51
|
Park J, Park J, Pei Y, Xu J, Yeo Y. Pharmacokinetics and biodistribution of recently-developed siRNA nanomedicines. Adv Drug Deliv Rev 2016; 104:93-109. [PMID: 26686832 DOI: 10.1016/j.addr.2015.12.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/26/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023]
Abstract
Small interfering RNA (siRNA) is a promising drug candidate, expected to have broad therapeutic potentials toward various diseases including viral infections and cancer. With recent advances in bioconjugate chemistry and carrier technology, several siRNA-based drugs have advanced to clinical trials. However, most cases address local applications or diseases in the filtering organs, reflecting remaining challenges in systemic delivery of siRNA. The difficulty in siRNA delivery is in large part due to poor circulation stability and unfavorable pharmacokinetics and biodistribution profiles of siRNA. This review describes the pharmacokinetics and biodistribution of siRNA nanomedicines, focusing on those reported in the past 5years, and their pharmacological effects in selected disease models such as hepatocellular carcinoma, liver infections, and respiratory diseases. The examples discussed here will provide an insight into the current status of the art and unmet needs in siRNA delivery.
Collapse
|
52
|
Kim A, Cohen MS. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin Drug Discov 2016; 11:907-16. [PMID: 27327499 DOI: 10.1080/17460441.2016.1201057] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION In the era of precision medicine and sophisticated modern genetics, the discovery of the BRAF(V600) inhibitor, vemurafenib, quickly became the model for targeted therapy in melanomas. As early as 2002, the majority of metastatic melanomas were described to harbor the BRAF(V600) mutation, setting the stage for an explosion of interest for targeting this protein as a novel therapeutic strategy. The highly selective BRAF(V600) inhibitor, vemurafenib, was identified initially through a large-scale drug screen. AREAS COVERED Here we examine vemurafenib's journey from discovery to clinical use in metastatic melanoma. Topics covered include preclinical data, single agent Phase 1,2 and 3 clinical trials, resistance issues and mechanisms, adverse effects including the development of squamous cell cancers, and combination trials. EXPERT OPINION Due to its tolerance, low toxicity profile, rapid tumor response, and improved outcomes in melanoma patients with BRAF(V600) mutations, vemurafenib was advanced rapidly through clinical trials to receive FDA approval in 2011. While its efficacy is well documented, durability has become an issue for most patients who experience therapeutic resistance in approximately 6-8 months. In addition, a concerning toxicity observed in patients taking the drug include development of localized cutaneous squamous cell carcinomas (SCCs). It is hypothesized that drug resistance and SCC development result from a similar paradoxical activation of protein signaling pathways, specifically MAPK. Identification of these mechanisms has led to additional treatment strategies involving new combination therapies.
Collapse
Affiliation(s)
- Alex Kim
- a Department of Surgery , University of Michigan , Ann Arbor , MI , USA
| | - Mark S Cohen
- a Department of Surgery , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
53
|
Santulli P, Marcellin L, Chouzenoux S, Boulard V, Just PA, Nicco C, Chereau C, Tosti C, Chapron C, Batteux F. Role of the protein kinase BRAF in the pathogenesis of endometriosis. Expert Opin Ther Targets 2016; 20:1017-29. [PMID: 27087167 DOI: 10.1080/14728222.2016.1180367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Mitogen-activated protein kinases (MAPKs) are involved in the proliferation and survival of endometriotic lesions. Vemurafenib (PLX4032) is a novel protein kinase inhibitor that targets BRAF, a member of the MAPK pathway. The present study tested the in vitro and in vivo effects of PLX4032 on endometriotic cells. RESEARCH DESIGN AND METHODS We conducted a laboratory study in a tertiary-care university hospital from January 2013 to September 2013. We enrolled a cohort of 40 patients: 20 with histologically proven endometriosis and 20 unaffected women. A thorough surgical examination of the abdominopelvic cavity was performed on all of the study participants. Ex vivo stromal and epithelial cells were extracted from endometrial and endometriotic biopsies from both sets of patients. Proliferation, apoptosis, pERK/ERK ratio, cell cycle regulation (Cyclin D1 and CDK4) and inflammation (PTGS2) were explored with and without PLX4032 treatment. Human endometriotic lesions were implanted into 40 nude mice that were separated into two groups according to PLX4032 or vehicle treatment, which they received for four weeks, before sacrifice and histological examination. RESULTS Treating endometriotic cells with PLX4032 abrogated the phosphorylation of ERK, significantly reducing the pERK/ERK ratio in both epithelial and stromal cells from endometriotic women compared to the controls (p < 0.05). In addition, treatment with PLX4032 significantly decreased proliferation in both stromal and epithelial cells with a concomitant decrease in Cyclin D1/CDK4 complex and PTGS2 levels. Using a murine model of endometriosis, we observed that PLX4032-treated mice displayed a significant decrease in implant volume compared to the initial size; a slight, but non-significant, increase in size was observed in the vehicle-treated mice. CONCLUSION Our data suggest that MAPKs and BRAF are involved in the pathogenesis of endometriosis. PLX4032-induced inhibition of BRAF controlled endometriotic growth, both in vitro and in vivo, and could constitute a promising target for the treatment of endometriosis.
Collapse
Affiliation(s)
- Pietro Santulli
- a Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique - Hôpitaux de Paris (AP-HP), Groupe Hospitalier Universitaire (GHU) Ouest, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine , Université Paris Descartes , Paris , France.,b Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016, Equipe Pr Batteux , Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Louis Marcellin
- a Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique - Hôpitaux de Paris (AP-HP), Groupe Hospitalier Universitaire (GHU) Ouest, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine , Université Paris Descartes , Paris , France.,b Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016, Equipe Pr Batteux , Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Sandrine Chouzenoux
- b Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016, Equipe Pr Batteux , Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Veronique Boulard
- b Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016, Equipe Pr Batteux , Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | | | - Carole Nicco
- b Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016, Equipe Pr Batteux , Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Christiane Chereau
- b Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016, Equipe Pr Batteux , Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Claudia Tosti
- d Obstetrics and Gynecology, Department of Molecular and Developmental Medicine , University of Siena , Siena , Italy
| | - Charles Chapron
- a Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique - Hôpitaux de Paris (AP-HP), Groupe Hospitalier Universitaire (GHU) Ouest, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynecology Obstetrics II and Reproductive Medicine , Université Paris Descartes , Paris , France.,b Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016, Equipe Pr Batteux , Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - Frédéric Batteux
- b Department of Development, Reproduction and Cancer, Institut Cochin, INSERM U1016, Equipe Pr Batteux , Université Paris Descartes, Sorbonne Paris Cité , Paris , France.,e Department of Immunology , Hôpital Cochin, AP-HP , Paris , France
| |
Collapse
|
54
|
Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives. Eur J Med Chem 2016; 109:314-41. [PMID: 26807863 DOI: 10.1016/j.ejmech.2016.01.012] [Citation(s) in RCA: 426] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 12/17/2022]
Abstract
The protein kinases regulate cellular functions such as transcription, translation, proliferation, growth and survival by the process of phosphorylation. Over activation of signaling pathways play a major role in oncogenesis. The PI3K signaling pathway is dysregulated almost in all cancers due to the amplification, genetic mutation of PI3K gene and the components of the PI3K pathway themselves. Stimulation of the PI3K/Akt/mTOR and Ras/Raf/MEK/ERK pathways enhances growth, survival, and metabolism of cancer cells. Recently, the PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways have been identified as promising therapeutic targets for cancer therapy. The kinase inhibitors with enhanced specificity and improved pharmacokinetics have been considered for design and development of anticancer agents. This review focuses primarily on the Ras/Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways as therapeutic targets of anticancer drugs, their specific and dual inhibitors, structure activity relationships (SARs) and inhibitors under clinical trials.
Collapse
Affiliation(s)
- Vivek Asati
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Debarshi Kar Mahapatra
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India.
| |
Collapse
|
55
|
An S, Yang Y, Ward R, Liu Y, Guo XX, Xu TR. A-Raf: A new star of the family of raf kinases. Crit Rev Biochem Mol Biol 2015; 50:520-31. [PMID: 26508523 DOI: 10.3109/10409238.2015.1102858] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Ras-Raf-MEK-MAPK (mitogen-activated protein kinase)-signaling pathway plays a key role in the regulation of many cellular functions, including cell proliferation, differentiation and transformation, by transmitting signals from membrane receptors to various cytoplasmic and nuclear targets. One of the key components of this pathway is the serine/threonine protein kinase, Raf. The Raf family kinases (A-Raf, B-Raf and C-Raf) have been intensively studied since being identified in the early 1980s as retroviral oncogenes, especially with respect to the discovery of activating mutations of B-Raf in a large number of tumors which led to intensified efforts to develop drugs targeting Raf kinases. This also resulted in a rapid increase in our knowledge of the biological functions of the B-Raf and C-Raf isoforms, which may in turn be contrasted with the little that is known about A-Raf. The biological functions of A-Raf remain mysterious, although it appears to share some of the basic properties of the other two isoforms. Recently, emerging evidence has begun to reveal the functions of A-Raf, of which some are kinase-independent. These include the inhibition of apoptosis by binding to MST2, acting as safeguard against oncogenic transformation by suppressing extracellular signal-regulated kinases (ERK) activation and playing a role in resistance to Raf inhibitors. In this review, we discuss the regulation of A-Raf protein expression, and the roles of A-Raf in apoptosis and cancer, with a special focus on its role in resistance to Raf inhibitors. We also describe the scaffold functions of A-Raf and summarize the unexpected complexity of Raf signaling.
