51
|
Gautam M, DeChiara TM, Glass DJ, Yancopoulos GD, Sanes JR. Distinct phenotypes of mutant mice lacking agrin, MuSK, or rapsyn. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 114:171-8. [PMID: 10320756 DOI: 10.1016/s0165-3806(99)00013-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Differentiation of the postsynaptic membrane at the neuromuscular junction requires agrin, a nerve-derived signal; MuSK, a critical component of the agrin receptor in muscle; and rapsyn, a protein that interacts with acetylcholine receptors (AChRs). We showed previously that nerve-induced AChR aggregation is dramatically impaired in knockout mice lacking agrin, MuSK, or rapsyn. However, the phenotypes of these mutants differed in several respects, suggesting that the pathway from agrin to MuSK to rapsyn is complex. Here, we compared the effects of these mutations on two aspects of synaptic differentiation: AChR clustering and transcriptional specialization of synapse-associated myonuclei. First, we show that a plant lectin, VVA-B4, previously shown to act downstream of agrin, can induce AChR clusters on MuSK-deficient but not rapsyn-deficient myotubes in culture. Thus, although both MuSK and rapsyn are required for AChR clustering in vivo, only rapsyn is essential for cluster formation per se. Second, we show that neuregulin, a nerve-derived inducer of AChR gene expression, activates AChR gene expression in cultured agrin- and MuSK-deficient myotubes, even though synapse-specific transcriptional specialization is disrupted in agrin and MuSK mutants in vivo. We propose that agrin works through MuSK to determine a synaptogenic region within which synaptic differentiation occurs.
Collapse
MESH Headings
- Agrin/deficiency
- Agrin/genetics
- Agrin/physiology
- Animals
- Cells, Cultured
- Crosses, Genetic
- Heterozygote
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred Strains
- Mice, Knockout
- Mice, Transgenic
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/physiology
- Muscle Proteins/deficiency
- Muscle Proteins/genetics
- Muscle Proteins/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Mutagenesis
- Phenotype
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/physiology
- Receptors, Growth Factor/deficiency
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/physiology
- Receptors, Nicotinic/deficiency
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/physiology
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- M Gautam
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
52
|
Constitutively active MuSK is clustered in the absence of agrin and induces ectopic postsynaptic-like membranes in skeletal muscle fibers. J Neurosci 1999. [PMID: 10212297 DOI: 10.1523/jneurosci.19-09-03376.1999] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In skeletal muscle fibers, neural agrin can direct the accumulation of acetylcholine receptors (AChR) and transcription of AChR subunit genes from the subsynaptic nuclei. Although the receptor tyrosine kinase MuSK is required for AChR clustering, it is less clear whether MuSK regulates gene transcription. To elucidate the role of MuSK in these processes, we constructed a constitutively active MuSK receptor, MuSKneuTMuSK, taking advantage of the spontaneous homodimerization of the transmembrane domain of neuT, an oncogenic variant of the neu/erbB2 receptor. In the extrasynaptic region of innervated muscle fibers, MuSKneuTMuSK formed highly concentrated aggregates that colocalized with AChR clusters. Associated with MuSK-induced AChR clusters was a normal complement of synaptic proteins. Moreover, transcription of the AChR-epsilon subunit gene was increased, albeit via an indirect mechanism by MuSK-induced aggregation of erbB receptors and neuregulin. Although neural agrin was not required, the activity of MuSKneuTMuSK was nevertheless potentiated by ectopic expression of a muscle agrin isoform inactive in AChR clustering. To define the role of the kinase domain in the formation of a postsynaptic-like membrane, a second fusion receptor, neuneuTMuSK, which included the MuSK kinase but not the MuSK extracellular domain, was expressed. Significantly, neuneuTMuSK induced AChR clusters that colocalized with aggregates of endogenous MuSK. Taken together, it was concluded that the MuSK kinase domain is sufficient to initiate the recruitment of additional MuSK receptors, which then develop into highly concentrated aggregates by means of a positive feedback loop to induce a postsynaptic membrane in the absence of neural agrin.
