N-doped TiO2 nano-powders and composite particles exhibit the best photocatalytic degradation of the pollutant methylene blue under visible light irradiation. Similarly, the highly malignant MDA-MB-231 breast cancer epithelial cells were susceptible to the inhibition of cell proliferation at visible light, especially in the presence of N-doped powders and composites, compared to the non-metastatic MCF-7 cells, which were not affected.
Collapse
Affiliation(s)
- Evdokia Galata
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou str., 15780 Zografou, Greece
| | - Eleni A Georgakopoulou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou str., 15780 Zografou, Greece
| | - Maria-Emmanouela Kassalia
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou str., 15780 Zografou, Greece
| | - Nefeli Papadopoulou-Fermeli
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou str., 15780 Zografou, Greece
| | - Evangelia A Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9, Iroon Polytechniou str., 15780 Zografou, Greece.
| |
Collapse
|
55
|
Glover L, Marques CA, Suska O, Horn D. Persistent DNA Damage Foci and DNA Replication with a Broken Chromosome in the African Trypanosome. mBio 2019; 10:e01252-19. [PMID: 31289179 PMCID: PMC6747728 DOI: 10.1128/mbio.01252-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Damaged DNA typically imposes stringent controls on eukaryotic cell cycle progression, ensuring faithful transmission of genetic material. Some DNA breaks, and the resulting rearrangements, are advantageous, however. For example, antigenic variation in the parasitic African trypanosome, Trypanosoma brucei, relies upon homologous recombination-based rearrangements of telomeric variant surface glycoprotein (VSG) genes, triggered by breaks. Surprisingly, trypanosomes with a severed telomere continued to grow while progressively losing subtelomeric DNA, suggesting a nominal telomeric DNA damage checkpoint response. Here, we monitor the single-stranded DNA-binding protein replication protein A (RPA) in response to induced, locus-specific DNA breaks in T. brucei RPA foci accumulated at nucleolar sites following a break within ribosomal DNA and at extranucleolar sites following a break elsewhere, including adjacent to transcribed or silent telomeric VSG genes. As in other eukaryotes, RPA foci were formed in S phase and γH2A and RAD51 damage foci were disassembled prior to mitosis. Unlike in other eukaryotes, however, and regardless of the damaged locus, RPA foci persisted through the cell cycle, and these cells continued to replicate their DNA. We conclude that a DNA break, regardless of the damaged locus, fails to trigger a stringent cell cycle checkpoint in T. brucei This DNA damage tolerance may facilitate the generation of virulence-enhancing genetic diversity, within subtelomeric domains in particular. Stringent checkpoints may be similarly lacking in some other eukaryotic cells.IMPORTANCE Chromosome damage must be repaired to prevent the proliferation of defective cells. Alternatively, cells with damage must be eliminated. This is true of human and several other cell types but may not be the case for single-celled parasites, such as trypanosomes. African trypanosomes, which cause lethal diseases in both humans and livestock, can actually exploit chromosomal damage to activate new surface coat proteins and to evade host immune responses, for example. We monitored responses to single chromosomal breaks in trypanosomes using a DNA-binding protein that, in response to DNA damage, forms nuclear foci visible using a microscope. Surprisingly, and unlike what is seen in mammalian cells, these foci persist while cells continue to divide. We also demonstrate chromosome replication even when one chromosome is broken. These results reveal a remarkable degree of damage tolerance in trypanosomes, which may suit the lifestyle of a single-celled parasite, potentially facilitating adaptation and enhancing virulence.
Collapse
Affiliation(s)
- Lucy Glover
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catarina A Marques
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Olga Suska
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David Horn
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
56
|
Matson JP, House AM, Grant GD, Wu H, Perez J, Cook JG. Intrinsic checkpoint deficiency during cell cycle re-entry from quiescence. J Cell Biol 2019; 218:2169-2184. [PMID: 31186278 PMCID: PMC6605788 DOI: 10.1083/jcb.201902143] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/08/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
To maintain tissue homeostasis, cells transition between cell cycle quiescence and proliferation. An essential G1 process is minichromosome maintenance complex (MCM) loading at DNA replication origins to prepare for S phase, known as origin licensing. A p53-dependent origin licensing checkpoint normally ensures sufficient MCM loading before S phase entry. We used quantitative flow cytometry and live cell imaging to compare MCM loading during the long first G1 upon cell cycle entry and the shorter G1 phases in the second and subsequent cycles. We discovered that despite the longer G1 phase, the first G1 after cell cycle re-entry is significantly underlicensed. Consequently, the first S phase cells are hypersensitive to replication stress. This underlicensing results from a combination of slow MCM loading with a severely compromised origin licensing checkpoint. The hypersensitivity to replication stress increases over repeated rounds of quiescence. Thus, underlicensing after cell cycle re-entry from quiescence distinguishes a higher-risk first cell cycle that likely promotes genome instability.
Collapse
Affiliation(s)
- Jacob Peter Matson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Amy M House
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Gavin D Grant
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Huaitong Wu
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joanna Perez
- Biochemistry, Cell and Developmental Biology Program, Emory University, Atlanta, GA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
57
|
Graber-Feesl CL, Pederson KD, Aney KJ, Shima N. Mitotic DNA Synthesis Is Differentially Regulated between Cancer and Noncancerous Cells. Mol Cancer Res 2019; 17:1687-1698. [PMID: 31113828 DOI: 10.1158/1541-7786.mcr-19-0057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/12/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022]
Abstract
Mitotic DNA synthesis is a recently discovered mechanism that resolves late replication intermediates, thereby supporting cell proliferation under replication stress. This unusual form of DNA synthesis occurs in the absence of RAD51 or BRCA2, which led to the identification of RAD52 as a key player in this process. Notably, mitotic DNA synthesis is predominantly observed at chromosome loci that colocalize with FANCD2 foci. However, the role of this protein in mitotic DNA synthesis remains largely unknown. In this study, we investigated the role of FANCD2 and its interplay with RAD52 in mitotic DNA synthesis using aphidicolin as a universal inducer of this process. After examining eight human cell lines, we provide evidence for FANCD2 rather than RAD52 as a fundamental supporter of mitotic DNA synthesis. In cancer cell lines, FANCD2 exerts this role independently of RAD52. Surprisingly, RAD52 is dispensable for mitotic DNA synthesis in noncancerous cell lines, but these cells strongly depend on FANCD2 for this process. Therefore, RAD52 functions selectively in cancer cells as a secondary regulator in addition to FANCD2 to facilitate mitotic DNA synthesis. As an alternative to aphidicolin, we found partial inhibition of origin licensing as an effective way to induce mitotic DNA synthesis preferentially in cancer cells. Importantly, cancer cells still perform mitotic DNA synthesis by dual regulation of FANCD2 and RAD52 under such conditions. IMPLICATIONS: These key differences in mitotic DNA synthesis between cancer and noncancerous cells advance our understanding of this mechanism and can be exploited for cancer therapies.
