51
|
Ahmadinejad N, Dagan T, Martin W. Genome history in the symbiotic hybrid Euglena gracilis. Gene 2007; 402:35-9. [PMID: 17716833 DOI: 10.1016/j.gene.2007.07.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 07/16/2007] [Accepted: 07/16/2007] [Indexed: 10/23/2022]
Abstract
Euglena gracilis has a chimeric gene collection in which some genes were inherited from its heterotrophic host and others were acquired from a photoautotrophic endosymbiont during secondary endosymbiosis. The evolutionary reconstruction of such a hybrid genome poses a challenge for standard phylogenetic tools that produce bifurcating trees because genome evolution by endosymbiotic gene transfer is a non tree-like process. We sequenced 2770 ESTs from E. gracilis, of which 841 have homologues in a sample of other eukaryotes. Most of these homologues are found in all of the eukaryotes in our sample, but 117 of them are specific to photoautotrophic eukaryotes. A phylogenetic tree fails to account for this observation but the distribution of homologues and a phylogenetic network clearly show the common origin of E. gracilis from both kinetoplastid and photoautotrophic ancestors.
Collapse
Affiliation(s)
- Nahal Ahmadinejad
- Institut für Botanik III, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
52
|
A complex and punctate distribution of three eukaryotic genes derived by lateral gene transfer. BMC Evol Biol 2007; 7:89. [PMID: 17562012 PMCID: PMC1920508 DOI: 10.1186/1471-2148-7-89] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 06/11/2007] [Indexed: 11/13/2022] Open
Abstract
Background Lateral gene transfer is increasingly invoked to explain phylogenetic results that conflict with our understanding of organismal relationships. In eukaryotes, the most common observation interpreted in this way is the appearance of a bacterial gene (one that is not clearly derived from the mitochondrion or plastid) in a eukaryotic nuclear genome. Ideally such an observation would involve a single eukaryote or a small group of related eukaryotes encoding a gene from a specific bacterial lineage. Results Here we show that several apparently simple cases of lateral transfer are actually more complex than they originally appeared: in these instances we find that two or more distantly related eukaryotic groups share the same bacterial gene, resulting in a punctate distribution. Specifically, we describe phylogenies of three core carbon metabolic enzymes: transketolase, glyceraldehyde-3-phosphate dehydrogenase and ribulose-5-phosphate-3-epimerase. Phylogenetic trees of each of these enzymes includes a strongly-supported clade consisting of several eukaryotes that are distantly related at the organismal level, but whose enzymes are apparently all derived from the same lateral transfer. With less sampling any one of these examples would appear to be a simple case of bacterium-to-eukaryote lateral transfer; taken together, their evolutionary histories cannot be so simple. The distributions of these genes may represent ancient paralogy events or genes that have been transferred from bacteria to an ancient ancestor of the eukaryotes that retain them. They may alternatively have been transferred laterally from a bacterium to a single eukaryotic lineage and subsequently transferred between distantly related eukaryotes. Conclusion Determining how complex the distribution of a transferred gene is depends on the sampling available. These results show that seemingly simple cases may be revealed to be more complex with greater sampling, suggesting many bacterial genes found in eukaryotic genomes may have a punctate distribution.
Collapse
|
53
|
Dohm JC, Vingron M, Staub E. Horizontal Gene Transfer in Aminoacyl-tRNA Synthetases Including Leucine-Specific Subtypes. J Mol Evol 2006; 63:437-47. [PMID: 16955236 DOI: 10.1007/s00239-005-0094-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Aminoacyl-tRNA synthetases catalyze a fundamental reaction for the flow of genetic information from RNA to protein. Their presence in all organisms known today highlights their important role in the early evolution of life. We investigated the evolutionary history of aminoacyl-tRNA synthetases on the basis of sequence data from more than 200 Archaea, Bacteria, and Eukaryota. Phylogenetic profiles are in agreement with previous observations that many genes for aminoacyl-tRNA synthetases were transferred horizontally between species from all domains of life. We extended these findings by a detailed analysis of the history of leucyl-tRNA synthetases. Thereby, we identified a previously undetected case of horizontal gene transfer from Bacteria to Archaea based on phylogenetic profiles, trees, and networks. This means that, finally, the last subfamily of aminoacyl-tRNA synthetases has lost its exceptional position as the sole subfamily that is devoid of horizontal gene transfer. Furthermore, the leucyl-tRNA synthetase phylogenetic tree suggests a dichotomy of the archaeal/eukaryotic-cytosolic and bacterial/eukaryotic-mitochondrial proteins. We argue that the traditional division of life into Prokaryota (non-chimeric) and Eukaryota (chimeric) is favorable compared to Woese's trichotomy into Archaea/Bacteria/Eukaryota.
Collapse
Affiliation(s)
- Juliane C Dohm
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, AG Protein Families and Cellular Evolution, Ihnestrasse 63-73, 14195, Berlin, Germany
| | | | | |
Collapse
|
54
|
Nosenko T, Lidie KL, Van Dolah FM, Lindquist E, Cheng JF, Bhattacharya D. Chimeric Plastid Proteome in the Florida “Red Tide” Dinoflagellate Karenia brevis. Mol Biol Evol 2006; 23:2026-38. [PMID: 16877498 DOI: 10.1093/molbev/msl074] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current understanding of the plastid proteome comes almost exclusively from studies of plants and red algae. The proteome in these taxa has a relatively simple origin via integration of proteins from a single cyanobacterial primary endosymbiont and the host. However, the most successful algae in marine environments are the chlorophyll c-containing chromalveolates such as diatoms and dinoflagellates that contain a plastid of red algal origin derived via secondary or tertiary endosymbiosis. Virtually nothing is known about the plastid proteome in these taxa. We analyzed expressed sequence tag data from the toxic "Florida red tide" dinoflagellate Karenia brevis that has undergone a tertiary plastid endosymbiosis. Comparative analyses identified 30 nuclear-encoded plastid-targeted proteins in this chromalveolate that originated via endosymbiotic or horizontal gene transfer (HGT) from multiple different sources. We identify a fundamental divide between plant/red algal and chromalveolate plastid proteomes that reflects a history of mixotrophy in the latter group resulting in a highly chimeric proteome. Loss of phagocytosis in the "red" and "green" clades effectively froze their proteomes, whereas chromalveolate lineages retain the ability to engulf prey allowing them to continually recruit new, potentially adaptive genes through subsequent endosymbioses and HGT. One of these genes is an electron transfer protein (plastocyanin) of green algal origin in K. brevis that likely allows this species to thrive under conditions of iron depletion.
Collapse
Affiliation(s)
- Tetyana Nosenko
- The Roy J. Carver Center for Comparative Genomics, Department of Biological Sciences, University of Iowa, IA, USA
| | | | | | | | | | | |
Collapse
|
55
|
Bardey V, Vallet C, Robas N, Charpentier B, Thouvenot B, Mougin A, Hajnsdorf E, Régnier P, Springer M, Branlant C. Characterization of the molecular mechanisms involved in the differential production of erythrose-4-phosphate dehydrogenase, 3-phosphoglycerate kinase and class II fructose-1,6-bisphosphate aldolase in Escherichia coli. Mol Microbiol 2005; 57:1265-87. [PMID: 16102000 DOI: 10.1111/j.1365-2958.2005.04762.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A gapA-pgk gene tandem coding the glyceraldehyde 3-phosphate dehydrogenase and 3-phosphoglycerate kinase, is most frequently found in bacteria. However, in Enterobacteriaceae, gapA is replaced by an epd open reading frame (ORF) coding an erythrose-4-phosphate dehydrogenase and an fbaA ORF coding the class II fructose-1,6-bisphosphate aldolase follows pgk. Although epd expression is very low in Escherichia coli, we show that, in the presence of glucose, the 3 epd, pgk and fbaA ORFs are efficiently cotranscribed from promoter epd P0. Conservation of promoter epd P0 is likely due to its important role in modulation of the metabolic flux during glycolysis and gluconeogenesis. As a consequence, we found that the epd translation initiation region and ORF have been adapted in order to limit epd translation and to create an efficient RNase E entry site. We also show that fbaA is cotranscribed with pgk, from promoter epd P0 or an internal pgk P1 promoter of the extended -10 class. The differential expression of pgk and fbaA also depends upon an RNase E segmentation process, leading to individual mRNAs with different stabilities. The secondary structures of the RNA regions containing the RNase E sites were experimentally determined which brings important information on the structural features of RNase E ectopic sites.
Collapse
Affiliation(s)
- Vincent Bardey
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences et Techniques, BP 239, 54506 Vandoeuvre-lès-Nancy, Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
This review provides an overview of the evolutionary path to the mammalian heart from the beginnings of life (about four billion years ago ) to the present. Essential tools for cellular homeostasis and for extracting and burning energy are still in use and essentially unchanged since the appearance of the eukaryotes. The primitive coelom, characteristic of early multicellular organisms ( approximately 800 million years ago), is lined by endoderm and is a passive receptacle for gas exchange, feeding, and sexual reproduction. The cells around this structure express genes homologous to NKX2.5/tinman, and gradual specialization of this "gastroderm" results in the appearance of mesoderm in the phylum Bilateria, which will produce the first primitive cardiac myocytes. Investment of the coelom by these mesodermal cells forms a "gastrovascular" structure. Further evolution of this structure in the bilaterian branches Ecdysoa (Drosophila) and Deuterostoma (amphioxus) culminate in a peristaltic tubular heart, without valves, without blood vessels or blood, but featuring a single layer of contracting mesoderm. The appearance of Chordata and subsequently the vertebrates is accompanied by a rapid structural diversification of this primitive linear heart: looping, unidirectional circulation, an enclosed vasculature, and the conduction system. A later innovation is the parallel circulation to the lungs, followed by the appearance of septa and the four-chambered heart in reptiles, birds, and mammals. With differentiation of the cardiac chambers, regional specialization of the proteins in the cardiac myocyte can be detected in the teleost fish and amphibians. In mammals, growth constraints are placed on the heart, presumably to accommodate the constraints of the body plan and the thoracic cavity, and adult cardiac myocytes lose the ability to re-enter the cell cycle on demand. Mammalian cardiac myocyte innervation betrays the ancient link between the heart, the gut, and reproduction: the vagus nerve controlling heart rate emanates from centers in the central nervous system regulating feeding and affective behavior.