Collapse
|
53
|
Jones G, Moore C, Hashemolhosseini S, Brenner HR. Constitutively active MuSK is clustered in the absence of agrin and induces ectopic postsynaptic-like membranes in skeletal muscle fibers. J Neurosci 1999; 19:3376-83. [PMID: 10212297 PMCID: PMC6782255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
In skeletal muscle fibers, neural agrin can direct the accumulation of acetylcholine receptors (AChR) and transcription of AChR subunit genes from the subsynaptic nuclei. Although the receptor tyrosine kinase MuSK is required for AChR clustering, it is less clear whether MuSK regulates gene transcription. To elucidate the role of MuSK in these processes, we constructed a constitutively active MuSK receptor, MuSKneuTMuSK, taking advantage of the spontaneous homodimerization of the transmembrane domain of neuT, an oncogenic variant of the neu/erbB2 receptor. In the extrasynaptic region of innervated muscle fibers, MuSKneuTMuSK formed highly concentrated aggregates that colocalized with AChR clusters. Associated with MuSK-induced AChR clusters was a normal complement of synaptic proteins. Moreover, transcription of the AChR-epsilon subunit gene was increased, albeit via an indirect mechanism by MuSK-induced aggregation of erbB receptors and neuregulin. Although neural agrin was not required, the activity of MuSKneuTMuSK was nevertheless potentiated by ectopic expression of a muscle agrin isoform inactive in AChR clustering. To define the role of the kinase domain in the formation of a postsynaptic-like membrane, a second fusion receptor, neuneuTMuSK, which included the MuSK kinase but not the MuSK extracellular domain, was expressed. Significantly, neuneuTMuSK induced AChR clusters that colocalized with aggregates of endogenous MuSK. Taken together, it was concluded that the MuSK kinase domain is sufficient to initiate the recruitment of additional MuSK receptors, which then develop into highly concentrated aggregates by means of a positive feedback loop to induce a postsynaptic membrane in the absence of neural agrin.
Collapse
Affiliation(s)
- G Jones
- Department of Physiology, University of Basel, CH-4051 Basel, Switzerland
| | | | | | | |
Collapse
|
54
|
Burgess RW, Nguyen QT, Son YJ, Lichtman JW, Sanes JR. Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction. Neuron 1999; 23:33-44. [PMID: 10402191 DOI: 10.1016/s0896-6273(00)80751-5] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Agrin induces synaptic differentiation at the skeletal neuromuscular junction (NMJ); both pre- and postsynaptic differentiation are drastically impaired in its absence. Multiple alternatively spliced forms of agrin that differ in binding characteristics and bioactivity are synthesized by nerve and muscle cells. We used surgical chimeras, isoform-specific mutant mice, and nerve-muscle cocultures to determine the origins and nature of the agrin required for synaptogenesis. We show that agrin containing Z exons (Z+) is a critical nerve-derived inducer of postsynaptic differentiation, whereas neural isoforms containing a heparin binding site (Y+) and all muscle-derived isoforms are dispensable for major steps in synaptogenesis. Our results also suggest that the requirement of agrin for presynaptic differentiation is mediated indirectly by its ability to promote postsynaptic production or localization of appropriate retrograde signals.
Collapse
Affiliation(s)
- R W Burgess
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
55
|
Abstract
We describe the formation, maturation, elimination, maintenance, and regeneration of vertebrate neuromuscular junctions (NMJs), the best studied of all synapses. The NMJ forms in a series of steps that involve the exchange of signals among its three cellular components--nerve terminal, muscle fiber, and Schwann cell. Although essentially any motor axon can form NMJs with any muscle fiber, an additional set of cues biases synapse formation in favor of appropriate partners. The NMJ is functional at birth but undergoes numerous alterations postnatally. One step in maturation is the elimination of excess inputs, a competitive process in which the muscle is an intermediary. Once elimination is complete, the NMJ is maintained stably in a dynamic equilibrium that can be perturbed to initiate remodeling. NMJs regenerate following damage to nerve or muscle, but this process differs in fundamental ways from embryonic synaptogenesis. Finally, we consider the extent to which the NMJ is a suitable model for development of neuron-neuron synapses.
Collapse
Affiliation(s)
- J R Sanes
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
56
|
Gramolini AO, Angus LM, Schaeffer L, Burton EA, Tinsley JM, Davies KE, Changeux JP, Jasmin BJ. Induction of utrophin gene expression by heregulin in skeletal muscle cells: role of the N-box motif and GA binding protein. Proc Natl Acad Sci U S A 1999; 96:3223-7. [PMID: 10077665 PMCID: PMC15923 DOI: 10.1073/pnas.96.6.3223] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The modulation of utrophin gene expression in muscle by the nerve-derived factor agrin plausibly involves the trophic factor ARIA/heregulin. Here we show that heregulin treatment of mouse and human cultured myotubes caused a approximately 2.5-fold increase in utrophin mRNA levels. Transient transfection experiments with utrophin promoter-reporter gene constructs showed that this increase resulted from an enhanced transcription of the utrophin gene. In the case of the nicotinic acetylcholine receptor delta and epsilon subunit genes, heregulin was previously reported to stimulate transcription via a conserved promoter element, the N-box, which binds the multimeric Ets-related transcription factor GA binding protein (GABP). Accordingly, site-directed mutagenesis of a single N-box motif in the utrophin gene promoter abolished the transcriptional response to heregulin. In addition, overexpression of heregulin, or of the two GABP subunits in cultured myotubes, caused an N-box-dependent increase of the utrophin promoter activity. In vivo, direct gene transfer into muscle confirmed that heregulin regulates utrophin gene expression. Finally, electrophoretic mobility shift assays and supershift experiments performed with muscle extracts revealed that the N-box of the utrophin promoter binds GABP. These findings suggest that the subsynaptic activation of transcription by heregulin via the N-box motif and GABP are conserved among genes expressed at the neuromuscular junction. Because utrophin can functionally compensate for the lack of dystrophin, the elucidation of the molecular mechanisms regulating utrophin gene transcription may ultimately lead to therapies based on utrophin expression throughout the muscle fibers of Duchenne muscular dystrophy patients.