Collapse
Affiliation(s)
- Cari L Graber-Feesl
- Department of Genetics, Cell Biology and Development, University of Minnesota, at Twin Cities, Masonic Cancer Center, Minneapolis, Minnesota
| | - Kayla D Pederson
- Department of Genetics, Cell Biology and Development, University of Minnesota, at Twin Cities, Masonic Cancer Center, Minneapolis, Minnesota
| | - Katherine J Aney
- Department of Genetics, Cell Biology and Development, University of Minnesota, at Twin Cities, Masonic Cancer Center, Minneapolis, Minnesota
| | - Naoko Shima
- Department of Genetics, Cell Biology and Development, University of Minnesota, at Twin Cities, Masonic Cancer Center, Minneapolis, Minnesota.
| |
Collapse
|
58
|
Müller CA, Boemo MA, Spingardi P, Kessler BM, Kriaucionis S, Simpson JT, Nieduszynski CA. Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads. Nat Methods 2019; 16:429-436. [PMID: 31011185 PMCID: PMC7617212 DOI: 10.1038/s41592-019-0394-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
Abstract
Replication of eukaryotic genomes is highly stochastic, making it difficult to determine the replication dynamics of individual molecules with existing methods. We report a sequencing method for the measurement of replication fork movement on single molecules by detecting nucleotide analog signal currents on extremely long nanopore traces (D-NAscent). Using this method, we detect 5-bromodeoxyuridine (BrdU) incorporated by Saccharomyces cerevisiae to reveal, at a genomic scale and on single molecules, the DNA sequences replicated during a pulse-labeling period. Under conditions of limiting BrdU concentration, D-NAscent detects the differences in BrdU incorporation frequency across individual molecules to reveal the location of active replication origins, fork direction, termination sites, and fork pausing/stalling events. We used sequencing reads of 20-160 kilobases to generate a whole-genome single-molecule map of DNA replication dynamics and discover a class of low-frequency stochastic origins in budding yeast. The D-NAscent software is available at https://github.com/MBoemo/DNAscent.git .
Collapse
Affiliation(s)
- Carolin A Müller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Michael A Boemo
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Paolo Spingardi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jared T Simpson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
59
|
Petropoulos M, Champeris Tsaniras S, Taraviras S, Lygerou Z. Replication Licensing Aberrations, Replication Stress, and Genomic Instability. Trends Biochem Sci 2019; 44:752-764. [PMID: 31054805 DOI: 10.1016/j.tibs.2019.03.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 01/07/2023]
Abstract
Strict regulation of DNA replication is of fundamental significance for the maintenance of genome stability. Licensing of origins of DNA replication is a critical event for timely genome duplication. Errors in replication licensing control lead to genomic instability across evolution. Here, we present accumulating evidence that aberrant replication licensing is linked to oncogene-induced replication stress and poses a major threat to genome stability, promoting tumorigenesis. Oncogene activation can lead to defects in where along the genome and when during the cell cycle licensing takes place, resulting in replication stress. We also discuss the potential of replication licensing as a specific target for novel anticancer therapies.
Collapse
Affiliation(s)
- Michalis Petropoulos
- Department of Biology, School of Medicine, University of Patras, Patras 26504, Greece
| | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece.
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Patras 26504, Greece.
| |
Collapse
|
60
|
Guard SE, Poss ZC, Ebmeier CC, Pagratis M, Simpson H, Taatjes DJ, Old WM. The nuclear interactome of DYRK1A reveals a functional role in DNA damage repair. Sci Rep 2019; 9:6539. [PMID: 31024071 PMCID: PMC6483993 DOI: 10.1038/s41598-019-42990-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
The chromosome 21 encoded protein kinase DYRK1A is essential for normal human development. Mutations in DYRK1A underlie a spectrum of human developmental disorders, and increased dosage in trisomy 21 is implicated in Down syndrome related pathologies. DYRK1A regulates a diverse array of cellular processes through physical interactions with substrates and binding partners in various subcellular compartments. Despite recent large-scale protein-protein interaction profiling efforts, DYRK1A interactions specific to different subcellular compartments remain largely unknown, impeding progress toward understanding emerging roles for this kinase. Here, we used immunoaffinity purification and quantitative mass spectrometry to identify nuclear interaction partners of endogenous DYRK1A. This interactome was enriched in DNA damage repair factors, transcriptional elongation factors and E3 ubiquitin ligases. We validated an interaction with RNF169, a factor that promotes homology directed repair upon DNA damage, and found that DYRK1A expression and kinase activity are required for maintenance of 53BP1 expression and subsequent recruitment to DNA damage loci. Further, DYRK1A knock out conferred resistance to ionizing radiation in colony formation assays, suggesting that DYRK1A expression decreases cell survival efficiency in response to DNA damage and points to a tumor suppressive role for this kinase.
Collapse
Affiliation(s)
- Steven E Guard
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Zachary C Poss
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Christopher C Ebmeier
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Maria Pagratis
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Helen Simpson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - William M Old
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
61
|
Priego Moreno S, Jones RM, Poovathumkadavil D, Scaramuzza S, Gambus A. Mitotic replisome disassembly depends on TRAIP ubiquitin ligase activity. Life Sci Alliance 2019; 2:2/2/e201900390. [PMID: 30979826 PMCID: PMC6464043 DOI: 10.26508/lsa.201900390] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 01/08/2023] Open
Abstract
Analysis of the mitotic replisome disassembly pathway in X. laevis egg extract shows that any replisomes retained on chromatin past S-phase are unloaded through formation of K6- and K63-linked ubiquitin chains on Mcm7 by TRAIP ubiquitin ligase and p97/VCP activity. We have shown previously that the process of replication machinery (replisome) disassembly at the termination of DNA replication forks in the S-phase is driven through polyubiquitylation of one of the replicative helicase subunits (Mcm7) by Cul2LRR1 ubiquitin ligase. Interestingly, upon inhibition of this pathway in Caenorhabditis elegans embryos, the replisomes retained on chromatin were unloaded in the subsequent mitosis. Here, we show that this mitotic replisome disassembly pathway exists in Xenopus laevis egg extract and we determine the first elements of its regulation. The mitotic disassembly pathway depends on the formation of K6- and K63-linked ubiquitin chains on Mcm7 by TRAIP ubiquitin ligase and the activity of p97/VCP protein segregase. Unlike in lower eukaryotes, however, it does not require SUMO modifications. Importantly, we also show that this process can remove all replisomes from mitotic chromatin, including stalled ones, which indicates a wide application for this pathway over being just a “backup” for terminated replisomes. Finally, we characterise the composition of the replisome retained on chromatin until mitosis.
Collapse
Affiliation(s)
- Sara Priego Moreno
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rebecca M Jones
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Divyasree Poovathumkadavil
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Shaun Scaramuzza
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Agnieszka Gambus
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
62
|
Falquet B, Rass U. Structure-Specific Endonucleases and the Resolution of Chromosome Underreplication. Genes (Basel) 2019; 10:E232. [PMID: 30893921 PMCID: PMC6470701 DOI: 10.3390/genes10030232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Complete genome duplication in every cell cycle is fundamental for genome stability and cell survival. However, chromosome replication is frequently challenged by obstacles that impede DNA replication fork (RF) progression, which subsequently causes replication stress (RS). Cells have evolved pathways of RF protection and restart that mitigate the consequences of RS and promote the completion of DNA synthesis prior to mitotic chromosome segregation. If there is entry into mitosis with underreplicated chromosomes, this results in sister-chromatid entanglements, chromosome breakage and rearrangements and aneuploidy in daughter cells. Here, we focus on the resolution of persistent replication intermediates by the structure-specific endonucleases (SSEs) MUS81, SLX1-SLX4 and GEN1. Their actions and a recently discovered pathway of mitotic DNA repair synthesis have emerged as important facilitators of replication completion and sister chromatid detachment in mitosis. As RS is induced by oncogene activation and is a common feature of cancer cells, any advances in our understanding of the molecular mechanisms related to chromosome underreplication have important biomedical implications.