Collapse
Affiliation(s)
- Nanette H Bishopric
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida 33101, USA.
| |
Collapse
|
57
|
Valverde F, Ortega JM, Losada M, Serrano A. Sugar-mediated transcriptional regulation of the Gap gene system and concerted photosystem II functional modulation in the microalga Scenedesmus vacuolatus. PLANTA 2005; 221:937-952. [PMID: 15830207 DOI: 10.1007/s00425-005-1501-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 02/02/2005] [Indexed: 05/24/2023]
Abstract
Partial cDNAs corresponding to the GapA, GapC and GapN genes that encode the three different glyceraldehyde-3-phosphate dehydrogenases (GAPDHs) of the green microalga Scenedesmus vacuolatus SAG 211-8b have been cloned and characterized. Northern blot experiments, as well as immunoblots and activity measurements, demonstrate a differential regulation by sugars of the components of the algal Gap gene system. Addition of glucose or other metabolizable sugars to photoautotrophic cultures promoted a drastic repression of the GapA gene and depletion to negligible levels of the corresponding GAPDHA, a chloroplastic protein involved in photosynthetic CO2 assimilation. By contrast, expression of the GapC and GapN genes encoding their cytosolic counterparts involved in glycolysis was enhanced. However, no down-regulation of the GapA gene by glucose took place in the dark, indicating that the observed effect is associated with sugar assimilation in the light. Likewise, glucose promoted in illuminated algal cultures a severe decrease of photosystem II functionality, estimated by O2 evolution activity, thermoluminescence emission and D1 protein level, while again, no effect was observed in the dark. On the basis of the correlation found between photosystem II performance and sugar transcriptional regulation of the GapA gene, a scenario of sugar-mediated regulation of photosynthetic metabolism in microalgae is proposed that will help to explain the so-called glucose bleaching effect in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Federico Valverde
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, 41092, Seville, Spain
| | | | | | | |
Collapse
|
58
|
Abstract
Group II introns are autocatalytic RNAs which self-splice in vitro. However, in vivo additional protein factors might be involved in the splicing process. We used an affinity chromatography method called 'StreptoTag' to identify group II intron binding proteins from Saccharomyces cerevisiae. This method uses a hybrid RNA consisting of a streptomycin-binding affinity tag and the RNA of interest, which is bound to a streptomycin column and incubated with yeast protein extract. After several washing steps the bound RNPs are eluted by addition of streptomycin. The eluted RNPs are separated and the proteins identified by mass-spectrometric analysis. Using crude extract from yeast in combination with a substructure of the bl1 group II intron (domains IV-VI) we were able to identify four glycolytic enzymes; glucose-6-phosphate isomerase (GPI), 3-phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and triosephosphate isomerase (TPI). From these proteins GAPDH increases in vitro splicing of the bl1 group II intron by up to three times. However, in vivo GAPDH is not a group II intron-splicing factor, since it is not localised in yeast mitochondria. Therefore, the observed activity reflects an unexpected property of GAPDH. Band shift experiments and UV cross linking demonstrated the interaction of GAPDH with the group II intron RNA. This novel activity expands the reaction repertoire of GAPDH to a new RNA species.
Collapse
Affiliation(s)
- Petra Böck-Taferner
- Max F. Perutz Laboratories, University of Vienna, Department of Microbiology and Genetics, Vienna Biocenter, Dr. Bohrgasse 9/4, A-1030 Vienna, Austria
| | | |
Collapse
|
59
|
Abstract
In this brief review, literature references are given to researches--involving diverse species of protists--that support the author's firm conviction that the biological world of today absolutely requires the presence of numerous of these generally small and unicelled organisms if it is to survive. Examples supplied come from areas within the field of protistology sensu lato as widely separated as basic phycological research on photosynthesis and protozoological/medical/biomedical investigations on malaria and other pathogens of human beings. Emphasis is primarily on the most relevant works of the past 10-15 years, although historically highly significant papers of older vintage require at least indirect--and occasionally direct--citation.
Collapse
|
60
|
Takishita K, Ishida KI, Maruyama T. An Enigmatic GAPDH Gene in the Symbiotic Dinoflagellate Genus Symbiodinium and its Related Species (the Order Suessiales): Possible Lateral Gene Transfer between Two Eukaryotic Algae, Dinoflagellate and Euglenophyte. Protist 2003; 154:443-54. [PMID: 14658500 DOI: 10.1078/143446103322454176] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A group of unicellular eukaryotic algae, the dinoflagellates, are known to possess two types of gene for glyceraldehyde-3-phosphate dehydrogenase (GAPDH). An enzyme encoded by one type of gene possibly plays a key role in the glycolytic pathway of the cytosol and the other in the Calvin cycle of plastids. In the present study, an additional type of GAPDH gene (GapC3) was found in the symbiotic dinoflagellates, Symbiodinium spp. and their related species, Gymnodinium simplex and Polarella glacialis, all of which belong to the order Suessiales. Since no intracellular translocation signal is found at both amino- and carboxy-termini of its deduced amino acid sequence, the protein is predicted to function in the cytosol. However, it may not be involved in glycolysis due to the presence of an amino acid signature that allows binding for NADP+. It is likely that dinoflagellate species, other than Suessiales investigated in this study, lack this type of GAPDH. Phylogenetic analysis placed GapC3 from the Suessialean species firmly in the clade composed of GAPDH from spirochetes, euglenophytes (cytosolic type) and kinetoplastids (glycosomal type). Specifically, this enigmatic GAPDH gene in dinoflagellates was closely related to its cytosolic counterpart in euglenophytes. It has been previously reported that plastid-targeted (Calvin cycle) GAPDH genes of the dinoflagellates Pyrocystis spp. and that of the euglenophyte Euglena gracilis also seem to share a common ancestor. It appears highly likely that at least two genes (cytosolic and plastid-targeted GAPDH genes) have been laterally transferred between these two eukaryotic algal groups.
Collapse
|
61
|
Richards TA, Hirt RP, Williams BAP, Embley TM. Horizontal gene transfer and the evolution of parasitic protozoa. Protist 2003; 154:17-32. [PMID: 12812367 DOI: 10.1078/143446103764928468] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
62
|
Martin W, Russell MJ. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci 2003; 358:59-83; discussion 83-5. [PMID: 12594918 PMCID: PMC1693102 DOI: 10.1098/rstb.2002.1183] [Citation(s) in RCA: 422] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All life is organized as cells. Physical compartmentation from the environment and self-organization of self-contained redox reactions are the most conserved attributes of living things, hence inorganic matter with such attributes would be life's most likely forebear. We propose that life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH and temperature gradient between sulphide-rich hydrothermal fluid and iron(II)-containing waters of the Hadean ocean floor. The naturally arising, three-dimensional compartmentation observed within fossilized seepage-site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free-living prokaryotes. The known capability of FeS and NiS to catalyse the synthesis of the acetyl-methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre-biotic syntheses occurred at the inner surfaces of these metal-sulphide-walled compartments, which furthermore restrained reacted products from diffusion into the ocean, providing sufficient concentrations of reactants to forge the transition from geochemistry to biochemistry. The chemistry of what is known as the RNA-world could have taken place within these naturally forming, catalyticwalled compartments to give rise to replicating systems. Sufficient concentrations of precursors to support replication would have been synthesized in situ geochemically and biogeochemically, with FeS (and NiS) centres playing the central catalytic role. The universal ancestor we infer was not a free-living cell, but rather was confined to the naturally chemiosmotic, FeS compartments within which the synthesis of its constituents occurred. The first free-living cells are suggested to have been eubacterial and archaebacterial chemoautotrophs that emerged more than 3.8 Gyr ago from their inorganic confines. We propose that the emergence of these prokaryotic lineages from inorganic confines occurred independently, facilitated by the independent origins of membrane-lipid biosynthesis: isoprenoid ether membranes in the archaebacterial and fatty acid ester membranes in the eubacterial lineage. The eukaryotes, all of which are ancestrally heterotrophs and possess eubacterial lipids, are suggested to have arisen ca. 2 Gyr ago through symbiosis involving an autotrophic archaebacterial host and a heterotrophic eubacterial symbiont, the common ancestor of mitochondria and hydrogenosomes. The attributes shared by all prokaryotes are viewed as inheritances from their confined universal ancestor. The attributes that distinguish eubacteria and archaebacteria, yet are uniform within the groups, are viewed as relics of their phase of differentiation after divergence from the non-free-living universal ancestor and before the origin of the free-living chemoautotrophic lifestyle. The attributes shared by eukaryotes with eubacteria and archaebacteria, respectively, are viewed as inheritances via symbiosis. The attributes unique to eukaryotes are viewed as inventions specific to their lineage. The origin of the eukaryotic endomembrane system and nuclear membrane are suggested to be the fortuitous result of the expression of genes for eubacterial membrane lipid synthesis by an archaebacterial genetic apparatus in a compartment that was not fully prepared to accommodate such compounds, resulting in vesicles of eubacterial lipids that accumulated in the cytosol around their site of synthesis. Under these premises, the most ancient divide in the living world is that between eubacteria and archaebacteria, yet the steepest evolutionary grade is that between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- William Martin
- Institut für Botanik III, Heinrich-Heine Universitaet Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
63
|
Schlegel M. Phylogeny of Eukaryotes recovered with molecular data: highlights and pitfalls. Eur J Protistol 2003. [DOI: 10.1078/0932-4739-00896] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
64
|
Fagan TF, Woodland Hastings J. Phylogenetic analysis indicates multiple origins of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes in dinoflagellates. Mol Biol Evol 2002; 19:1203-7. [PMID: 12082139 DOI: 10.1093/oxfordjournals.molbev.a004178] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
65
|
Klucar L, Nováková R, Homérová D, Sevcíková B, Turna J, Kormanec J. Phylogenetic analysis of the rplA genes encoding ribosomal protein L1. Folia Microbiol (Praha) 2002; 46:99-106. [PMID: 11501409 DOI: 10.1007/bf02873585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously we have identified the rplA gene encoding ribosomal protein L1 in Streptomyces aureofaciens. Sequence comparison of ribosomal protein L1 among several bacterial genera revealed a high level of conservation. Based on this conservation, these proteins were used as a phylogenetic tool to compare evolutionary relationships among eubacteria and archaebacteria. This phylogenetic analysis of L1 ribosomal proteins including the S. aureofaciens rplA gene product revealed, except similar bacterial groupings, some new evolutionary relationships.
