51
|
Andersen RJ. Sponging off nature for new drug leads. Biochem Pharmacol 2017; 139:3-14. [PMID: 28411115 DOI: 10.1016/j.bcp.2017.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Marine sponges have consistently been the richest source of new marine natural products with unprecedented chemical scaffolds and potent biological activities that have been reported in the chemical literature since the early 1970s. During the last 40years, chemists in the Andersen laboratory at UBC, in collaboration with biologists, have discovered many novel bioactive sponge natural products. Four experimental drug candidates for treatment of inflammation and cancer, that were inspired by members of this sponge natural product collection, have progressed to phase I/II/III clinical trials. This review recounts the scientific stories behind the discovery and development of these four drug candidates; IPL576,092, HTI-286 (Taltobulin), EPI-506 (Ralaniten acetate), and AQX-1125.
Collapse
Affiliation(s)
- Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
52
|
Lien EC, Dibble CC, Toker A. PI3K signaling in cancer: beyond AKT. Curr Opin Cell Biol 2017; 45:62-71. [PMID: 28343126 DOI: 10.1016/j.ceb.2017.02.007] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/13/2017] [Accepted: 02/08/2017] [Indexed: 12/27/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) signaling pathway is one of the most frequently altered pathways in human cancer and has a critical role in driving tumor initiation and progression. Although PI3K and its lipid product phosphatidylinositol-3,4,5-trisphosphate (PIP3) have been shown to activate multiple downstream signaling proteins, the vast majority of studies have focused on the protein kinase AKT as the dominant effector of PI3K signaling. However, recent studies have demonstrated many contexts under which other PIP3-dependent signaling proteins critically contribute to cancer progression, illustrating the importance of understanding AKT-independent signaling downstream of PI3K. Here, we highlight three PI3K-dependent, but AKT-independent, signaling branches that have recently been shown to have important roles in promoting phenotypes associated with malignancy. First, the PDK1-mTORC2-SGK axis can substitute for AKT in survival, migration, and growth signaling and has emerged as a major mechanism of resistance to PI3K and AKT inhibitors. Second, Rac signaling mediates the reorganization of the actin cytoskeleton to regulate cancer cell migration, invasion, and metabolism. Finally, the TEC family kinase BTK has a critical role in B cell function and malignancy and represents a recent example of an effective therapeutic target in cancer. These mechanisms highlight how understanding PI3K-dependent, but AKT-independent, signaling mechanisms that drive cancer progression will be crucial for the development of novel and more effective approaches for targeting the PI3K pathway for therapeutic benefit in cancer.
Collapse
Affiliation(s)
- Evan C Lien
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christian C Dibble
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
53
|
Thomas MP, Erneux C, Potter BVL. SHIP2: Structure, Function and Inhibition. Chembiochem 2017; 18:233-247. [DOI: 10.1002/cbic.201600541] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Mark P. Thomas
- Department of Pharmacy and Pharmacology; University of Bath; Claverton Down Bath BA2 7AY UK
| | - Christophe Erneux
- I.R.I.B.H.M.; Université Libre de Bruxelles; Campus Erasme 808 Route de Lennik 1070 Brussels Belgium
| | - Barry V. L. Potter
- Drug Discovery and Medicinal Chemistry; Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT UK
| |
Collapse
|
54
|
Malbec O, Cassard L, Albanesi M, Jönsson F, Mancardi D, Chicanne G, Payrastre B, Dubreuil P, Vivier E, Daëron M. Trans-inhibition of activation and proliferation signals by Fc receptors in mast cells and basophils. Sci Signal 2016; 9:ra126. [PMID: 27999175 DOI: 10.1126/scisignal.aag1401] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allergic and autoimmune inflammation are associated with the activation of mast cells and basophils by antibodies against allergens or auto-antigens, respectively. Both cell types express several receptors for the Fc portion of antibodies, the engagement of which by antigen-antibody complexes controls their responses. When aggregated on the plasma membrane, high-affinity immunoglobulin E (IgE) receptors (FcεRI) and low-affinity IgG receptors (FcγRIIIA in mice, FcγRIIA in humans) induce these cells to release and secrete proinflammatory mediators, chemokines, and cytokines that account for clinical symptoms. When coaggregated with activating receptors on the same cells, other low-affinity IgG receptors (FcγRIIB in both species) inhibit mast cell and basophil activation. We found that FcγRIIB inhibited not only signals triggered by activating receptors with which they were coengaged (cis-inhibition), but also signals triggered by receptors engaged independently (trans-inhibition). Trans-inhibition acted upon the FcεRI-dependent activation of mouse mast cells, mouse basophils, and human basophils, and upon growth factor receptor (Kit)-dependent normal mouse mast cell proliferation, as well as the constitutive in vitro proliferation and the in vivo growth of oncogene (v-Abl)-transformed mastocytoma cells. Trans-inhibition was induced by receptors, whether inhibitory (FcγRIIB) or activating (FcεRI), which recruited the lipid phosphatase SHIP1. By hydrolyzing PI(3,4,5)P3, SHIP1 induced a global unresponsiveness that affected biological responses triggered by receptors that use phosphoinositide 3-kinase to signal. These data suggest that trans-inhibition controls numerous physiological and pathological processes, and that it may be used as a therapeutic tool in inflammation, especially but not exclusively, in allergy and autoimmunity.