Collapse
Affiliation(s)
- Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
- Faculty of Natural Sciences, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland.
| | - Ulrich Rass
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
63
|
Spies J, Lukas C, Somyajit K, Rask MB, Lukas J, Neelsen KJ. 53BP1 nuclear bodies enforce replication timing at under-replicated DNA to limit heritable DNA damage. Nat Cell Biol 2019; 21:487-497. [PMID: 30804506 DOI: 10.1038/s41556-019-0293-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/21/2019] [Indexed: 01/13/2023]
Abstract
Failure to complete DNA replication is a stochastic by-product of genome doubling in almost every cell cycle. During mitosis, under-replicated DNA (UR-DNA) is converted into DNA lesions, which are inherited by daughter cells and sequestered in 53BP1 nuclear bodies (53BP1-NBs). The fate of such cells remains unknown. Here, we show that the formation of 53BP1-NBs interrupts the chain of iterative damage intrinsically embedded in UR-DNA. Unlike clastogen-induced 53BP1 foci that are repaired throughout interphase, 53BP1-NBs restrain replication of the embedded genomic loci until late S phase, thus enabling the dedicated RAD52-mediated repair of UR-DNA lesions. The absence or malfunction of 53BP1-NBs causes premature replication of the affected loci, accompanied by genotoxic RAD51-mediated recombination. Thus, through adjusting replication timing and repair pathway choice at under-replicated loci, 53BP1-NBs enable the completion of genome duplication of inherited UR-DNA and prevent the conversion of stochastic under-replications into genome instability.
Collapse
Affiliation(s)
- Julian Spies
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kumar Somyajit
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maj-Britt Rask
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Kai John Neelsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
64
|
Nassrally MS, Lau A, Wise K, John N, Kotecha S, Lee KL, Brooks RF. Cell cycle arrest in replicative senescence is not an immediate consequence of telomere dysfunction. Mech Ageing Dev 2019; 179:11-22. [PMID: 30710559 DOI: 10.1016/j.mad.2019.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 12/19/2018] [Accepted: 01/28/2019] [Indexed: 11/15/2022]
Abstract
In replicative senescence, cells with critically-short telomeres activate a DNA-damage response leading to cell-cycle arrest, while those without telomere dysfunction would be expected to cycle normally. However, population growth declines more gradually than such a simple binary switch between cycling and non-cycling states would predict. We show here that late-passage cultures of human fibroblasts are not a simple mixture of cycling and non-cycling cells. Rather, although some cells had short cycle times comparable to those of younger cells, others continued to divide but with greatly extended cycle times, indicating a more-gradual approach to permanent arrest. Remarkably, in late passage cells, the majority showed prominent DNA-damage foci positive for 53BP1, yet many continued to divide. Evidently, the DNA-damage-response elicited by critically-short telomeres is not initially strong enough for complete cell-cycle arrest. A similar continuation of the cell cycle in the face of an active DNA-damage response was also seen in cells treated with a low dose of doxorubicin sufficient to produce multiple 53BP1 foci in all nuclei. Cell cycle checkpoint engagement in response to DNA damage is thus weaker than generally supposed, explaining why an accumulation of dysfunctional telomeres is needed before marked cell cycle elongation or permanent arrest is achieved.
Collapse
Affiliation(s)
- M Shamim Nassrally
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Ashley Lau
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Katherine Wise
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Noah John
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Sanjeev Kotecha
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Kar Lai Lee
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK
| | - Robert F Brooks
- King's College London, Faculty of Life Sciences & Medicine, Department of Anatomy, Guy's Campus, LONDON SE1 1UL, UK; St George's, University of London, Molecular and Clinical Sciences Research Institute, Mailpoint J2A, Cranmer Terrace, London, SW17 0RE, UK.
| |
Collapse
|
65
|
Courtot L, Hoffmann JS, Bergoglio V. The Protective Role of Dormant Origins in Response to Replicative Stress. Int J Mol Sci 2018; 19:ijms19113569. [PMID: 30424570 PMCID: PMC6274952 DOI: 10.3390/ijms19113569] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Genome stability requires tight regulation of DNA replication to ensure that the entire genome of the cell is duplicated once and only once per cell cycle. In mammalian cells, origin activation is controlled in space and time by a cell-specific and robust program called replication timing. About 100,000 potential replication origins form on the chromatin in the gap 1 (G1) phase but only 20⁻30% of them are active during the DNA replication of a given cell in the synthesis (S) phase. When the progress of replication forks is slowed by exogenous or endogenous impediments, the cell must activate some of the inactive or "dormant" origins to complete replication on time. Thus, the many origins that may be activated are probably key to protect the genome against replication stress. This review aims to discuss the role of these dormant origins as safeguards of the human genome during replicative stress.
Collapse
Affiliation(s)
- Lilas Courtot
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| | - Jean-Sébastien Hoffmann
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| | - Valérie Bergoglio
- CRCT, Université de Toulouse, Inserm, CNRS, UPS; Equipe labellisée Ligue Contre le Cancer, Laboratoire d'excellence Toulouse Cancer, 2 Avenue Hubert Curien, 31037 Toulouse, France.
| |
Collapse
|
66
|
Batrakou DG, Heron ED, Nieduszynski CA. Rapid high-resolution measurement of DNA replication timing by droplet digital PCR. Nucleic Acids Res 2018; 46:e112. [PMID: 29986073 PMCID: PMC6212846 DOI: 10.1093/nar/gky590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 02/03/2023] Open
Abstract
Genomes are replicated in a reproducible temporal pattern. Current methods for assaying allele replication timing are time consuming and/or expensive. These include high-throughput sequencing which can be used to measure DNA copy number as a proxy for allele replication timing. Here, we use droplet digital PCR to study DNA replication timing at multiple loci in budding yeast and human cells. We establish that the method has temporal and spatial resolutions comparable to the high-throughput sequencing approaches, while being faster than alternative locus-specific methods. Furthermore, the approach is capable of allele discrimination. We apply this method to determine relative replication timing across timing transition zones in cultured human cells. Finally, multiple samples can be analysed in parallel, allowing us to rapidly screen kinetochore mutants for perturbation to centromere replication timing. Therefore, this approach is well suited to the study of locus-specific replication and the screening of cis- and trans-acting mutants to identify mechanisms that regulate local genome replication timing.
Collapse
Affiliation(s)
- Dzmitry G Batrakou
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Emma D Heron
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Conrad A Nieduszynski
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
67
|
Pozo PN, Matson JP, Cole Y, Kedziora KM, Grant GD, Temple B, Cook JG. Cdt1 variants reveal unanticipated aspects of interactions with cyclin/CDK and MCM important for normal genome replication. Mol Biol Cell 2018; 29:2989-3002. [PMID: 30281379 PMCID: PMC6333176 DOI: 10.1091/mbc.e18-04-0242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The earliest step in DNA replication is origin licensing, which is the DNA loading of minichromosome maintenance (MCM) helicase complexes. The Cdc10-dependent transcript 1 (Cdt1) protein is essential for MCM loading during the G1 phase of the cell cycle, but the mechanism of Cdt1 function is still incompletely understood. We examined a collection of rare Cdt1 variants that cause a form of primordial dwarfism (the Meier-Gorlin syndrome) plus one hypomorphic Drosophila allele to shed light on Cdt1 function. Three hypomorphic variants load MCM less efficiently than wild-type (WT) Cdt1, and their lower activity correlates with impaired MCM binding. A structural homology model of the human Cdt1-MCM complex positions the altered Cdt1 residues at two distinct interfaces rather than the previously described single MCM interaction domain. Surprisingly, one dwarfism allele (Cdt1-A66T) is more active than WT Cdt1. This hypermorphic variant binds both cyclin A and SCFSkp2 poorly relative to WT Cdt1. Detailed quantitative live-cell imaging analysis demonstrated no change in the stability of this variant, however. Instead, we propose that cyclin A/CDK inhibits the Cdt1 licensing function independent of the creation of the SCFSkp2 phosphodegron. Together, these findings identify key Cdt1 interactions required for both efficient origin licensing and tight Cdt1 regulation to ensure normal cell proliferation and genome stability.