Collapse
Affiliation(s)
- L Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, 842 51 Bratislava, Slovakia
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
This review offers a snapshot of our current understanding of the origin, biology, and metabolic significance of the non-photosynthetic plastid organelle found in apicomplexan parasites. These protists are of considerable medical and veterinary importance world-wide, Plasmodium spp., the causative agent of malaria being foremost in terms of human disease. It has been estimated that approximately 8% of the genes currently recognized by the malarial genome sequencing project (now nearing completion) are of bacterial/plastid origin. The bipartite presequences directing the products of these genes back to the plastid have provided fresh evidence that secondary endosymbiosis accounts for this organelle's presence in these parasites. Mounting phylogenetic evidence has strengthened the likelihood that the plastid originated from a red algal cell. Most importantly, we now have a broad understanding of several bacterial metabolic systems confined within the boundaries of the parasite plastid. The primary ones are type II fatty acid biosynthesis and isoprenoid biosynthesis. Some aspects of heme biosynthesis also might take place there. Retention of the plastid's relict genome and its still ill-defined capacity to participate in protein synthesis might be linked to an important house-keeping process, i.e. guarding the type II fatty acid biosynthetic pathway from oxidative damage. Fascinating observations have shown the parasite plastid does not divide by constriction as in typical plants, and that plastid-less parasites fail to thrive after invading a new cell. The modes of plastid DNA replication within the phylum also have provided surprises. Besides indicating the potential of the parasite plastid for therapeutic intervention, this review exposes many gaps remaining in our knowledge of this intriguing organelle. The rapid progress being made shows no sign of slackening.
Collapse
Affiliation(s)
- R J M Iain Wilson
- National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
67
|
Schnarrenberger C, Martin W. Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. A case study of endosymbiotic gene transfer. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:868-83. [PMID: 11846788 DOI: 10.1046/j.0014-2956.2001.02722.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The citric acid or tricarboxylic acid cycle is a central element of higher-plant carbon metabolism which provides, among other things, electrons for oxidative phosphorylation in the inner mitochondrial membrane, intermediates for amino-acid biosynthesis, and oxaloacetate for gluconeogenesis from succinate derived from fatty acids via the glyoxylate cycle in glyoxysomes. The tricarboxylic acid cycle is a typical mitochondrial pathway and is widespread among alpha-proteobacteria, the group of eubacteria as defined under rRNA systematics from which mitochondria arose. Most of the enzymes of the tricarboxylic acid cycle are encoded in the nucleus in higher eukaryotes, and several have been previously shown to branch with their homologues from alpha-proteobacteria, indicating that the eukaryotic nuclear genes were acquired from the mitochondrial genome during the course of evolution. Here, we investigate the individual evolutionary histories of all of the enzymes of the tricarboxylic acid cycle and the glyoxylate cycle using protein maximum likelihood phylogenies, focusing on the evolutionary origin of the nuclear-encoded proteins in higher plants. The results indicate that about half of the proteins involved in this eukaryotic pathway are most similar to their alpha-proteobacterial homologues, whereas the remainder are most similar to eubacterial, but not specifically alpha-proteobacterial, homologues. A consideration of (a) the process of lateral gene transfer among free-living prokaryotes and (b) the mechanistics of endosymbiotic (symbiont-to-host) gene transfer reveals that it is unrealistic to expect all nuclear genes that were acquired from the alpha-proteobacterial ancestor of mitochondria to branch specifically with their homologues encoded in the genomes of contemporary alpha-proteobacteria. Rather, even if molecular phylogenetics were to work perfectly (which it does not), then some nuclear-encoded proteins that were acquired from the alpha-proteobacterial ancestor of mitochondria should, in phylogenetic trees, branch with homologues that are no longer found in most alpha-proteobacterial genomes, and some should reside on long branches that reveal affinity to eubacterial rather than archaebacterial homologues, but no particular affinity for any specific eubacterial donor.
Collapse
|
68
|
Abstract
In this study we have determined gap sequences from nine different spirochetes. Phylogenetic analyses of these sequences in the context of all other available eubacterial and a selection of eukaryotic Gap sequences demonstrated that the eubacterial glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene diversity encompasses at least five highly distinct gene families. Within these gene families, spirochetes show an extreme degree of sequence divergence that is probably the result of several lateral gene transfer events between spirochetes and other eubacterial phyla, and early gene duplications in the eubacterial ancestor. A Gap1 sequence from the syphilis spirochete Treponema pallidum has recently been shown to be closely related to GapC sequences from Euglenozoa. Here we demonstrate that several other spirochetal species are part of this cluster, supporting the conclusion that an interkingdom gene transfer from spirochetes to Euglenozoa must have occurred. Furthermore, we provide evidence that the GAPDH genes present in the protists Parabasalia may also be of spirochetal descent.
Collapse
Affiliation(s)
- R M Figge
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany.
| | | |
Collapse
|
69
|
Valverde F, Peleato ML, Fillat MF, Gómez-Moreno C, Losada M, Serrano A. Simultaneous occurrence of two different glyceraldehyde-3-phosphate dehydrogenases in heterocystous N(2)-fixing cyanobacteria. Biochem Biophys Res Commun 2001; 283:356-63. [PMID: 11327708 DOI: 10.1006/bbrc.2001.4782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enzyme activity determinations and Western and Northern blot analyses have shown the presence of two catalytically different glyceraldehyde-3-phosphate dehydrogenases (GAPDH) in both vegetative cells and heterocysts of several N(2)-fixing Anabaena strains: (a) the gap2-encoded NAD(P)-dependent GAPDH2 (EC 1.2.1.59), the enzyme involved in the photosynthetic carbon assimilation pathway, which is present at higher levels in vegetative cells, and (b) the gap3-encoded NAD-dependent GAPDH3 (EC 1.2.1.12), presumably involved in carbohydrate anabolism and catabolism, which is the predominant GAPDH in heterocysts. In contrast, the gap1-encoded GAPDH1, which is the other NAD-dependent cyanobacterial GAPDH, is virtually absent in both cell types. These findings are discussed in the context of carbon metabolism of heterocystous N(2)-fixing cyanobacteria.
Collapse
Affiliation(s)
- F Valverde
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Seville, Spain
| | | | | | | | | | | |
Collapse
|
70
|
Fast NM, Kissinger JC, Roos DS, Keeling PJ. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 2001; 18:418-26. [PMID: 11230543 DOI: 10.1093/oxfordjournals.molbev.a003818] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The phylum Apicomplexa encompasses a large number of intracellular protozoan parasites, including the causative agents of malaria (Plasmodium), toxoplasmosis (Toxoplasma), and many other human and animal diseases. Apicomplexa have recently been found to contain a relic, nonphotosynthetic plastid that has attracted considerable interest as a possible target for therapeutics. This plastid is known to have been acquired by secondary endosymbiosis, but when this occurred and from which type of alga it was acquired remain uncertain. Based on the molecular phylogeny of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes, we provide evidence that the apicomplexan plastid is homologous to plastids found in dinoflagellates-close relatives of apicomplexa that contain secondary plastids of red algal origin. Surprisingly, apicomplexan and dinoflagellate plastid-targeted GAPDH sequences were also found to be closely related to the plastid-targeted GAPDH genes of heterokonts and cryptomonads, two other groups that contain secondary plastids of red algal origin. These results address several outstanding issues: (1) apicomplexan and dinoflagellate plastids appear to be the result of a single endosymbiotic event which occurred relatively early in eukaryotic evolution, also giving rise to the plastids of heterokonts and perhaps cryptomonads; (2) apicomplexan plastids are derived from a red algal ancestor; and (3) the ancestral state of apicomplexan parasites was photosynthetic.