Collapse
Affiliation(s)
- Odile Malbec
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Lydie Cassard
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Marcello Albanesi
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - David Mancardi
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France.,Inserm, Unité 760, Paris, France
| | - Gaëtan Chicanne
- Inserm, Unité 1048, Toulouse, France.,Université Toulouse 3, Toulouse, France.,Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Bernard Payrastre
- Inserm, Unité 1048, Toulouse, France.,Université Toulouse 3, Toulouse, France.,Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Patrice Dubreuil
- Inserm, Unité 1068, Centre de Recherche en Cancérologie de Marseille, Marseille, France.,Institut Paoli-Calmettes, Marseille, France.,Aix Marseille Université, Marseille, France.,CNRS, UMR 7258, Marseille, France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France.,Hôpital de la Conception, Marseille, France
| | - Marc Daëron
- Institut Pasteur, Département d'Immunologie, Unité d'Allergologie Moléculaire et Cellulaire, Paris, France. .,Inserm, Unité 760, Paris, France.,Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| |
Collapse
|
55
|
Kam TI, Park H, Gwon Y, Song S, Kim SH, Moon SW, Jo DG, Jung YK. FcγRIIb-SHIP2 axis links Aβ to tau pathology by disrupting phosphoinositide metabolism in Alzheimer's disease model. eLife 2016; 5. [PMID: 27834631 PMCID: PMC5106215 DOI: 10.7554/elife.18691] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/17/2016] [Indexed: 02/02/2023] Open
Abstract
Amyloid-β (Aβ)-containing extracellular plaques and hyperphosphorylated tau-loaded intracellular neurofibrillary tangles are neuropathological hallmarks of Alzheimer's disease (AD). Although Aβ exerts neuropathogenic activity through tau, the mechanistic link between Aβ and tau pathology remains unknown. Here, we showed that the FcγRIIb-SHIP2 axis is critical in Aβ1-42-induced tau pathology. Fcgr2b knockout or antagonistic FcγRIIb antibody inhibited Aβ1-42-induced tau hyperphosphorylation and rescued memory impairments in AD mouse models. FcγRIIb phosphorylation at Tyr273 was found in AD brains, in neuronal cells exposed to Aβ1-42, and recruited SHIP2 to form a protein complex. Consequently, treatment with Aβ1-42 increased PtdIns(3,4)P2 levels from PtdIns(3,4,5)P3 to mediate tau hyperphosphorylation. Further, we found that targeting SHIP2 expression by lentiviral siRNA in 3xTg-AD mice or pharmacological inhibition of SHIP2 potently rescued tau hyperphosphorylation and memory impairments. Thus, we concluded that the FcγRIIb-SHIP2 axis links Aβ neurotoxicity to tau pathology by dysregulating PtdIns(3,4)P2 metabolism, providing insight into therapeutic potential against AD.
Collapse
Affiliation(s)
- Tae-In Kam
- Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hyejin Park
- Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Youngdae Gwon
- Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Sungmin Song
- Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Seo-Hyun Kim
- Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Seo Won Moon
- Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Yong-Keun Jung
- Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
56
|
Manno B, Oellerich T, Schnyder T, Corso J, Lösing M, Neumann K, Urlaub H, Batista FD, Engelke M, Wienands J. The Dok-3/Grb2 adaptor module promotes inducible association of the lipid phosphatase SHIP with the BCR in a coreceptor-independent manner. Eur J Immunol 2016; 46:2520-2530. [PMID: 27550373 DOI: 10.1002/eji.201646431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/28/2016] [Accepted: 08/16/2016] [Indexed: 01/19/2023]
Abstract
The SH2 domain-containing inositol 5'-phosphatase (SHIP) plays a key role in preventing autoimmune phenomena by limiting antigen-mediated B cell activation. SHIP function is thought to require the dual engagement of the BCR and negative regulatory coreceptors as only the latter appear capable of recruiting SHIP from the cytosol to the plasma membrane by the virtue of phosphorylated immunoreceptor tyrosine-based inhibitory motifs. Here, we demonstrate a coreceptor-independent membrane recruitment and function of SHIP in B cells. In the absence of coreceptor ligation, SHIP translocates to sites of BCR activation through a concerted action of the protein adaptor unit Dok-3/Grb2 and phosphorylated BCR signaling components. Our data reveal auto-inhibitory SHIP activation by the activated BCR and suggest an unexpected negative-regulatory capacity of immunoreceptor tyrosine-based activation motifs in Igα and Igβ.
Collapse
Affiliation(s)
- Birgit Manno
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Göttingen, Germany
| | - Thomas Oellerich
- Department of Hematology and Oncology, Johann Wolfgang Goethe University of Frankfurt, Frankfurt, Germany
| | - Tim Schnyder
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute London, UK
| | - Jasmin Corso
- Bioanalytical Mass Spectrometry, Max Planck Institute of Biophysical Chemistry, Göttingen
| | - Marion Lösing
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Göttingen, Germany.,Vivo Science GmbH, Gronau, Germany
| | - Konstantin Neumann
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Göttingen, Germany.,Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute of Biophysical Chemistry, Göttingen.,Bioanalytics Department of Clincal Chemistry, University Medical Center Goettingen, Göttingen, Germany
| | - Facundo D Batista
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute London, UK
| | - Michael Engelke
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Göttingen, Germany
| | - Jürgen Wienands
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Göttingen, Germany.
| |
Collapse
|
57
|
Getahun A, Cambier JC. Of ITIMs, ITAMs, and ITAMis: revisiting immunoglobulin Fc receptor signaling. Immunol Rev 2016; 268:66-73. [PMID: 26497513 DOI: 10.1111/imr.12336] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Receptors for immunoglobulin Fc regions play multiple critical roles in the immune system, mediating functions as diverse as phagocytosis, triggering degranulation of basophils and mast cells, promoting immunoglobulin class switching, and preventing excessive activation. Transmembrane signaling associated with these functions is mediated primarily by two amino acid sequence motifs, ITAMs (immunoreceptor tyrosine-based activation motifs) and ITIMs (immunoreceptor tyrosine-based inhibition motifs) that act as the receptors' interface with activating and inhibitory signaling pathways, respectively. While ITAMs mobilize activating tyrosine kinases and their consorts, ITIMs mobilize opposing tyrosine and inositol-lipid phosphatases. In this review, we will discuss our current understanding of signaling by these receptors/motifs and their sometimes blurred lines of function.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
58
|
Pauls SD, Ray A, Hou S, Vaughan AT, Cragg MS, Marshall AJ. FcγRIIB-Independent Mechanisms Controlling Membrane Localization of the Inhibitory Phosphatase SHIP in Human B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:1587-96. [PMID: 27456487 DOI: 10.4049/jimmunol.1600105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
Abstract