Collapse
Affiliation(s)
- Su An
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Yang Yang
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Richard Ward
- b Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow , Scotland , UK
| | - Ying Liu
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Xiao-Xi Guo
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| | - Tian-Rui Xu
- a Faculty of Life Science and Technology , Kunming University of Science and Technology , Kunming , Yunnan , China and
| |
Collapse
|
56
|
Truncated RAF kinases drive resistance to MET inhibition in MET-addicted cancer cells. Oncotarget 2015; 6:221-33. [PMID: 25473895 PMCID: PMC4381590 DOI: 10.18632/oncotarget.2771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 11/14/2014] [Indexed: 01/06/2023] Open
Abstract
Constitutively active receptor tyrosine kinases (RTKs) are known oncogenic drivers and provide valuable therapeutic targets in many cancer types. However, clinical efficacy of RTK inhibitors is limited by intrinsic and acquired resistance. To identify genes conferring resistance to inhibition of the MET RTK, we conducted a forward genetics screen in the GTL-16 gastric cancer cell line, carrying MET amplification and exquisitely sensitive to MET inhibition. Cells were transduced with three different retroviral cDNA expression libraries and selected for growth in the presence of the MET inhibitor PHA-665752. Selected cells displayed robust and reproducible enrichment of library-derived cDNAs encoding truncated forms of RAF1 and BRAF proteins, whose silencing reversed the resistant phenotype. Transduction of naïve GTL-16 cells with truncated, but not full length, RAF1 and BRAF conferred in vitro and in vivo resistance to MET inhibitors, which could be reversed by MEK inhibition. Induction of resistance by truncated RAFs was confirmed in other MET-addicted cell lines, and further extended to EGFR-addicted cells. These data show that truncated RAF1 and BRAF proteins, recently described as products of genomic rearrangements in gastric cancer and other malignancies, have the ability to render neoplastic cells resistant to RTK-targeted therapy.
Collapse
|
57
|
Abstract
RAF family kinases were among the first oncoproteins to be described more than 30 years ago. They primarily act as signalling relays downstream of RAS, and their close ties to cancer have fuelled a large number of studies. However, we still lack a systems-level understanding of their regulation and mode of action. The recent discovery that the catalytic activity of RAF depends on an allosteric mechanism driven by kinase domain dimerization is providing a vital new piece of information towards a comprehensive model of RAF function. The fact that current RAF inhibitors unexpectedly induce ERK signalling by stimulating RAF dimerization also calls for a deeper structural characterization of this family of kinases.
Collapse
|
58
|
Matusewicz L, Meissner J, Toporkiewicz M, Sikorski AF. The effect of statins on cancer cells--review. Tumour Biol 2015; 36:4889-904. [PMID: 26002574 DOI: 10.1007/s13277-015-3551-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/08/2015] [Indexed: 01/10/2023] Open
Abstract
Statins [3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, abbreviated HMGCR) inhibitors], are well-known cholesterol-depleting agents. Since the early 1990 s, it has been known that statins could be successfully used in cancer therapy, but the exact mechanism(s) of statin activity remains unclear and is now an extensive focus of investigation. So far, it was proven that there are several mechanisms that are activated by statins in cancer cells; some of them are leading to cell death. Statins exert different effects depending on cell line, statin concentration, duration of exposure of cells to statins, and the type of statin being used. It was shown that statins may inhibit the cell cycle by influence on both expression and activity of proteins involved in cell-cycle progression such as cyclins, cyclin-dependent kinases (CDK), and/or inhibitors of CDK. Also, statins may induce apoptosis by both intrinsic and extrinsic pathways. Statin treatment may lead to changes in molecular pathways dependent on the EGF receptor, mainly via inhibition of isoprenoid synthesis. By inhibition of the synthesis of cholesterol, statins may destabilize the cell membrane. Moreover, statins may change the arrangement of transporter OATP1, the localization of HMGCR, and could induce conformational changes in GLUT proteins. In this review, we have tried to gather and compare most of the recent outcomes of the research in this field. We have also attempted to explain why hydrophilic statins are less effective than hydrophobic statins. Finally, we have gathered results from in vivo experiments, presenting the use of statins in combined therapies and discussed a number of molecular targets that could serve as biomarkers predisposing to statin therapy.
Collapse
Affiliation(s)
- Lucyna Matusewicz
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | | | | | | |
Collapse
|
59
|
Eliades P, Flaherty KT, Tsao H. Oncogene-directed small molecule inhibitors for the treatment of cutaneous melanoma. Melanoma Manag 2015; 2:133-147. [PMID: 30190843 DOI: 10.2217/mmt.15.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Achievements in cancer genetics and molecular biology have revolutionized the treatment options available for advanced melanoma. Patients with certain molecularly defined melanomas have been the most fortunate beneficiaries of recently US FDA-approved therapies that target aberrant MAPK pathway signaling, yet response rates and duration of response remain suboptimal. Furthermore, many patients harbor melanomas for which no approved targeted therapies currently exist. Since the approval of vemurafenib, a selective BRAF V600E inhibitor, in 2011, there has been a surge of preclinical and clinical studies aimed at developing novel targeted therapies for a wide range of molecularly defined melanomas. In this review, we will examine the present status and future potential of molecularly targeted therapies directed at the most significant oncogenic signaling pathways in melanoma.
Collapse
Affiliation(s)
- Philip Eliades
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Tufts University School of Medicine, Boston, MA 02111, USA.,Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Tufts University School of Medicine, Boston, MA 02111, USA
| | - Keith T Flaherty
- Division of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA.,Division of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
60
|
de Iriarte Rodríguez R, Magariños M, Pfeiffer V, Rapp UR, Varela-Nieto I. C-Raf deficiency leads to hearing loss and increased noise susceptibility. Cell Mol Life Sci 2015; 72:3983-98. [PMID: 25975225 PMCID: PMC4575698 DOI: 10.1007/s00018-015-1919-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022]
Abstract
The family of RAF kinases transduces extracellular information to the nucleus, and their activation is crucial for cellular regulation on many levels, ranging from embryonic development to carcinogenesis. B-RAF and C-RAF modulate neurogenesis and neuritogenesis during chicken inner ear development. C-RAF deficiency in humans is associated with deafness in the rare genetic insulin-like growth factor 1 (IGF-1), Noonan and Leopard syndromes. In this study, we show that RAF kinases are expressed in the developing inner ear and in adult mouse cochlea. A homozygous C-Raf deletion in mice caused profound deafness with no evident cellular aberrations except for a remarkable reduction of the K+ channel Kir4.1 expression, a trait that suffices as a cause of deafness. To explore the role of C-Raf in cellular protection and repair, heterozygous C-Raf+/− mice were exposed to noise. A reduced C-RAF level negatively affected hearing preservation in response to noise through mechanisms involving the activation of JNK and an exacerbated apoptotic response. Taken together, these results strongly support a role for C-RAF in hearing protection.