Collapse
Affiliation(s)
- N M Fast
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
71
|
Figge RM, Cassier-Chauvat C, Chauvat F, Cerff R. The carbon metabolism-controlled Synechocystis gap2 gene harbours a conserved enhancer element and a Gram-positive-like -16 promoter box retained in some chloroplast genes. Mol Microbiol 2000; 36:44-54. [PMID: 10760162 DOI: 10.1046/j.1365-2958.2000.01806.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two glyceraldehyde-3-phosphate dehydrogenase-encoding genes (gap) of Synechocystis were shown to be expressed as monocistronic transcripts. Whereas gap1 expression is slow and weak, gap2 gene induction is rapid and strong. Transcription of the gap2 gene was shown to depend on functional photosynthetic electron transport and on active carbon metabolism. The basal promoter of gap2 (P, -45 to +34, relative to the transcription start site) is controlled by three cis-acting elements designated A (-443 to -45), B (+34 to +50, in the untranslated leader region) and C (+50 to +167, in the coding region) that, together, promote a 100-fold stimulation of P activity. Element B was found to behave as a transcriptional enhancer, in that it was active regardless of its position, orientation and distance relative to P. All three cis-acting stimulatory elements exhibit a common 5'-agaTYAACg-3' nucleotide motif that appears to be conserved in cyanobacteria and may be the target for a transcriptional enhancer. We also report that gap2 transcription depends on a Gram-positive-like -16 promoter box (5'-TRTG-3') that was obviously conserved throughout the evolution of chloroplasts. This is the first report on the occurrence of a -16 promoter element in photoautotrophic organisms.
Collapse
Affiliation(s)
- R M Figge
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
| | | | | | | |
Collapse
|
72
|
Liaud MF, Lichtlé C, Apt K, Martin W, Cerff R. Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway. Mol Biol Evol 2000; 17:213-23. [PMID: 10677844 DOI: 10.1093/oxfordjournals.molbev.a026301] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and triosephosphate isomerase (TPI) are essential to glycolysis, the major route of carbohydrate breakdown in eukaryotes. In animals and other heterotrophic eukaryotes, both enzymes are localized in the cytosol; in photosynthetic eukaryotes, GAPDH and TPI exist as isoenzymes that function in the glycolytic pathway of the cytosol and in the Calvin cycle of chloroplasts. Here, we show that diatoms--photosynthetic protists that acquired their plastids through secondary symbiotic engulfment of a eukaryotic rhodophyte--possess an additional isoenzyme each of both GAPDH and TPI. Surprisingly, these new forms are expressed as an TPI-GAPDH fusion protein which is imported into mitochondria prior to its assembly into a tetrameric bifunctional enzyme complex. Homologs of this translational fusion are shown to be conserved and expressed also in nonphotosynthetic, heterokont-flagellated oomycetes. Phylogenetic analyses show that mitochondrial GAPDH and its N-terminal TPI fusion branch deeply within their respective eukaryotic protein phylogenies, suggesting that diatom mitochondria may have retained an ancestral state of glycolytic compartmentation that existed at the onset of mitochondrial symbiosis. These findings strongly support the view that nuclear genes for enzymes of glycolysis in eukaryotes were acquired from mitochondrial genomes and provide new insights into the evolutionary history (host-symbiont relationships) of diatoms and other heterokont-flagellated protists.
Collapse
Affiliation(s)
- M F Liaud
- Institute of Genetics, University of Braunschweig, Germany
| | | | | | | | | |
Collapse
|
73
|
Kopriva S, Koprivova A, Süss KH. Identification, cloning, and properties of cytosolic D-ribulose-5-phosphate 3-epimerase from higher plants. J Biol Chem 2000; 275:1294-9. [PMID: 10625676 DOI: 10.1074/jbc.275.2.1294] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant cells contain a complete oxidative pentose phosphate pathway in the chloroplasts, but an incomplete pathway was proposed to be present in the cytosol, with cytosolic (cyt) isoforms of ribulose-5-phosphate 3-epimerase (RPEase) and other non-oxidative branch enzymes being undetectable. Here we present for the first time the identification, cloning, and properties of a cyt-RPEase in rice (Oryza sativa) and presence of its homologues in other plant species. Recombinant cyt-RPEase is a homodimer of 24.3-kDa subunits such as in the case of the animal and yeast enzymes, whereas the chloroplast (chl) RPEase is a hexamer. Cytosolic and chloroplastic RPEases cannot be separated by anion exchange chromatography. Since plant cyt-RPEase is more closely related in its primary structure to homologous enzymes in animal and yeast cells than to the chloroplast RPEase, the plant nuclear genes coding for cytosolic and chloroplast RPEases were most likely derived from eubacteria and cyanobacteria, respectively. Accumulation of cyt-RPEase-mRNA and protein is high in root cells, lacking chl-RPEase, and lower in green tissue. These and other observations support the view that green and non-green plant cells possess a complete oxidative pentose phosphate pathway in the cytosol.
Collapse
Affiliation(s)
- S Kopriva
- Institute of Plant Physiology, Altenbergrain 21, 3013 Bern, Switzerland.
| | | | | |
Collapse
|
74
|
|
75
|
Abstract
Intracellular parasites and endosymbionts are present in almost all forms of life, including bacteria. Some eukaryotic organelles are believed to be derived from ancestral endosymbionts. Parasites and symbionts show several adaptations to intracellular life. A comparative analysis of their biology suggests some general considerations involved in adapting to intracellular life and reveals a number of independently achieved strategies for the exploitation of an intracellular habitat. Symbioses mainly based on a form of syntrophy may have led to the establishment of unique physiological systems. Generally, a symbiont can be considered to be an attenuated pathogen. The combination of morphological studies, molecular phylogenetic analyses, and palaeobiological data has led to considerable improvement in the understanding of intracellular life evolution. Comparing host and symbiont phylogenies could lead to an explanation of the evolutionary history of symbiosis. These studies also provide strong evidences for the endosymbiogenesis of the eukaryotic cell. Indeed, an eubacterial origin for mitochondria and plastids is well accepted and is suggested for other organelles. The expansion of intracellular living associations is presented, with a particular emphasis on peculiar aspects and/or recent data, providing a global evaluation.
Collapse
Affiliation(s)
- D Corsaro
- Laboratoire de Microbiologie-Virologie, Centre Hospitalier Universitaire de Nancy, France
| | | | | | | |
Collapse
|
76
|
Gupta RS. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 1998; 62:1435-91. [PMID: 9841678 PMCID: PMC98952 DOI: 10.1128/mmbr.62.4.1435-1491.1998] [Citation(s) in RCA: 386] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of shared conserved insertion or deletions (indels) in protein sequences is a special type of signature sequence that shows considerable promise for phylogenetic inference. An alternative model of microbial evolution based on the use of indels of conserved proteins and the morphological features of prokaryotic organisms is proposed. In this model, extant archaebacteria and gram-positive bacteria, which have a simple, single-layered cell wall structure, are termed monoderm prokaryotes. They are believed to be descended from the most primitive organisms. Evidence from indels supports the view that the archaebacteria probably evolved from gram-positive bacteria, and I suggest that this evolution occurred in response to antibiotic selection pressures. Evidence is presented that diderm prokaryotes (i.e., gram-negative bacteria), which have a bilayered cell wall, are derived from monoderm prokaryotes. Signature sequences in different proteins provide a means to define a number of different taxa within prokaryotes (namely, low G+C and high G+C gram-positive, Deinococcus-Thermus, cyanobacteria, chlamydia-cytophaga related, and two different groups of Proteobacteria) and to indicate how they evolved from a common ancestor. Based on phylogenetic information from indels in different protein sequences, it is hypothesized that all eukaryotes, including amitochondriate and aplastidic organisms, received major gene contributions from both an archaebacterium and a gram-negative eubacterium. In this model, the ancestral eukaryotic cell is a chimera that resulted from a unique fusion event between the two separate groups of prokaryotes followed by integration of their genomes.
Collapse
Affiliation(s)
- R S Gupta
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
77
|
Favery B, Lecomte P, Gil N, Bechtold N, Bouchez D, Dalmasso A, Abad P. RPE, a plant gene involved in early developmental steps of nematode feeding cells. EMBO J 1998; 17:6799-811. [PMID: 9843485 PMCID: PMC1171027 DOI: 10.1093/emboj/17.23.6799] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sedentary plant-parasitic nematodes are able to induce the redifferentiation of root cells into multinucleate nematode feeding sites (NFSs). We have isolated by promoter trapping an Arabidopsis thaliana gene that is essential for the early steps of NFS formation induced by the root-knot nematode Meloidogyne incognita. Its pattern of expression is similar to that of key regulators of the cell cycle, but it is not observed with the cyst nematode. Later in NFS development, this gene is induced by both root-knot and cyst nematodes. It encodes a protein similar to the D-ribulose-5-phosphate 3-epimerase (RPE) (EC 5.1.3.1), a key enzyme in the reductive Calvin cycle and the oxidative pentose phosphate pathway (OPPP). Quantitative RT-PCR showed the accumulation of RPE transcripts in potato, as in Arabidopsis NFS. Homozygous rpe plants have a germination mutant phenotype that can be rescued in dwarf plants on sucrose-supplemented medium. During root development, this gene is expressed in the meristems and initiation sites of lateral roots. These results suggest that the genetic control of NFSs and the first stages of meristem formation share common steps and confirms the previous cytological observations which indicate that root cells undergo metabolic reprogramming when they turn into NFSs.
Collapse
Affiliation(s)
- B Favery
- INRA, Laboratoire de Biologie des Invertébrés, 123 bd F. Meilland, 06600 Antibes, France
| | | | | | | | | | | | | |
Collapse
|
78
|
Henze K, Morrison HG, Sogin ML. Sequence and phylogenetic position of a class II aldolase gene in the amitochondriate protist, Giardia lamblia. Gene 1998; 222:163-8. [PMID: 9831644 DOI: 10.1016/s0378-1119(98)00499-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A Giardia lamblia gene, Glfba, was cloned and sequenced. This gene codes for a 324-residue-long putative class II fructose-1, 6-bisphosphate aldolase. The positions of gaps and phylogenetic analysis with maximum likelihood and maximum parsimony methods showed the sequence to be most closely related to the as-yet uncharacterized aldolases of Helicobacter pylori and Aquifex aeolicus and to the group that comprises the Calvin-cycle aldolases of photosynthetic proteobacteria and cyanobacteria. In combination with the known taxonomic and functional distribution of class I and II aldolases, the results indicate that the G. lamblia enzyme is distinct in its evolutionary history from all eukaryotic fructose-1, 6-bisphosphate aldolases studied so far.
