51
|
Huang Y, Liu DP, Wu L, Li TC, Wu M, Feng DX, Liang CC. Proper Developmental Control of Human Globin Genes Reproduced by Transgenic Mice Containing a 160-kb BAC Carrying the Human β-Globin Locus. Blood Cells Mol Dis 2000; 26:598-610. [PMID: 11358351 DOI: 10.1006/bcmd.2000.0339] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Four independent bacterial artificial chromosome (BAC) clones containing the human Beta-globin gene locus were obtained from a human genomic BAC library. A 160-kb clone (186D7) carrying the entire human Beta-globin locus including the Beta-globin gene family, locus control region (LCR), and 3' regulatory elements was used to transform mice. Four transgenic lines were generated by microinjecting the purified BAC DNA into the fertilized eggs. RNase protection analysis showed that the expression of human Beta-globin genes is tissue- and developmental stage-specific and the expression level is similar among the three independent transgenic lines which carry the entire human Beta-globin locus; however, no Beta-globin gene expression was detected in the transgenic mice lacking the LCR region. The results suggest that the transgenic mouse model system that we have produced and that uses BAC to study the complex human Beta-globin gene cluster is stable and reproducible. Our results also indicate that some newly characterized HSs upstream from the LCR appear not to play an important role in globin gene expression and switching, while the traditional LCR can ensure correct human Beta-globin gene expression in transgenic mice. The BAC-mediated transgenic system can be used for further studies to determine which kinds of cis-acting elements are included in regulating the developmental timing and the level of human Beta-globin gene expression.
Collapse
Affiliation(s)
- Y Huang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | | | | | | | |
Collapse
|
52
|
Independent formation of DnaseI hypersensitive sites in the murine β-globin locus control region. Blood 2000. [DOI: 10.1182/blood.v95.11.3600.011k42_3600_3604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian β-globin loci are composed of multiple orthologous genes whose expression is erythroid specific and developmentally regulated. The expression of these genes both from the endogenous locus and from transgenes is strongly influenced by a linked 15-kilobase region of clustered DNaseI hypersensitive sites (HSs) known as the locus control region (LCR). The LCR encompasses 5 major HSs, each of which is highly homologous among humans, mice, and other mammals. To analyze the function of individual HSs in the endogenous murine β-globin LCR, we have used homologous recombination in embryonic stem cells to produce 5 mouse lines, each of which is deficient for 1 of these major HSs. In this report, we demonstrate that deletion of the conserved region of 5′HS 1, 2, 3, 4, or 5/6 abolishes HS formation at the deletion site but has no influence on the formation of the remaining HSs in the LCR. Therefore, in the endogenous murine locus, there is no dominant or initiating site whose formation must precede the formation of the other HSs. This is consistent with the idea that HSs form autonomously. We discuss the implications of these findings for current models of β-globin regulation.
Collapse
|
53
|
Abstract
Abstract
Mammalian β-globin loci are composed of multiple orthologous genes whose expression is erythroid specific and developmentally regulated. The expression of these genes both from the endogenous locus and from transgenes is strongly influenced by a linked 15-kilobase region of clustered DNaseI hypersensitive sites (HSs) known as the locus control region (LCR). The LCR encompasses 5 major HSs, each of which is highly homologous among humans, mice, and other mammals. To analyze the function of individual HSs in the endogenous murine β-globin LCR, we have used homologous recombination in embryonic stem cells to produce 5 mouse lines, each of which is deficient for 1 of these major HSs. In this report, we demonstrate that deletion of the conserved region of 5′HS 1, 2, 3, 4, or 5/6 abolishes HS formation at the deletion site but has no influence on the formation of the remaining HSs in the LCR. Therefore, in the endogenous murine locus, there is no dominant or initiating site whose formation must precede the formation of the other HSs. This is consistent with the idea that HSs form autonomously. We discuss the implications of these findings for current models of β-globin regulation.
Collapse
|
54
|
Locus control region activity by 5′HS3 requires a functional interaction with β-globin gene regulatory elements: expression of novel β/γ-globin hybrid transgenes. Blood 2000. [DOI: 10.1182/blood.v95.10.3242] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The human β-globin locus control region (LCR) contains chromatin opening and transcriptional enhancement activities that are important to include in β-globin gene therapy vectors. We previously used single-copy transgenic mice to map chromatin opening activity to the 5′HS3 LCR element. Here, we test novel hybrid globin genes to identify β-globin gene sequences that functionally interact with 5′HS3. First, we show that an 850-base pair (bp) 5′HS3 element activates high-level β-globin gene expression in fetal livers of 17 of 17 transgenic mice, including 3 single-copy animals, but fails to reproducibly activate Aγ-globin transgenes. To identify the β-globin gene sequences required for LCR activity by 5′HS3, we linked the 815-bp β-globin promoter to Aγ-globin coding sequences (BGT34), together with either the β-globin intron 2 (BGT35), the β-globin 3′ enhancer (BGT54), or both intron 2 and the 3′ enhancer (BGT50). Of these transgenes, only BGT50 reproducibly expresses Aγ-globin RNA (including 7 of 7 single-copy animals, averaging 71% per copy). Modifications to BGT50 show that LCR activity is detected after replacing the β-globin promoter with the 700-bp Aγ-globin promoter, but is abrogated when an AT-rich region is deleted from β-globin intron 2. We conclude that LCR activity by 5′HS3 on globin promoters requires the simultaneous presence of β-globin intron 2 sequences and the 260-bp 3′ β-globin enhancer. The BGT50 construct extends the utility of the 5′HS3 element to include erythroid expression of nonadult β-globin coding sequences in transgenic animals and its ability to express antisickling γ-globin coding sequences at single copy are ideal characteristics for a gene therapy cassette.
Collapse
|
55
|
Locus control region activity by 5′HS3 requires a functional interaction with β-globin gene regulatory elements: expression of novel β/γ-globin hybrid transgenes. Blood 2000. [DOI: 10.1182/blood.v95.10.3242.010k27_3242_3249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human β-globin locus control region (LCR) contains chromatin opening and transcriptional enhancement activities that are important to include in β-globin gene therapy vectors. We previously used single-copy transgenic mice to map chromatin opening activity to the 5′HS3 LCR element. Here, we test novel hybrid globin genes to identify β-globin gene sequences that functionally interact with 5′HS3. First, we show that an 850-base pair (bp) 5′HS3 element activates high-level β-globin gene expression in fetal livers of 17 of 17 transgenic mice, including 3 single-copy animals, but fails to reproducibly activate Aγ-globin transgenes. To identify the β-globin gene sequences required for LCR activity by 5′HS3, we linked the 815-bp β-globin promoter to Aγ-globin coding sequences (BGT34), together with either the β-globin intron 2 (BGT35), the β-globin 3′ enhancer (BGT54), or both intron 2 and the 3′ enhancer (BGT50). Of these transgenes, only BGT50 reproducibly expresses Aγ-globin RNA (including 7 of 7 single-copy animals, averaging 71% per copy). Modifications to BGT50 show that LCR activity is detected after replacing the β-globin promoter with the 700-bp Aγ-globin promoter, but is abrogated when an AT-rich region is deleted from β-globin intron 2. We conclude that LCR activity by 5′HS3 on globin promoters requires the simultaneous presence of β-globin intron 2 sequences and the 260-bp 3′ β-globin enhancer. The BGT50 construct extends the utility of the 5′HS3 element to include erythroid expression of nonadult β-globin coding sequences in transgenic animals and its ability to express antisickling γ-globin coding sequences at single copy are ideal characteristics for a gene therapy cassette.