Collapse
Affiliation(s)
- Pedro N Pozo
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jacob P Matson
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yasemin Cole
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Katarzyna M Kedziora
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gavin D Grant
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Brenda Temple
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,R. L. Juliano Structural Bioinformatics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Center for Structural Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
68
|
Gorgoulis VG, Pefani D, Pateras IS, Trougakos IP. Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol 2018; 246:12-40. [PMID: 29756349 PMCID: PMC6120562 DOI: 10.1002/path.5097] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
During evolution, cells have developed a wide spectrum of stress response modules to ensure homeostasis. The genome and proteome damage response pathways constitute the pillars of this interwoven 'defensive' network. Consequently, the deregulation of these pathways correlates with ageing and various pathophysiological states, including cancer. In the present review, we highlight: (1) the structure of the genome and proteome damage response pathways; (2) their functional crosstalk; and (3) the conditions under which they predispose to cancer. Within this context, we emphasize the role of oncogene-induced DNA damage as a driving force that shapes the cellular landscape for the emergence of the various hallmarks of cancer. We also discuss potential means to exploit key cancer-related alterations of the genome and proteome damage response pathways in order to develop novel efficient therapeutic modalities. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Dafni‐Eleftheria Pefani
- CRUK/MRC Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
69
|
Abstract
Flaws in the DNA replication process have emerged as a leading driver of genome instability in human diseases. Alteration to replication fork progression is a defining feature of replication stress and the consequent failure to maintain fork integrity and complete genome duplication within a single round of S-phase compromises genetic integrity. This includes increased mutation rates, small and large scale genomic rearrangement and deleterious consequences for the subsequent mitosis that result in the transmission of additional DNA damage to the daughter cells. Therefore, preserving fork integrity and replication competence is an important aspect of how cells respond to replication stress and avoid genetic change. Homologous recombination is a pivotal pathway in the maintenance of genome integrity in the face of replication stress. Here we review our recent understanding of the mechanisms by which homologous recombination acts to protect, restart and repair replication forks. We discuss the dynamics of these genetically distinct functions and their contribution to faithful mitoticsegregation.
Collapse
|
70
|
Champeris Tsaniras S, Villiou M, Giannou AD, Nikou S, Petropoulos M, Pateras IS, Tserou P, Karousi F, Lalioti ME, Gorgoulis VG, Patmanidi AL, Stathopoulos GT, Bravou V, Lygerou Z, Taraviras S. Geminin ablation in vivo enhances tumorigenesis through increased genomic instability. J Pathol 2018; 246:134-140. [PMID: 29952003 DOI: 10.1002/path.5128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 11/09/2022]
Abstract
Geminin, a DNA replication licensing inhibitor, ensures faithful DNA replication in vertebrates. Several studies have shown that geminin depletion in vitro results in rereplication and DNA damage, whereas increased expression of geminin has been observed in human cancers. However, conditional inactivation of geminin during embryogenesis has not revealed any detectable DNA replication defects. In order to examine its role in vivo, we conditionally inactivated geminin in the murine colon and lung, and assessed chemically induced carcinogenesis. We show here that mice lacking geminin develop a significantly higher number of tumors and bear a larger tumor burden than sham-treated controls in urethane-induced lung and azoxymethane/dextran sodium sulfate-induced colon carcinogenesis. Survival is also significantly reduced in mice lacking geminin during lung carcinogenesis. A significant increase in the total number and grade of lesions (hyperplasias, adenomas, and carcinomas) was also confirmed by hematoxylin and eosin staining. Moreover, increased genomic aberrations, identified by increased ATR and γH2AX expression, was detected with immunohistochemistry analysis. In addition, we analyzed geminin expression in human colon cancer, and found increased expression, as well as a positive correlation with ATM/ATR levels and a non-monotonic association with γH2AX. Taken together, our data demonstrate that geminin acts as a tumor suppressor by safeguarding genome stability, whereas its overexpression is also associated with genomic instability. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Maria Villiou
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Anastassios D Giannou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Sofia Nikou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | | | - Ioannis S Pateras
- Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Tserou
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Foteini Karousi
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Maria-Eleni Lalioti
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, Athens, Greece.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of Biology, Medical School, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
71
|
The Temporal Regulation of S Phase Proteins During G 1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:335-369. [PMID: 29357066 DOI: 10.1007/978-981-10-6955-0_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Successful DNA replication requires intimate coordination with cell-cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell-cycle entry and cell-cycle progression.
Collapse
|
72
|
Carroll TD, Newton IP, Chen Y, Blow JJ, Näthke I. Lgr5 + intestinal stem cells reside in an unlicensed G 1 phase. J Cell Biol 2018; 217:1667-1685. [PMID: 29599208 PMCID: PMC5940300 DOI: 10.1083/jcb.201708023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 12/21/2022] Open
Abstract
During late mitosis and the early G1 phase, the origins of replication are licensed by binding to double hexamers of MCM2-7. In this study, we investigated how licensing and proliferative commitment are coupled in the epithelium of the small intestine. We developed a method for identifying cells in intact tissue containing DNA-bound MCM2-7. Interphase cells above the transit-amplifying compartment had no DNA-bound MCM2-7, but still expressed the MCM2-7 protein, suggesting that licensing is inhibited immediately upon differentiation. Strikingly, we found most proliferative Lgr5+ stem cells are in an unlicensed state. This suggests that the elongated cell-cycle of intestinal stem cells is caused by an increased G1 length, characterized by dormant periods with unlicensed origins. Significantly, the unlicensed state is lost in Apc-mutant epithelium, which lacks a functional restriction point, causing licensing immediately upon G1 entry. We propose that the unlicensed G1 phase of intestinal stem cells creates a temporal window when proliferative fate decisions can be made.
Collapse
Affiliation(s)
- Thomas D Carroll
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - Ian P Newton
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - Yu Chen
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| | - J Julian Blow
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK
| | - Inke Näthke
- Cell and Developmental Biology, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
73
|
Abstract
The anaphase of mitosis is one of the most critical stages of the cell division cycle in that it can reveal precious information on the fate of a cell lineage. Indeed, most types of nuclear DNA segregation defects visualized during anaphase are manifestations of genomic instability and augur dramatic outcomes, such as cell death or chromosomal aberrations characteristic of cancer cells. Although chromatin bridges and lagging chromatin are always pathological (generating aneuploidy or complex genomic rearrangements), the main subject of this article, the ultrafine anaphase bridges, might, in addition to potentially driving genomic instability, play critical roles for the maintenance of chromosome structure in rapidly proliferating cells.