Collapse
Affiliation(s)
- K Henze
- The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
79
|
Meyer-Gauen G, Herbrand H, Pahnke J, Cerff R, Martin W. Gene structure, expression in Escherichia coli and biochemical properties of the NAD+ -dependent glyceraldehyde-3-phosphate dehydrogenase from Pinus sylvestris chloroplasts. Gene 1998; 209:167-74. [PMID: 9583948 DOI: 10.1016/s0378-1119(98)00034-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photosynthetic eukaryotes typically possess two distinct glyceraldehyde-3-phosphate dehydrogenases, an NAD+ -specific enzyme in the cytosol (GapC: EC 1.2.1.12) and an NADP+ -dependent enzyme in the chloroplast (GapAB: EC 1.2.1.13). The gymnosperm Pinus sylvestris is an exception in that it is known to express a gene encoding a transit peptide-bearing GapC-like subunit that is imported into chloroplasts (GapCp), but the enzymatic properties of this novel GAPDH have not been described from any source. We have expressed the mature GapCp unit from Pinus in Escherichia coli and have characterized the active enzyme. GapCp has a specific activity of 89 units per milligram and is strictly NAD+ -dependent, showing no detectable activity with NADP+. Values of the apparent Km for NAD+ and glyceraldehyde-3-phosphate were determined as 62 and 344 microM, respectively. The Pinus GapCpl gene possesses 12 introns, two in the region encoding the transit peptide and ten in the region encoding the mature subunit, all of which are found at positions strictly conserved across genes for higher plant GapC. A cDNA encoding a homologue of GapCp was isolated from the heterosporous fern Marsilea quadrifolia, indicating that NAD+ -dependent chloroplast GAPDH also occurs in other higher plants.
Collapse
Affiliation(s)
- G Meyer-Gauen
- Institut für Genetik, Technische Universität Braunschweig, Germany
| | | | | | | | | |
Collapse
|
80
|
Koksharova O, Schubert M, Shestakov S, Cerff R. Genetic and biochemical evidence for distinct key functions of two highly divergent GAPDH genes in catabolic and anabolic carbon flow of the cyanobacterium Synechocystis sp. PCC 6803. PLANT MOLECULAR BIOLOGY 1998; 36:183-194. [PMID: 9484473 DOI: 10.1023/a:1005925732743] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cyanobacterial genomes harbour two separate highly divergent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes, gap1 and gap2, which are closely related at the sequence level to the nuclear genes encoding cytosolic and chloroplast GAPDH of higher plants, respectively. Genes gap1 and gap2 of the unicellular cyanobacterium Synechocystis sp. PCC 6803 were cloned and sequenced and subsequently inactivated by insertional mutagenesis to understand their metabolic functions. We obtained homozygous gap1- mutants which have lost the capacity to grow on glucose under dim light while growth on organic acids as well as photosynthetic growth under CO2 and high light is not impaired. Homozygous gap2- mutants show the reciprocal phenotype. Under dim light they only grow on glucose but not on organic acids nor do they survive under photosynthetic conditions. Measurements of the anabolic activities (reduction of 1,3-bisphosphoglycerate) in extracts from wild type and mutant cells show that Gap2 is a major enzyme with dual cosubstrate specificity for NAD and NADP, while Gap1 displays a minor NAD-specific GAPDH activity. However, if measured in the catabolic direction (oxidation of glyceraldehyde-3-phosphate) Gap2 activity is very low and increases three- to fivefold after gel filtration of extracts over Sephadex G25. Our results suggest that enzymes Gap1 and Gap2, although coexpressed in cyanobacterial wild-type cells, play distinct key roles in catabolic and anabolic carbon flow, respectively. While Gap2 operates in the photosynthetic Calvin cycle and in non-photosynthetic gluconeogenesis, Gap1 seems to be essential only for glycolytic glucose breakdown, conditions under which the catabolic activity of Gap2 seems to be repressed by a specific low-molecular-weight inhibitor.
Collapse
Affiliation(s)
- O Koksharova
- Institut of Genetics, University of Braunschweig, Germany
| | | | | | | |
Collapse
|
81
|
Abstract
Since the late 1970s, determining the phylogenetic relationships among the contemporary domains of life, the Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes), has been central to the study of early cellular evolution. The two salient issues surrounding the universal tree of life are whether all three domains are monophyletic (i.e., all equivalent in taxanomic rank) and where the root of the universal tree lies. Evaluation of the status of the Archaea has become key to answering these questions. This review considers our cumulative knowledge about the Archaea in relationship to the Bacteria and Eucarya. Particular attention is paid to the recent use of molecular phylogenetic approaches to reconstructing the tree of life. In this regard, the phylogenetic analyses of more than 60 proteins are reviewed and presented in the context of their participation in major biochemical pathways. Although many gene trees are incongruent, the majority do suggest a sisterhood between Archaea and Eucarya. Altering this general pattern of gene evolution are two kinds of potential interdomain gene transferrals. One horizontal gene exchange might have involved the gram-positive Bacteria and the Archaea, while the other might have occurred between proteobacteria and eukaryotes and might have been mediated by endosymbiosis.
Collapse
Affiliation(s)
- J R Brown
- Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
82
|
Unkles SE, Logsdon JM, Robison K, Kinghorn JR, Duncan JM. The tigA gene is a transcriptional fusion of glycolytic genes encoding triose-phosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase in oomycota. J Bacteriol 1997; 179:6816-23. [PMID: 9352934 PMCID: PMC179613 DOI: 10.1128/jb.179.21.6816-6823.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Genes encoding triose-phosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are fused and form a single transcriptional unit (tigA) in Phytophthora species, members of the order Pythiales in the phylum Oomycota. This is the first demonstration of glycolytic gene fusion in eukaryotes and the first case of a TPI-GAPDH fusion in any organism. The tigA gene from Phytophthora infestans has a typical Oomycota transcriptional start point consensus sequence and, in common with most Phytophthora genes, has no introns. Furthermore, Southern and PCR analyses suggest that the same organization exists in other closely related genera, such as Pythium, from the same order (Oomycota), as well as more distantly related genera, Saprolegnia and Achlya, in the order Saprolegniales. Evidence is provided that in P. infestans, there is at least one other discrete copy of a GAPDH-encoding gene but not of a TPI-encoding gene. Finally, a phylogenetic analysis of TPI does not place Phytophthora within the assemblage of crown eukaryotes and suggests TPI may not be particularly useful for resolving relationships among major eukaryotic groups.
Collapse
Affiliation(s)
- S E Unkles
- Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom.
| | | | | | | | | |
Collapse
|
83
|
Verdoes JC, Wery J, Boekhout T, Van Ooyen AJ. Molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase gene of Phaffia rhodozyma. Yeast 1997; 13:1231-42. [PMID: 9364747 DOI: 10.1002/(sici)1097-0061(199710)13:13<1231::aid-yea171>3.0.co;2-q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The glyceraldehyde-3-phosphate dehydrogenase (GPD; EC1.2.1.12)-encoding gene (gpd) was isolated from a genomic library of Phaffia rhodozyma CBS 6938. Unlike some other eukaryotic organisms the gpd gene is represented by a single copy in P. rhodozyma. The complete nucleotide sequence of the coding, as well as the flanking non-coding regions was determined. The nucleotide sequence of gpd predicted six introns and a polypeptide chain of 339 amino acids. The codon usage in the gpd gene of P. rhodozyma was highly biased and was significantly different from the codon usage in other yeasts. Phylogenetic analysis of different yeasts and filamentous asco- and basidiomycetes gpd sequences indicated that the gpd gene of P. rhodozyma forms a cluster with the corresponding genes of filamentous basidiomycetes.
Collapse
Affiliation(s)
- J C Verdoes
- Department of Food Science, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
84
|
Valverde F, Losada M, Serrano A. Functional complementation of an Escherichia coli gap mutant supports an amphibolic role for NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase of Synechocystis sp. strain PCC 6803. J Bacteriol 1997; 179:4513-22. [PMID: 9226260 PMCID: PMC179286 DOI: 10.1128/jb.179.14.4513-4522.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gap-2 gene, encoding the NAD(P)-dependent D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH2) of the cyanobacterium Synechocystis sp. strain PCC 6803, was cloned by functional complementation of an Escherichia coli gap mutant with a genomic DNA library; this is the first time that this cloning strategy has been used for a GAPDH involved in photosynthetic carbon assimilation. The Synechocystis DNA region able to complement the E. coli gap mutant was narrowed down to 3 kb and fully sequenced. A single complete open reading frame of 1,011 bp encoding a protein of 337 amino acids was found and identified as the putative gap-2 gene identified in the complete genome sequence of this organism. Determination of the transcriptional start point, identification of putative promoter and terminator sites, and orientation of the truncated flanking genes suggested the gap-2 transcript should be monocystronic, a possibility further confirmed by Northern blot studies. Both natural and recombinant homotetrameric GAPDH2s were purified and found to exhibit virtually identical physicochemical and kinetic properties. The recombinant GAPDH2 showed the dual pyridine nucleotide specificity characteristic of the native cyanobacterial enzyme, and similar ratios of NAD- to NADP-dependent activities were found in cell extracts from Synechocystis as well as in those from the complemented E. coli clones. The deduced amino acid sequence of Synechocystis GAPDH2 presented a high degree of identity with sequences of the chloroplastic NADP-dependent enzymes. In agreement with this result, immunoblot analysis using monospecific antibodies raised against GAPDH2 showed the presence of the 38-kDa GAPDH subunit not only in crude extracts from the gap-2-expressing E. coli clones and all cyanobacteria that were tested but also in those from eukaryotic microalgae and plants. Western and Northern blot experiments showed that gap-2 is conspicuously expressed, although at different levels, in Synechocystis cells grown in different metabolic regimens, even under chemoheterotrophic conditions. A possible amphibolic role of the cyanobacterial GAPDH2, namely, anabolic for photosynthetic carbon assimilation and catabolic for carbohydrate degradative pathways, is discussed.