Collapse
|
56
|
Engel JD, Tanimoto K. Looping, linking, and chromatin activity: new insights into beta-globin locus regulation. Cell 2000; 100:499-502. [PMID: 10721987 DOI: 10.1016/s0092-8674(00)80686-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J D Engel
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA.
| | | |
Collapse
|
57
|
Gribnau J, Diderich K, Pruzina S, Calzolari R, Fraser P. Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus. Mol Cell 2000; 5:377-86. [PMID: 10882078 DOI: 10.1016/s1097-2765(00)80432-3] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene activation requires chromatin remodeling complexes, which hyperacetylate histones and enable factor access; however, the targeting mechanisms leading to the establishment and maintenance of large, hyperacetylated DNase-sensitive chromatin domains are unknown. Recent work has shown that histone acetyltransferases are associated with RNA-pol II complexes, suggesting that transcription of chromatin plays a role in chromatin modification. Here we show the human beta-globin locus is divided into three differentially activated chromatin subdomains. Large transcripts precisely delineate the active domains at key cell cycle points associated with chromatin transitions and remodeling. We identify an element that initiates these transcripts, located in a region required for chromatin activation. The results suggest that intergenic transcription is required for chromatin remodeling of chromosomal domains.
Collapse
Affiliation(s)
- J Gribnau
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
58
|
Lieber A, Steinwaerder DS, Carlson CA, Kay MA. Integrating adenovirus-adeno-associated virus hybrid vectors devoid of all viral genes. J Virol 1999; 73:9314-24. [PMID: 10516040 PMCID: PMC112966 DOI: 10.1128/jvi.73.11.9314-9324.1999] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.
Collapse
Affiliation(s)
- A Lieber
- Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
59
|
Transgenic Analysis of a 100-kb Human β-Globin Cluster–Containing DNA Fragment Propagated as a Bacterial Artificial Chromosome. Blood 1999. [DOI: 10.1182/blood.v94.9.3178] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTo date, the normal transcriptional regulation of the human β-globin gene cluster has been recapitulated most accurately in transgenic mice that carry large yeast artificial chromosome (YAC) or ligated cosmid constructs. However, these large transgenes still exhibit variegated expression levels, perhaps because they tend to rearrange upon integration, or because the cloning vectors remain attached to the globin inserts. To try to circumvent these potential problems, we investigated the transgenic properties of a 100-kb DNA fragment containing the entire human β-globin cluster propagated in a bacterial artificial chromosome (BAC). We created 9 independent mouse lines, each carrying 1 to 6 copies of the human β-globin cluster without the attached BAC vector. Five of the lines carry unrearranged copies of the cluster. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis of adult F1 mice showed that 2 lines express human β globin at levels approximately equivalent to the endogenous mouse β-major genes. One line expresses no human β globin, while the remaining 6 lines show intermediate expression levels. Complete γ→β-globin gene switching occurs, but is slightly delayed with respect to the endogenous mouse embryonic→adult switch. Since these data are similar to what has been obtained using globin YACs or ligated cosmids, we conclude that (1) globin transgenes propagated in BACs are no less likely to rearrange than their cosmid or YAC counterparts, and (2) the retention of YAC vector sequences in a transgene probably has no significant impact on globin expression when using constructs of this size.
Collapse
|
60
|
Transgenic Analysis of a 100-kb Human β-Globin Cluster–Containing DNA Fragment Propagated as a Bacterial Artificial Chromosome. Blood 1999. [DOI: 10.1182/blood.v94.9.3178.421k23_3178_3184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, the normal transcriptional regulation of the human β-globin gene cluster has been recapitulated most accurately in transgenic mice that carry large yeast artificial chromosome (YAC) or ligated cosmid constructs. However, these large transgenes still exhibit variegated expression levels, perhaps because they tend to rearrange upon integration, or because the cloning vectors remain attached to the globin inserts. To try to circumvent these potential problems, we investigated the transgenic properties of a 100-kb DNA fragment containing the entire human β-globin cluster propagated in a bacterial artificial chromosome (BAC). We created 9 independent mouse lines, each carrying 1 to 6 copies of the human β-globin cluster without the attached BAC vector. Five of the lines carry unrearranged copies of the cluster. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis of adult F1 mice showed that 2 lines express human β globin at levels approximately equivalent to the endogenous mouse β-major genes. One line expresses no human β globin, while the remaining 6 lines show intermediate expression levels. Complete γ→β-globin gene switching occurs, but is slightly delayed with respect to the endogenous mouse embryonic→adult switch. Since these data are similar to what has been obtained using globin YACs or ligated cosmids, we conclude that (1) globin transgenes propagated in BACs are no less likely to rearrange than their cosmid or YAC counterparts, and (2) the retention of YAC vector sequences in a transgene probably has no significant impact on globin expression when using constructs of this size.
Collapse
|
61
|
Lee CH, Murphy MR, Lee JS, Chung JH. Targeting a SWI/SNF-related chromatin remodeling complex to the beta-globin promoter in erythroid cells. Proc Natl Acad Sci U S A 1999; 96:12311-5. [PMID: 10535918 PMCID: PMC22913 DOI: 10.1073/pnas.96.22.12311] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin remodeling complexes such as the SWI/SNF complex make DNA accessible to transcription factors by disrupting nucleosomes. However, it is not known how such complexes are targeted to the promoter. For example, a SWI/SNF1-like chromatin remodeling complex erythroid Krüppel-like factor (EKLF) coactivator-remodeling complex 1 (E-RC1) disrupts the nucleosomes over the human beta-globin promoter in an EKLF-dependent manner. However, it is not known whether E-RC1 is targeted specifically to the beta-globin promoter or whether E-RC1 is randomly targeted, but its activity is evident only at the beta-globin promoter. Because E-RC1 cannot remodel chromatin over the beta-globin promoter without EKLF in vitro, it has been proposed that SWI/SNF1-like complexes such as E-RC1 are targeted specifically to the promoter by selectively interacting with promoter-associated transcription factors such as EKLF. In this report, we test this hypothesis in the cellular context by using the ProteIN POsition Identification with Nuclease Tail (PIN*POINT) assay. We find that the Brahma-related gene (BRG) 1 and BRG1-associated factor (BAF) 170 subunits of E-RC1 are both recruited near the transcription initiation site of the beta-globin promoter. On transiently transfected templates, both the locus control region and the EKLF-binding site are important for their recruitment to the beta-globin promoter in mouse erythroleukemia cells. When the beta-globin promoter was linked to the cytomegalovirus enhancer, the E-RC1 complex was not recruited, suggesting that recruitment of the E-RC1 complex is not a general property of enhancers.