Collapse
Affiliation(s)
- Rocío de Iriarte Rodríguez
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029, Madrid, Spain.,Centre for Biomedical Network Research (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Marta Magariños
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029, Madrid, Spain. .,Centre for Biomedical Network Research (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain. .,Departamento de Biología, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain.
| | - Verena Pfeiffer
- Institute for Medical Radiation and Cell Research (MSZ), University of Würzburg, Versbacher Strasse 5, 97078, Würzburg, Germany.,Institute for Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070, Würzburg, Germany
| | - Ulf R Rapp
- Institute for Medical Radiation and Cell Research (MSZ), University of Würzburg, Versbacher Strasse 5, 97078, Würzburg, Germany.,Molecular Mechanisms of Lung Cancer, Max Planck Institute for Heart and Lung Research, Parkstr. 1, 61231, Bad Nauheim, Germany
| | - Isabel Varela-Nieto
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Arturo Duperier 4, 28029, Madrid, Spain.,Centre for Biomedical Network Research (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
61
|
Li XL, Chen XQ, Zhang MN, Chen N, Nie L, Xu M, Gong J, Shen PF, Su ZZ, Weng X, Tan JY, Zhao T, Zeng H, Zhou Q. SOX9 was involved in TKIs resistance in renal cell carcinoma via Raf/MEK/ERK signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:3871-3881. [PMID: 26097571 PMCID: PMC4466958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 03/28/2015] [Indexed: 06/04/2023]
Abstract
Renal cell carcinoma (RCC) is common genitourinary malignancy in human, 30-40% of patients with RCC would be diagnosed with metastatic RCC (mRCC). Even in the era of targeted therapy, patients with mRCC would inevitably progress due to drug resistance. Herein, exploration of the mechanisms of resistance is noteworthy to study. In the present study, we firstly reported the expression profile of SOX9 in renal carcinoma cells and tissues, and found that its expression was significantly associated with Fuhrman grading. Dual luciferase analysis confirmed that Raf/MEK/ERK pathway could directly be regulated by SOX9, and sequential experiments demonstrated that, renal carcinoma cells could sensitize to Sorafenib/Sunitinib through Raf/MEK/ERK signaling pathway inhibition regulated by SOX9 down-regulation. In a small cases with mRCC treated with Sorafenib/Sunitinib (n=38), comparative analysis showed that patients with SOX9 (-) had much better therapeutic response to TKIs than those with SOX9 (+) (PD: 9.1% vs. 56.2%, P=0.002, DCR: 90.9% vs. 43.8%, P=0.002). Based on these findings, we concluded that, SOX9 was firstly described to be highly expressed in renal cell carcinoma, and its expression was involved in TKIs drug resistance through activation of Raf/MEK/ERK pathway. In vitro, patients with SOX9 (-) was related to better response to TKIs treatment than those with SOX9 (+). SOX9 could be expected to be a promising biomarker predicting TKIs response and even expected to be another novel target in the treatment of mRCC.
Collapse
Affiliation(s)
- Xing-Lan Li
- Department of Pathology, West China Hospital, Sichuan UniversityChengdu, P. R. China
| | - Xue-Qin Chen
- Department of Pathology, West China Hospital, Sichuan UniversityChengdu, P. R. China
| | - Meng-Ni Zhang
- Department of Pathology, West China Hospital, Sichuan UniversityChengdu, P. R. China
| | - Ni Chen
- Department of Pathology, West China Hospital, Sichuan UniversityChengdu, P. R. China
| | - Ling Nie
- Department of Pathology, West China Hospital, Sichuan UniversityChengdu, P. R. China
| | - Miao Xu
- Department of Pathology, West China Hospital, Sichuan UniversityChengdu, P. R. China
| | - Jing Gong
- Department of Pathology, West China Hospital, Sichuan UniversityChengdu, P. R. China
| | - Peng-Fei Shen
- Department of Urology, West China Hospital, Sichuan UniversityChengdu, P. R. China
| | - Zheng-Zheng Su
- Department of Pathology, West China Hospital, Sichuan UniversityChengdu, P. R. China
| | - Xin Weng
- Department of Pathology, West China Hospital, Sichuan UniversityChengdu, P. R. China
| | - Jun-Ya Tan
- Department of Pathology, West China Hospital, Sichuan UniversityChengdu, P. R. China
| | - Tao Zhao
- Department of Urology, West China Hospital, Sichuan UniversityChengdu, P. R. China
| | - Hao Zeng
- Department of Urology, West China Hospital, Sichuan UniversityChengdu, P. R. China
| | - Qiao Zhou
- Department of Pathology, West China Hospital, Sichuan UniversityChengdu, P. R. China
| |
Collapse
|
62
|
In vitro and in vivo antitumor activity of a novel semisynthetic derivative of cucurbitacin B. PLoS One 2015; 10:e0117794. [PMID: 25674792 PMCID: PMC4326133 DOI: 10.1371/journal.pone.0117794] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/31/2014] [Indexed: 01/11/2023] Open
Abstract
Lung cancer is the most deadly type of cancer in humans, with non-small-cell lung cancer (NSCLC) being the most frequent and aggressive type of lung cancer showing high resistance to radiation and chemotherapy. Despite the outstanding progress made in anti-tumor therapy, discovering effective anti-tumor drugs is still a challenging task. Here we describe a new semisynthetic derivative of cucurbitacin B (DACE) as a potent inhibitor of NSCLC cell proliferation. DACE arrested the cell cycle of lung epithelial cells at the G2/M phase and induced cell apoptosis by interfering with EGFR activation and its downstream signaling, including AKT, ERK, and STAT3. Consistent with our in vitro studies, intraperitoneal application of DACE significantly suppressed the growth of mouse NSCLC that arises from type II alveolar pneumocytes due to constitutive expression of a human oncogenic c-RAF kinase (c-RAF-1-BxB) transgene in these cells. Taken together, these findings suggest that DACE is a promising lead compound for the development of an anti-lung-cancer drug.
Collapse
|
63
|
Cox AD, Der CJ. Ras history: The saga continues. Small GTPases 2014; 1:2-27. [PMID: 21686117 DOI: 10.4161/sgtp.1.1.12178] [Citation(s) in RCA: 534] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 12/24/2022] Open
Abstract
Although the roots of Ras sprouted from the rich history of retrovirus research, it was the discovery of mutationally activated RAS genes in human cancer in 1982 that stimulated an intensive research effort to understand Ras protein structure, biochemistry and biology. While the ultimate goal has been developing anti-Ras drugs for cancer treatment, discoveries from Ras have laid the foundation for three broad areas of science. First, they focused studies on the origins of cancer to the molecular level, with the subsequent discovery of genes mutated in cancer that now number in the thousands. Second, elucidation of the biochemical mechanisms by which Ras facilitates signal transduction established many of our fundamental concepts of how a normal cell orchestrates responses to extracellular cues. Third, Ras proteins are also founding members of a large superfamily of small GTPases that regulate all key cellular processes and established the versatile role of small GTP-binding proteins in biology. We highlight some of the key findings of the last 28 years.
Collapse
Affiliation(s)
- Adrienne D Cox
- Department of Radiation Oncology; Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | | |
Collapse
|
64
|
Fazio N, Abdel-Rahman O, Spada F, Galdy S, De Dosso S, Capdevila J, Scarpa A. RAF signaling in neuroendocrine neoplasms: from bench to bedside. Cancer Treat Rev 2014; 40:974-979. [PMID: 24998490 DOI: 10.1016/j.ctrv.2014.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 12/23/2022]
Abstract
Neuroendocrine neoplasms are a low-incidence and heterogeneous group of malignancies. In the advanced stage, several therapeutic options can be discussed, including molecular-targeted agents, but biological predicting factors are lacking. A number of molecular targets have been studied over the last decade leading to several phase II studies; however, very few agents progressed to phase III clinical trials. The RAF family of proteins belongs to the mitogen-activated protein kinase (MAPK) pathway, that has a role in several types of cancers, particularly related to BRAF mutations. Indeed BRAF inhibitors have been reported as being effective, mainly in melanoma. However, in neuroendocrine neoplasms BRAF mutations are extremely rare and RAF-1 activation has been reported to inhibit tumor growth in a pre-clinical setting. Therefore, in this field, RAF-1 activators rather than BRAF inhibitors should be clinically investigated. This article reviews the basic science as well as clinical data of RAF signaling in advanced neuroendocrine neoplasms with special emphasis on the potential role of both RAF activators and inhibitors.
Collapse
Affiliation(s)
- Nicola Fazio
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, Milan, Italy.
| | - Omar Abdel-Rahman
- Clinical Oncology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Francesca Spada
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, Milan, Italy
| | - Salvatore Galdy
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology, Milan, Italy
| | - Sara De Dosso
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Jaume Capdevila
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Aldo Scarpa
- Department of Pathology and Diagnostics, ARC-NET Research Center, University of Verona, Italy
| |
Collapse
|
65
|
Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 2014; 14:455-67. [PMID: 24957944 PMCID: PMC4250230 DOI: 10.1038/nrc3760] [Citation(s) in RCA: 619] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of mutationally activated BRAF in many cancers altered our conception of the part played by the RAF family of protein kinases in oncogenesis. In this Review, we describe the development of BRAF inhibitors and the results that have emerged from their analysis in both the laboratory and the clinic. We discuss the spectrum of RAF mutations in human cancer and the complex interplay between the tissue of origin and the response to RAF inhibition. Finally, we enumerate mechanisms of resistance to BRAF inhibition that have been characterized and postulate how strategies of RAF pathway inhibition may be extended in scope to benefit not only the thousands of patients who are diagnosed annually with BRAF-mutated metastatic melanoma but also the larger patient population with malignancies harbouring mutationally activated RAF genes that are ineffectively treated with the current generation of BRAF kinase inhibitors.