Collapse
Affiliation(s)
- Anna H Bizard
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
74
|
Replication-Coupled Dilution of H4K20me2 Guides 53BP1 to Pre-replicative Chromatin. Cell Rep 2018; 19:1819-1831. [PMID: 28564601 PMCID: PMC5857200 DOI: 10.1016/j.celrep.2017.05.016] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/06/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
The bivalent histone modification reader 53BP1 accumulates around DNA double-strand breaks (DSBs), where it dictates repair pathway choice decisions by limiting DNA end resection. How this function is regulated locally and across the cell cycle to channel repair reactions toward non-homologous end joining (NHEJ) in G1 and promote homology-directed repair (HDR) in S/G2 is insufficiently understood. Here, we show that the ability of 53BP1 to accumulate around DSBs declines as cells progress through S phase and reveal that the inverse relationship between 53BP1 recruitment and replicated chromatin is linked to the replication-coupled dilution of 53BP1’s target mark H4K20me2. Consistently, premature maturation of post-replicative chromatin restores H4K20me2 and rescues 53BP1 accumulation on replicated chromatin. The H4K20me2-mediated chromatin association of 53BP1 thus represents an inbuilt mechanism to distinguish DSBs in pre- versus post-replicative chromatin, allowing for localized repair pathway choice decisions based on the availability of replication-generated template strands for HDR.
Collapse
|
75
|
Stewart JA, Wang Y, Ackerson SM, Schuck PL. Emerging roles of CST in maintaining genome stability and human disease. Front Biosci (Landmark Ed) 2018; 23:1564-1586. [PMID: 29293451 DOI: 10.2741/4661] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The human CTC1-STN1-TEN1 (CST) complex is a single-stranded DNA binding protein that shares homology with RPA and interacts with DNA polymerase alpha/primase. CST complexes are conserved from yeasts to humans and function in telomere maintenance. A common role of CST across species is in the regulation of telomere extension by telomerase and C-strand fill-in synthesis. However, recent studies also indicate that CST promotes telomere duplex replication as well the rescue of stalled DNA replication at non-telomeric sites. Furthermore, CST dysfunction and mutation is associated with several genetic diseases and cancers. In this review, we will summarize what is known about CST with a particular focus on the emerging roles of CST in DNA replication and human disease.
Collapse
Affiliation(s)
- Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA,
| | - Yilin Wang
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Stephanie M Ackerson
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Percy Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
76
|
Arora M, Moser J, Phadke H, Basha AA, Spencer SL. Endogenous Replication Stress in Mother Cells Leads to Quiescence of Daughter Cells. Cell Rep 2018; 19:1351-1364. [PMID: 28514656 DOI: 10.1016/j.celrep.2017.04.055] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/23/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022] Open
Abstract
Mammalian cells have two fundamentally different states, proliferative and quiescent, but our understanding of how and why cells switch between these states is limited. We previously showed that actively proliferating populations contain a subpopulation that enters quiescence (G0) in an apparently stochastic manner. Using single-cell time-lapse imaging of CDK2 activity and DNA damage, we now show that unresolved endogenous replication stress in the previous (mother) cell cycle prompts p21-dependent entry of daughter cells into quiescence immediately after mitosis. Furthermore, the amount of time daughter cells spend in quiescence is correlated with the extent of inherited damage. Our study thus links replication errors in one cell cycle to the fate of daughter cells in the subsequent cell cycle. More broadly, this work reveals that entry into quiescence is not purely stochastic but has a strong deterministic component arising from a memory of events that occurred in the previous generation(s).
Collapse
Affiliation(s)
- Mansi Arora
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Justin Moser
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Harsha Phadke
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Ashik Akbar Basha
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sabrina L Spencer
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
77
|
Hong Y, Sonneville R, Wang B, Scheidt V, Meier B, Woglar A, Demetriou S, Labib K, Jantsch V, Gartner A. LEM-3 is a midbody-tethered DNA nuclease that resolves chromatin bridges during late mitosis. Nat Commun 2018; 9:728. [PMID: 29463814 PMCID: PMC5820297 DOI: 10.1038/s41467-018-03135-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022] Open
Abstract
Faithful chromosome segregation and genome maintenance requires the removal of all DNA bridges that physically link chromosomes before cells divide. Using C. elegans embryos we show that the LEM-3/Ankle1 nuclease defines a previously undescribed genome integrity mechanism by processing DNA bridges right before cells divide. LEM-3 acts at the midbody, the structure where abscission occurs at the end of cytokinesis. LEM-3 localization depends on factors needed for midbody assembly, and LEM-3 accumulation is increased and prolonged when chromatin bridges are trapped at the cleavage plane. LEM-3 locally processes chromatin bridges that arise from incomplete DNA replication, unresolved recombination intermediates, or the perturbance of chromosome structure. Proper LEM-3 midbody localization and function is regulated by AIR-2/Aurora B kinase. Strikingly, LEM-3 acts cooperatively with the BRC-1/BRCA1 homologous recombination factor to promote genome integrity. These findings provide a molecular basis for the suspected role of the LEM-3 orthologue Ankle1 in human breast cancer.
Collapse
Affiliation(s)
- Ye Hong
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Remi Sonneville
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Bin Wang
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Viktor Scheidt
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Bettina Meier
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Alexander Woglar
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, A-1030, Austria
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Sarah Demetriou
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, A-1030, Austria
| | - Anton Gartner
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
78
|
Tiwari A, Addis Jones O, Chan KL. 53BP1 can limit sister-chromatid rupture and rearrangements driven by a distinct ultrafine DNA bridging-breakage process. Nat Commun 2018; 9:677. [PMID: 29445165 PMCID: PMC5813243 DOI: 10.1038/s41467-018-03098-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Chromosome missegregation acts as one of the driving forces for chromosome instability and cancer development. Here, we find that in human cancer cells, HeLa and U2OS, depletion of 53BP1 (p53-binding protein 1) exacerbates chromosome non-disjunction resulting from a new type of sister-chromatid intertwinement, which is distinct from FANCD2-associated ultrafine DNA bridges (UFBs) induced by replication stress. Importantly, the sister DNA intertwinements trigger gross chromosomal rearrangements through a distinct process, named sister-chromatid rupture and bridging. In contrast to conventional anaphase bridge-breakage models, we demonstrate that chromatid axes of the intertwined sister-chromatids rupture prior to the breakage of the DNA bridges. Consequently, the ruptured sister arms remain tethered and cause signature chromosome rearrangements, including whole-arm (Robertsonian-like) translocation/deletion and isochromosome formation. Therefore, our study reveals a hitherto unreported chromatid damage phenomenon mediated by sister DNA intertwinements that may help to explain the development of complex karyotypes in tumour cells. Chromosome instability is associated with cancer formation. Here the authors identify in cultured human cancer cells a non-canonical DNA bridge breakage pathway leading to chromosome missegregation and rearrangements triggered by sister DNA intertwinements, which are limited by 53BP1.
Collapse
Affiliation(s)
- Ankana Tiwari
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Owen Addis Jones
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Kok-Lung Chan
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK.
| |
Collapse
|
79
|
Fernandez-Vidal A, Vignard J, Mirey G. Around and beyond 53BP1 Nuclear Bodies. Int J Mol Sci 2017; 18:ijms18122611. [PMID: 29206178 PMCID: PMC5751214 DOI: 10.3390/ijms18122611] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Within the nucleus, sub-nuclear domains define territories where specific functions occur. Nuclear bodies (NBs) are dynamic structures that concentrate nuclear factors and that can be observed microscopically. Recently, NBs containing the p53 binding protein 1 (53BP1), a key component of the DNA damage response, were defined. Interestingly, 53BP1 NBs are visualized during G1 phase, in daughter cells, while DNA damage was generated in mother cells and not properly processed. Unlike most NBs involved in transcriptional processes, replication has proven to be key for 53BP1 NBs, with replication stress leading to the formation of these large chromatin domains in daughter cells. In this review, we expose the composition and organization of 53BP1 NBs and focus on recent findings regarding their regulation and dynamics. We then concentrate on the importance of the replication stress, examine the relation of 53BP1 NBs with DNA damage and discuss their dysfunction.