Collapse
Affiliation(s)
- C H Lee
- Molecular Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1654, USA
| | | | | | | |
Collapse
|
62
|
The Wsh, W57, and Ph Kit Expression Mutations Define Tissue-Specific Control Elements Located Between −23 and −154 kb Upstream of Kit. Blood 1999. [DOI: 10.1182/blood.v94.8.2658.420k23_2658_2666] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Kit and PDGFRa receptor tyrosine kinases are encoded in close proximity at the murine white spotting (W) and patch (Ph) loci. Whereas W mutations affect hematopoiesis, melanogenesis, and gametogenesis, the Ph mutation affects melanogenesis and causes early lethality in homozygotes. TheWsh, W57, and Phmutations diminish Kit expression in certain cell types such as mast cells and enhance it in others. The Wsh,W57, and Ph mutations arose from deletions and inversions affecting sequences in between the Kit andPDGFRa genes. We have determined the precise location of the breakpoint of the Wshinversion and the endpoints of the W57deletion upstream of the Kittranscription start site and examined the effect of these mutations on Kit expression in mast cells and hematopoietic stem cells and lineage progenitors. Our results indicate that positive elements controlling Kit expression in mast cells mapping in between −23 and −154 kb from the transcription start site can be dissociated from negative elements controlling Kit misexpression during embryonic development in the vicinity of the PDGFRa gene. In addition, we have identified two clusters of hypersensitive sites in mast cells at −23 −28 kb and −147 −154 kb from the Kit gene transcription start site. Analysis of these hypersensitive sites in mutant mast cells indicates a role for HS4-6 in Kit expression in mast cells. These findings provide a molecular basis for the phenotype of these Kit expression mutations and they provide insight into the complex mechanisms governing the regulation ofKit expression.
Collapse
|
63
|
Li Q, Zhang M, Duan Z, Stamatoyannopoulos G. Structural analysis and mapping of DNase I hypersensitivity of HS5 of the beta-globin locus control region. Genomics 1999; 61:183-93. [PMID: 10534403 DOI: 10.1006/geno.1999.5954] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The beta-globin locus control region (LCR) is a cis regulatory element that is located in the 5' part of the locus and confers high-level erythroid lineage-specific and position-independent expression of the globin genes. The LCR is composed of five DNase I hypersensitive sites (HSs), four of which are formed in erythroid cells. The function of the 5'-most site, HS5, remains unknown. To gain insights into its function, mouse HS5 was cloned and sequenced. Comparison of the HS5 sequences of mouse, human, and galago revealed two extensively conserved regions, designated HS5A and HS5B. DNase I hypersensitivity mapping revealed that two hypersensitive sites are located within the HS5A region (designated HS5A(major) and HS5A(minor)), and two are located within the HS5B region (HS5B(major), HS5B(minor)). The positions of each of these HSs colocalize with either GATA-1 or Ap1/NF-E2 motifs, suggesting that these protein binding sites are implicated in the formation of HS5. Gel retardation assays indicated that the Ap1/NF-E2 motifs identified in murine HS5A and HS5B interact with NF-E2 or similar proteins. Studies of primary murine cells showed that HS5 is formed in all hemopoietic tissues tested (fetal liver, adult thymus, and spleen), indicating that this HS is not erythroid lineage specific. HS5 was detected in murine brain but not in murine kidney or adult liver, suggesting that this site is not ubiquitous. The presence of GATA-1 and NF-E2 motifs (which are common features of the DNase I hypersensitive sites of the LCR) suggests that the HS5 is organized in a manner similar to that of the other HSs. Taken together, our results suggest that HS5 is an inherent component of the beta-globin locus control region.
Collapse
Affiliation(s)
- Q Li
- School of Medicine, University of Washington, Seattle, Washington, 98195, USA
| | | | | | | |
Collapse
|
64
|
Abstract
The beta-globin locus control region (LCR) is the founding member of a novel class of cis-acting regulatory elements that confer high level, tissue-specific, site-of-integration-independent, copy number-dependent expression on linked transgenes located in ectopic chromatin sites. Knowledge from beta-globin and other LCR studies has shed light on our understanding of the long-range interaction between enhancers and promoters, the relationship between chromatin conformation and transcriptional regulation, and the developmental regulation of multiple gene loci. After over a decade of investigation and discovery, we take a retrospective look at the beta-globin LCR and other LCRs, summarize their properties and review models of LCR function.
Collapse
Affiliation(s)
- Q Li
- Division of Medical Genetics, Mail Box 357720, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
65
|
Lee JS, Lee CH, Chung JH. The beta-globin promoter is important for recruitment of erythroid Krüppel-like factor to the locus control region in erythroid cells. Proc Natl Acad Sci U S A 1999; 96:10051-5. [PMID: 10468560 PMCID: PMC17840 DOI: 10.1073/pnas.96.18.10051] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF), which binds to the CACCC box in the beta-globin promoter, is required for the expression of the beta-globin gene in adult erythroid cells. It was recently demonstrated that EKLF is also required for the activity of the beta-globin locus control region (LCR) 5'HS3. Some evidence suggests that the LCR and the beta-globin promoter interact in adult erythroid cells, and the network of protein-protein interactions that exists between these two elements may regulate how EKLF is recruited to the LCR. In this report, we use the PIN*POINT assay to study the role of the promoter on the recruitment of EKLF to 5'HS2 and 5'HS3 of the LCR. We find that recruitment of EKLF to 5'HS2 requires the TATA box, but recruitment to 5'HS3 depends on the CACCC and TATA boxes of the beta-globin promoter. Furthermore, recruitment of EKLF to 5'HS3 only occurred in beta-globin-expressing murine erythroid leukemia cells, whereas recruitment of EKLF to 5'HS2 occurred in both gamma-globin-expressing K562 cells and murine erythroid leukemia cells. Unlike EKLF, Sp1, which also binds to CACCC boxes, is not recruited to 5'HS3. We have also examined how one 5'HS affects the recruitment of EKLF to another 5'HS. We have found that the recruitment of EKLF to 5'HS3 depends on the presence of 5'HS2 in cis, but the recruitment to 5'HS2 does not depend on 5'HS3. Based on these results, we present a model that illustrates how EKLF may be recruited to the beta-globin locus.