Collapse
Affiliation(s)
- F Valverde
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigación Isla de la Cartuja, Universidad de Sevilla-CSIC, Seville, Spain
| | | | | |
Collapse
|
85
|
Boschi-Muller S, Azza S, Pollastro D, Corbier C, Branlant G. Comparative enzymatic properties of GapB-encoded erythrose-4-phosphate dehydrogenase of Escherichia coli and phosphorylating glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 1997; 272:15106-12. [PMID: 9182530 DOI: 10.1074/jbc.272.24.15106] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
GapB-encoded protein of Escherichia coli and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) share more than 40% amino acid identity. Most of the amino acids involved in the binding of cofactor and substrates to GAPDH are conserved in GapB-encoded protein. This enzyme shows an efficient non-phosphorylating erythrose-4-phosphate dehydrogenase activity (Zhao, G., Pease, A. J., Bharani, N., and Winkler, M. E. (1995) J. Bacteriol. 177, 2804-2812) but a low phosphorylating glyceraldehyde-3-phosphate dehydrogenase activity, whereas GAPDH shows a high efficient phosphorylating glyceraldehyde-3-phosphate dehydrogenase activity and a low phosphorylating erythrose-4-phosphate dehydrogenase activity. To identify the structural factors responsible for these differences, comparative kinetic and binding studies have been carried out on both GapB-encoded protein of Escherichia coli and GAPDH of Bacillus stearothermophilus. The KD constant of GapB-encoded protein for NAD is 800-fold higher than that of GAPDH. The chemical mechanism of erythrose 4-phosphate oxidation by GapB-encoded protein is shown to proceed through a two-step mechanism involving covalent intermediates with Cys-149, with rates associated to the acylation and deacylation processes of 280 s-1 and 20 s-1, respectively. No isotopic solvent effect is observed suggesting that the rate-limiting step is not hydrolysis. The rate of oxidation of glyceraldehyde 3-phosphate is 0.12 s-1 and is hydride transfer limiting, at least 2000-fold less efficient compared with that of erythrose 4-phosphate. Thus, it can be concluded that it is only the structure of the substrates that prevails in forming a ternary complex enzyme-NAD-thiohemiacetal productive (or not) for hydride transfer in the acylation step. This conclusion is reinforced by the fact that the rate of oxidation for erythrose 4-phosphate by GAPDH is 0.1 s-1 and is limited by the acylation step, whereas glyceraldehyde 3-phosphate acylation is efficient and is not rate-determining (>/=800 s-1). Substituting Asn for His-176 on GapB-encoded protein, a residue postulated to facilitate hydride transfer as a base catalyst, decreases 40-fold the kcat of glyceraldehyde 3-phosphate oxidation. This suggests that the non-efficient positioning of the C-1 atom of glyceraldehyde 3-phosphate relative to the pyridinium of the cofactor within the ternary complex is responsible for the low catalytic efficiency. No phosphorylating activity on erythrose 4-phosphate with GapB-encoded protein is observed although the Pi site is operative as proven by the oxidative phosphorylation of glyceraldehyde 3-phosphate. Thus the binding of inorganic phosphate to the Pi site likely is not productive for attacking efficiently the thioacyl intermediate formed with erythrose 4-phosphate, whereas a water molecule is an efficient nucleophile for the hydrolysis of the thioacyl intermediate. Compared with glyceraldehyde-3-phosphate dehydrogenase activity, this corresponds to an activation of the deacylation step by >/=4.5 kcal.mol-1. Altogether these results suggest subtle structural differences between the active sites of GAPDH and GapB-encoded protein that could be revealed and/or modulated by the structure of the substrate bound. This also indicates that a protein engineering approach could be used to convert a phosphorylating aldehyde dehydrogenase into an efficient non-phosphorylating one and vice versa.
Collapse
Affiliation(s)
- S Boschi-Muller
- Laboratoire d'Enzymologie et de Génie Génétique, Université de Nancy I, URA CNRS 457, B.P. 239, 54506 Vandoeuvre-les-Nancy Cédex, France
| | | | | | | | | |
Collapse
|
86
|
Liaud MF, Brandt U, Scherzinger M, Cerff R. Evolutionary origin of cryptomonad microalgae: two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components. J Mol Evol 1997; 44 Suppl 1:S28-37. [PMID: 9071009 DOI: 10.1007/pl00000050] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cryptomonads are complex microalgae which share characteristics of chromophytes (chlorophyll c, extra pair of membranes surrounding the plastids) and rhodophytes (phycobiliproteins). Unlike chromophytes, however, they contain a small nucleus-like organelle, the nucleomorph, in the periplastidial space between the inner and outer plastid membrane pairs. These cellular characteristics led to the suggestion that cryptomonads may have originated via a eukaryote-eukaryote endosymbiosis between a phagotrophic host cell and a unicellular red alga, a hypothesis supported by rRNA phylogenies. Here we characterized cDNAs of the nuclear genes encoding chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from the two cryptomonads Pyrenomonas salina and Guillardia theta. Our results suggest that in cryptomonads the classic Calvin cycle GAPDH enzyme of cyanobacterial origin, GapAB, is absent and functionally replaced by a photosynthetic GapC enzyme of proteobacterial descent, GapC1. The derived GapC1 precursor contains a typical signal/transit peptide of complex structure and sequence signatures diagnostic for dual cosubstrate specificity with NADP and NAD. In addition to this novel GapC1 gene a cytosol-specific GapC2 gene of glycolytic function has been found in both cryptomonads showing conspicuous sequence similarities to animal GAPDH. The present findings support the hypothesis that the host cell component of cryptomonads may be derived from a phototrophic rather than a organotrophic cell which lost its primary plastid after receiving a secondary one. Hence, cellular compartments of endosymbiotic origin may have been lost or replaced several times in eukaryote cell evolution, while the corresponding endosymbiotic genes (e.g., GapC1) were retained, thereby increasing the chimeric potential of the nuclear genome.
Collapse
Affiliation(s)
- M F Liaud
- Institut für Genetik, Universität Braunschweig, Germany
| | | | | | | |
Collapse
|
87
|
Pohlmeyer K, Paap BK, Soll J, Wedel N. CP12: a small nuclear-encoded chloroplast protein provides novel insights into higher-plant GAPDH evolution. PLANT MOLECULAR BIOLOGY 1996; 32:969-78. [PMID: 8980547 DOI: 10.1007/bf00020493] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Higher-plant chloroplast NAD(P)-glyceraldehyde 3-phosphate dehydrogenase (NAD(P)-GAPDH; EC 1.2.1.13) is composed of two different nuclear-encoded subunits, GAPA and GAPB, forming the highly active heterotetrameric A2B2 enzyme. The main difference between these two subunits is a C-terminal extension of about 30 amino acid residues of GAPB. We present cDNA clones for a nuclear-encoded chloroplast protein from pea, spinach and tobacco, which we have named CP12. The mature protein consists of only 74, 75 and 76 amino acid residues, respectively and contains two domains with significant homology to the C-terminal extension of GAPB. Affinity chromatography approaches reveal also a specific interaction between CP12 and chloroplast GAPDH. Northern blot analysis indicates that CP12 is, like plastid GAPDH, expressed in green and also in etiolated leaves. Further homology is observed between CP12 and ORF3, an open reading frame located in the hox gene cluster of Anabaena variabilis. This gene cluster encodes the subunits of the bidirectional NADP(+)-dependent [NiFeS] dehydrogenase. We propose therefore a common evolutionary origin of CP12 and higher-plant chloroplast GAPDH subunit GAPB from the cyanobacterial ORF3.
Collapse
Affiliation(s)
- K Pohlmeyer
- Botanisches Institut der Christian-Albrechts-Universitä zu Kiel, Germany
| | | | | | | |
Collapse
|
88
|
Baalmann E, Scheibe R, Cerff R, Martin W. Functional studies of chloroplast glyceraldehyde-3-phosphate dehydrogenase subunits A and B expressed in Escherichia coli: formation of highly active A4 and B4 homotetramers and evidence that aggregation of the B4 complex is mediated by the B subunit carboxy terminus. PLANT MOLECULAR BIOLOGY 1996; 32:505-13. [PMID: 8980499 DOI: 10.1007/bf00019102] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chloroplast glyceraldehyde-3-phosphate dehydrogenase (phosphorylating, E.C. 1.2.1.13) (GAPDH) of higher plants exists as an A2B2 heterotetramer that catalyses the reductive step of the Calvin cycle. In dark chloroplasts the enzyme exhibits a molecular mass of 600 kDa, whereas in illuminated chloroplasts the molecular mass is altered in favor of the more active 150 kDa form. We have expressed in Escherichia coli proteins corresponding to the mature A and B subunits of spinach chloroplast GAPDH (GapA and GapB, respectively) in addition to a derivative of the B subunit lacking the GapB-specific C-terminal extension (CTE). One mg of each of the three proteins so expressed was purified to electrophoretic homogeneity with conventional methods. Spinach GapA purified from E. coli is shown to be a highly active homotetramer (50-70 U/mg) which does not associate under aggregating conditions in vitro to high-molecular-mass (HMM) forms of ca. 600 kDa. Since B4 forms of the enzyme have not been described from any source, we were surprised to find that spinach GapB purified from E. coli was active (15-35 U/mg). Spinach GapB lacking the CTE purified from E. coli is more highly active (130 U/mg) than GapB with the CTE. Under aggregating conditions, GapB lacking the CTE is a tetramer that does not associate to HMM forms whereas GapB with the CTE occurs exclusively as an aggregated HMM form. The data indicate that intertetramer association of chloroplast GAPDH in vitro occurs through GapB-mediated protein-protein interaction.