Collapse
Affiliation(s)
- Anne Fernandez-Vidal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Julien Vignard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Gladys Mirey
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| |
Collapse
|
80
|
Sarlós K, Biebricher A, Petermann EJG, Wuite GJL, Hickson ID. Knotty Problems during Mitosis: Mechanistic Insight into the Processing of Ultrafine DNA Bridges in Anaphase. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:187-195. [PMID: 29167280 DOI: 10.1101/sqb.2017.82.033647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To survive and proliferate, cells have to faithfully segregate their newly replicated genomic DNA to the two daughter cells. However, the sister chromatids of mitotic chromosomes are frequently interlinked by so-called ultrafine DNA bridges (UFBs) that are visible in the anaphase of mitosis. UFBs can only be detected by the proteins bound to them and not by staining with conventional DNA dyes. These DNA bridges are presumed to represent entangled sister chromatids and hence pose a threat to faithful segregation. A failure to accurately unlink UFB DNA results in chromosome segregation errors and binucleation. This, in turn, compromises genome integrity, which is a hallmark of cancer. UFBs are actively removed during anaphase, and most known UFB-associated proteins are enzymes involved in DNA repair in interphase. However, little is known about the mitotic activities of these enzymes or the exact DNA structures present on UFBs. We focus on the biology of UFBs, with special emphasis on their underlying DNA structure and the decatenation machineries that process UFBs.
Collapse
Affiliation(s)
- Kata Sarlós
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Andreas Biebricher
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Erwin J G Petermann
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy and LaserLab, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
81
|
Matson JP, Dumitru R, Coryell P, Baxley RM, Chen W, Twaroski K, Webber BR, Tolar J, Bielinsky AK, Purvis JE, Cook JG. Rapid DNA replication origin licensing protects stem cell pluripotency. eLife 2017; 6:30473. [PMID: 29148972 PMCID: PMC5720591 DOI: 10.7554/elife.30473] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/16/2017] [Indexed: 11/24/2022] Open
Abstract
Complete and robust human genome duplication requires loading minichromosome maintenance (MCM) helicase complexes at many DNA replication origins, an essential process termed origin licensing. Licensing is restricted to G1 phase of the cell cycle, but G1 length varies widely among cell types. Using quantitative single-cell analyses, we found that pluripotent stem cells with naturally short G1 phases load MCM much faster than their isogenic differentiated counterparts with long G1 phases. During the earliest stages of differentiation toward all lineages, MCM loading slows concurrently with G1 lengthening, revealing developmental control of MCM loading. In contrast, ectopic Cyclin E overproduction uncouples short G1 from fast MCM loading. Rapid licensing in stem cells is caused by accumulation of the MCM loading protein, Cdt1. Prematurely slowing MCM loading in pluripotent cells not only lengthens G1 but also accelerates differentiation. Thus, rapid origin licensing is an intrinsic characteristic of stem cells that contributes to pluripotency maintenance. From red blood cells to nerve cells, animals’ bodies contain many different types of specialized cells. These all begin as stem cells, which have the potential to divide and make more stem cells or to specialize. All dividing cells must first unwind their DNA so that it can be copied. To achieve this, cells load DNA-unwinding enzymes called helicases onto their DNA during the part of the cell cycle known as G1 phase. Cells must load enough helicase enzymes to ensure that their DNA is copied completely and in time. Stem cells divide faster than their specialized descendants, and have a much shorter G1 phase too. Yet these cells still manage to load enough helicases to copy their DNA. Little is known about how the amount, rate and timing of helicase loading varies between cells that divide at different speeds. Now Matson et al. have measured how quickly helicase enzymes are loaded onto DNA in individual human cells, including stem cells and specialized or “differentiated” cells. Stem cells loaded helicases rapidly to make up for the short time they spent in G1 phase, while differentiated cells loaded the enzymes more slowly. Measuring how the loading rate changed when stem cells were triggered to specialize showed that helicase loading slowed as the G1 phase got longer. Matson et al. found that the levels of key proteins required for helicase loading correlated with the rates of loading. Altering the levels of the proteins changed how quickly the enzymes were loaded and how the cells behaved – for example, slowing down the loading of helicases made the stem cells specialize quicker. These findings show that the processes of cell differentiation and DNA replication are closely linked. This study and future ones will help scientists understand what is happening during early animal development, when specialization first takes place, as well as what has gone wrong in cancer cells, which also divide quickly. A better understanding of this process also helps in regenerative medicine – where one of the challenges is to make enough specialized cells to transplant into a patient with tissue damage without those cells becoming cancerous.
Collapse
Affiliation(s)
- Jacob Peter Matson
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, United States
| | - Raluca Dumitru
- Human Pluripotent Stem Cell Core Facility, The University of North Carolina, Chapel Hill, United States
| | - Philip Coryell
- Department of Genetics, The University of North Carolina, Chapel Hill, United States
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, The University of Minnesota, Minneapolis, United States
| | - Weili Chen
- Stem Cell Institute, University of Minnesota, Minnesota, United States
| | - Kirk Twaroski
- Stem Cell Institute, University of Minnesota, Minnesota, United States
| | - Beau R Webber
- Stem Cell Institute, University of Minnesota, Minnesota, United States
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota, Minnesota, United States
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, The University of Minnesota, Minneapolis, United States
| | - Jeremy E Purvis
- Department of Genetics, The University of North Carolina, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, United States
| |
Collapse
|
82
|
Abstract
Replication stress is a major source of DNA damage and an important driver of cancer development. Replication intermediates that occur upon mild forms of replication stress frequently escape cell cycle checkpoints and can be transmitted through mitosis into the next cell cycle. The consequences of such inherited DNA lesions for cell fate and survival are poorly understood. By using time-lapse microscopy and quantitative image-based cytometry to simultaneously monitor inherited DNA lesions marked by the genome caretaker protein 53BP1 and cell cycle progression, we show that inheritance of 53BP1-marked lesions from the previous S-phase is associated with a prolonged G1 duration in the next cell cycle. These results suggest that cell-to-cell variation in S-phase commitment is determined, at least partially, by the amount of replication-born inherited DNA damage in individual cells. We further show that loss of the tumor suppressor protein p53 overrides replication stress-induced G1 prolongation and allows S-phase entry with excessive amounts of inherited DNA lesions. Thus, replication stress and p53 loss may synergize during cancer development by promoting cell cycle re-entry with unrepaired mutagenic DNA lesions originating from the previous cell cycle.