Collapse
Affiliation(s)
- J S Lee
- Molecular Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
66
|
Tanimoto K, Liu Q, Bungert J, Engel JD. The polyoma virus enhancer cannot substitute for DNase I core hypersensitive sites 2-4 in the human beta-globin LCR. Nucleic Acids Res 1999; 27:3130-7. [PMID: 10454609 PMCID: PMC148539 DOI: 10.1093/nar/27.15.3130] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The polyoma virus enhancer (PyE) is capable of conferring integration position-independent expression to linked genes in stably transfected erythroid cells after joining to DNase I hypersensitive site (HS) 5 of the human beta-globin locus control region (LCR). In attempting to separate the chromatin opening activity of the LCR from its enhancer activity and to investigate contributions of the individual HS core elements to LCR function, the human beta-globin LCR HS2, HS3 and HS4 core elements were replaced with the PyE within the context of a yeast artificial chromosome (YAC) bearing the whole locus. We show here that, in contrast to its function in cultured cells, the PyE is unable to replace HS core element function in vivo. We found that the PyE substitution mutant LCR is unable to provide either chromatin opening or transcriptional potentiating activity at any erythroid developmental stage in transgenic mice. These data provide direct evidence that the human beta-globin LCR core elements specify unique functions that cannot be replaced by a ubiquitous enhancer activity.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chromatin/chemistry
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomes, Artificial, Yeast/genetics
- Deoxyribonuclease I/metabolism
- Enhancer Elements, Genetic/genetics
- Erythrocytes/metabolism
- Gene Dosage
- Gene Expression Regulation, Developmental
- Globins/genetics
- Humans
- Locus Control Region/genetics
- Mice
- Mice, Transgenic
- Mutagenesis, Site-Directed/genetics
- Mutation
- Polyomavirus/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic
- Transgenes/genetics
- Yeasts/genetics
- Yolk Sac/metabolism
Collapse
Affiliation(s)
- K Tanimoto
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | | | | | | |
Collapse
|
67
|
Feng YQ, Alami R, Bouhassira EE. Enhancer-dependent transcriptional oscillations in mouse erythroleukemia cells. Mol Cell Biol 1999; 19:4907-17. [PMID: 10373540 PMCID: PMC84294 DOI: 10.1128/mcb.19.7.4907] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
By using recombinase-mediated cassette exchange, a method that allows integration of single copies of different constructs at the same predetermined chromosomal location, several expression cassettes have been integrated at a randomly chosen locus in the genome of mouse erythroleukemia cells. The cassettes studied contain the human beta-globin promoter fused to lacZ coding sequences either alone or linked to DNase I-hypersensitive site HS2, HS3, or HS234 (a large locus control region fragment containing HS2, HS3, and HS4) of the human beta-globin locus control region. Analysis of expression of these cassettes revealed mosaic expression patterns reminiscent of, but clearly different from, position effect variegation. Further investigations demonstrated that these mosaic expression patterns are caused by dynamic activation and inactivation of the transcription unit, resulting in oscillations of expression. These oscillations occur once in every few cell cycles at a rate specific for the enhancer present at the locus. DNase I sensitivity studies revealed that the chromatin is accessible and that DNase-hypersensitive sites were present whether or not the transcription unit is active, suggesting that the oscillations occur between transcriptionally competent and transcriptionally active chromatin conformations, rather than between open and closed chromatin conformations. Treatment of oscillating cells with trichostatin A eliminates the oscillations only after the cells have passed through late G1 or early S, suggesting that these oscillations might be caused by changes in histone acetylation patterns.
Collapse
Affiliation(s)
- Y Q Feng
- Division of Hematology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
68
|
Analysis of Linked Human ɛ and γ Transgenes: Effect of Locus Control Region Hypersensitive Sites 2 and 3 or a Distal YY1 Mutation on Stage-Specific Expression Patterns. Blood 1999. [DOI: 10.1182/blood.v93.10.3540.410k28_3540_3549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stage-specific expression of the human β-like globin genes is controlled by interactions between regulatory elements near the individual genes and additional elements located upstream in the Locus Control Region (LCR). Elucidation of the mechanisms that govern these interactions could suggest strategies to reactivate fetal (γ) or embryonic (ɛ) genes in individuals with severe hemoglobinopathies. This study extends an earlier analysis of a transgenic construct, HS3ɛγ, testing: (A) the effect of substitution of HS2 for HS3 on stage-specific expression of the ɛ and γ genes and, (B) the role of an evolutionarily conserved YY1 binding site in transcriptional regulation of the γ gene. The data show that both HS3ɛγ and HS2ɛγ can individually support embryonic expression of ɛ and fetal expression of Aγ. Thus, the cis regulators of distinct expression patterns for ɛ and γ are likely to reside near the genes, rather than in specific hypersensitive sites of the LCR. Alterations in Aγ expression patterns observed in transgenic lines carrying a construct with a mutation in a conserved YY1 binding site at −1086 indicate that this site might function to facilitate active transcription of the γ gene in fetal life.
Collapse
|
69
|
Sargent TG, DuBois CC, Buller AM, Lloyd JA. The roles of 5'-HS2, 5'-HS3, and the gamma-globin TATA, CACCC, and stage selector elements in suppression of beta-globin expression in early development. J Biol Chem 1999; 274:11229-36. [PMID: 10196210 DOI: 10.1074/jbc.274.16.11229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of HS2 and HS3 from the human beta-globin locus control region and of the TATA, CACCC, and stage selector elements of the gamma-globin promoter, in competitive inhibition of beta-globin gene expression in early development, were tested using stable transfections of HEL and K562 cells. Cells with an HS3gamma beta construct demonstrate that HS3 exhibits enhancing activity, but compared with HS2, this site participates less consistently in the inhibition of embryonic/fetal beta-globin expression. In cells with HS3HS2gamma beta constructs, the two HS sites act in concert to more effectively enhance gamma-globin gene expression and to drive stage-specific expression of the gamma- and beta-globin genes. A gamma-globin gene with a -161 promoter can competitively inhibit beta-globin gene expression. HS3HS2gamma beta constructs were used to determine the effects of gamma-globin promoter mutations within this region on competition. The CACCC and TATA elements, but not the stage selector element, inhibit inappropriate embryonic/fetal stage expression of the beta-globin gene. The mutation in the gamma-globin TATA element results in the use of two major alternative transcription start sites. The data suggest that proteins binding to the gamma-globin CACCC and TATA elements interact with those binding to HS2 and/or HS3 to preclude beta-globin transcription in early development.
Collapse
Affiliation(s)
- T G Sargent
- Department of Human Genetics, Medical College of Virginia of Virginia Commonwealth University, Richmond, Virginia 23298-0033, USA
| | | | | | | |
Collapse
|
70
|
Sargent TG, Buller AM, Teachey DT, McCanna KS, Lloyd JA. The gamma-globin promoter has a major role in competitive inhibition of beta-globin gene expression in early erythroid development. DNA Cell Biol 1999; 18:293-303. [PMID: 10235112 DOI: 10.1089/104454999315358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human gamma-globin gene competitively inhibits beta-globin gene expression in early erythroid development. To identify the gamma-globin gene sequences required for this effect, transgenic mice and stable transfection analyses with constructs containing 5'HS2 from the locus control region, modified gamma-globin genes, and the beta-globin gene were used. The -136 to +56 region of the gamma-globin promoter is necessary for competitive inhibition, as the beta-globin gene was inappropriately expressed in mouse embryos and in K562 and HEL cells containing constructs in which this region was deleted. Independently, the -140 to +56 region of gamma-globin gene was not sufficient to inhibit beta-globin transcription in mouse embryos or in cultured cells. Competitive inhibition of beta-globin gene expression was observed in K562 and HEL cells having a gamma-globin gene with a -161 promoter. The data suggest that the -161 gamma-globin promoter, which includes the CACCC box, two CCAAT boxes, the stage selector element (SSE), and TATA box, has a major role in suppressing beta-globin transcription early in development. Proteins binding to these or other gamma-globin promoter elements may interact with those binding to the locus control region, consequently precluding beta-globin transcription.