Collapse
Affiliation(s)
- A O Gramolini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5 Canada
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Specific agrin isoforms induce cAMP response element binding protein phosphorylation in hippocampal neurons. J Neurosci 1998. [PMID: 9822730 DOI: 10.1523/jneurosci.18-23-09695.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synaptic basal lamina protein agrin is essential for the formation of neuromuscular junctions. Agrin mediates the postsynaptic clustering of acetylcholine receptors and regulates transcription in muscles. Agrin expression is not restricted to motor neurons but can be demonstrated throughout the CNS. The functional significance of agrin expression in neurons other than motor neurons is unknown. To test whether agrin triggers responses in neurons that lead to the activation of transcription factors, we have analyzed phosphorylation of the transcriptional regulatory site serine 133 of the transcription factor CREB (cAMP response element binding protein) in primary hippocampal neurons. Our results indicate that the neuronal (Ag4,8), but not the non-neuronal (Ag0,0), isoform of agrin induces CREB phosphorylation in hippocampal neurons. The kinetics of agrin- and BDNF-induced CREB phosphorylation are similar: peak levels are reached in minutes and are strongly reduced 2 hr later. Neuronal responses to agrin require extracellular calcium, and, in contrast to tyrosine kinase inhibitors, the specific inhibition of protein kinase A (PKA) does not affect agrin-evoked CREB phosphorylation. Our results show that hippocampal neurons specifically respond to neuronal agrin in a Ca2+-dependent manner and via the activation of tyrosine kinases.
Collapse
|
58
|
Ji RR, Böse CM, Lesuisse C, Qiu D, Huang JC, Zhang Q, Rupp F. Specific agrin isoforms induce cAMP response element binding protein phosphorylation in hippocampal neurons. J Neurosci 1998; 18:9695-702. [PMID: 9822730 PMCID: PMC6793297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
The synaptic basal lamina protein agrin is essential for the formation of neuromuscular junctions. Agrin mediates the postsynaptic clustering of acetylcholine receptors and regulates transcription in muscles. Agrin expression is not restricted to motor neurons but can be demonstrated throughout the CNS. The functional significance of agrin expression in neurons other than motor neurons is unknown. To test whether agrin triggers responses in neurons that lead to the activation of transcription factors, we have analyzed phosphorylation of the transcriptional regulatory site serine 133 of the transcription factor CREB (cAMP response element binding protein) in primary hippocampal neurons. Our results indicate that the neuronal (Ag4,8), but not the non-neuronal (Ag0,0), isoform of agrin induces CREB phosphorylation in hippocampal neurons. The kinetics of agrin- and BDNF-induced CREB phosphorylation are similar: peak levels are reached in minutes and are strongly reduced 2 hr later. Neuronal responses to agrin require extracellular calcium, and, in contrast to tyrosine kinase inhibitors, the specific inhibition of protein kinase A (PKA) does not affect agrin-evoked CREB phosphorylation. Our results show that hippocampal neurons specifically respond to neuronal agrin in a Ca2+-dependent manner and via the activation of tyrosine kinases.
Collapse
Affiliation(s)
- R R Ji
- Department of Neuroscience, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Meier T, Marangi PA, Moll J, Hauser DM, Brenner HR, Ruegg MA. A minigene of neural agrin encoding the laminin-binding and acetylcholine receptor-aggregating domains is sufficient to induce postsynaptic differentiation in muscle fibres. Eur J Neurosci 1998; 10:3141-52. [PMID: 9786208 DOI: 10.1046/j.1460-9568.1998.00320.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The extracellular matrix molecule agrin is both necessary and sufficient for inducing the formation of postsynaptic specializations at the neuromuscular junction (NMJ). At the mature NMJ, agrin is stably incorporated in synaptic basal lamina. The postsynapse-inducing activity of chick agrin, as assayed by its capability of causing aggregation of acetylcholine receptors (AChRs) on cultured muscle cells, maps to a 21 kDa, C-terminal domain. Binding of chick agrin to muscle basal lamina is mediated by the laminins and maps to a 25 kDa, N-terminal fragment of agrin. Here we show that an expression construct encoding a 'mini'-agrin, in which the laminin-binding fragment was fused to the AChR-clustering domain, is sufficient to induce postsynaptic differentiation in vivo when injected into non-synaptic sites of rat soleus muscle. As shown for ectopic postsynaptic differentiation induced by full-length neural agrin, myonuclei underneath the ectopic sites expressed the gene for the AChR epsilon-subunit. Altogether, our data show that a 'mini'-agrin construct encoding only a small fraction of the entire agrin protein is sufficient to induce postsynapse-like structures that are reminiscent of those induced by full-length neural agrin or innervation by motor neurons.