Collapse
Affiliation(s)
- Aleksandra Lezaja
- a Department of Molecular Mechanisms of Disease , University of Zurich , Zurich , CH , Switzerland
| | - Matthias Altmeyer
- a Department of Molecular Mechanisms of Disease , University of Zurich , Zurich , CH , Switzerland
| |
Collapse
|
83
|
Guénolé A, Legube G. A meeting at risk: Unrepaired DSBs go for broke. Nucleus 2017; 8:589-599. [PMID: 29099269 PMCID: PMC5788565 DOI: 10.1080/19491034.2017.1380138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
Translocations are dramatic genomic rearrangements due to aberrant rejoining of distant DNA ends that can trigger cancer onset and progression. Translocations frequently occur in genes, yet the mechanisms underlying their formation remain poorly understood. One potential mechanism involves DNA Double Strand Break mobility and juxtaposition (i.e. clustering), an event that has been intensively debated over the past decade. Using Capture Hi-C, we recently found that DSBs do in fact cluster in human nuclei but only when induced in transcriptionally active genes. Notably, we found that clustering of damaged genes is regulated by cell cycle progression and coincides with damage persistency. Here, we discuss the mechanisms that could sustain clustering and speculate on the functional consequences of this seemingly double edge sword mechanism that may well stand at the heart of translocation biogenesis.
Collapse
Affiliation(s)
- Aude Guénolé
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| |
Collapse
|
84
|
Gardner NJ, Gillespie PJ, Carrington JT, Shanks EJ, McElroy SP, Haagensen EJ, Frearson JA, Woodland A, Blow JJ. The High-Affinity Interaction between ORC and DNA that Is Required for Replication Licensing Is Inhibited by 2-Arylquinolin-4-Amines. Cell Chem Biol 2017; 24:981-992.e4. [PMID: 28781123 PMCID: PMC5563080 DOI: 10.1016/j.chembiol.2017.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/13/2017] [Accepted: 06/30/2017] [Indexed: 01/10/2023]
Abstract
In late mitosis and G1, origins of DNA replication must be "licensed" for use in the upcoming S phase by being encircled by double hexamers of the minichromosome maintenance proteins MCM2-7. A "licensing checkpoint" delays cells in G1 until sufficient origins have been licensed, but this checkpoint is lost in cancer cells. Inhibition of licensing can therefore kill cancer cells while only delaying normal cells in G1. In a high-throughput cell-based screen for licensing inhibitors we identified a family of 2-arylquinolin-4-amines, the most potent of which we call RL5a. The binding of the origin recognition complex (ORC) to origin DNA is the first step of the licensing reaction. We show that RL5a prevents ORC forming a tight complex with DNA that is required for MCM2-7 loading. Formation of this ORC-DNA complex requires ATP, and we show that RL5a inhibits ORC allosterically to mimic a lack of ATP.
Collapse
Affiliation(s)
- Nicola J Gardner
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter J Gillespie
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jamie T Carrington
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Emma J Shanks
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Stuart P McElroy
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Emma J Haagensen
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Julie A Frearson
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Andrew Woodland
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - J Julian Blow
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
85
|
Shima N, Pederson KD. Dormant origins as a built-in safeguard in eukaryotic DNA replication against genome instability and disease development. DNA Repair (Amst) 2017; 56:166-173. [PMID: 28641940 PMCID: PMC5547906 DOI: 10.1016/j.dnarep.2017.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA replication is a prerequisite for cell proliferation, yet it can be increasingly challenging for a eukaryotic cell to faithfully duplicate its genome as its size and complexity expands. Dormant origins now emerge as a key component for cells to successfully accomplish such a demanding but essential task. In this perspective, we will first provide an overview of the fundamental processes eukaryotic cells have developed to regulate origin licensing and firing. With a special focus on mammalian systems, we will then highlight the role of dormant origins in preventing replication-associated genome instability and their functional interplay with proteins involved in the DNA damage repair response for tumor suppression. Lastly, deficiencies in the origin licensing machinery will be discussed in relation to their influence on stem cell maintenance and human diseases.
Collapse
Affiliation(s)
- Naoko Shima
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States.
| | - Kayla D Pederson
- The University of Minnesota, Twin Cities, Department of Genetics, Cell Biology and Development, Masonic Cancer Center, 6-160 Jackson Hall, 321 Church St SE., Minneapolis, MN 55455, United States
| |
Collapse
|
86
|
Rao Y, Yu H, Gao L, Lu YT, Xu Z, Liu H, Gu LQ, Ye JM, Huang ZS. Natural alkaloid bouchardatine ameliorates metabolic disorders in high-fat diet-fed mice by stimulating the sirtuin 1/liver kinase B-1/AMPK axis. Br J Pharmacol 2017; 174:2457-2470. [PMID: 28493443 DOI: 10.1111/bph.13855] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/09/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Promoting energy metabolism is known to provide therapeutic effects for obesity and associated metabolic disorders. The present study evaluated the therapeutic effects of the newly identified bouchardatine (Bou) on obesity-associated metabolic disorders and the molecular mechanisms of these effects. EXPERIMENTAL APPROACH The molecular mode of action of Bou for its effects on lipid metabolism was first examined in 3T3-L1 adipocytes and HepG2 cells. This was followed by an evaluation of its metabolic effects in mice fed a high-fat diet for 16 weeks with Bou being administered in the last 5 weeks. Further mechanistic investigations were conducted in pertinent organs of the mice and relevant cell models. KEY RESULTS In 3T3-L1 adipocytes, Bou reduced lipid content and increased sirtuin 1 (SIRT1) activity to facilitate liver kinase B1 (LKB1) activation of AMPK. Chronic administration of Bou (50 mg∙kg-1 every other day) in mice significantly attenuated high-fat diet-induced increases in body weight gain, dyslipidaemia and fatty liver without affecting food intake and no adverse effects were detected. These metabolic effects were associated with activation of the SIRT1-LKB1-AMPK signalling pathway in adipose tissue and liver. Of particular note, UCP1 expression and mitochondrial biogenesis were increased in both white and brown adipose tissues of Bou-treated mice. Incubation with Bou induced similar changes in primary brown adipocytes isolated from mice. CONCLUSIONS AND IMPLICATIONS Bou may have therapeutic potential for obesity-related metabolic diseases by increasing the capacity of energy expenditure in adipose tissues and liver through a mechanism involving the SIRT1-LKB1-AMPK axis.
Collapse
Affiliation(s)
- Yong Rao
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong Yu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lin Gao
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Ting Lu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhao Xu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong Liu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lian-Quan Gu
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ji-Ming Ye
- Molecular Pharmacology for Diabetes Group, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Zhi-Shu Huang
- Institute of Medicinal Chemistry, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
87
|
Skvarova Kramarzova K, Osborn MJ, Webber BR, DeFeo AP, McElroy AN, Kim CJ, Tolar J. CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells. Int J Mol Sci 2017; 18:ijms18061269. [PMID: 28613254 PMCID: PMC5486091 DOI: 10.3390/ijms18061269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 11/16/2022] Open
Abstract
Fanconi anemia (FA) is an inherited condition characterized by impaired DNA repair, physical anomalies, bone marrow failure, and increased incidence of malignancy. Gene editing holds great potential to precisely correct the underlying genetic cause such that gene expression remains under the endogenous control mechanisms. This has been accomplished to date only in transformed cells or their reprogrammed induced pluripotent stem cell counterparts; however, it has not yet been reported in primary patient cells. Here we show the ability to correct a mutation in Fanconi anemia D1 (FANCD1) primary patient fibroblasts. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system was employed to target and correct a FANCD1 gene deletion. Homologous recombination using an oligonucleotide donor was achieved and a pure population of modified cells was obtained by using inhibitors of poly adenosine diphosphate-ribose polymerase (poly ADP-ribose polymerase). FANCD1 function was restored and we did not observe any promiscuous cutting of the CRISPR/Cas9 at off target sites. This consideration is crucial in the context of the pre-malignant FA phenotype. Altogether we show the ability to correct a patient mutation in primary FANCD1 cells in a precise manner. These proof of principle studies support expanded application of gene editing for FA.