Collapse
Affiliation(s)
- T G Sargent
- Department of Human Genetics, Medical College of Virginia of Virginia Commonwealth University, Richmond 23298-0033, USA
| | | | | | | | | |
Collapse
|
71
|
Bungert J, Tanimoto K, Patel S, Liu Q, Fear M, Engel JD. Hypersensitive site 2 specifies a unique function within the human beta-globin locus control region to stimulate globin gene transcription. Mol Cell Biol 1999; 19:3062-72. [PMID: 10082573 PMCID: PMC84100 DOI: 10.1128/mcb.19.4.3062] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human beta-globin locus control region (LCR) harbors both strong chromatin opening and enhancer activity when assayed in transgenic mice. To understand the contribution of individual DNase I hypersensitive sites (HS) to the function of the human beta-globin LCR, we have mutated the core elements within the context of a yeast artificial chromosome (YAC) carrying the entire locus and then analyzed the effect of these mutations on the formation of LCR HS elements and expression of the genes in transgenic mice. In the present study, we examined the consequences of two different HS2 mutations. We first generated seven YAC transgenic lines bearing a deletion of the 375-bp core enhancer of HS2. Single-copy HS2 deletion mutants exhibited severely depressed HS site formation and expression of all of the human beta-globin genes at every developmental stage, confirming that HS2 is a vital, integral component of the LCR. We also analyzed four transgenic lines in which the core element of HS2 was replaced by that of HS3 and found that while HS3 is able to restore the chromatin-opening activity of the LCR, it is not able to functionally replace HS2 in mediating high-level globin gene transcription. These results continue to support the hypothesis that HS2, HS3, and HS4 act as a single, integral unit to regulate human globin gene transcription as a holocomplex, but they can also be interpreted to say that formation of a DNase I hypersensitive holocomplex alone is not sufficient for mediating high-level globin gene transcription. We therefore propose that the core elements must productively interact with one another to generate a unique subdomain within the nucleoprotein holocomplex that interacts in a stage-specific manner with individual globin gene promoters.
Collapse
Affiliation(s)
- J Bungert
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA.
| | | | | | | | | | | |
Collapse
|
72
|
Ofori-Acquah SF, Lalloz MR, Layton DM. Localisation of cis regulatory elements at the beta-globin locus: analysis of hybrid haplotype chromosomes. Biochem Biophys Res Commun 1999; 254:181-7. [PMID: 9920754 DOI: 10.1006/bbrc.1998.9901] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several cis elements at the beta-globin gene cluster and the upstream locus control region (LCR) have been implicated in modulation of fetal haemoglobin (Hb F) level in beta-globin disorders. To determine the role of elements at the LCR and the beta-globin gene cluster on HbF level among sickle cell anaemia (SCA) patients, hybrid haplotype betaS chromosomes exhibiting variation in the association of alleles of LCR hypersensitive site 2 (HS2) and the beta-globin gene cluster restriction fragment length polymorphosim (RFLP) haplotypes were identified in an unselected population of 100 patients. On 15 chromosomes the polymorphic HS2 short tandem repeat(TA)xN10-12(TA)y containing a Hox2 binding motif differed from that typically associated with the corresponding beta-globin gene cluster RFLP haplotype. Among patients homozygous for the Benin RFLP haplotype, in whom one chromosome carried the (TA)9N10(TA)10 allele, no effect on HbF level was observed. Polymorphism of the pre-Ggamma framework, an enhancer located 25 kb downstream of HS2 localised the breakpoint for each of these 'hybrid' haplotype chromosomes upstream of this element. Previously described hybrid haplotype chromosomes with the (TA)9N10(TA)10 HS2 allele associated with raised HbF by contrast arise by recombination 1 kb downstream of the pre-Ggamma framework. This study suggests that variability in HbF level associated with polymorphisn of the HS2 enhancer depend on downstream determinant (s) in tight linkage disequilibrium with HS2. The pre-Ggamma framework is the only known polymorphic cis-active determinant in this region.
Collapse
Affiliation(s)
- S F Ofori-Acquah
- Department of Haematological Medicine, The Guy's King's College and St Thomas' Schools of Medicine, London, United Kingdom.
| | | | | |
Collapse
|
73
|
Shashikant CS, Carr JL, Bhargava J, Bentley KL, Ruddle FH. Recombinogenic targeting: a new approach to genomic analysis--a review. Gene X 1998; 223:9-20. [PMID: 9858667 DOI: 10.1016/s0378-1119(98)00369-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Currently, recombinational cloning procedures based upon methods developed for yeast, Saccharomyces cerevisiae, are being exploited for targeted cloning and in-vivo modification of genomic clones. In this review, we will discuss the development of large-insert vectors, homologous recombination-based techniques for cloning and modification, and their application towards functional analysis of genes using transgenic mouse model systems.
Collapse
Affiliation(s)
- C S Shashikant
- Department of Molecular, Cellular and Developmental Biology, Yale University, Kline Biology Tower, PO Box 208103, New Haven, CT 06520,
| | | | | | | | | |
Collapse
|
74
|
Comparison of Expression of Human Globin Genes Transferred Into Mouse Erythroleukemia Cells and in Transgenic Mice. Blood 1998. [DOI: 10.1182/blood.v92.9.3416.421k16_3416_3421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine whether transfer of γ globin genes into mouse erythroleukemia cells can be used for the analysis of regulatory elements of γ globin gene promoter, Aγ gene constructs carrying promoter truncations that have been previously analyzed in transgenic mice were used for production of stably transfected mouse erythroleukemia (MEL) cell clones and pools. We found that constructs, which contain a microlocus control region (μLCR) that efficiently protects globin gene expression from the effects of the position of integration in transgenic mice, display position-dependent globin gene expression in MEL cell clones. Aγ globin gene expression among MEL cell clones carrying the μLCR(−201)Aγ and μLCR(−382)Aγ gene constructs ranged 15.5-fold and 17.6-fold, respectively, and there was no correlation between theAγ mRNA levels and the copies of the transgene (r= .28, P = .18). There was significant variation in per copy Aγ globin gene expression among MEL cell pools composed of 10 clones, but not among pools composed of 50 clones, indicating that position effects are averaged in pools composed by large numbers of clones. The overall pattern of Aγ globin gene expression in MEL cell pools resembled that observed in transgenic mice indicating that MEL cell transfections can be used in the study ofcis elements controlling γ globin gene expression. MEL cell transfections, however, are not appropriate for investigation of cis elements, which either sensitize or protect the globin transgenes from position effects.