Collapse
Affiliation(s)
| | | | - Frank McCormick
- Corresponding Authors: Frank McCormick & Martin McMahon, Diller Family Cancer Research Bldg., 1450 Third Street, University of California, San Francisco, CA 94158, USA, &
| | - Martin McMahon
- Corresponding Authors: Frank McCormick & Martin McMahon, Diller Family Cancer Research Bldg., 1450 Third Street, University of California, San Francisco, CA 94158, USA, &
| |
Collapse
|
66
|
Rahman M, Salajegheh A, Smith R, Lam AY. BRAF inhibitors: From the laboratory to clinical trials. Crit Rev Oncol Hematol 2014; 90:220-232. [DOI: 10.1016/j.critrevonc.2013.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/07/2013] [Accepted: 12/09/2013] [Indexed: 12/11/2022] Open
|
67
|
Madureira P, de Mello RA. BRAF and MEK gene rearrangements in melanoma: implications for targeted therapy. Mol Diagn Ther 2014; 18:285-291. [PMID: 24403169 DOI: 10.1007/s40291-013-0081-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The incidence of melanoma has been continuously increasing in the last decades, and faster than any other cancers. Melanoma is the leading cause of death from skin disease. It is estimated that 76,690 Americans will be diagnosed with melanoma in 2013 and 9,480 will die from the disease. Molecular mechanisms underlying melanoma pathogenesis have been extensively studied and novel therapeutic weapons developed. BRAF and MEK pathways emerged as key players in this field. Recently, novel drugs such as vemurafenib, dabrafenib and trametinib were approved for treatment of advanced disease harbouring BRAF V600E and V600K mutations. In addition, an effective strategy to build upon the successes seen with dabrafenib and trametinib monotherapies has been to combine these agents (CombiDT), with the goal of further improving response rates and delaying resistance. Our review gives an overall point of view concerning BRAF and MEK pathways as well as the role of BRAF and MEK testing in directing the personalised treatment of patients with metastatic melanoma.
Collapse
Affiliation(s)
- Pedro Madureira
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | | |
Collapse
|
68
|
Griewank KG, Scolyer RA, Thompson JF, Flaherty KT, Schadendorf D, Murali R. Genetic alterations and personalized medicine in melanoma: progress and future prospects. J Natl Cancer Inst 2014; 106:djt435. [PMID: 24511108 DOI: 10.1093/jnci/djt435] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High-throughput sequencing technologies are providing new insights into the genetic alterations involved in melanomagenesis. It appears likely that most genetic events important in the pathogenesis of melanoma will be discovered over the next few years. Genetic analysis is also increasingly being used to direct patient care. In parallel with the discovery of new genes and the elucidation of molecular pathways important in the development of melanoma, therapies targeting these pathways are becoming available. In other words, the age of personalized medicine has arrived, characterized by molecular profiling of melanoma to identify the relevant genetic alterations and the abnormal signaling mechanisms involved, followed by selection of optimal, individualized therapies. In this review, we summarize the key genetic alterations in melanoma and the development of targeted agents against melanomas bearing specific mutations. These developments in melanoma serve as a model for the implementation of personalized medicine for patients with all cancers.
Collapse
Affiliation(s)
- Klaus G Griewank
- Affiliations of authors: Department of Dermatology, University Hospital, University Duisburg-Essen, Essen, Germany (KGG, DS); Royal Prince Alfred Hospital, Camperdown, NSW, Australia (RAS); University of Sydney, Camperdown, NSW, Australia (RAS, JFT); Melanoma Institute Australia, North Sydney, NSW, Australia (RAS, JFT); Center for Melanoma, Massachusetts General Hospital Cancer Center, Boston, MA (KTF); Department of Pathology, and Center for Molecular Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (RM)
| | | | | | | | | | | |
Collapse
|
69
|
Tumour immunogenicity, antigen presentation and immunological barriers in cancer immunotherapy. ACTA ACUST UNITED AC 2014; 2014. [PMID: 24634791 DOI: 10.1155/2014/734515] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the beginning of the 20th century, scientists have tried to stimulate the anti-tumour activities of the immune system to fight against cancer. However, the scientific effort devoted on the development of cancer immunotherapy has not been translated into the expected clinical success. On the contrary, classical anti-neoplastic treatments such as surgery, radiotherapy and chemotherapy are the first line of treatment. Nevertheless, there is compelling evidence on the immunogenicity of cancer cells, and the capacity of the immune system to expand cancer-specific effector cytotoxic T cells. However, the effective activation of anti-cancer T cell responses strongly depends on efficient tumour antigen presentation from professional antigen presenting cells such as dendritic cells (DCs). Several strategies have been used to boost DC antigen presenting functions, but at the end cancer immunotherapy is not as effective as would be expected according to preclinical models. In this review we comment on these discrepancies, focusing our attention on the contribution of regulatory T cells and myeloid-derived suppressor cells to the lack of therapeutic success of DC-based cancer immunotherapy.
Collapse
|
70
|
Rahman M, Salajegheh A, Smith R, Lam AY. B-Raf mutation: A key player in molecular biology of cancer. Exp Mol Pathol 2013; 95:336-42. [DOI: 10.1016/j.yexmp.2013.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 12/21/2022]
|
71
|
Lito P, Rosen N, Solit DB. Tumor adaptation and resistance to RAF inhibitors. Nat Med 2013; 19:1401-9. [DOI: 10.1038/nm.3392] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
|
72
|
Abstract
The incidence of malignant melanoma is increasing annually. Early stages can be cured with surgical intervention but metastatic disease has generally had a dismal prognosis with few effective interventions. A half of all melanomas possess a BRAF mutation, which can be targeted by specific inhibitors. Vemurafenib is an orally active, purposely designed mutant BRAF inhibitor, which has recently been shown to have a survival benefit measured in months in metastatic patients. In this article, the authors discuss the scientific rationale, drug development process and clinical trials that have led to vemurafenib becoming the first BRAF inhibitor approved for the treatment of patients with mutant BRAF metastatic melanoma.
Collapse
Affiliation(s)
- Heather M Shaw
- Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex, HA6 2RN, UK
| | | |
Collapse
|
73
|
Koziel K, Smigelskaite J, Drasche A, Enthammer M, Ashraf MI, Khalid S, Troppmair J. RAF and antioxidants prevent cell death induction after growth factor abrogation through regulation of Bcl-2 proteins. Exp Cell Res 2013; 319:2728-38. [PMID: 23933517 PMCID: PMC3809515 DOI: 10.1016/j.yexcr.2013.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/19/2013] [Accepted: 07/29/2013] [Indexed: 01/31/2023]
Abstract
We have shown previously that mitochondrial ROS production is essential to turn growth factor (GF) removal into cell death. Activated RAF, AKT, Bcl-2 and antioxidants protected equally well against ROS accumulation and subsequent death. Here we investigated whether protection by survival signaling and antioxidants utilizes shared or distinct targets. Using serum deprivation from NIH 3T3 fibroblasts and IL-3 withdrawal from promyeloid 32D cells, we showed that pro-survival signaling by activated RAF but not AKT prevented the decline in Mcl-1 following GF abrogation. GF starvation increased levels of Bim in both model systems, which was prevented by RAF in 32D cells but not in NIH 3T3 fibroblasts. RAF and AKT suppressed activation and mitochondrial translocation of BAX. Also, antioxidant treatment efficiently prevented BAX activation and death of 32D cells but showed little effect on its mitochondrial translocation. No significant impact of antioxidant treatment on Bim or Mcl-1 expression was observed. ROS produced during GF abrogation also did not alter the activity of intracellular signaling pathways, which have been implicated previously in cell killing by pro-oxidants. Together these data suggest Bcl-2 family proteins as convergence point for RAF and ROS in life and death decisions.
Collapse
Affiliation(s)
- Katarzyna Koziel
- Daniel Swarovski Research Laboratory, Department of Visceral-, Transplant- and Thoracic Surgery, Innsbruck Medical University, Austria
| | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
The protein kinase B-Raf is a critical component of the Ras/MAPK signaling pathway. An oncogenic B-Raf mutation that constitutively activates the kinase was identified in z50% of melanoma patients and in other cancers. A structure-guided drug discovery approach enabled the development of Zelboraf, a targeted inhibitor of oncogenic B-Raf. This drug has been used successfully in the clinic to treat metastatic melanoma patients harboring B-Raf mutations.