Collapse
Affiliation(s)
- T Meier
- Institute of Physiology, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
60
|
Brenner H, Sakmann B. Reply. Trends Neurosci 1998. [DOI: 10.1016/s0166-2236(98)01270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
61
|
Deyst KA, McKechnie BA, Fallon JR. The role of alternative splicing in regulating agrin binding to muscle cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 110:185-91. [PMID: 9748567 DOI: 10.1016/s0165-3806(98)00105-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The binding of agrin to the muscle cell surface can induce radical changes in the topography and physiology of the cell membrane, resulting in the organization of postsynaptic components opposite the nerve terminal. Alternative splicing of agrin mRNA yields several isoforms, which vary in their cellular expression, developmental profile, and acetylcholine receptor (AChR) clustering activity. Neurons and muscle cells express several of these agrin isoforms. To address the role of alternative splicing in regulating agrin's function, we compared the effects of splicing at the y and z sites of agrin (denoted 'Agy,z'). Agrin isoforms bound differently to the myotube surface: Ag0,0 and Ag4,0 showed much higher levels of binding than Ag4,8. The artificial splice form Ag0,8 showed binding levels similar to Ag4,8. Visualization of the bound agrin after an acute incubation revealed that each isoform associated with the cell surface in a distinct pattern. These binding patterns changed following stimulation of the myotubes with Ag4,8 for 4 h (which induces the clustering of AChRs). Ag4,8 binding sites were concentrated at >90% of the induced AChR clusters, while those for Ag4,0, Ag0,8, and Ag0,0 were enriched at 70%, 50% and 25%, respectively. Together, these observations indicate that alternatively spliced forms of agrin recognize at least partially non-overlapping populations of binding sites on the cell surface, and that the eight amino acid insert is the dominant factor influencing the level of the agrin binding to the cell surface. Further, some of these populations redistribute to AChR clusters upon agrin stimulation.
Collapse
Affiliation(s)
- K A Deyst
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
62
|
Gramolini AO, Jasmin BJ. Molecular mechanisms and putative signalling events controlling utrophin expression in mammalian skeletal muscle fibres. Neuromuscul Disord 1998; 8:351-61. [PMID: 9713851 DOI: 10.1016/s0960-8966(98)00052-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The absence of full-length dystrophin molecules in skeletal muscle fibres results in the most severe form of muscular dystrophy, the Duchenne form (DMD). Several years ago, an autosomal homologue to dystrophin, termed utrophin, was identified. Although utrophin is expressed along the sarcolemma in developing, regenerating and DMD muscles, it nonetheless accumulates at the postsynaptic membrane of the neuromuscular junction in both normal and DMD adult muscle fibres. Due to the high degree of sequence identity between dystrophin and utrophin, it has been previously suggested that utrophin could in fact functionally compensate for the lack of dystrophin. Recent studies using transgenic mouse model systems have directly tested this hypothesis and revealed that upregulation of utrophin throughout dystrophic muscle fibres represents indeed, a viable approach for the treatment of DMD. Current studies are therefore focusing on the elucidation of the various regulatory mechanisms presiding over expression of utrophin in muscle fibres in attempts to ultimately identify small molecules which could systematically increase utrophin levels in extrasynaptic compartments of dystrophic muscle fibres. This review presents some of the recent data relevant for our understanding of the transcriptional regulatory mechanisms involved in maintaining expression of utrophin at the neuromuscular junction. In addition, the contribution of specific cues originating from motoneurons and the putative involvement of signalling events are also discussed.
Collapse
Affiliation(s)
- A O Gramolini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
63
|
Meier T, Ruegg MA, Wallace BG. Muscle-specific agrin isoforms reduce phosphorylation of AChR gamma and delta subunits in cultured muscle cells. Mol Cell Neurosci 1998; 11:206-16. [PMID: 9675052 DOI: 10.1006/mcne.1998.0685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The accumulation of nicotinic acetylcholine receptors (AChRs) at neuromuscular synapses is triggered by agrin, a protein that is synthesized by both nerve and muscle. Nerve-derived agrin, which contains an amino acid insert at a conserved splice site in the carboxy-terminal part of the protein, induces AChR aggregation and causes tyrosine phosphorylation of the AChR beta subunit. In contrast, agrin isoforms synthesized by muscle cells lack such an insert and have no effect on AChR distribution. In order to identify possible functional roles of muscle-derived agrin we have analyzed further the effect of various fragments of recombinant agrin on AChR phosphorylation. A carboxy-terminal fragment of muscle agrin, c95A0B0, reduced AChR gamma and delta subunit phosphorylation when added to C2C12 myotubes in culture. Although c95A0B0 had no effect on AChR beta subunit phosphorylation when added alone, it inhibited AChR beta subunit phosphorylation and AChR aggregation by the nerve-specific agrin isoform c95A4B8. We conclude that muscle-derived agrin can influence, both directly and indirectly, AChR phosphorylation. Such changes may play a role in the formation, maintenance, or function of the neuromuscular junction.