SHIP is an important regulator of immune cell signaling that functions to dephosphorylate the phosphoinositide phosphatidylinositol 3,4,5-trisphosphate at the plasma membrane and mediate protein-protein interactions. One established paradigm for SHIP activation involves its recruitment to the phospho-ITIM motif of the inhibitory receptor FcγRIIB. Although SHIP is essential for the inhibitory function of FcγRIIB, it also has critical modulating functions in signaling initiated from activating immunoreceptors such as B cell Ag receptor. In this study, we found that SHIP is indistinguishably recruited to the plasma membrane after BCR stimulation with or without FcγRIIB coligation in human cell lines and primary cells. Interestingly, fluorescence recovery after photobleaching analysis reveals differential mobility of SHIP-enhanced GFP depending on the mode of stimulation, suggesting that although BCR and FcγRIIB can both recruit SHIP, this occurs via distinct molecular complexes. Mutagenesis of a SHIP-enhanced GFP fusion protein reveals that the SHIP-Src homology 2 domain is essential in both cases whereas the C terminus is required for recruitment via BCR stimulation, but is less important with FcγRIIB coligation. Experiments with pharmacological inhibitors reveal that Syk activity is required for optimal stimulation-induced membrane localization of SHIP, whereas neither PI3K or Src kinase activity is essential. BCR-induced association of SHIP with binding partner Shc1 is dependent on Syk, as is tyrosine phosphorylation of both partners. Our results indicate that FcγRIIB is not uniquely able to promote membrane recruitment of SHIP, but rather modulates its function via formation of distinct signaling complexes. Membrane recruitment of SHIP via Syk-dependent mechanisms may be an important factor modulating immunoreceptor signaling.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Arnab Ray
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Sen Hou
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Andrew T Vaughan
- Cancer Sciences Unit, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Mark S Cragg
- Cancer Sciences Unit, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Aaron J Marshall
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; Department of Immunology, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| |
Collapse
|
59
|
Naguib A. Following the trail of lipids: Signals initiated by PI3K function at multiple cellular membranes. Sci Signal 2016; 9:re4. [DOI: 10.1126/scisignal.aad7885] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
60
|
Yamaguchi K, Takanashi T, Nasu K, Tamai K, Mochizuki M, Satoh I, Ine S, Sasaki O, Satoh K, Tanaka N, Harigae H, Sugamura K. Xenotransplantation elicits salient tumorigenicity of adult T-cell leukemia-derived cells via aberrant AKT activation. Cancer Sci 2016; 107:638-43. [PMID: 26928911 PMCID: PMC4970830 DOI: 10.1111/cas.12921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/13/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022] Open
Abstract
The transplantation of human cancer cells into immunodeficient NOD/SCID/IL‐2Rγcnull (NOG) mice often causes highly malignant cell populations like cancer stem cells to emerge. Here, by serial transplantation in NOG mice, we established two highly tumorigenic adult T‐cell leukemia‐derived cell lines, ST1‐N6 and TL‐Om1‐N8. When transplanted s.c., these cells formed tumors significantly earlier and from fewer initial cells than their parental lines ST1 and TL‐Om1. We found that protein kinase B (AKT) signaling was upregulated in ST1‐N6 and TL‐Om1‐N8 cells, and that this upregulation was due to the decreased expression of a negative regulator, INPP5D. Furthermore, the introduction of a constitutively active AKT mutant expression vector into ST1 cells augmented the tumorigenicity of the cells, whereas treatment with the AKT inhibitor MK‐2206 attenuated the progression of tumors induced by ST1‐N6 cells. Collectively, our results reveal that the AKT signaling pathway plays a critical role in the malignancy of adult T‐cell leukemia‐derived cells.
Collapse
Affiliation(s)
- Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoka Takanashi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kentaro Nasu
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiichi Tamai
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mai Mochizuki
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ikuro Satoh
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pathology, Miyagi Cancer Center, Natori, Japan
| | - Shoji Ine
- Division of Hematology, Miyagi Cancer Center, Natori, Japan
| | - Osamu Sasaki
- Division of Hematology, Miyagi Cancer Center, Natori, Japan
| | - Kennichi Satoh
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Stem Cells, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Nobuyuki Tanaka
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuo Sugamura
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| |
Collapse
|
61
|
Regulation of PtdIns(3,4,5)P3/Akt signalling by inositol polyphosphate 5-phosphatases. Biochem Soc Trans 2016; 44:240-52. [DOI: 10.1042/bst20150214] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The phosphoinositide 3-kinase (PI3K) generated lipid signals, PtdIns(3,4,5)P3 and PtdIns(3,4)P2, are both required for the maximal activation of the serine/threonine kinase proto-oncogene Akt. The inositol polyphosphate 5-phosphatases (5-phosphatases) hydrolyse the 5-position phosphate from the inositol head group of PtdIns(3,4,5)P3 to yield PtdIns(3,4)P2. Extensive work has revealed several 5-phosphatases inhibit PI3K-driven Akt signalling, by decreasing PtdIns(3,4,5)P3 despite increasing cellular levels of PtdIns(3,4)P2. The roles that 5-phosphatases play in suppressing cell proliferation and transformation are slow to emerge; however, the 5-phosphatase PIPP [proline-rich inositol polyphosphate 5-phosphatase; inositol polyphosphate 5-phosphatase (INPP5J)] has recently been identified as a putative tumour suppressor in melanoma and breast cancer and SHIP1 [SH2 (Src homology 2)-containing inositol phosphatase 1] inhibits haematopoietic cell proliferation. INPP5E regulates cilia stability and INPP5E mutations have been implicated ciliopathy syndromes. This review will examine 5-phosphatase regulation of PI3K/Akt signalling, focussing on the role PtdIns(3,4,5)P3 5-phosphatases play in developmental diseases and cancer.
Collapse
|
62
|
Frequency and amplitude control of cortical oscillations by phosphoinositide waves. Nat Chem Biol 2016; 12:159-66. [PMID: 26751515 DOI: 10.1038/nchembio.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023]
Abstract
Rhythmicity is prevalent in the cortical dynamics of diverse single and multicellular systems. Current models of cortical oscillations focus primarily on cytoskeleton-based feedbacks, but information on signals upstream of the actin cytoskeleton is limited. In addition, inhibitory mechanisms--especially local inhibitory mechanisms, which ensure proper spatial and kinetic controls of activation--are not well understood. Here, we identified two phosphoinositide phosphatases, synaptojanin 2 and SHIP1, that function in periodic traveling waves of rat basophilic leukemia (RBL) mast cells. The local, phase-shifted activation of lipid phosphatases generates sequential waves of phosphoinositides. By acutely perturbing phosphoinositide composition using optogenetic methods, we showed that pulses of PtdIns(4,5)P2 regulate the amplitude of cyclic membrane waves while PtdIns(3,4)P2 sets the frequency. Collectively, these data suggest that the spatiotemporal dynamics of lipid metabolism have a key role in governing cortical oscillations and reveal how phosphatidylinositol 3-kinases (PI3K) activity could be frequency-encoded by a phosphatase-dependent inhibitory reaction.