Collapse
Affiliation(s)
- Matthew J Davis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
75
|
BRAF mutations in melanoma and colorectal cancer: a single oncogenic mutation with different tumour phenotypes and clinical implications. Crit Rev Oncol Hematol 2012; 87:55-68. [PMID: 23246082 DOI: 10.1016/j.critrevonc.2012.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/15/2012] [Accepted: 11/14/2012] [Indexed: 01/08/2023] Open
Abstract
BRAF is an oncogene encoding a serine-threonine protein kinase involved in the MAPK signalling cascade. BRAF acts as direct effector of RAS and through the activation of MEK, promotes tumour growth and survival. Approximately, 8% of cancers carry a BRAF mutation. However, the prevalence of this mutation varies significantly across different tumour types. There has been increasing interest in the specific role of BRAF mutations in cancer growth and progression over the last few years, especially since the clinical introduction of therapeutic BRAF inhibitors. In this paper we review the published literature on the role of BRAF mutations in melanoma and colorectal cancer, focusing on similarities and differences of BRAF mutations with respect to frequency, demographics, risk factors, mutation-associated clinico-pathologic and molecular features and clinical implications between these two diseases.
Collapse
|
76
|
Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 2012; 11:873-86. [PMID: 23060265 DOI: 10.1038/nrd3847] [Citation(s) in RCA: 571] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of driver oncogenes has provided important targets for drugs that can change the landscape of cancer therapies. One such example is the BRAF oncogene, which is found in about half of all melanomas as well as several other cancers. As a druggable kinase, oncogenic BRAF has become a crucial target of small-molecule drug discovery efforts. Following a rapid clinical development path, vemurafenib (Zelboraf; Plexxikon/Roche) was approved for the treatment of BRAF-mutated metastatic melanoma in the United States in August 2011 and the European Union in February 2012. This Review describes the underlying biology of BRAF, the technology used to identify vemurafenib and its clinical development milestones, along with future prospects based on lessons learned during its development.
Collapse
Affiliation(s)
- Gideon Bollag
- Plexxikon, 91 Bolivar Drive, Berkeley, California 94710, USA.
| | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
In recent years, melanoma research has undergone a renaissance. What was once viewed, at least in the metastatic setting, as an intractable and untreatable disease is now revealing its molecular weaknesses. 2011 was a landmark year for melanoma therapy, with two new agents, the anti-CTLA4 antibody ipilimumab and the BRAF inhibitor vemurafenib, shown to confer a survival benefit in randomized phase III clinical trials. Overlooked in the recent flurry of interest that has accompanied the development of these drugs, melanoma is in fact an ancient disease that has long frustrated attempts at therapeutic interventions. In this article, we trace the history of melanoma: from the earliest known cases of melanoma in pre-Colombian South America, through the explorations of the Victorian anatomists right up to the molecular biology revolution of the 20th century that allowed for the identification of the key driving events required for melanomagenesis. We further outline how observations about melanoma heterogeneity, first made over 190 years ago, continue to drive our efforts to reduce melanoma to the level of a chronic, manageable disease and ultimately to cure it entirely.
Collapse
Affiliation(s)
- Vito W. Rebecca
- Department of Molecular Oncology, The Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
- The Comprehensive Melanoma Research Center, The Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Vernon K. Sondak
- The Comprehensive Melanoma Research Center, The Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
- Department of Cutaneous Oncology, The Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Keiran S. M. Smalley
- Department of Molecular Oncology, The Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
- The Comprehensive Melanoma Research Center, The Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
- Department of Cutaneous Oncology, The Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| |
Collapse
|
78
|
Piérard GE. Cell proliferation in cutaneous malignant melanoma: relationship with neoplastic progression. ISRN DERMATOLOGY 2012; 2012:828146. [PMID: 22363864 PMCID: PMC3265211 DOI: 10.5402/2012/828146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/30/2011] [Indexed: 12/12/2022]
Abstract
The establishment of the diagnosis of cutaneous malignant melanoma (CMM) always calls for histopathological confirmation. Further to the recognition of the CMM aspects, immunohistochemistry is helpful, in particular, in determining the size of the replicative compartment and the activity in each of the cell cycle phases (G(1), S, G(2), M). The involvement of cancer stem cells and transient amplifier cells in CMM genesis is beyond doubt. The proliferation activity is indicative of the neoplastic progression and is often related to the clinical growth rate of the neoplasm. It allows to distinguish high-risk CMM commonly showing a high growth rate, from those CMMs of lower malignancy associated with a more limited growth rate. The recruitment and progression of CMM cells in the cell cycle of proliferation depend on mitogen-activated protein kinase (MAPK) pathway and result from a loss of control normally involving a series of key regulatory cyclins. In addition, the apoptotic pathways potentially counteracting any excess in proliferative activity are out of the dependency of specific regulatory molecular mechanisms. Key molecular components involved in the deregulation of the growth fraction, the cell cycle phases of proliferation, and apoptosis are presently described in CMM.
Collapse
Affiliation(s)
- G. E. Piérard
- Department of Dermatopathology, University Hospital of Liège, 4000 Liège, Belgium
| |
Collapse
|
79
|
Castellano E, Downward J. RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes Cancer 2011; 2:261-74. [PMID: 21779497 DOI: 10.1177/1947601911408079] [Citation(s) in RCA: 519] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RAS PROTEINS ARE SMALL GTPASES KNOWN FOR THEIR INVOLVEMENT IN ONCOGENESIS: around 25% of human tumors present mutations in a member of this family. RAS operates in a complex signaling network with multiple activators and effectors, which allows them to regulate many cellular functions such as cell proliferation, differentiation, apoptosis, and senescence. Phosphatidylinositol 3-kinase (PI3K) is one of the main effector pathways of RAS, regulating cell growth, cell cycle entry, cell survival, cytoskeleton reorganization, and metabolism. However, it is the involvement of this pathway in human tumors that has attracted most attention. PI3K has proven to be necessary for RAS-induced transformation in vitro, and more importantly, mice with mutations in the PI3K catalytic subunit p110α that block its ability to interact with RAS are highly resistant to endogenous oncogenic KRAS-induced lung tumorigenesis and HRAS-induced skin carcinogenesis. These animals also have a delayed development of the lymphatic vasculature. Many PI3K inhibitors have been developed that are now in clinical trials. However, it is a complex pathway with many feedback loops, and interactions with other pathways make the results of its inhibition hard to predict. Combined therapy with another RAS-regulated pathway such as RAF/MEK/ERK may be the most effective way to treat cancer, at least in animal models mimicking the human disease. In this review, we will summarize current knowledge about how RAS regulates one of its best-known effectors, PI3K.
Collapse
Affiliation(s)
- Esther Castellano
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, UK
| | | |
Collapse
|
80
|
Abstract
Raf are conserved, ubiquitous serine/protein kinases discovered as the cellular elements hijacked by transforming retroviruses. The three mammalian RAF proteins (A, B and CRAF) can be activated by the human oncogene RAS, downstream from which they exert both kinase-dependent and kinase-independent, tumor-promoting functions. The kinase-dependent functions are mediated chiefly by the MEK/ERK pathway, whose activation is associated with proliferation in a broad range of human tumors. Almost 10 years ago, activating BRAF mutations were discovered in a subset of human tumors, and in the past year treatment with small-molecule RAF inhibitors has yielded unprecedented response rates in melanoma patients. Thus, Raf qualifies as an excellent molecular target for anticancer therapy. This review focuses on the role of BRAF and CRAF in different aspects of carcinogenesis, on the success of molecular therapies targeting Raf and the challenges they present.
Collapse
|
81
|
Insertional oncogenesis by non-acute retroviruses: implications for gene therapy. Viruses 2011; 3:398-422. [PMID: 21994739 PMCID: PMC3186009 DOI: 10.3390/v3040398] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 03/31/2011] [Indexed: 01/10/2023] Open
Abstract
Retroviruses cause cancers in a variety of animals and humans. Research on retroviruses has provided important insights into mechanisms of oncogenesis in humans, including the discovery of viral oncogenes and cellular proto-oncogenes. The subject of this review is the mechanisms by which retroviruses that do not carry oncogenes (non-acute retroviruses) cause cancers. The common theme is that these tumors result from insertional activation of cellular proto-oncogenes by integration of viral DNA. Early research on insertional activation of proto-oncogenes in virus-induced tumors is reviewed. Research on non-acute retroviruses has led to the discovery of new proto-oncogenes through searches for common insertion sites (CISs) in virus-induced tumors. Cooperation between different proto-oncogenes in development of tumors has been elucidated through the study of retrovirus-induced tumors, and retroviral infection of genetically susceptible mice (retroviral tagging) has been used to identify cellular proto-oncogenes active in specific oncogenic pathways. The pace of proto-oncogene discovery has been accelerated by technical advances including PCR cloning of viral integration sites, the availability of the mouse genome sequence, and high throughput DNA sequencing. Insertional activation has proven to be a significant risk in gene therapy trials to correct genetic defects with retroviral vectors. Studies on non-acute retroviral oncogenesis provide insight into the potential risks, and the mechanisms of oncogenesis.