© 1998 by The American Society of Hematology.
Collapse
|
75
|
Comparison of Expression of Human Globin Genes Transferred Into Mouse Erythroleukemia Cells and in Transgenic Mice. Blood 1998. [DOI: 10.1182/blood.v92.9.3416] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
To examine whether transfer of γ globin genes into mouse erythroleukemia cells can be used for the analysis of regulatory elements of γ globin gene promoter, Aγ gene constructs carrying promoter truncations that have been previously analyzed in transgenic mice were used for production of stably transfected mouse erythroleukemia (MEL) cell clones and pools. We found that constructs, which contain a microlocus control region (μLCR) that efficiently protects globin gene expression from the effects of the position of integration in transgenic mice, display position-dependent globin gene expression in MEL cell clones. Aγ globin gene expression among MEL cell clones carrying the μLCR(−201)Aγ and μLCR(−382)Aγ gene constructs ranged 15.5-fold and 17.6-fold, respectively, and there was no correlation between theAγ mRNA levels and the copies of the transgene (r= .28, P = .18). There was significant variation in per copy Aγ globin gene expression among MEL cell pools composed of 10 clones, but not among pools composed of 50 clones, indicating that position effects are averaged in pools composed by large numbers of clones. The overall pattern of Aγ globin gene expression in MEL cell pools resembled that observed in transgenic mice indicating that MEL cell transfections can be used in the study ofcis elements controlling γ globin gene expression. MEL cell transfections, however, are not appropriate for investigation of cis elements, which either sensitize or protect the globin transgenes from position effects.
© 1998 by The American Society of Hematology.
Collapse
|
76
|
Sabatino DE, Cline AP, Gallagher PG, Garrett LJ, Stamatoyannopoulos G, Forget BG, Bodine DM. Substitution of the human beta-spectrin promoter for the human agamma-globin promoter prevents silencing of a linked human beta-globin gene in transgenic mice. Mol Cell Biol 1998; 18:6634-40. [PMID: 9774678 PMCID: PMC109248 DOI: 10.1128/mcb.18.11.6634] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/1998] [Accepted: 07/23/1998] [Indexed: 11/20/2022] Open
Abstract
During development, changes occur in both the sites of erythropoiesis and the globin genes expressed at each developmental stage. Previous work has shown that high-level expression of human beta-like globin genes in transgenic mice requires the presence of the locus control region (LCR). Models of hemoglobin switching propose that the LCR and/or stage-specific elements interact with globin gene sequences to activate specific genes in erythroid cells. To test these models, we generated transgenic mice which contain the human Agamma-globin gene linked to a 576-bp fragment containing the human beta-spectrin promoter. In these mice, the beta-spectrin Agamma-globin (betasp/Agamma) transgene was expressed at high levels in erythroid cells throughout development. Transgenic mice containing a 40-kb cosmid construct with the micro-LCR, betasp/Agamma-, psibeta-, delta-, and beta-globin genes showed no developmental switching and expressed both human gamma- and beta-globin mRNAs in erythroid cells throughout development. Mice containing control cosmids with the Agamma-globin gene promoter showed developmental switching and expressed Agamma-globin mRNA in yolk sac and fetal liver erythroid cells and beta-globin mRNA in fetal liver and adult erythroid cells. Our results suggest that replacement of the gamma-globin promoter with the beta-spectrin promoter allows the expression of the beta-globin gene. We conclude that the gamma-globin promoter is necessary and sufficient to suppress the expression of the beta-globin gene in yolk sac erythroid cells.
Collapse
Affiliation(s)
- D E Sabatino
- Hematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Li Q, Blau CA, Clegg CH, Rohde A, Stamatoyannopoulos G. Multiple epsilon-promoter elements participate in the developmental control of epsilon-globin genes in transgenic mice. J Biol Chem 1998; 273:17361-7. [PMID: 9651319 DOI: 10.1074/jbc.273.28.17361] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To delineate the regulation of the human epsilon-globin gene, we investigated epsilon-gene expression during the development of transgenic mice carrying constructs with epsilon-promoter truncations linked to a micro-locus control region (microLCR). Expression levels were compared with those of microLCR epsilon mice carrying a 2 kilobase epsilon-promoter and betaYAC controls. epsilon mRNA in the embryonic cells of microLCR (-179)epsilon mice were as high as in microLCR epsilon mice suggesting that the proximal epsilon-promoter contains most elements required for epsilon-gene activation. epsilon mRNA in adult microLCR (-179) epsilon mice was significantly lower than in the embryonic cells indicating that elements involved in epsilon-gene silencing are contained in the proximal epsilon-promoter. Extension of the promoter sequence to -463 epsilon decreased epsilon-gene expression in the definitive erythroid cells, supporting previous evidence that the -179 to -463epsilon region contains an epsilon-gene silencer. However, the epsilon-gene of the microLCR(-463)epsilon mice was not silenced in the definitive cells of fetal and adult erythropoiesis indicating that additional silencing elements are located upstream of position -463epsilon. These results provide in vivo evidence that multiple elements of the distal as well as the proximal promoter contribute to epsilon-gene silencing.
Collapse
Affiliation(s)
- Q Li
- Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
78
|
Navas PA, Peterson KR, Li Q, Skarpidi E, Rohde A, Shaw SE, Clegg CH, Asano H, Stamatoyannopoulos G. Developmental specificity of the interaction between the locus control region and embryonic or fetal globin genes in transgenic mice with an HS3 core deletion. Mol Cell Biol 1998; 18:4188-96. [PMID: 9632803 PMCID: PMC109003 DOI: 10.1128/mcb.18.7.4188] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/1998] [Accepted: 04/16/1998] [Indexed: 02/07/2023] Open
Abstract
The human beta-globin locus control region (LCR) consists of five erythroid-lineage-specific DNase I-hypersensitive sites (HSs) and is required for activation of the beta-globin locus chromatin domain and globin gene expression. Each DNase I-HS of the LCR consists of a highly conserved core element and flanking sequences. To analyze the functional role of the core elements of the HSs, we deleted a 234-bp fragment encompassing the core of HS3 (HS3c) from a beta-globin locus residing on a 248-kb beta-locus yeast artificial chromosome and analyzed its function in F2 progeny of transgenic mice. Human epsilon-globin gene expression was absent at day 10 and severely reduced in the day 12 embryonic erythropoiesis of mice lacking HS3c. In contrast, gamma-globin gene expression was normal in embryonic erythropoiesis but it was absent in definitive erythropoiesis in the fetal liver. These results indicate that the core element of HS3 is necessary for epsilon-globin gene transcription in embryonic cells and for gamma-globin gene transcription in definitive cells. Normal gamma-globin gene expression in embryonic cells and the absence of gamma-globin gene expression in definitive cells show that different HSs interact with gamma-globin gene promoters in these two stages of development. Such results provide direct evidence for developmental stage specificity of the interactions between the core elements of HSs and the promoters of the globin genes.