Collapse
|
63
|
Qualitative and Quantitative In Vitro Analysis of Phosphatidylinositol Phosphatase Substrate Specificity. Methods Mol Biol 2016; 1376:55-75. [PMID: 26552675 DOI: 10.1007/978-1-4939-3170-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Phosphoinositides compromise a family of eight membrane lipids which play important roles in many cellular signaling pathways. Signaling through phosphoinositides has been shown in a variety of cellular functions such cell proliferation, cell growth, apoptosis, and vesicle trafficking. Phospholipid phosphatases regulate cell signaling by modifying the concentration of phosphoinositides and their dephosphorylated products. To understand the role of individual lipid phosphatases in phosphoinositide turnover and functional signaling, it is crucial to determine the substrate specificity of the lipid phosphatase of interest. In this chapter we describe how the substrate specificity of an individual lipid phosphatase can be qualitatively and quantitatively measured in an in vitro radiometric assay. In addition, we specify the different expression systems and purification methods required to produce the necessary yield and functionality in order to further characterize these enzymes. The outstanding versatility and sensitivity of this assay system are yet unmatched and are therefore currently considered the standard of the field.
Collapse
|
64
|
Malik M, Parikh I, Vasquez JB, Smith C, Tai L, Bu G, LaDu MJ, Fardo DW, Rebeck GW, Estus S. Genetics ignite focus on microglial inflammation in Alzheimer's disease. Mol Neurodegener 2015; 10:52. [PMID: 26438529 PMCID: PMC4595327 DOI: 10.1186/s13024-015-0048-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
In the past five years, a series of large-scale genetic studies have revealed novel risk factors for Alzheimer’s disease (AD). Analyses of these risk factors have focused attention upon the role of immune processes in AD, specifically microglial function. In this review, we discuss interpretation of genetic studies. We then focus upon six genes implicated by AD genetics that impact microglial function: TREM2, CD33, CR1, ABCA7, SHIP1, and APOE. We review the literature regarding the biological functions of these six proteins and their putative role in AD pathogenesis. We then present a model for how these factors may interact to modulate microglial function in AD.
Collapse
Affiliation(s)
- Manasi Malik
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| | - Ishita Parikh
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| | - Jared B Vasquez
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| | - Conor Smith
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - Leon Tai
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - David W Fardo
- Department of Biostatistics and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.
| | - Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St, Lexington, KY, 40536, USA.
| |
Collapse
|
65
|
Campa CC, Martini M, De Santis MC, Hirsch E. How PI3K-derived lipids control cell division. Front Cell Dev Biol 2015; 3:61. [PMID: 26484344 PMCID: PMC4588110 DOI: 10.3389/fcell.2015.00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/14/2015] [Indexed: 01/18/2023] Open
Abstract
To succeed in cell division, intense cytoskeletal and membrane remodeling are required to allow accurate chromosome segregation and cytoplasm partitioning. Spatial restriction of the actin dynamics and vesicle trafficking define the cell symmetry and equivalent membrane scission events, respectively. Protein complexes coordinating mitosis are recruited to membrane microdomains characterized by the presence of the phosphatidylinositol lipid members (PtdIns), like PtdIns(3,4,5)P3,PtdIns(4,5)P2, and PtdIns(3)P. These PtdIns represent a minor component of cell membranes, defining membrane domain identity, ultimately controlling cytoskeleton and membrane dynamics during mitosis. The coordinated presence of PtdIns(3,4,5)P3 at the cell poles and PtdIns(4,5)P2 at the cleavage furrow controls the polarity of the actin cytoskeleton leading to symmetrical cell division. In the endosomal compartment, the trafficking of PtdIns(3)P positive vesicles allows the recruitment of the protein machinery required for the abscission.
Collapse
Affiliation(s)
- Carlo C Campa
- Department of Molecular Biotechnology and Health Sciences, University of Turin Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin Torino, Italy
| | - Maria C De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Turin Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin Torino, Italy
| |
Collapse
|
66
|
Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: A distinct branch of PI3K signaling. Cell Signal 2015; 27:1789-98. [DOI: 10.1016/j.cellsig.2015.05.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/16/2015] [Accepted: 05/20/2015] [Indexed: 01/22/2023]
|
67
|
Rudge SA, Wakelam MJO. Phosphatidylinositolphosphate phosphatase activities and cancer. J Lipid Res 2015; 57:176-92. [PMID: 26302980 DOI: 10.1194/jlr.r059154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
Signaling through the phosphoinositide 3-kinase pathways mediates the actions of a plethora of hormones, growth factors, cytokines, and neurotransmitters upon their target cells following receptor occupation. Overactivation of these pathways has been implicated in a number of pathologies, in particular a range of malignancies. The tight regulation of signaling pathways necessitates the involvement of both stimulatory and terminating enzymes; inappropriate activation of a pathway can thus result from activation or inhibition of the two signaling arms. The focus of this review is to discuss, in detail, the activities of the identified families of phosphoinositide phosphatase expressed in humans, and how they regulate the levels of phosphoinositides implicated in promoting malignancy.
Collapse
Affiliation(s)
- Simon A Rudge
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Michael J O Wakelam
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|
68
|
|
69
|
Taylor EB, Nayak DK, Quiniou SMA, Bengten E, Wilson M. Identification of SHIP-1 and SHIP-2 homologs in channel catfish, Ictalurus punctatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:79-87. [PMID: 25743379 DOI: 10.1016/j.dci.2015.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
Src homology domain 2 (SH2) domain-containing inositol 5'-phosphatases (SHIP) proteins have diverse roles in signal transduction. SHIP-1 and SHIP-2 homologs were identified in channel catfish, Ictalurus punctatus, based on sequence homology to murine and human SHIP sequences. Full-length cDNAs for catfish SHIP-1 and SHIP-2 (IpSHIP-1 and IpSHIP-2) were obtained using 5' and 3' RACE protocols. Catfish SHIP molecules share a high degree of sequence identity to their respective SHIP sequences from diverse taxa and both are encoded by single copy genes. IpSHIP-1 and IpSHIP-2 transcripts were expressed in all catfish tissues analyzed except for skin, and IpSHIP-1 message was more abundant than IpSHIP-2 message in lymphoid tissues. Catfish clonal B, cytotoxic T, and macrophage cell lines also expressed message for both molecules. IpSHIP-1 and IpSHIP-2 SH2 domains were expressed as recombinant proteins and were both found to be bound by cross-reacting rabbit anti-mouse SHIP-1 pAb. The anti-mouse SHIP-1 pAb also reacted with cell lysates from the cytotoxic T cell lines, macrophages and stimulated PBL. SHIP-1 is also phosphorylated at a conserved tyrosine residue, as shown by immunoprecipitation studies.