Collapse
Affiliation(s)
- T Meier
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | |
Collapse
|
64
|
Affiliation(s)
- P P Nichols
- Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, United Kingdom
| | | |
Collapse
|
65
|
Meier T, Masciulli F, Moore C, Schoumacher F, Eppenberger U, Denzer AJ, Jones G, Brenner HR. Agrin can mediate acetylcholine receptor gene expression in muscle by aggregation of muscle-derived neuregulins. J Cell Biol 1998; 141:715-26. [PMID: 9566971 PMCID: PMC2132745 DOI: 10.1083/jcb.141.3.715] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The neural isoforms of agrin can stimulate transcription of the acetylcholine receptor (AChR) epsilon subunit gene in electrically active muscle fibers, as does the motor neuron upon the formation of a neuromuscular junction. It is not clear, however, whether this induction involves neuregulins (NRGs), which stimulate AChR subunit gene transcription in vitro by activating ErbB receptors. In this study, we show that agrin- induced induction of AChR epsilon subunit gene transcription is inhibited in cultured myotubes overexpressing an inactive mutant of the ErbB2 receptor, demonstrating involvement of the NRG/ErbB pathway in agrin- induced AChR expression. Furthermore, salt extracts from the surface of cultured myotubes induce tyrosine phosphorylation of ErbB2 receptors, indicating that muscle cells express biological NRG-like activity on their surface. We further demonstrate by RT-PCR analysis that muscle NRGs have Ig-like domains required for their immobilization at heparan sulfate proteoglycans (HSPGs) of the extracellular matrix. In extrasynaptic regions of innervated muscle fibers in vivo, ectopically expressed neural agrin induces the colocalized accumulation of AChRs, muscle-derived NRGs, and HSPGs. By using overlay and radioligand-binding assays we show that the Ig domain of NRGs bind to the HSPGs agrin and perlecan. These findings show that neural agrin can induce AChR subunit gene transcription by aggregating muscle HSPGs on the muscle fiber surface that then serve as a local sink for focal binding of muscle-derived NRGs to regulate AChR gene expression at the neuromuscular junction.
Collapse
Affiliation(s)
- T Meier
- Department of Physiology, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
66
|
De La Porte S, Chaubourt E, Fabre F, Poulas K, Chapron J, Eymard B, Tzartos S, Koenig J. Accumulation of acetylcholine receptors is a necessary condition for normal accumulation of acetylcholinesterase during in vitro neuromuscular synaptogenesis. Eur J Neurosci 1998; 10:1631-43. [PMID: 9751136 DOI: 10.1046/j.1460-9568.1998.00165.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To study a step of the very complex processes of the formation of the neuromuscular junction (NMJ), we have analysed the clustering of acetylcholine receptors (AChR) and acetylcholinesterase (AChE) in myotubes cultured in various conditions. On the surface of rat myotubes cultured in the presence of spinal cord cells from embryonic rat, numerous AChE clusters appeared. Such clusters are always co-localized with AChR clusters, but the reverse is not true: the number of AChR clusters largely exceeds that of AChE clusters. Very few AChE clusters formed when such co-cultures were treated with monoclonal antibodies (mAbs) against the main immunogenic region (MIR) of the AChR, which provoke internalization and degradation of the AChRs of the muscular membrane. The total levels of AChE and proportions of molecular forms were unaffected. We also used non-innervated myotubes in which addition of agrin, a protein normally synthesized by motoneurons, transported to nerve terminals and inserted into the synaptic basal lamina, induces the formation of small clusters of AChE. When added to rat myotubes devoid of membrane AChR, agrin-induced AChE clusters did not form. Finally, we analysed the capacity of the variant of the C2 mouse muscle cell line deficient in AChR (1R-) to form clusters of AChE in co-cultures with spinal cord cells from rat: no formation of AChE clusters could be observed. In all these different systems of cultures, the conditions which prevented clustering of AChR (anti-AChR antibodies, deficiency of the variant C2 cell line) also suppressed AChE clustering. We concluded that clustering of AChR is a prerequisite for clustering of AChE, so that NMJ formation implies the sequential accumulation of these two components.