Collapse
Affiliation(s)
- P A Navas
- Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Li G, Lim KC, Engel JD, Bungert J. Individual LCR hypersensitive sites cooperate to generate an open chromatin domain spanning the human beta-globin locus. Genes Cells 1998; 3:415-29. [PMID: 9753424 DOI: 10.1046/j.1365-2443.1998.00200.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The human beta-globin locus control region (LCR) is composed of five DNase I hypersensitive (HS) sites located 5' to the multiple genes it regulates. The LCR has been shown to comprise, among other essential properties, an activity that is required for generating a chromatin structure which renders the entire beta-globin gene locus accessible to exogenous nucleases. This nuclease-sensitive state is generally believed to be reflective of the chromatin environment that is permissive for transcriptional activation of the globin genes. RESULTS Here we show, in mice bearing intact YAC transgenes that encompass the whole human beta-globin locus, that the deletion of individual core LCR HS sites negatively affects the ability of the LCR to confer this open chromatin conformation throughout the locus, and when analysed in concert with the effect that these same mutations have on transcription, the data show that the chromatin opening activity is a necessary, but not sufficient, prerequisite for globin gene expression. The results also show that after deletion of individual hypersensitive sites, the mutated LCR is no longer able to provide an accessible chromatin environment that is independent from the site of YAC transgene integration. CONCLUSIONS These experiments provide further evidence for the hypothesis that the HS sites must act cooperatively to fulfil the multiple functions that are attributable to the LCR.
Collapse
Affiliation(s)
- G Li
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | | | | | | |
Collapse
|
80
|
Abstract
In the last few years there have been considerable advances in the understanding of the molecular control of globin genes during development. Several insights have been obtained with studies using transgenic mice. The 5' to 3' order of the genes in the beta locus, the proximity of the genes to the locus control region and the availability of transcriptional factors have been implicated in the developmental activation of globin genes. Globin genes are turned off by two general mechanisms, autonomous gene silencing involving sequences located in the proximal and distal promoters and competition between genes for interaction with the locus control region. The current understanding of the control of embryonic (epsilon) and fetal (gamma) globin genes is reviewed.
Collapse
Affiliation(s)
- Q Li
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
81
|
Abstract
We have developed methods to produce transgenic mice using yeast artificial chromosomes (YACs) and have applied these methods to the analysis of globin gene regulation using 248 kb beta-globin locus YACs (beta-YACs). The advantages of YAC transgenics are: 1) developmental regulation can be studied in the context of the whole locus, 2) mutations may be readily introduced into the YAC, and 3) the effect of these mutations on gene expression can be analyzed. Mice containing the wild-type beta-YAC show proper regulation of globin gene expression during development. Transgenics carrying a beta-YAC bearing a -117 A gamma mutation showed the anticipated phenotype of Greek HPFH, demonstrating that mutant beta-YACs can be used to generate mice that recreate human globin developmental mutants. Transgenic mice with YACs have also been used to examine the function of the LCR. Transgenic mice were generated with a beta-YAC containing a deletion of LCR DNAse I-hypersensitive site 3 (5'HS3). Our results suggest that: 1) the LCR contains functionally redundant elements, 2) the formation of a LCR complex does not require all of the HSs, 3) the individual HSs may modulate the interaction of the LCR with specific globin genes during development, and 4) that most of the HS activity is confined to the core region.
Collapse
Affiliation(s)
- K R Peterson
- Department of Medicine, University of Washington, Seattle 98195, USA.
| | | | | |
Collapse
|
82
|
Ley TJ, Hug B, Fiering S, Epner E, Bender MA, Groudine M. Reduced beta-globin gene expression in adult mice containing deletions of locus control region 5' HS-2 or 5' HS-3. Ann N Y Acad Sci 1998; 850:45-53. [PMID: 9668526 DOI: 10.1111/j.1749-6632.1998.tb10461.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To gain insights into the functions of individual DNA'se hypersensitive sites within the beta globin locus control region (LCR), we deleted the endogenous 5' HS-2 and HS-3 regions from the mouse germline using homologous recombination techniques. We demonstrated that the deletion of either murine 5' HS-2 or 5' HS-3 reduced the expression of the embryonic epsilon y and beta h1 globin genes minimally in yolk sac-derived erythrocytes, but that both knockouts reduced the output of the adult beta (beta-Major + beta-Minor) globin genes by approximately 30% in adult erythrocytes. When the selectable marker PGK-Neo cassette was retained within either the HS-2 or HS-3 region, a much more severe reduction in globin gene expression was observed at all developmental stages. PGK-Neo was shown to be expressed in an erythroid-specific fashion when it was retained in the HS-3 position. These results show that neither 5' HS-2 nor HS-3 is required for the activity of embryonic globin genes, nor are these sites required for correct developmental switching. However, each site is required for approximately 30% of the total LCR activity associated with adult beta-globin gene expression in adult red blood cells. Each site therefore contains some non-redundant information that contributes to adult globin gene function.
Collapse
Affiliation(s)
- T J Ley
- Washington University School of Medicine, Department of Internal Medicine, St. Louis, Missouri 63110-1093, USA.
| | | | | | | | | | | |
Collapse
|
83
|
Amrolia PJ, Gabbard W, Cunningham JM, Jane SM. Maximal activity of an erythroid-specific enhancer requires the presence of specific protein binding sites in linked promoters. J Biol Chem 1998; 273:13593-8. [PMID: 9593696 DOI: 10.1074/jbc.273.22.13593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
High level expression of many eukaryotic genes is achieved through the action of distal regulatory sequences or enhancers. We have utilized the interaction between the erythroid-specific enhancer in hypersensitivity site 2 (HS2) of the human beta-globin locus control region and the globin gene promoters as a model to elucidate the mechanisms governing promoter/enhancer interactions. HS2 contains a 400-base pair core element consisting of tandem AP1/NF-E2 motifs flanked by binding sites for multiple ubiquitous and erythroid-specific factors. We have compared the enhancer activity of this core element with a synthetic enhancer lacking the factor binding sites flanking the AP1/NF-E2 motif (HS2(M)). In fetal/erythroid K562 cells, enhancement of a linked gamma-promoter was significantly greater with wild-type HS2 than with HS2(M). In contrast, the increase in beta-promoter activity in these cells was equivalent with either enhancer fragment. Truncation of the binding site for the fetal/erythroid-specific stage selector protein in the gamma-promoter abolished the additional enhancer activity of HS2. Similarly, insertion of the stage selector protein site into the beta-promoter boosted enhancer activity observed with HS2 but not HS2(M). In adult erythroid MEL cells, enhancement of a linked beta-promoter was significantly greater with HS2 than with HS2(M). This effect was dependent on the binding of the adult stage-specific factor, erythroid Kruppel-like factor, to the beta-promoter. Taken together, this data suggests that the stage-specific factors binding the proximal globin promoters and the factors flanking the AP1/NF-E2 motif of HS2 act in synergy.