Collapse
|
82
|
Baljuls A, Mahr R, Schwarzenau I, Müller T, Polzien L, Hekman M, Rapp UR. Single substitution within the RKTR motif impairs kinase activity but promotes dimerization of RAF kinase. J Biol Chem 2011; 286:16491-503. [PMID: 21454547 DOI: 10.1074/jbc.m110.194167] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The serine/threonine kinase RAF is a central component of the MAPK cascade. Regulation of RAF activity is highly complex and involves recruitment to membranes and association with Ras and scaffold proteins as well as multiple phosphorylation and dephosphorylation events. Previously, we identified by molecular modeling an interaction between the N-region and the RKTR motif of the kinase domain in RAF and assigned a new function to this tetrapeptide segment. Here we found that a single substitution of each basic residue within the RKTR motif inhibited catalytic activity of all three RAF isoforms. However, the inhibition and phosphorylation pattern of C-RAF and A-RAF differed from B-RAF. Furthermore, substitution of the first arginine led to hyperphosphorylation and accumulation of A-RAF and C-RAF in plasma membrane fraction, indicating that this residue interferes with the recycling process of A-RAF and C-RAF but not B-RAF. In contrast, all RAF isoforms behave similarly with respect to the RKTR motif-dependent dimerization. The exchange of the second arginine led to exceedingly increased dimerization as long as one of the protomers was not mutated, suggesting that substitution of this residue with alanine may result in similar a structural rearrangement of the RAF kinase domain, as has been found for the C-RAF kinase domain co-crystallized with a dimerization-stabilizing RAF inhibitor. In summary, we provide evidence that each of the basic residues within the RKTR motif is indispensable for correct RAF function.
Collapse
Affiliation(s)
- Angela Baljuls
- Theodor-Boveri Institute of Bioscience, Department of Microbiology, University of Wuerzburg, Wuerzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
83
|
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60. [PMID: 21779496 PMCID: PMC3128629 DOI: 10.1177/1947601911407323] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
First identified in the early 1980s as retroviral oncogenes, the Raf proteins have been the objects of intense research. The discoveries 10 years later that the Raf family members (Raf-1, B-Raf, and A-Raf) are bona fide Ras effectors and upstream activators of the ubiquitous ERK pathway increased the interest in these proteins primarily because of the central role that this cascade plays in cancer development. The important role of Raf in cancer was corroborated in 2002 with the discovery of B-Raf genetic mutations in a large number of tumors. This led to intensified drug development efforts to target Raf signaling in cancer. This work yielded not only recent clinical successes but also surprising insights into the regulation of Raf proteins by homodimerization and heterodimerization. Surprising insights also came from the hunt for new Raf targets. Although MEK remains the only widely accepted Raf substrate, new kinase-independent roles for Raf proteins have emerged. These include the regulation of apoptosis by suppressing the activity of the proapoptotic kinases, ASK1 and MST2, and the regulation of cell motility and differentiation by controlling the activity of Rok-α. In this review, we discuss the regulation of Raf proteins and their role in cancer, with special focus on the interacting proteins that modulate Raf signaling. We also describe the new pathways controlled by Raf proteins and summarize the successes and failures in the development of efficient anticancer therapies targeting Raf. Finally, we also argue for the necessity of more systemic approaches to obtain a better understanding of how the Ras-Raf signaling network generates biological specificity.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
84
|
Affiliation(s)
- David Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | |
Collapse
|
85
|
Magariños M, Aburto MR, Sánchez-Calderón H, Muñoz-Agudo C, Rapp UR, Varela-Nieto I. RAF kinase activity regulates neuroepithelial cell proliferation and neuronal progenitor cell differentiation during early inner ear development. PLoS One 2010; 5:e14435. [PMID: 21203386 PMCID: PMC3010996 DOI: 10.1371/journal.pone.0014435] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 11/24/2010] [Indexed: 12/21/2022] Open
Abstract
Background Early inner ear development requires the strict regulation of cell proliferation, survival, migration and differentiation, coordinated by the concerted action of extrinsic and intrinsic factors. Deregulation of these processes is associated with embryonic malformations and deafness. We have shown that insulin-like growth factor I (IGF-I) plays a key role in embryonic and postnatal otic development by triggering the activation of intracellular lipid and protein kinases. RAF kinases are serine/threonine kinases that regulate the highly conserved RAS-RAF-MEK-ERK signaling cascade involved in transducing the signals from extracellular growth factors to the nucleus. However, the regulation of RAF kinase activity by growth factors during development is complex and still not fully understood. Methodology/Principal Findings By using a combination of qRT-PCR, Western blotting, immunohistochemistry and in situ hybridization, we show that C-RAF and B-RAF are expressed during the early development of the chicken inner ear in specific spatiotemporal patterns. Moreover, later in development B-RAF expression is associated to hair cells in the sensory patches. Experiments in ex vivo cultures of otic vesicle explants demonstrate that the influence of IGF-I on proliferation but not survival depends on RAF kinase activating the MEK-ERK phosphorylation cascade. With the specific RAF inhibitor Sorafenib, we show that blocking RAF activity in organotypic cultures increases apoptosis and diminishes the rate of cell proliferation in the otic epithelia, as well as severely impairing neurogenesis of the acoustic-vestibular ganglion (AVG) and neuron maturation. Conclusions/Significance We conclude that RAF kinase activity is essential to establish the balance between cell proliferation and death in neuroepithelial otic precursors, and for otic neuron differentiation and axonal growth at the AVG.
Collapse
Affiliation(s)
- Marta Magariños
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
86
|
Halilovic E, She QB, Ye Q, Pagliarini R, Sellers WR, Solit DB, Rosen N. PIK3CA mutation uncouples tumor growth and cyclin D1 regulation from MEK/ERK and mutant KRAS signaling. Cancer Res 2010; 70:6804-14. [PMID: 20699365 DOI: 10.1158/0008-5472.can-10-0409] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutational activation of KRAS is a common event in human tumors. Identification of the key signaling pathways downstream of mutant KRAS is essential for our understanding of how to pharmacologically target these cancers in patients. We show that PD0325901, a small-molecule MEK inhibitor, decreases MEK/ERK pathway signaling and destabilizes cyclin D1, resulting in significant anticancer activity in a subset of KRAS mutant tumors in vitro and in vivo. Mutational activation of PIK3CA, which commonly co-occurs with KRAS mutation, provides resistance to MEK inhibition through reactivation of AKT signaling. Genetic ablation of the mutant PIK3CA allele in MEK inhibitor-resistant cells restores MEK pathway sensitivity, and re-expression of mutant PIK3CA reinstates the resistance, highlighting the importance of this mutation in resistance to therapy in human cancers. In KRAS mutant tumors, PIK3CA mutation restores cyclin D1 expression and G(1)-S cell cycle progression so that they are no longer dependent on KRAS and MEK/ERK signaling. Furthermore, the growth of KRAS mutant tumors with coexistent PIK3CA mutations in vivo is profoundly inhibited with combined pharmacologic inhibition of MEK and AKT. These data suggest that tumors with both KRAS and phosphoinositide 3-kinase mutations are unlikely to respond to the inhibition of the MEK pathway alone but will require effective inhibition of both MEK and phosphoinositide 3-kinase/AKT pathway signaling.
Collapse
Affiliation(s)
- Ensar Halilovic
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Fendler JP, Malavaud B, Gimel P, Duclos B, Chevreau C, Pignot G. [Renal cell carcinoma: antiangiogenic therapies and management of the complications. A case report]. Prog Urol 2010; 20 Suppl 1:S27-32. [PMID: 20493440 DOI: 10.1016/s1166-7087(10)70022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Direct side effects of the inhibition of activation of VEGF receptors are well known and could be easily explained (HTA). The indirect toxicity of the inhibitors of tyrosinekinases is much less known and several hypotheses appear. Usually, the common side effects of the inhibitors of tyrosine-kinases can be easily managed and are reversible when the treatment is stopped. Their management is essentially based on prevention measures. It is necessary to stop definitively or temporarily the treatment in case of intensification of pre-existing comorbidities or side effects of rank 3 or 4. There is no predictive factor of treatment toxicity and, at the moment, there is thus no indication in a previous dose adaptation.