Collapse
Affiliation(s)
- S De La Porte
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR 9040, Gif sur Yvette, France.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Rohwedel J, Kleppisch T, Pich U, Guan K, Jin S, Zuschratter W, Hopf C, Hoch W, Hescheler J, Witzemann V, Wobus AM. Formation of postsynaptic-like membranes during differentiation of embryonic stem cells in vitro. Exp Cell Res 1998; 239:214-25. [PMID: 9521839 DOI: 10.1006/excr.1997.3903] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To analyze the formation of neuromuscular junctions, mouse pluripotent embryonic stem (ES) cells were differentiated via embryoid bodies into skeletal muscle and neuronal cells. The developmentally controlled expression of skeletal muscle-specific genes coding for myf5, myogenin, myoD and myf6, alpha 1 subunit of the L-type calcium channel, cell adhesion molecule M-cadherin, and neuron-specific genes encoding the 68-, 160-, and 200-kDa neurofilament proteins, synaptic vesicle protein synaptophysin, brain-specific proteoglycan neurocan, and microtubule-associated protein tau was demonstrated by RT-PCR analysis. In addition, genes specifically expressed at neuromuscular junctions, the gamma- and epsilon-subunits of the nicotinic acetylcholine receptor (AChR) and the extracellular matrix protein S-laminin, were found. At the terminal differentiation stage characterized by the formation of multinucleated spontaneously contracting myotubes, the myogenic regulatory gene myf6 and the AChR epsilon-subunit gene, both specifically expressed in mature adult skeletal muscle, were found to be coexpressed. Only the terminally differentiated myotubes showed a clustering of nicotinic acetylcholine receptors (AChR) and a colocalization with agrin and synaptophysin. The formation of AChRs was also demonstrated on a functional level by using the patch clamp technique. Taken together, our results showed that during ES cell differentiation in vitro neuron- and muscle-specific genes are expressed in a developmentally controlled manner, resulting in the formation of postsynaptic-like membranes. Thus, the embryonic stem cell differentiation model will be helpful for studying cellular interactions at neuromuscular junctions by "loss of function" analysis in vitro.
Collapse
Affiliation(s)
- J Rohwedel
- In Vitro Differentiation Group, IPK Gatersleben, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Affiliation(s)
- S J Burden
- Molecular Neurobiology Program, Skirball Institute, New York University Medical Center, New York, New York 10016 USA.
| |
Collapse
|
69
|
Gramolini AO, Burton EA, Tinsley JM, Ferns MJ, Cartaud A, Cartaud J, Davies KE, Lunde JA, Jasmin BJ. Muscle and neural isoforms of agrin increase utrophin expression in cultured myotubes via a transcriptional regulatory mechanism. J Biol Chem 1998; 273:736-43. [PMID: 9422725 DOI: 10.1074/jbc.273.2.736] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Duchenne muscular dystrophy is a prevalent X-linked neuromuscular disease for which there is currently no cure. Recently, it was demonstrated in a transgenic mouse model that utrophin could functionally compensate for the lack of dystrophin and alleviate the muscle pathology (Tinsley, J. M., Potter, A. C., Phelps, S. R., Fisher, R., Trickett, J. I., and Davies, K. E. (1996) Nature 384, 349-353). In this context, it thus becomes essential to determine the cellular and molecular mechanisms presiding over utrophin expression in attempts to overexpress the endogenous gene product throughout skeletal muscle fibers. In a recent study, we showed that the nerve exerts a profound influence on utrophin gene expression and postulated that nerve-derived trophic factors mediate the local transcriptional activation of the utrophin gene within nuclei located in the postsynaptic sarcoplasm (Gramolini, A. O., Dennis, C. L., Tinsley, J. M., Robertson, G. S., Davies, K. E, Cartaud, J., and Jasmin, B. J. (1997) J. Biol. Chem. 272, 8117-8120). In the present study, we have therefore focused on the effect of agrin on utrophin expression in cultured C2 myotubes. In response to Torpedo-, muscle-, or nerve-derived agrin, we observed a significant 2-fold increase in utrophin mRNAs. By contrast, CGRP treatment failed to affect expression of utrophin transcripts. Western blotting experiments also revealed that the increase in utrophin mRNAs was accompanied by an increase in the levels of utrophin. To determine whether these changes were caused by parallel increases in the transcriptional activity of the utrophin gene, we transfected muscle cells with a 1. 3-kilobase pair utrophin promoter-reporter (nlsLacZ) gene construct and treated them with agrin for 24-48 h. Under these conditions, both muscle- and nerve-derived agrin increased the activity of beta-galactosidase, indicating that agrin treatment led, directly or indirectly, to the transcriptional activation of the utrophin gene. Furthermore, this increase in transcriptional activity in response to agrin resulted from a greater number of myonuclei expressing the 1.3-kilobase pair utrophin promoter-nlsLacZ construct. Deletion of 800 base pairs 5' from this fragment decreased the basal levels of nlsLacZ expression and abolished the sensitivity of the utrophin promoter to exogenously applied agrin. In addition, site-directed mutagenesis of an N-box motif contained within this 800-base pair fragment demonstrated its essential contribution in this regulatory mechanism. Finally, direct gene transfer studies performed in vivo further revealed the importance of this DNA element for the synapse-specific expression of the utrophin gene along multinucleated muscle fibers. These data show that both muscle and neural isoforms