Collapse
Affiliation(s)
- P J Amrolia
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | |
Collapse
|
84
|
Miao CH, Snyder RO, Schowalter DB, Patijn GA, Donahue B, Winther B, Kay MA. The kinetics of rAAV integration in the liver. Nat Genet 1998; 19:13-5. [PMID: 9590280 DOI: 10.1038/ng0598-13] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
85
|
The Human β Globin Locus Introduced by YAC Transfer Exhibits a Specific and Reproducible Pattern of Developmental Regulation in Transgenic Mice. Blood 1997. [DOI: 10.1182/blood.v90.11.4602] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The human β globin locus spans an 80-kb chromosomal region encompassing both the five expressed globin genes and the cis-acting elements that direct their stage-specific expression during ontogeny. Sequences proximal to the genes and in the locus control region, 60 kb upstream of the adult β globin gene, are required for developmental regulation. Transgenic studies have shown that altering the structural organization of the locus disrupts the normal pattern of globin gene regulation. Procedures for introducing yeast artificial chromosomes (YACs) containing large genetic loci now make it possible to define the sequences required for stage-restricted gene expression in constructs that preserve the integrity of the β globin locus. We demonstrate that independent YAC transgenic lines exhibit remarkably similar patterns of globin gene expression during development. The switch from γ to β globin predominant expression occurs between day 11.5 and 12.5 of gestation, with no more than twofold differences in human β globin mRNA levels between lines. Human β globin mRNA levels were twofold to fourfold lower than that of mouse βmaj, revealing potentially significant differences in the regulatory sequences of the two loci. These findings provide an important basis for studying regulatory elements within the β globin locus.
Collapse
|
86
|
Dillon N, Trimborn T, Strouboulis J, Fraser P, Grosveld F. The effect of distance on long-range chromatin interactions. Mol Cell 1997; 1:131-9. [PMID: 9659910 DOI: 10.1016/s1097-2765(00)80014-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have used gene competition to distinguish between possible mechanisms of transcriptional activation of the genes of the human beta-globin locus. The insertion of a second beta-globin gene at different points in the locus shows that the more proximal beta gene competes more effectively for activation by the locus control region (LCR). Reducing the relative distance between the genes and the LCR reduces the competitive advantage of the proximal gene, a result that supports activation by direct interaction between the LCR and the genes. Visualization of the primary transcripts shows that the level of transcription is proportional to the frequency of transcriptional periods and that such periods last approximately 8 min in vivo. We also find that the position of the beta-globin gene in the locus is important for correct developmental regulation.
Collapse
Affiliation(s)
- N Dillon
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | |
Collapse
|
87
|
The Human β Globin Locus Introduced by YAC Transfer Exhibits a Specific and Reproducible Pattern of Developmental Regulation in Transgenic Mice. Blood 1997. [DOI: 10.1182/blood.v90.11.4602.4602_4602_4609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human β globin locus spans an 80-kb chromosomal region encompassing both the five expressed globin genes and the cis-acting elements that direct their stage-specific expression during ontogeny. Sequences proximal to the genes and in the locus control region, 60 kb upstream of the adult β globin gene, are required for developmental regulation. Transgenic studies have shown that altering the structural organization of the locus disrupts the normal pattern of globin gene regulation. Procedures for introducing yeast artificial chromosomes (YACs) containing large genetic loci now make it possible to define the sequences required for stage-restricted gene expression in constructs that preserve the integrity of the β globin locus. We demonstrate that independent YAC transgenic lines exhibit remarkably similar patterns of globin gene expression during development. The switch from γ to β globin predominant expression occurs between day 11.5 and 12.5 of gestation, with no more than twofold differences in human β globin mRNA levels between lines. Human β globin mRNA levels were twofold to fourfold lower than that of mouse βmaj, revealing potentially significant differences in the regulatory sequences of the two loci. These findings provide an important basis for studying regulatory elements within the β globin locus.
Collapse
|
88
|
Bresnick EH, Tze L. Synergism between hypersensitive sites confers long-range gene activation by the beta-globin locus control region. Proc Natl Acad Sci U S A 1997; 94:4566-71. [PMID: 9114030 PMCID: PMC20763 DOI: 10.1073/pnas.94.9.4566] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human beta-globin locus control region (LCR) consists of four erythroid-specific DNaseI hypersensitive sites (HSs) at the 5' end of the beta-globin cluster. The LCR functions over a long distance on chromosome 11 to regulate transcription and replication of the beta-globin genes. To determine whether the HSs function independently or as an integrated unit, we analyzed the requirements for long-range transcriptional activation. If the HSs function independently, individual HSs would be expected to have long-range activity. In contrast, if long-range activity requires multiple HSs, individual HSs would have a limited functional distance. HS2, HS3, and a miniLCR containing multiple HSs, were separated from a gamma-globin promoter by fragments of phage lambda DNA. After stable transfection into K562 cells, HS2 had strong enhancer activity, but only when positioned close to the promoter. HS3 also had strong enhancer activity, although it was weaker than HS2 and more sensitive to the spacer DNA. The miniLCR had the strongest enhancer activity and functioned even at a distance of 7.3 kb. A model is proposed in which synergistic interactions between HSs confer long-range activation by creating a stable LCR nucleoprotein structure, which is competent for recruiting chromatin-modifying enzymes. These enzymes would mediate the well-characterized activity of the LCR to modulate chromatin structure.
Collapse
Affiliation(s)
- E H Bresnick
- University of Wisconsin Medical School, Department of Pharmacology, 387 Medical Science, 1300 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|
89
|
Peterson KR. Production and analysis of transgenic mice containing yeast artificial chromosomes. GENETIC ENGINEERING 1997; 19:235-55. [PMID: 9193112 DOI: 10.1007/978-1-4615-5925-2_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- K R Peterson
- Department of Medicine, University of Washington, Seattle 98195, USA
| |
Collapse
|
90
|
Martin DI, Fiering S, Groudine M. Regulation of beta-globin gene expression: straightening out the locus. Curr Opin Genet Dev 1996; 6:488-95. [PMID: 8791532 DOI: 10.1016/s0959-437x(96)80072-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A casual examination of the globin literature would leave most readers with the impression that all aspects of beta-globin gene regulation are controlled by the upstream locus control region (LCR). There is no clear evidence, however, that the LCR affects transcription in the beta-globin locus other than by altering its topology to maintain it in a state permissive for expression of the globin genes. Developmental switching of the globin genes may be independent of the LCR, relying only on elements close to the genes and the arrangement of the genes with respect to each other.
Collapse
Affiliation(s)
- D I Martin
- Fred Hutchinson Cancer Research Center, University of Washington, 1124 Columbia Street, Seattle, 98112, USA
| | | | | |
Collapse
|
91
|
Ziere G, van Dijk M, Bijsterbosch M, van Berkel T. Lactoferrin uptake by the rat liver. Characterization of the recognition site and effect of selective modification of arginine residues. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49900-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|