Collapse
Affiliation(s)
- Erin B Taylor
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Deepak K Nayak
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Sylvie M A Quiniou
- Warmwater Aquaculture Research Unit, USDA-ARS, Stoneville, MS 38776, USA
| | - Eva Bengten
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Melanie Wilson
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
70
|
Tumor Suppressor Inactivation in the Pathogenesis of Adult T-Cell Leukemia. JOURNAL OF ONCOLOGY 2015; 2015:183590. [PMID: 26170835 PMCID: PMC4478360 DOI: 10.1155/2015/183590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/24/2015] [Indexed: 12/12/2022]
Abstract
Tumor suppressor functions are essential to control cellular proliferation, to activate the apoptosis or senescence pathway to eliminate unwanted cells, to link DNA damage signals to cell cycle arrest checkpoints, to activate appropriate DNA repair pathways, and to prevent the loss of adhesion to inhibit initiation of metastases. Therefore, tumor suppressor genes are indispensable to maintaining genetic and genomic integrity. Consequently, inactivation of tumor suppressors by somatic mutations or epigenetic mechanisms is frequently associated with tumor initiation and development. In contrast, reactivation of tumor suppressor functions can effectively reverse the transformed phenotype and lead to cell cycle arrest or death of cancerous cells and be used as a therapeutic strategy. Adult T-cell leukemia/lymphoma (ATLL) is an aggressive lymphoproliferative disease associated with infection of CD4 T cells by the Human T-cell Leukemia Virus Type 1 (HTLV-I). HTLV-I-associated T-cell transformation is the result of a multistep oncogenic process in which the virus initially induces chronic T-cell proliferation and alters cellular pathways resulting in the accumulation of genetic defects and the deregulated growth of virally infected cells. This review will focus on the current knowledge of the genetic and epigenetic mechanisms regulating the inactivation of tumor suppressors in the pathogenesis of HTLV-I.
Collapse
|
71
|
Abstract
Rac and PI3Ks are intracellular signal transducers able to regulate multiple signaling pathways fundamental for cell behavior. PI3Ks are lipid kinases that produce phosphorylated lipids which, in turn, transduce extracellular cues within the cell, while Rac is a small G protein that impacts on actin organization. Compelling evidence indicates that in multiple circumstances the 2 signaling pathways appear intermingled. For instance, phosphorylated lipids produced by PI3Ks recruit and activate GEF and GAP proteins, key modulators of Rac function. Conversely, PI3Ks interact with activated Rac, leading to Rac signaling amplification. This review summarizes the molecular mechanisms underlying the cross-talk between Rac and PI3K signaling in 2 different processes, cell migration and ROS production.
Collapse
Affiliation(s)
- Carlo C Campa
- a Molecular Biotechnology Center; Department of Molecular Biotechnology and Health Sciences; University of Torino ; Torino , Italy
| | | | | | | | | |
Collapse
|
72
|
Reddy GR, Subramanian H, Birk A, Milde M, Nikolaev VO, Bünemann M. Adenylyl cyclases 5 and 6 underlie PIP3-dependent regulation. FASEB J 2015; 29:3458-71. [PMID: 25931510 DOI: 10.1096/fj.14-268466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/21/2015] [Indexed: 11/11/2022]
Abstract
Many different neurotransmitters and hormones control intracellular signaling by regulating the production of the second messenger cAMP. The function of the broadly expressed adenylyl cyclases (ACs) 5 and 6 is regulated by either stimulatory or inhibitory G proteins. By analyzing a well-known rebound stimulation phenomenon after withdrawal of Gi protein in atrial myocytes, we discovered that AC5 and -6 are tightly regulated by the second messenger PIP3. By monitoring cAMP levels in real time by means of Förster resonance energy transfer (FRET)-based biosensors, we reproduced the rebound stimulation in a heterologous expression system specifically for AC5 or -6. Strikingly, this cAMP rebound stimulation was completely blocked by the PI3K inhibitor wortmannin, both in atrial myocytes and in transfected human embryonic kidney cells. Similar effects were observed by heterologous expression of the PIP3 phosphatase and tensin homolog (PTEN). However, general kinase inhibitors or inhibitors of Akt had no effect, suggesting a PIP3-dependent mechanism. These findings demonstrate the existence of a novel general pathway for regulation of AC5 and -6 activity via PIP3 that leads to pronounced alterations of cytosolic cAMP levels.
Collapse
Affiliation(s)
- Gopireddy Raghavender Reddy
- *Faculty of Pharmacy, Philipps University, Marburg, Marburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Hariharan Subramanian
- *Faculty of Pharmacy, Philipps University, Marburg, Marburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Alexandra Birk
- *Faculty of Pharmacy, Philipps University, Marburg, Marburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Markus Milde
- *Faculty of Pharmacy, Philipps University, Marburg, Marburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Viacheslav O Nikolaev
- *Faculty of Pharmacy, Philipps University, Marburg, Marburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| | - Moritz Bünemann
- *Faculty of Pharmacy, Philipps University, Marburg, Marburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany
| |
Collapse
|
73
|
Ehm P, Nalaskowski MM, Wundenberg T, Jücker M. The tumor suppressor SHIP1 colocalizes in nucleolar cavities with p53 and components of PML nuclear bodies. Nucleus 2015; 6:154-64. [PMID: 25723258 DOI: 10.1080/19491034.2015.1022701] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The inositol 5-phosphatase SHIP1 is a negative regulator of signaling processes in haematopoietic cells. By converting PI(3,4,5)P3 to PtdIns(3,4)P2 at the plasma membrane, SHIP1 modifies PI3-kinase mediated signaling. We have recently demonstrated that SHIP1 is a nucleo-cytoplasmic shuttling protein and SHIP1 nuclear puncta partially colocalize with FLASH, a component of nuclear bodies. In this study, we demonstrate that endogenous SHIP1 localizes to intranucleolar regions of both normal and leukemic haematopoietic cells. In addition, we report that ectopically expressed SHIP1 accumulates in nucleolar cavities and colocalizes with the tumor suppressor protein p53 and components of PML nuclear bodies (e.g. SP100, SUMO-1 and CK2). Moreover, SHIP1 also colocalizes in nucleolar cavities with components of the ubiquitin-proteasome pathway. By using confocal microscopy data, we generated 3D-models revealing the enormous extent of the SHIP1 aggresomes in the nucleolus. Furthermore, treatment of cells with the proteasome inhibitor MG132 causes an enlargement of nucleolar SHIP1 containing structures. Unexpectedly, this accumulation can be partially prevented by treatment with the inhibitor of nuclear protein export Leptomycin B. In recent years, several proteins aggregating in nucleolar cavities were shown to be key factors of neurodegenerative diseases and cancerogenesis. Our findings support current relevance of nuclear localized SHIP1.