Collapse
Affiliation(s)
- Karolina Skvarova Kramarzova
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
- Childhood Leukemia Investigation Prague (CLIP), Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague 15006, Czech Republic.
| | - Mark J Osborn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
- Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Beau R Webber
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Anthony P DeFeo
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Amber N McElroy
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Chong Jai Kim
- Asan Institute for Life Sciences, Asan Medical Center, Asan-Minnesota Institute for Innovating Transplantation, Seoul 138-736, Korea.
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
88
|
Natsume T, Nishimura K, Minocherhomji S, Bhowmick R, Hickson ID, Kanemaki MT. Acute inactivation of the replicative helicase in human cells triggers MCM8-9-dependent DNA synthesis. Genes Dev 2017; 31:816-829. [PMID: 28487407 PMCID: PMC5435893 DOI: 10.1101/gad.297663.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/10/2017] [Indexed: 01/15/2023]
Abstract
DNA replication fork progression can be disrupted at difficult to replicate loci in the human genome, which has the potential to challenge chromosome integrity. This replication fork disruption can lead to the dissociation of the replisome and the formation of DNA damage. To model the events stemming from replisome dissociation during DNA replication perturbation, we used a degron-based system for inducible proteolysis of a subunit of the replicative helicase. We show that MCM2-depleted cells activate a DNA damage response pathway and generate replication-associated DNA double-strand breaks (DSBs). Remarkably, these cells maintain some DNA synthesis in the absence of MCM2, and this requires the MCM8-9 complex, a paralog of the MCM2-7 replicative helicase. We show that MCM8-9 functions in a homologous recombination-based pathway downstream from RAD51, which is promoted by DSB induction. This RAD51/MCM8-9 axis is distinct from the recently described RAD52-dependent DNA synthesis pathway that operates in early mitosis at common fragile sites. We propose that stalled replication forks can be restarted in S phase via homologous recombination using MCM8-9 as an alternative replicative helicase.
Collapse
Affiliation(s)
- Toyoaki Natsume
- Division of Molecular Cell Engineering, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Kohei Nishimura
- Division of Molecular Cell Engineering, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan
| | - Sheroy Minocherhomji
- Center for Chromosome Stability.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Rahul Bhowmick
- Center for Chromosome Stability.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, 2200 Copenhagen N, Denmark
| | - Masato T Kanemaki
- Division of Molecular Cell Engineering, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
89
|
Mcm10: A Dynamic Scaffold at Eukaryotic Replication Forks. Genes (Basel) 2017; 8:genes8020073. [PMID: 28218679 PMCID: PMC5333062 DOI: 10.3390/genes8020073] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
To complete the duplication of large genomes efficiently, mechanisms have evolved that coordinate DNA unwinding with DNA synthesis and provide quality control measures prior to cell division. Minichromosome maintenance protein 10 (Mcm10) is a conserved component of the eukaryotic replisome that contributes to this process in multiple ways. Mcm10 promotes the initiation of DNA replication through direct interactions with the cell division cycle 45 (Cdc45)-minichromosome maintenance complex proteins 2-7 (Mcm2-7)-go-ichi-ni-san GINS complex proteins, as well as single- and double-stranded DNA. After origin firing, Mcm10 controls replication fork stability to support elongation, primarily facilitating Okazaki fragment synthesis through recruitment of DNA polymerase-α and proliferating cell nuclear antigen. Based on its multivalent properties, Mcm10 serves as an essential scaffold to promote DNA replication and guard against replication stress. Under pathological conditions, Mcm10 is often dysregulated. Genetic amplification and/or overexpression of MCM10 are common in cancer, and can serve as a strong prognostic marker of poor survival. These findings are compatible with a heightened requirement for Mcm10 in transformed cells to overcome limitations for DNA replication dictated by altered cell cycle control. In this review, we highlight advances in our understanding of when, where and how Mcm10 functions within the replisome to protect against barriers that cause incomplete replication.
Collapse
|
90
|
Abstract
Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.
Collapse
Affiliation(s)
- Michalis Fragkos
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| | - Valeria Naim
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| |
Collapse
|
91
|
SIR2 suppresses replication gaps and genome instability by balancing replication between repetitive and unique sequences. Proc Natl Acad Sci U S A 2017; 114:552-557. [PMID: 28049846 DOI: 10.1073/pnas.1614781114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Replication gaps that persist into mitosis likely represent important threats to genome stability, but experimental identification of these gaps has proved challenging. We have developed a technique that allows us to explore the dynamics by which genome replication is completed before mitosis. Using this approach, we demonstrate that excessive allocation of replication resources to origins within repetitive regions, induced by SIR2 deletion, leads to persistent replication gaps and genome instability. Conversely, the weakening of replication origins in repetitive regions suppresses these gaps. Given known age- and cancer-associated changes in chromatin accessibility at repetitive sequences, we suggest that replication gaps resulting from misallocation of replication resources underlie age- and disease-associated genome instability.
Collapse
|
92
|
Gambus A. Termination of Eukaryotic Replication Forks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:163-187. [DOI: 10.1007/978-981-10-6955-0_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
93
|
Pozo PN, Cook JG. Regulation and Function of Cdt1; A Key Factor in Cell Proliferation and Genome Stability. Genes (Basel) 2016; 8:genes8010002. [PMID: 28025526 PMCID: PMC5294997 DOI: 10.3390/genes8010002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022] Open
Abstract
Successful cell proliferation requires efficient and precise genome duplication followed by accurate chromosome segregation. The Cdc10-dependent transcript 1 protein (Cdt1) is required for the first step in DNA replication, and in human cells Cdt1 is also required during mitosis. Tight cell cycle controls over Cdt1 abundance and activity are critical to normal development and genome stability. We review here recent advances in elucidating Cdt1 molecular functions in both origin licensing and kinetochore–microtubule attachment, and we describe the current understanding of human Cdt1 regulation.
Collapse
Affiliation(s)
- Pedro N Pozo
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
94
|
Inevitability and containment of replication errors for eukaryotic genome lengths spanning megabase to gigabase. Proc Natl Acad Sci U S A 2016; 113:E5765-74. [PMID: 27630194 PMCID: PMC5047159 DOI: 10.1073/pnas.1603241113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The replication of DNA is initiated at particular sites on the genome called replication origins (ROs). Understanding the constraints that regulate the distribution of ROs across different organisms is fundamental for quantifying the degree of replication errors and their downstream consequences. Using a simple probabilistic model, we generate a set of predictions on the extreme sensitivity of error rates to the distribution of ROs, and how this distribution must therefore be tuned for genomes of vastly different sizes. As genome size changes from megabases to gigabases, we predict that regularity of RO spacing is lost, that large gaps between ROs dominate error rates but are heavily constrained by the mean stalling distance of replication forks, and that, for genomes spanning ∼100 megabases to ∼10 gigabases, errors become increasingly inevitable but their number remains very small (three or less). Our theory predicts that the number of errors becomes significantly higher for genome sizes greater than ∼10 gigabases. We test these predictions against datasets in yeast, Arabidopsis, Drosophila, and human, and also through direct experimentation on two different human cell lines. Agreement of theoretical predictions with experiment and datasets is found in all cases, resulting in a picture of great simplicity, whereby the density and positioning of ROs explain the replication error rates for the entire range of eukaryotes for which data are available. The theory highlights three domains of error rates: negligible (yeast), tolerable (metazoan), and high (some plants), with the human genome at the extreme end of the middle domain.
Collapse
|