of agrin can regulate expression of the utrophin gene and further indicate that agrin is not only involved in the mechanisms leading to the formation of clusters containing presynthesized synaptic molecules but that it can also participate in the local regulation of genes encoding synaptic proteins. Together, these observations are therefore relevant for our basic understanding of the events involved in the assembly and maintenance of the postsynaptic membrane domain of the neuromuscular junction and for the potential use of utrophin as a therapeutic strategy to counteract the effects of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- A O Gramolini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Neural agrin, in the absence of a nerve terminal, can induce the activity-resistant expression of acetylcholine receptor (AChR) subunit genes and the clustering of synapse-specific adult-type AChR channels in nonsynaptic regions of adult skeletal muscle fibers. Here we show that, when expression plasmids for neural agrin are injected into the extrasynaptic region of innervated muscle fibers, the following components of the postsynaptic apparatus are aggregated and colocalized with ectopic agrin-induced AChR clusters: laminin-beta2, MuSK, phosphotyrosine-containing proteins, beta-dystroglycan, utrophin, and rapsyn. These components have been implicated to play a role in the differentiation of neuromuscular junctions. Furthermore, ErbB2 and ErbB3, which are thought to be involved in the regulation of neurally induced AChR subunit gene expression, were colocalized with agrin-induced AChR aggregates at ectopic nerve-free sites. The postsynaptic muscle membrane also contained a high concentration of voltage-gated Na+ channels as well as deep, basal lamina-containing invaginations comparable to the secondary synaptic folds of normal endplates. The ability to induce AChR aggregation in vivo was not observed in experiments with a muscle-specific agrin isoform. Thus, a motor neuron-specific agrin isoform is sufficient to induce a full ectopic postsynaptic apparatus in muscle fibers kept electrically active at their original endplate sites.
Collapse
|
71
|
Meier T, Hauser DM, Chiquet M, Landmann L, Ruegg MA, Brenner HR. Neural agrin induces ectopic postsynaptic specializations in innervated muscle fibers. J Neurosci 1997; 17:6534-44. [PMID: 9254666 PMCID: PMC6573144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neural agrin, in the absence of a nerve terminal, can induce the activity-resistant expression of acetylcholine receptor (AChR) subunit genes and the clustering of synapse-specific adult-type AChR channels in nonsynaptic regions of adult skeletal muscle fibers. Here we show that, when expression plasmids for neural agrin are injected into the extrasynaptic region of innervated muscle fibers, the following components of the postsynaptic apparatus are aggregated and colocalized with ectopic agrin-induced AChR clusters: laminin-beta2, MuSK, phosphotyrosine-containing proteins, beta-dystroglycan, utrophin, and rapsyn. These components have been implicated to play a role in the differentiation of neuromuscular junctions. Furthermore, ErbB2 and ErbB3, which are thought to be involved in the regulation of neurally induced AChR subunit gene expression, were colocalized with agrin-induced AChR aggregates at ectopic nerve-free sites. The postsynaptic muscle membrane also contained a high concentration of voltage-gated Na+ channels as well as deep, basal lamina-containing invaginations comparable to the secondary synaptic folds of normal endplates. The ability to induce AChR aggregation in vivo was not observed in experiments with a muscle-specific agrin isoform. Thus, a motor neuron-specific agrin isoform is sufficient to induce a full ectopic postsynaptic apparatus in muscle fibers kept electrically active at their original endplate sites.
Collapse
Affiliation(s)
- T Meier
- Institute of Physiology, University of Basel, CH-4051 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
72
|
Daniels MP. Intercellular communication that mediates formation of the neuromuscular junction. Mol Neurobiol 1997; 14:143-70. [PMID: 9294861 DOI: 10.1007/bf02740654] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reciprocal signals between the motor axon and myofiber induce structural and functional differentiation in the developing neuromuscular junction (NMJ). Elevation of presynaptic acetylcholine (ACh) release on nerve-muscle contact and the correlated increase in axonal-free calcium are triggered by unidentified membrane molecules. Restriction of axon growth to the developing NMJ and formation of active zones for ACh release in the presynaptic terminal may be induced by molecules in the synaptic basal lamina, such as S-laminin, heparin binding growth factors, and agrin. Acetylcholine receptor (AChR) synthesis by muscle cells may be increased by calcitonin gene-related peptide (CGRP), ascorbic acid, and AChR-inducing activity (ARIA)/heregulin, which is the best-established regulator. Heparin binding growth factors, proteases, adhesion molecules, and agrin all may be involved in the induction of AChR redistribution to form postsynaptic-like aggregates. However, the strongest case has been made for agrin's involvement. "Knockout" experiments have implicated agrin as a primary anterograde signal for postsynaptic differentiation and muscle-specific kinase (MuSK), as a putative agrin receptor. It is likely that both presynaptic and postsynaptic differentiation are induced by multiple molecular signals. Future research should reveal the physiological roles of different molecules, their interactions, and the identity of other molecular participants.