Collapse
Key Words
- DFC, dense fibrillar component
- DIC, Differential interference contrast
- EGFP, enhanced green fluorescent protein
- FC, fibrillar center
- GC, granular component
- LMB, leptomycin B
- MG132
- NES, nuclear export signal
- PBMC, Peripheral Blood Mononuclear Cell
- PML bodies
- PML, Promyelocytic Leukemia
- PtdIns(3, 4)P2, phosphatidylinositol-(3, 4)-bisphosphate
- PtdIns(3, 4, 5)P3, phosphatidylinositol-(3, 4, 5)-trisphosphate
- RNA pol, RNA polymerase
- SHIP1
- SHIP1, src homology 2 domain-containing inositol phosphatase 1
- UPP, ubiquitin-proteasome pathway.
- aggresome
- cancer
- leptomycin B
- nucleolar cavities
- nucleus
- p53
- ubiquitin proteasome pathway
Collapse
Affiliation(s)
- Patrick Ehm
- a Institute of Biochemistry and Signal Transduction ; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | | | | | | |
Collapse
|
74
|
Manna P, Jain SK. Phosphatidylinositol-3,4,5-triphosphate and cellular signaling: implications for obesity and diabetes. Cell Physiol Biochem 2015; 35:1253-75. [PMID: 25721445 DOI: 10.1159/000373949] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 12/26/2022] Open
Abstract
Phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P₃) is one of the most important phosphoinositides and is capable of activating a wide range of proteins through its interaction with their specific binding domains. Localization and activation of these effector proteins regulate a number of cellular functions, including cell survival, proliferation, cytoskeletal rearrangement, intracellular vesicle trafficking, and cell metabolism. Phosphoinositides have been investigated as an important agonist-dependent second messenger in the regulation of diverse physiological events depending upon the phosphorylation status of their inositol group. Dysregulation in formation as well as metabolism of phosphoinositides is associated with various pathophysiological disorders such as inflammation, allergy, cardiovascular diseases, cancer, and metabolic diseases. Recent studies have demonstrated that the impaired metabolism of PtdIns(3,4,5)P₃ is a prime mediator of insulin resistance associated with various metabolic diseases including obesity and diabetes. This review examines the current status of the role of PtdIns(3,4,5)P₃ signaling in the regulation of various cellular functions and the implications of dysregulated PtdIns(3,4,5)P₃ signaling in obesity, diabetes, and their associated complications.
Collapse
Affiliation(s)
- Prasenjit Manna
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | |
Collapse
|
75
|
Abstract
The importance of PTEN in cellular function is underscored by the frequency of its deregulation in cancer. PTEN tumor-suppressor activity depends largely on its lipid phosphatase activity, which opposes PI3K/AKT activation. As such, PTEN regulates many cellular processes, including proliferation, survival, energy metabolism, cellular architecture, and motility. More than a decade of research has expanded our knowledge about how PTEN is controlled at the transcriptional level as well as by numerous posttranscriptional modifications that regulate its enzymatic activity, protein stability, and cellular location. Although the role of PTEN in cancers has long been appreciated, it is also emerging as an important factor in other diseases, such as diabetes and autism spectrum disorders. Our understanding of PTEN function and regulation will hopefully translate into improved prognosis and treatment for patients suffering from these ailments.
Collapse
Affiliation(s)
- Carolyn A Worby
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0721;
| | | |
Collapse
|
76
|
Abstract
Neutrophils play critical roles in innate immunity and host defense. However, excessive neutrophil accumulation or hyper-responsiveness of neutrophils can be detrimental to the host system. Thus, the response of neutrophils to inflammatory stimuli needs to be tightly controlled. Many cellular processes in neutrophils are mediated by localized formation of an inositol phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), at the plasma membrane. The PtdIns(3,4,5)P3 signaling pathway is negatively regulated by lipid phosphatases and inositol phosphates, which consequently play a critical role in controlling neutrophil function and would be expected to act as ideal therapeutic targets for enhancing or suppressing innate immune responses. Here, we comprehensively review current understanding about the action of lipid phosphatases and inositol phosphates in the control of neutrophil function in infection and inflammation.
Collapse
Affiliation(s)
- Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Subhanjan Mondal
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA Promega Corporation, Madison, WI, USA
| |
Collapse
|
77
|
Gilberti RM, Knecht DA. Macrophages phagocytose nonopsonized silica particles using a unique microtubule-dependent pathway. Mol Biol Cell 2014; 26:518-29. [PMID: 25428990 PMCID: PMC4310742 DOI: 10.1091/mbc.e14-08-1301] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cells can take up particles by both opsonized and nonopsonized pathways. Silica and latex, but not zymosan, can be taken up by the nonopsonized pathway. Uptake of silica, but not latex, is toxic to macrophages. Nonopsonized phagocytosis is characterized and found to have key differences from the complement- and antibody-opsonized pathways. Silica inhalation leads to the development of the chronic lung disease silicosis. Macrophages are killed by uptake of nonopsonized silica particles, and this is believed to play a critical role in the etiology of silicosis. However, the mechanism of nonopsonized-particle uptake is not well understood. We compared the molecular events associated with nonopsonized- and opsonized-particle phagocytosis. Both Rac and RhoA GTPases are activated upon nonopsonized-particle exposure, whereas opsonized particles activate either Rac or RhoA. All types of particles quickly generate a PI(3,4,5)P3 and F-actin response at the particle attachment site. After formation of a phagosome, the events related to endolysosome-to-phagosome fusion do not significantly differ between the pathways. Inhibitors of tyrosine kinases, actin polymerization, and the phosphatidylinositol cascade prevent opsonized- and nonopsonized-particle uptake similarly. Inhibition of silica particle uptake prevents silica-induced cell death. Microtubule depolymerization abolished uptake of complement-opsonized and nonopsonized particles but not Ab-opsonized particles. Of interest, regrowth of microtubules allowed uptake of new nonopsonized particles but not ones bound to cells in the absence of microtubules. Although complement-mediated uptake requires macrophages to be PMA-primed, untreated cells phagocytose nonopsonized silica and latex. Thus it appears that nonopsonized-particle uptake is accomplished by a pathway with unique characteristics.