Collapse
Affiliation(s)
- E Baalmann
- Pflanzenphysiologie, FB 5 Biologie/Chemie, Universität Osnabrück, Germany
| | | | | | | |
Collapse
|
89
|
Roger AJ, Smith MW, Doolittle RF, Doolittle WF. Evidence for the Heterolobosea from phylogenetic analysis of genes encoding glyceraldehyde-3-phosphate dehydrogenase. J Eukaryot Microbiol 1996; 43:475-85. [PMID: 8976605 DOI: 10.1111/j.1550-7408.1996.tb04507.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The phylogenetic relationships between major slime mould groups and the identification of their unicellular relatives has been a subject of controversy for many years. Traditionally, it has been assumed that two slime mould groups, the acrasids and the dictyostelids were related by virtue of their cellular slime mould habit; a view still endorsed by at least one current classification scheme. However, a decade ago, on the basis of detailed ultrastructural resemblances it was proposed that acrasids of the family Acrasidae were not relatives of other slime moulds but instead related to a group of mostly free-living unicellular amoebae, the Schizopyrenida. The class Heterolobosea was created to contain these organisms and has since figured in many discussions of protist evolution. We sought to test the validity of Heterolobosea by characterizing homologs of the highly conserved glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from an acrasid, Acrasis rosea; a dictyostelid, Dictyostelium discoideum; and the schizopyrenid Naegleria andersoni. Phylogenetic analysis of these and other GAPDH sequences, using maximum parsimony, neighbour-joining distance and maximum likelihood methods strongly supports the Heterolobosea hypothesis and discredits the concept of a cellular slime mould grouping. Moreover, all of our analyses place Dictyostelium discoideum as a relatively recently originating lineage, most closely related to the Metazoa, similar to other recently published phylogenies of protein-coding genes. However, GAPDH phylogenies do not show robust branching orders for most of the relationships between major groups. We propose that several of the incongruencies observed between GAPDH and other molecular phylogenies are artifacts resulting from substitutional saturation of this enzyme.
Collapse
Affiliation(s)
- A J Roger
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
90
|
Martin W, Mustafa AZ, Henze K, Schnarrenberger C. Higher-plant chloroplast and cytosolic fructose-1,6-bisphosphatase isoenzymes: origins via duplication rather than prokaryote-eukaryote divergence. PLANT MOLECULAR BIOLOGY 1996; 32:485-91. [PMID: 8980497 DOI: 10.1007/bf00019100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Full-size cDNAs encoding the precursors of chloroplast fructose-1,6-bisphosphatase (FBP), sedoheptulose-1,7-bisphosphatase (SBP), and the small subunit of Rubisco (RbcS) from spinach were cloned. These cDNAs complete the set of homologous probes for all nuclear-encoded enzymes of the Calvin cycle from spinach (Spinacia oleracea L.). FBP enzymes not only of higher plants but also of non-photosynthetic eukaryotes are found to be unexpectedly similar to eubacterial homologues, suggesting a eubacterial origin of these eukaryotic nuclear genes. Chloroplast and cytosolic FBP isoenzymes of higher plants arose through a gene duplication event which occurred early in eukaryotic evolution. Both FBP and SBP of higher plant chloroplasts have acquired substrate specificity, i.e. have undergone functional specialization since their divergence from bifunctional FBP/SBP enzymes of free-living eubacteria.
Collapse
Affiliation(s)
- W Martin
- Institut für Genetik, Technische Universität Braunschweig, Germany
| | | | | | | |
Collapse
|
91
|
Quigley F, Dao P, Cottet A, Mache R. Sequence analysis of an 81 kb contig from Arabidopsis thaliana chromosome III. Nucleic Acids Res 1996; 24:4313-8. [PMID: 8932388 PMCID: PMC146221 DOI: 10.1093/nar/24.21.4313] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nucleotide sequence of a 81 493 bp contig from Arabidopsis thaliana chromosome III has been determined together with 11 corresponding cognate cDNAs. Analysis of the finished sequence and comparison with public databases indicates a gene density of one gene per 4527 bp and identifies 17 novel genes, 10 of which are totally unknown or have no well-defined function. In addition, the contig contains part of a non-LTR retrotransposon and large direct and inverted repeats. Contig analysis also provides information on the structure and genomic organization of plant genes.
Collapse
Affiliation(s)
- F Quigley
- Laboratoire de Génétique Moléculaire des Plantes, Université JosephFourier et Centre National de la Recherche Scientifique, Grenoble, France.
| | | | | | | |
Collapse
|
92
|
Baldauf SL, Palmer JD, Doolittle WF. The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc Natl Acad Sci U S A 1996; 93:7749-54. [PMID: 8755547 PMCID: PMC38819 DOI: 10.1073/pnas.93.15.7749] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The genes for the protein synthesis elongation factors Tu (EF-Tu) and G (EF-G) are the products of an ancient gene duplication, which appears to predate the divergence of all extant organismal lineages. Thus, it should be possible to root a universal phylogeny based on either protein using the second protein as an outgroup. This approach was originally taken independently with two separate gene duplication pairs, (i) the regulatory and catalytic subunits of the proton ATPases and (ii) the protein synthesis elongation factors EF-Tu and EF-G. Questions about the orthology of the ATPase genes have obscured the former results, and the elongation factor data have been criticized for inadequate taxonomic representation and alignment errors. We have expanded the latter analysis using a broad representation of taxa from all three domains of life. All phylogenetic methods used strongly place the root of the universal tree between two highly distinct groups, the archaeons/eukaryotes and the eubacteria. We also find that a combined data set of EF-Tu and EF-G sequences favors placement of the eukaryotes within the Archaea, as the sister group to the Crenarchaeota. This relationship is supported by bootstrap values of 60-89% with various distance and maximum likelihood methods, while unweighted parsimony gives 58% support for archaeal monophyly.
Collapse
Affiliation(s)
- S L Baldauf
- Canadian Institute for Advanced Research and Department of Biochemistry, Dalhousie University, Halifax, Canada
| | | | | |
Collapse
|
93
|
Long M, de Souza SJ, Rosenberg C, Gilbert W. Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor. Proc Natl Acad Sci U S A 1996; 93:7727-31. [PMID: 8755543 PMCID: PMC38815 DOI: 10.1073/pnas.93.15.7727] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Since most of the examples of "exon shuffling" are between vertebrate genes, the view is often expressed that exon shuffling is limited to the evolutionarily recent lineage of vertebrates. Although exon shuffling in plants has been inferred from the analysis of intron phases of plant genes [Long, M., Rosenberg, C. & Gilbert, W. (1995) Proc. Natl. Acad. Sci. USA 92, 12495-12499] and from the comparison of two functionally unknown sunflower genes [Domon, C. & Steinmetz, A. (1994) Mol. Gen. Genet. 244, 312-317], clear cases of exon shuffling in plant genes remain to be uncovered. Here, we report an example of exon shuffling in two important nucleus-encoded plant genes: cytosolic glyceraldehyde-3-phosphate dehydrogenase (cytosolic GAPDH or GapC) and cytochrome c1 precursor. The intron-exon structures of the shuffled region indicate that the shuffling event took place at the DNA sequence level. In this case, we can establish a donor-recipient relationship for the exon shuffling. Three amino terminal exons of GapC have been donated to cytochrome c1, where, in a new protein environment, they serve as a source of the mitochondrial targeting function. This finding throws light upon an old important but unsolved question in gene evolution: the origin of presequences or transit peptides that generally exist in nucleus-encoded organelle genes.
Collapse
Affiliation(s)
- M Long
- Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
94
|
|
95
|
Rozario C, Morin L, Roger AJ, Smith MW, Müller M. Primary structure and phylogenetic relationships of glyceraldehyde-3-phosphate dehydrogenase genes of free-living and parasitic diplomonad flagellates. J Eukaryot Microbiol 1996; 43:330-40. [PMID: 8768438 DOI: 10.1111/j.1550-7408.1996.tb03997.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Complete nucleotide sequences have been established for two genes (gap1 and gap2) coding for glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) homologs in the diplomonad Giardia lamblia. In addition, almost complete sequences of the GAPDH open reading frames were obtained from PCR products for two free-living diplomonad species, Trepomonas agillis and Hexamita inflata, and a parasite of Atlantic salmon, an as yet unnamed species with morphological affinities to Spironucleus. Giardia lamblia gap1 and the genes from the three other diplomonad species show high similarity to each other and to other glycolytic GAPDH genes. All amino-acyl residues known to be highly conserved in this enzyme are also conserved in these sequences. Giardia lamblia gap2 gene is more divergent and its putative translation reveals the presence of a cysteine and serine-rich insertion resembling a metal binding finger. This motif has not yet been noted in other GAPDH molecules. All sequences contain an S-loop signature with characteristics close to those of eukaryotes. In phylogenetic reconstructions based on the derived amino acid sequences with neighbor-joining, parsimony and maximum-likelihood methods the four typical GAPDH sequences of diplomonads cluster into a single clade. Within this clade, G. lambia gap1 shares a common ancestor with the rest of the genes. The latter are more closely related to each other, indicating an early separation of the lineage leading to the genus Giardia from the lineage encompassing the morphologically less differentiated genera, Trepomonas, Hexamita and that of the unnamed species. This result is discordant with the orthogonal evolution of diplomonads suggested on the basis of comparative morphology. In neighbor-joining reconstructions G. lamblia gap2 occupies a variable position, due to its great divergence. In parsimony and maximum likelihood analysis however, it shares a most recent common ancestor with the typical G. lamblia gap1 gene, suggesting that it diverged after the separation of the Giardia lineage. The position of the diplomonad clade in broader phylogenetic reconstructions is firmly within the typical cytosolic glycolytic representatives of GAPDH of eukaryotes.