Collapse
Affiliation(s)
- J-P Fendler
- Service d'Urologie, Centre Hospitalier Saint-Joseph/Saint-Luc, quai Claude-Bernard, Lyon cedex 7, France
| | | | | | | | | | | |
Collapse
|
88
|
Filchtinski D, Sharabi O, Rüppel A, Vetter IR, Herrmann C, Shifman JM. What makes Ras an efficient molecular switch: a computational, biophysical, and structural study of Ras-GDP interactions with mutants of Raf. J Mol Biol 2010; 399:422-35. [PMID: 20361980 DOI: 10.1016/j.jmb.2010.03.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 11/16/2022]
Abstract
Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (Ras(GTP)) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (Ras(GDP)) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with Ras(GDP). Most of our designed mutations narrow the gap between the affinity of Raf for Ras(GTP) and Ras(GDP), producing the desired shift in binding specificity towards Ras(GDP). A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards Ras(GDP). The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of Ras(GDP) bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the Ras(GDP).Raf mutant complex is found in a conformation similar to that of Ras(GTP) and not Ras(GDP). Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in Ras(GTP) is likely to explain the natural low affinity of Raf and other Ras effectors to Ras(GDP). Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch.
Collapse
Affiliation(s)
- Daniel Filchtinski
- Physikalische Chemie I, Fakultät für Chemie und Biochemie, Ruhr-Universität-Bochum, Universitätstr. 150, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
89
|
Abstract
Some 25 years ago, Raf was discovered as the transforming principle shared by a murine sarcoma and an avian carcinoma virus. Thus, Raf and tumorigenesis have been connected from the very beginning. Ten years later, the work of many groups instated Raf as the link between Ras, the oncogene most frequently mutated in human cancers, and the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK/ERK) module, which with its manifold substrates can contribute to different aspects of carcinogenesis. Finally, the discovery of activating B-Raf mutations in a subset of human cancers, notably melanomas, conclusively established Raf as a major player in tumor development. Recent studies in animal models now show that endogenous C-Raf is essential for the development and maintenance of Ras-induced epidermal tumors. Surprisingly, the role of C-Raf in this case is not that of an mitogen-activated protein kinase activator, but rather that of an endogenous inhibitor of Rho signaling, expanding the range of tumor-related Raf targets. This review focuses on old and new targets of Raf in tumorigenesis.
Collapse
Affiliation(s)
- Théodora S Niault
- Center for Molecular Biology, Max F Perutz Laboratories, University of Vienna, Doktor-Bohr-Gasse 9, 1030 Vienna, Austria
| | | |
Collapse
|
90
|
Castellano E, Downward J. Role of RAS in the regulation of PI 3-kinase. Curr Top Microbiol Immunol 2010; 346:143-69. [PMID: 20563706 DOI: 10.1007/82_2010_56] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ras proteins are key regulators of signalling cascades, controlling many processes such as proliferation, differentiation and apoptosis. Mutations in these proteins or in their effectors, activators and regulators are associated with pathological conditions, particularly the development of various forms of human cancer. RAS proteins signal through direct interaction with a number of effector enzymes, one of the best characterized being type I phosphatidylinositol (PI) 3-kinases. Although the ability of RAS to control PI 3-kinase has long been well established in cultured cells, evidence for a role of the interaction of endogenous RAS with PI 3-kinase in normal and malignant cell growth in vivo has only been obtained recently. Mice with mutations in the PI 3-kinase catalytic p110a isoform that block its ability to interact with RAS are highly resistant to endogenous KRAS oncogene induced lung tumourigenesis and HRAS oncogene induced skin carcinogenesis. Cells from these mice show proliferative defects and selective disruption of signalling from certain growth factors to PI 3-kinase, while the mice also display delayed development of the lymphatic vasculature. The interaction of RAS with p110a is thus required in vivo for some normal growth factor signalling and also for RAS-driven tumour formation. RAS family members were among the first oncogenes identified over 40 years ago. In the late 1960s, the rat-derived Harvey and Kirsten murine sarcoma retroviruses were discovered and subsequently shown to promote cancer formation through related oncogenes, termed RAS (from rat sarcoma virus). The central role of RAS proteins in human cancer is highlighted by the large number of tumours in which they are activated by mutation: approximately 20% of human cancers carry a mutation in RAS proteins. Because of the complex signalling network in which RAS operates, with multiple activators and effectors, each with a different pattern of tissue-specific expression and a distinct set of intracellular functions, one of the critical issues concerns the specific role of each effector in RAS-driven oncogenesis. In this chapter, we summarize current knowledge about how RAS regulates one of its best-known effectors, phosphoinositide 3-kinase (PI3K).
Collapse
Affiliation(s)
- Esther Castellano
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, WC2A 3PX, UK
| | | |
Collapse
|
91
|
Overview of Retrovirology. RETROVIRUSES AND INSIGHTS INTO CANCER 2010. [PMCID: PMC7122640 DOI: 10.1007/978-0-387-09581-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the 100 years since their discovery, retroviruses have played a special role in virology and in molecular biology. These agents have been at the center of cancer research and shaped our understanding of cell growth, differentiation and survival in ways that stretch far beyond investigations using these viruses. The discovery of retroviral oncogenes established the central paradigm that altered cellular genes can provide a dominant signal initiating cancer development. Their unique replication mechanism and their integration into cellular DNA allow these viruses to alter the properties of their hosts beyond the life span of the infected individual and contribute to the evolution of species. This same property has made retroviral vectors an important tool for gene therapy. Indeed, the impact of retrovirus research has been far-reaching and despite the amazing progress that has been made, retroviruses continue to reveal new insights into the host – pathogen interaction.
Collapse
|
92
|
Can BAD pores be good? New insights from examining BAD as a target of RAF kinases. ACTA ACUST UNITED AC 2009; 50:147-59. [PMID: 19895838 DOI: 10.1016/j.advenzreg.2009.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
93
|
Kiel C, Filchtinski D, Spoerner M, Schreiber G, Kalbitzer HR, Herrmann C. Improved binding of raf to Ras.GDP is correlated with biological activity. J Biol Chem 2009; 284:31893-902. [PMID: 19776012 DOI: 10.1074/jbc.m109.031153] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The GTP-binding protein Ras plays a central role in the regulation of various cellular processes, acting as a molecular switch that triggers signaling cascades. Only Ras bound to GTP is able to interact strongly with effector proteins like Raf kinase, phosphatidylinositol 3-kinase, and RalGDS, whereas in the GDP-bound state, the stability of the complex is strongly decreased, and signaling is interrupted. To determine whether this process is only controlled by the stability of the complex, we used computer-aided protein design to improve the interaction between Ras and effector. We challenged the Ras.Raf complex in this study because Raf among all effectors shows the highest Ras affinity and the fastest association kinetics. The proposed mutations were characterized as to their changes in dynamics and binding strength. We demonstrate that Ras-Raf interaction can only be improved at the cost of a loss in specificity of Ras.GTP versus Ras.GDP. As shown by NMR spectroscopy, the Raf mutation A85K leads to a shift of Ras switch I in the GTP-bound as well as in the GDP-bound state, thereby increasing the complex stability. In a luciferase-based reporter gene assay, Raf A85K is associated with higher signaling activity, which appears to be a mere matter of Ras-Raf affinity.
Collapse
Affiliation(s)
- Christina Kiel
- Abteilung Strukturelle Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
94
|
Tatsuka M, Sato S, Kanda A, Miki T, Kamata N, Kitajima S, Kudo Y, Takata T. Oncogenic role of nuclear accumulated Aurora-A. Mol Carcinog 2009; 48:810-20. [PMID: 19204928 DOI: 10.1002/mc.20525] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aurora-A, also known as Aik, BTAK, or STK15, is a centrosomal serine/threonine protein kinase, which is proto-oncogenic and is overexpressed in a wide range of human cancers. Besides gene amplification and mRNA overexpression, proteolytic resistance mechanisms are thought to contribute to overexpression of Aurora-A. However, it is not yet clear how overexpressed Aurora-A affects the expression of transformed phenotype. Here, we found that nuclear accumulation of Aurora-A was critical for transformation activity. Cellular protein fractionation experiments and immunoblot analysis demonstrated a predominance of Aurora-A in the nuclear soluble fraction in head and neck cancer cells. Indirect immunofluorescence using confocal laser microscopy confirmed nuclear Aurora-A in head and neck cancer cells, while most oral keratinocytes exhibited only centrosomal localization. The expression of nuclear export signal-fused Aurora-A demonstrated that the oncogenic transformation activity was lost on disruption of the nuclear localization. Thus, the cytoplasmic localization of overexpressed Aurora-A previously demonstrated by immunohistochemical analysis is not likely to correspond to that in intact cancer cells. This study identifies an alternative mode of Aurora-A overexpression in cancer, through nuclear rather than cytoplasmic functions. We suggest that substrates of Aurora-A in the cell nuclear soluble fraction can represent a novel therapeutic target for cancer.