Collapse
Affiliation(s)
- Renée M Gilberti
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - David A Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
78
|
Wu CY, Lin MW, Wu DC, Huang YB, Huang HT, Chen CL. The role of phosphoinositide-regulated actin reorganization in chemotaxis and cell migration. Br J Pharmacol 2014; 171:5541-54. [PMID: 25420930 DOI: 10.1111/bph.12777] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/15/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Reorganization of the actin cytoskeleton is essential for cell motility and chemotaxis. Actin-binding proteins (ABPs) and membrane lipids, especially phosphoinositides PI(4,5)P2 and PI(3,4,5)P3 are involved in the regulation of this reorganization. At least 15 ABPs have been reported to interact with, or regulated by phosphoinositides (PIPs) whose synthesis is regulated by extracellular signals. Recent studies have uncovered several parallel intracellular signalling pathways that crosstalk in chemotaxing cells. Here, we review the roles of ABPs and phosphoinositides in chemotaxis and cell migration. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- C-Y Wu
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
79
|
Khalaj M, Tavakkoli M, Stranahan AW, Park CY. Pathogenic microRNA's in myeloid malignancies. Front Genet 2014; 5:361. [PMID: 25477897 PMCID: PMC4237136 DOI: 10.3389/fgene.2014.00361] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/27/2014] [Indexed: 12/21/2022] Open
Abstract
Recent studies have significantly improved our understanding of the role microRNAs (miRNAs) play in regulating normal hematopoiesis. miRNAs are critical for maintaining hematopoietic stem cell function and the development of mature progeny. Thus, perhaps it is not surprising that miRNAs serve as oncogenes and tumor suppressors in hematologic malignancies arising from hematopoietic stem and progenitor cells, such as the myeloid disorders. A number of studies have extensively documented the widespread dysregulation of miRNA expression in human acute myeloid leukemia (AML), inspiring numerous explorations of the functional role of miRNAs in myeloid leukemogenesis. While these investigations have confirmed that a large number of miRNAs exhibit altered expression in AML, only a small fraction has been confirmed as functional mediators of AML development or maintenance. Herein, we summarize the miRNAs for which strong experimental evidence supports their functional roles in AML pathogenesis. We also discuss the implications of these studies on the development of miRNA-directed therapies in AML.
Collapse
Affiliation(s)
- Mona Khalaj
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Montreh Tavakkoli
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Alec W Stranahan
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA
| | - Christopher Y Park
- Weill Graduate School of Medical Sciences, Cornell University NY, USA ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center NY, USA ; Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center NY, USA
| |
Collapse
|
80
|
Hsu F, Mao Y. The structure of phosphoinositide phosphatases: Insights into substrate specificity and catalysis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:698-710. [PMID: 25264170 DOI: 10.1016/j.bbalip.2014.09.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 12/17/2022]
Abstract
Phosphoinositides (PIs) are a group of key signaling and structural lipid molecules involved in a myriad of cellular processes. PI phosphatases, together with PI kinases, are responsible for the conversion of PIs between distinctive phosphorylation states. PI phosphatases are a large collection of enzymes that are evolved from at least two disparate ancestors. One group is distantly related to endonucleases, which apply divalent metal ions for phosphoryl transfer. The other group is related to protein tyrosine phosphatases, which contain a highly conserved active site motif Cys-X5-Arg (CX5R). In this review, we focus on structural insights to illustrate current understandings of the molecular mechanisms of each PI phosphatase family, with emphasis on their structural basis for substrate specificity determinants and catalytic mechanisms. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- FoSheng Hsu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
81
|
Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 2014; 46:372-83. [PMID: 24897931 DOI: 10.3109/07853890.2014.912836] [Citation(s) in RCA: 863] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite development of novel agents targeting oncogenic pathways, matching targeted therapies to the genetic status of individual tumors is proving to be a daunting task for clinicians. To improve the clinical efficacy and to reduce the toxic side effects of treatments, a deep characterization of genetic alterations in different tumors is required. The mutational profile often evidences a gain of function or hyperactivity of phosphoinositide 3-kinases (PI3Ks) in tumors. These enzymes are activated downstream tyrosine kinase receptors (RTKs) and/or G proteins coupled receptors (GPCRs) and, via AKT, are able to induce mammalian target of rapamycin (mTOR) stimulation. Here, we elucidate the impact of class I (p110α, β, γ, and δ) catalytic subunit mutations on AKT-mediated cellular processes that control crucial mechanisms in tumor development. Moreover, the interrelation of PI3K signaling with mTOR, ERK, and RAS pathways will be discussed, exploiting the potential benefits of PI3K signaling inhibitors in clinical use.
Collapse
Affiliation(s)
- Miriam Martini
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin , Italy
| | | | | | | | | |
Collapse
|
82
|
Gillette DD, Tridandapani S, Butchar JP. Monocyte/macrophage inflammatory response pathways to combat Francisella infection: possible therapeutic targets? Front Cell Infect Microbiol 2014; 4:18. [PMID: 24600590 PMCID: PMC3930869 DOI: 10.3389/fcimb.2014.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/02/2014] [Indexed: 01/05/2023] Open
Abstract
Francisella tularensis can bypass and suppress host immune responses, even to the point of manipulating immune cell phenotypes and intercellular inflammatory networks. Strengthening these responses such that immune cells more readily identify and destroy the bacteria is likely to become a viable (and perhaps necessary) strategy for combating infections with Francisella, especially given the likelihood of antibiotic resistance in the foreseeable future. Monocytes and macrophages offer a niche wherein Francisella can invade and replicate, resulting in substantially higher bacterial load that can overcome the host. As such, understanding their responses to Francisella may uncover potential avenues of therapy that could promote a lowering of bacterial burden and clearance of infection. These response pathways include Toll-like Receptor 2 (TLR2), the caspase-1 inflammasome, Interferons, NADPH oxidase, Phosphatidylinositide 3-kinase (PI3K), and the Ras pathway. In this review we summarize the literature pertaining to the roles of these pathways during Francisella infection, with an emphasis on monocyte/macrophage responses. The therapeutic targeting of one or more such pathways may ultimately become a valuable tool for the treatment of tularemia, and several possibilities are discussed.