Collapse
Affiliation(s)
- M P Daniels
- Laboratory of Biochemical Genetics, National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
73
|
Gramolini AO, Dennis CL, Tinsley JM, Robertson GS, Cartaud J, Davies KE, Jasmin BJ. Local transcriptional control of utrophin expression at the neuromuscular synapse. J Biol Chem 1997; 272:8117-20. [PMID: 9079621 DOI: 10.1074/jbc.272.13.8117] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recently, the use of a transgenic mouse model system for Duchenne muscular dystrophy has demonstrated the ability of utrophin to functionally replace dystrophin and alleviate the muscle pathology (see Tinsley, J. M., Potter, A. C., Phelps, S. R., Fisher, R., Trickett, J. I., and Davies, K. E. (1996) Nature 384, 349-353). However, there is currently a clear lack of information concerning the regulatory mechanisms presiding over utrophin expression during normal myogenesis and synaptogenesis. Using in situ hybridization, we show that utrophin mRNAs selectively accumulate within the postsynaptic sarcoplasm of adult muscle fibers. In addition, we demonstrate that a 1.3-kilobase fragment of the human utrophin promoter is sufficient to confer synapse-specific expression to a reporter gene. Deletion of 800 base pairs from this promoter fragment reduces the overall expression of the reporter gene and abolishes its synapse-specific expression. Finally, we also show that utrophin is present at the postsynaptic membrane of ectopic synapses induced to form at sites distant from the original neuromuscular junctions. Taken together, these results indicate that nerve-derived factors regulate locally the transcriptional activation of the utrophin gene in skeletal muscle fibers and that myonuclei located in extrasynaptic regions are capable of expressing utrophin upon receiving appropriate neuronal cues.
Collapse
Affiliation(s)
- A O Gramolini
- Department of Physiology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | |
Collapse
|
74
|
Jones G, Meier T, Lichtsteiner M, Witzemann V, Sakmann B, Brenner HR. Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle. Proc Natl Acad Sci U S A 1997; 94:2654-9. [PMID: 9122251 PMCID: PMC20144 DOI: 10.1073/pnas.94.6.2654] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two factors secreted from the nerve terminal, agrin and neuregulin, have been postulated to induce localization of the acetylcholine receptors (AChRs) to the subsynaptic membrane in skeletal muscle fibers. The principal function ascribed to neuregulin is induction of AChR subunit gene expression and to agrin is the aggregation of AChRs. Here we report that when myoblasts engineered to secrete an agrin fragment were placed into the nerve-free region of denervated rodent muscle, the host muscle fibers expressed AChR epsilon-subunit gene transcripts, characteristic of the neuromuscular synapse in adult muscle. Transcripts were colocalized with agrin deposits and AChR clusters that were resistant to electrical muscle activity. More directly, single innervated muscle fibers injected intracellularly with agrin expression plasmids in their extrasynaptic region developed a functional ectopic postsynaptic membrane with clusters of adult-type AChR channels and acetylcholinesterase and accumulation of myonuclei. The results demonstrate that agrin is the principal neural signal that induces the formation of the subsynaptic apparatus in the muscle fiber and controls locally, either indirectly or directly, the transcription of AChR subunit genes and the aggregation of AChRs.
Collapse
Affiliation(s)
- G Jones
- Institut für Physiologie, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
75
|
Rimer M, Mathiesen I, Lømo T, McMahan UJ. gamma-AChR/epsilon-AChR switch at agrin-induced postsynaptic-like apparatus in skeletal muscle. Mol Cell Neurosci 1997; 9:254-63. [PMID: 9268504 DOI: 10.1006/mcne.1997.0622] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We transfected the extrajunctional region of denervated soleus muscles in adult rats with neural agrin cDNA to induce myofibers to form postsynaptic-like apparatus containing acetylcholine receptor (AChR) aggregates. By 1 week approximately 30% of the AChR aggregates contained a mixture of epsilon-AChRs and gamma-AChRs while approximately 70% had only gamma-AChRs. If the transfected muscles were reinnervated in the original junctional region, the postsynaptic-like apparatus, despite the absence of apposed axon terminals, gradually came to have only epsilon-AChRs. We conclude that at the postsynaptic apparatus of ectopic neuromuscular junctions formed by a foreign nerve implanted into the extra-junctional region of denervated muscles, agrin secreted by the axon terminal plays a direct role in the gamma-AChR/epsilon-AChR switch that occurs as the apparatus reaches maturity. Our findings, together with results from other studies, indicate further that agrin and acetylcholine are the only nerve-derived factors required for this switch.
Collapse
Affiliation(s)
- M Rimer
- Department of Neurobiology, Stanford University School of Medicine, California 94305, USA
| | | | | | | |
Collapse
|