Collapse
Affiliation(s)
- Masaaki Tatsuka
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima 727-0023, Japan
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Soares P, Preto A, Sobrinho-Simões M. BRAF V600E mutation in papillary thyroid carcinoma: a potential target for therapy? Expert Rev Endocrinol Metab 2009; 4:467-480. [PMID: 30736186 DOI: 10.1586/eem.09.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This article reviews the therapeutic significance of the close genotype-phenotype association in papillary thyroid carcinoma, namely regarding the association between genetic alterations in RET, BRAF or RAS genes and the histopathological variants of papillary thyroid carcinoma. Based upon the aforementioned review on morphology and molecular pathology, the most recent prognostic and therapeutic data are reviewed and the role of targeted therapies, namely those interfering with BRAF-activated pathways are discussed, which may play a role in the treatment of patients with papillary thyroid carcinoma unresponsive to radioactive iodine.
Collapse
Affiliation(s)
- Paula Soares
- a Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-4465 Porto, Portugal and Department of Pathology, Medical Faculty of the University of Porto, 4200-465 Porto, Portugal.
| | - Ana Preto
- b Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-4465 Porto, Portugal and Molecular and Environmental Biology Centre (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-4057 Braga, Portugal.
| | - Manuel Sobrinho-Simões
- c Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal and Department of Pathology, Medical Faculty of the University of Porto, 4200-465 Porto, Portugal and Department of Pathology, Hospital de S. João, Porto, Portugal.
| |
Collapse
|
96
|
Benczik M, Gaffen SL. The Interleukin (IL)‐2 Family Cytokines: Survival and Proliferation Signaling Pathways in T Lymphocytes. Immunol Invest 2009; 33:109-42. [PMID: 15195693 DOI: 10.1081/imm-120030732] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lymphocyte populations in the immune system are maintained by a well-organized balance between cellular proliferation, cellular survival and programmed cell death (apoptosis). One of the primary functions of many cytokines is to coordinate these processes. In particular, the interleukin (IL)-2 family of cytokines, which consists of six cytokines (IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21) that all share a common receptor subunit (gammac), plays a major role in promoting and maintaining T lymphocyte populations. The details of the molecular signaling pathways mediated by these cytokines have not been fully elucidated. However, the three major pathways clearly involved include the JAK/STAT, MAPK and phosphatidylinositol 3-kinase (P13K) pathways. The details of these pathways as they apply to the IL-2 family of cytokines is discussed, with a focus on their roles in proliferation and survival signaling.
Collapse
Affiliation(s)
- Marta Benczik
- Department of Oral Biology, University at Buffalo, SUNY, Buffalo, New York 14214, USA
| | | |
Collapse
|
97
|
Xie P, Streu C, Qin J, Bregman H, Pagano N, Meggers E, Marmorstein R. The crystal structure of BRAF in complex with an organoruthenium inhibitor reveals a mechanism for inhibition of an active form of BRAF kinase. Biochemistry 2009; 48:5187-98. [PMID: 19371126 DOI: 10.1021/bi802067u] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Substitution mutations in the BRAF serine/threonine kinase are found in a variety of human cancers. Such mutations occur in approximately 70% of human malignant melanomas, and a single hyperactivating V600E mutation is found in the activation segment of the kinase domain and accounts for more than 90% of these mutations. Given this correlation, the molecular mechanism for BRAF regulation as well as oncogenic activation has attracted considerable interest, and activated forms of BRAF, such as BRAF(V600E), have become attractive targets for small molecule inhibition. Here we report on the identification and subsequent optimization of a potent BRAF inhibitor, CS292, based on an organometallic kinase inhibitor scaffold. A cocrystal structure of CS292 in complex with the BRAF kinase domain reveals that CS292 binds to the ATP binding pocket of the kinase and is an ATP competitive inhibitor. The structure of the kinase-inhibitor complex also demonstrates that CS292 binds to BRAF in an active conformation and suggests a mechanism for regulation of BRAF by phosphorylation and BRAF(V600E) oncogene-induced activation. The structure of CS292 bound to the active form of the BRAF kinase also provides a novel scaffold for the design of BRAF(V600E) oncogene selective BRAF inhibitors for therapeutic application.
Collapse
Affiliation(s)
- Peng Xie
- The Wistar Institute, Philadelphia, Pennsylvania 19104-6323, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Parikh K, Diks SH, Tuynman JHB, Verhaar A, Löwenberg M, Hommes DW, Joore J, Pandey A, Peppelenbosch MP. Comparison of peptide array substrate phosphorylation of c-Raf and mitogen activated protein kinase kinase kinase 8. PLoS One 2009; 4:e6440. [PMID: 19649278 PMCID: PMC2713828 DOI: 10.1371/journal.pone.0006440] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/22/2009] [Indexed: 01/10/2023] Open
Abstract
Kinases are pivotal regulators of cellular physiology. The human genome contains more than 500 putative kinases, which exert their action via the phosphorylation of specific substrates. The determinants of this specificity are still only partly understood and as a consequence it is difficult to predict kinase substrate preferences from the primary structure, hampering the understanding of kinase function in physiology and prompting the development of technologies that allow easy assessment of kinase substrate consensus sequences. Hence, we decided to explore the usefulness of phosphorylation of peptide arrays comprising of 1176 different peptide substrates with recombinant kinases for determining kinase substrate preferences, based on the contribution of individual amino acids to total array phosphorylation. Employing this technology, we were able to determine the consensus peptide sequences for substrates of both c-Raf and Mitogen Activated Protein Kinase Kinase Kinase 8, two highly homologous kinases with distinct signalling roles in cellular physiology. The results show that although consensus sequences for these two kinases identified through our analysis share important chemical similarities, there is still some sequence specificity that could explain the different biological action of the two enzymes. Thus peptide arrays are a useful instrument for deducing substrate consensus sequences and highly homologous kinases can differ in their requirement for phosphorylation events.
Collapse
Affiliation(s)
- Kaushal Parikh
- Department of Cell Biology, Section Immunology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Lee M, Ahn JH, Eum KH. The difference in biological properties between parental and v-Ha-ras transformed NIH3T3 cells. Cancer Res Treat 2009; 41:93-9. [PMID: 19707507 DOI: 10.4143/crt.2009.41.2.93] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 04/27/2009] [Indexed: 12/15/2022] Open
Abstract
PURPOSE We performed experiments to investigate the change in cellular signaling that occurs during the transformation of a normal cell to a cell capable of cancerous growth, and we did so by using the NIH 3T3 cells that were transformed by transfection with the v-Ha-ras oncogene. MATERIALS AND METHODS Parental and v-Ha-ras transfected NIH 3T3 cells were chosen as test systems. The siRNA transfections were performed using Lipofectamine 2000. The cell proliferation reagent WST-1 was used for the quantitative determination of cellular proliferation. Immunoblot analysis was performed using the ECL-Plus chemiluminescent system and a KODAK Image Station 4000R. RESULTS The v-Ha-ras-transformed cells were found to be significantly more resistant to PP2 treatment, which is a potent inhibitor of the Src family tyrosine kinases, than were the parental cells at earlier times after treatment. However, PP2 induced growth arrest and the senescence-like phenotypes in both cell lines after longer treatment. Furthermore, the Raf-1 kinase of the v-Ha-ras-transformed cells was not affected by the expressed level of Sprouty proteins, which are negative regulators of the MAPK pathway, as evidenced by the failure of siRNA-mediated knockdown of Spry4 to activate Raf-1 kinase. Dephostatin (a tyrosine phosphatase inhibitor) effectively inhibited the proliferation of the v-Ha-ras transformed cells, whereas dephostatin had only a small effect on the parental cells' proliferation. This implied an inhibitory role for tyrosine phosphatase that is specific to the signaling pathway in the v-Ha-ras transformed cells. CONCLUSION Taken together, our results show that the sustained activation of the oncogenic pathways through their resistance to negative feedback regulation might contribute to the transformation of NIH 3T3 cells.
Collapse
Affiliation(s)
- Michael Lee
- Department of Biology, College of Natural Sciences, University of Incheon, Incheon, Korea.
| | | | | |
Collapse
|
100
|
Abstract
The three closely related mammalian ras genes, Hras, Nras and Kras, have each been implicated in human tumorigenesis by virtue of mutational activation. However, while these genes encode proteins with very similar biochemical properties, activating ras alleles corresponding to the various isoforms have been linked to particular malignancies. Accumulating evidence suggests that these proteins exert distinct activities in a tissue-specific context, apparently reflecting developmental lineage-specific roles for the various ras isoforms. Some of these distinct functions appear to reflect differences in their C-termini, which determine distinct subcellular localization, thereby suggesting a role for compartmentalized signaling. In this review, we discuss the biological functions of the ras isoforms in the context of tissue-specific function as it relates to ras function in development and human cancer.
Collapse
Affiliation(s)
- Margaret P Quinlan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | | |
Collapse
|