Collapse
Affiliation(s)
- C Rozario
- Rockefeller University, New York, New York 10021-6399, USA
| | | | | | | | | |
Collapse
|
96
|
Laxalt AM, Cassia RO, Sanllorenti PM, Madrid EA, Andreu AB, Daleo GR, Conde RD, Lamattina L. Accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase RNA under biological stress conditions and elicitor treatments in potato. PLANT MOLECULAR BIOLOGY 1996; 30:961-72. [PMID: 8639754 DOI: 10.1007/bf00020807] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants respond to pathogen infection and environmental stress by regulating the coordinate expression of many stress-related genes. In plants, the expression of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is induced under environmental stress. This work was aimed at investigating whither the expression pattern of cytosolic GAPDH is also modulated upon infection of potato plants (Solanum tuberosum L.) with the late blight fungal agent Phytophthora infestans. Northern blot analysis showed the accumulation of the GAPDH gene transcripts in leaves and stems of inoculated potato plants. When tuber discs were treated with eicosapentaenoic acid (EPA), an elicitor found in P. infestans, GAPDH gene transcripts level increased. The increase was parallel to that of the hydroxymethyl glutharyl coenzyme A reductase (HMGR), an enzyme involved in pathogen defense reactions. Glucans obtained from P. infestans cell wall acts synergistically with EPA on GAPDH and HMGR gene induction. Salicylic acid, an endogenous signal for inducing systemic acquired resistance, was also effective in stimulating the GAPDH transcript accumulation in potato leaves. These experiments suggest that related multi-component factors, which are part of both primary and secondary metabolism, are probably regulated by similar signal transduction pathways when they are induced under biotic or abiotic stress conditions.
Collapse
Affiliation(s)
- A M Laxalt
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Schmitz G, Schmidt M, Feierabend J. Characterization of a plastid-specific HSP90 homologue: identification of a cDNA sequence, phylogenetic descendence and analysis of its mRNA and protein expression. PLANT MOLECULAR BIOLOGY 1996; 30:479-492. [PMID: 8605300 DOI: 10.1007/bf00049326] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The isolation of cDNAs is described which encode the complete sequence of a precursor protein for a HSP90 homologue consisting of an N-terminal transit peptide of 5850 Da and a mature protein (cpHSP82) of 82 260 Da, located in the plastids of rye leaves (Secale cereale). Hybridization analysis indicated the presence of a single gene in the DNA of rye and a transcript size of 2.8 kb. A phylogenetic tree constructed on the basis of sequence comparisons for HSP90 homologues from different species and compartments indicated that the plastidic HSP82 from rye was more closely related to an eubacterial protein than to HSP90 homologues of the cytosol or ER from both plants and animals. The results suggest that during chloroplast evolution the gene for cpHSP82 was transferred to the nucleus from a prokaryotic endosymbiont. Immunoblots with specific antibodies and Percoll gradient-purified organelles confirmed the location of cpHSP82 in chloroplasts or non-green plastids. In green rye leaves cpHSP82 was constitutively expressed and equally distributed among tissues of different age. The expression of cpHSP82 was enhanced within 2 h by exposure to 42 degrees C. The cpHSP82 transcript and protein were much more strongly expressed in non-green tissues, such as etiolated, 70S ribosome-deficient 32 degrees C-grown, or herbicide-bleached, than in normal green leaves. Also chromoplasts from the pericarp of tomato fruits contained high levels of a HSP90 polypeptide while a photosynthetic protein, the large subunit of ribulose-1,5-bisphosphate carboxylase was largely degraded during ripening.
Collapse
Affiliation(s)
- G Schmitz
- Botanisches Institut, J.W. Goethe-Universität, Frankfurt am Main, Germany
| | | | | |
Collapse
|
98
|
Köhler U, Cerff R, Brinkmann H. Transaldolase genes from the cyanobacteria Anabaena variabilis and Synechocystis sp. PCC 6803: comparison with other eubacterial and eukaryotic homologues. PLANT MOLECULAR BIOLOGY 1996; 30:213-218. [PMID: 8616240 DOI: 10.1007/bf00017817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have sequenced and analysed the transaldolase (tal) genes from two cyanobacteria, Anabaena variabilis (ATCC 29413) and Synechocystis sp. PCC 6803, which are filamentous heterocyst-forming and unicellular organisms, respectively. The deduced amino acid sequences of the two cyanobacterial tal genes are 78% identical and are highly homologous to both eubacterial and eukaryotic transaldolases (Escherichia coli, two yeasts, and man) with values ranging from 54 to 60% amino acid identity. In contrast, the transaldolase homologous sequences from the cyanobacterium Nostoc sp. ATCC 29133, from Mycobacterium leprae, and the partial sequence from the higher plant Arabidopsis thaliana have a much lower degree of homology with each other and relative to the sequences mentioned above. These data indicate three different types of transaldolases.
Collapse
Affiliation(s)
- U Köhler
- Institut für Genetik, Braunschweig, Germany
| | | | | |
Collapse
|
99
|
Brinkmann H, Martin W. Higher-plant chloroplast and cytosolic 3-phosphoglycerate kinases: a case of endosymbiotic gene replacement. PLANT MOLECULAR BIOLOGY 1996; 30:65-75. [PMID: 8616244 DOI: 10.1007/bf00017803] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Previous studies indicated that plant nuclear genes for chloroplast and cytosolic isoenzymes of 3-phosphoglycerate kinase (PGK) arose through recombination between a preexisting gene of the eukaryotic host nucleus for the cytosolic enzyme and an endosymbiont-derived gene for the chloroplast enzyme. We readdressed the evolution of eukaryotic pgk genes through isolation and characterisation of a pgk gene from the extreme halophilic, photosynthetic archaebacterium Haloarcula vallismortis and analysis of PGK sequences from the three urkingdoms. A very high calculated net negative charge of 63 for PGK from H. vallismortis was found which is suggested to result from selection for enzyme solubility in this extremely halophilic cytosol. We refute the recombination hypothesis proposed for the origin of plant PGK isoenzymes. The data indicate that the ancestral gene from which contemporary homologues for the Calvin cycle/glycolytic isoenzymes in higher plants derive was acquired by the nucleus from (endosymbiotic) eubacteria. Gene duplication subsequent to separation of Chlamydomonas and land plant lineages gave rise to the contemporary genes for chloroplast and cytosolic PGK isoenzymes in higher plants, and resulted in replacement of the preexisting gene for PGK of the eukaryotic cytosol. Evidence suggesting a eubacterial origin of plant genes for PGK via endosymbiotic gene replacement indicates that plant nuclear genomes are more highly chimaeric, i.e. contain more genes of eubacterial origin, than is generally assumed.
Collapse
Affiliation(s)
- H Brinkmann
- Institut für Botanik, Technische Universität Braunschweig, Germany
| | | |
Collapse
|
100
|
Nowitzki U, Wyrich R, Westhoff P, Henze K, Schnarrenberger C, Martin W. Cloning of the amphibolic Calvin cycle/OPPP enzyme D-ribulose-5-phosphate 3-epimerase (EC 5.1.3.1) from spinach chloroplasts: functional and evolutionary aspects. PLANT MOLECULAR BIOLOGY 1995; 29:1279-91. [PMID: 8616224 DOI: 10.1007/bf00020468] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Exploiting the differential expression of genes for Calvin cycle enzymes in bundle-sheath and mesophyll cells of the C4 plant Sorghum bicolor L., we isolated via subtractive hybridization a molecular probe for the Calvin cycle enzyme D-ribulose-5-phosphate 3-epimerase (R5P3E)(EC 5.1.3.1), with the help of which several full-size cDNAs were isolated from spinach. Functional identity of the encoded mature subunit was shown by R5P3E activity found in affinity-purified glutatione S-transferase fusions expressed in Escherichia coli and by three-fold increase of R5P3E activity upon induction of E. coli overexpressing the spinach subunit under the control of the bacteriophage T7 promoter, demonstrating that we have cloned the first functional ribulose-5-phosphate 3-epimerase from any eukaryotic source. The chloroplast enzyme from spinach shares about 50% amino acid identity with its homologues from the Calvin cycle operons of the autotrophic purple bacteria Alcaligenes eutrophus and Rhodospirillum rubrum. A R5P3E-related eubacterial gene family was identified which arose through ancient duplications in prokaryotic chromosomes, three R5P3E-related genes of yet unknown function have persisted to the present within the E. coli genome. A gene phylogeny reveals that spinach R5P3E is more similar to eubacterial homologues than to the yeast sequence, suggesting a eubacterial origin for this plant nuclear gene.
Collapse
Affiliation(s)
- U Nowitzki
- Institut für Genetik, Technische Universität Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|