Collapse
Affiliation(s)
- Devyn D Gillette
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Susheela Tridandapani
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Jonathan P Butchar
- Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| |
Collapse
|
83
|
Elong Edimo W, Schurmans S, Roger PP, Erneux C. SHIP2 signaling in normal and pathological situations: Its impact on cell proliferation. Adv Biol Regul 2014; 54:142-151. [PMID: 24091101 DOI: 10.1016/j.jbior.2013.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Phosphoinositide 5-phosphatases are critical enzymes in modulating the concentrations of PI(3,4,5)P3, PI(4,5)P2 and PI(3,5)P2. The SH2 domain containing inositol 5-phosphatases SHIP1 and SHIP2 belong to this family of enzymes that dephosphorylate the 5 position of PI(3,4,5)P3 to produce PI(3,4)P2. Data obtained in zebrafish and in mice have shown that SHIP2 is critical in development and growth. Exome sequencing identifies mutations in the coding region of SHIP2 as a cause of opsismodysplasia, a severe but rare chondrodysplasia in human. SHIP2 has been reported to have both protumorigenic and tumor suppressor function in human cancer very much depending on the cell model. This could be linked to the relative importance of PI(3,4)P2 (a product of SHIP2 phosphatase activity) which is also controlled by the PI 4-phosphatase and tumor suppressor INPP4B. In the glioblastoma cell line 1321 N1, that do not express PTEN, lowering SHIP2 expression has an impact on the levels of PI(3,4,5)P3, cell morphology and cell proliferation. It positively stimulates cell proliferation by decreasing the expression of key regulatory proteins of the cell cycle such as p27. Together the data point out to a role of SHIP2 in development in normal cells and at least in cell proliferation in some cancer derived cells.
Collapse
Affiliation(s)
- William's Elong Edimo
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Stéphane Schurmans
- Laboratoire de Génétique fonctionnelle, GIGA-Research Centre, Secteur de Biochimie Métabolique, Département des Sciences Fonctionnelles (Faculté de Médecine vétérinaire), Université de Liège, 1 rue de l'Hôpital, 4000 Liège, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Belgium
| | - Pierre P Roger
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Belgium
| | - Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium.
| |
Collapse
|
84
|
Miura H, Matsuda M, Aoki K. Development of a FRET biosensor with high specificity for Akt. Cell Struct Funct 2013; 39:9-20. [PMID: 24212374 DOI: 10.1247/csf.13018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The serine/threonine kinase Akt plays a critical role in cell proliferation, survival, and tumorigenesis. As a central kinase in the phosphatidylinositol 3-kinase pathway, its activation mechanism at the plasma membrane has been well characterized. However, the subcellular Akt activity in living cells is still largely unknown. Fluorescence resonance energy transfer (FRET)-based biosensors have emerged as indispensable tools to visualize the subcellular activities of signaling molecules. In this study, we developed a highly specific FRET biosensor for Akt based on the Eevee backbone, called Eevee-iAkt. Using inhibitors targeting kinases upstream and downstream of Akt, we showed that Eevee-iAkt specifically monitors Akt activity in living cells. To visualize Akt activity at different subcellular compartments, we targeted Eevee-iAkt to raft and non-raft regions of the plasma membrane, mitochondria, and nucleus in HeLa and Cos7 cells. Interestingly, we revealed substantial differences in Akt activation between HeLa and Cos7 cells upon epidermal growth factor (EGF) stimulation: Akt was transiently activated in HeLa cells with comparable levels at the plasma membrane, cytosol, and mitochondria. In contrast, sustained and spatially localized Akt activation was observed in EGF-stimulated Cos7 cells. We found high Akt activity at the plasma membrane, low activity in the cytosol, and no detectable activity at the mitochondria and nucleus in Cos7 cells. The Eevee-iAkt biosensor was shown to be a valuable tool to study the functional relationship between subcellular Akt activation and its anti-apoptotic role in living cells.
Collapse
Affiliation(s)
- Haruko Miura
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University
| | | | | |
Collapse
|
85
|
Srivastava N, Sudan R, Kerr WG. Role of inositol poly-phosphatases and their targets in T cell biology. Front Immunol 2013; 4:288. [PMID: 24069021 PMCID: PMC3779868 DOI: 10.3389/fimmu.2013.00288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/03/2013] [Indexed: 11/13/2022] Open
Abstract
T lymphocytes play a critical role in host defense in all anatomical sites including mucosal surfaces. This not only includes the effector arm of the immune system, but also regulation of immune responses in order to prevent autoimmunity. Genetic targeting of PI3K isoforms suggests that generation of PI(3,4,5)P3 by PI3K plays a critical role in promoting effector T cell responses. Consequently, the 5'- and 3'-inositol poly-phosphatases SHIP1, SHIP2, and phosphatase and tensin homolog capable of targeting PI(3,4,5)P3 are potential genetic determinants of T cell effector functions in vivo. In addition, the 5'-inositol poly-phosphatases SHIP1 and 2 can shunt PI(3,4,5)P3 to the rare but potent signaling phosphoinositide species PI(3,4)P2 and thus these SHIP1/2, and the INPP4A/B enzymes that deplete PI(3,4)P2 may have precise roles in T cell biology to amplify or inhibit effectors of PI3K signaling that are selectively recruited to and activated by PI(3,4)P2. Here we summarize recent genetic and chemical evidence that indicates the inositol poly-phosphatases have important roles in both the effector and regulatory functions of the T cell compartment. In addition, we will discuss future genetic studies that might be undertaken to further elaborate the role of these enzymes in T cell biology as well as potential pharmaceutical manipulation of these enzymes for therapeutic purposes in disease settings where T cell function is a key in vivo target.
Collapse
Affiliation(s)
- Neetu Srivastava
- Department of Microbiology and Immunology, SUNY Upstate Medical University , Syracuse, NY , USA
| | | | | |
Collapse
|
86
|
Matos AM, Francisco AP. Targets, structures, and recent approaches in malignant melanoma chemotherapy. ChemMedChem 2013; 8:1751-65. [PMID: 23956078 DOI: 10.1002/cmdc.201300248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/23/2013] [Indexed: 12/24/2022]
Abstract
Malignant metastatic melanoma is one of the oncologic diseases with the worst clinical prognosis, due primarily to resistance phenomena against chemotherapeutic agents in current use. However, over the last few years, characterization of the molecular mechanisms involved in the development and progression of the disease has contributed to elucidation of the main pathways by which tissue invasion and metastasis can occur. More importantly, the identification of abnormalities in signaling cascades in melanoma cells has facilitated new therapeutic approaches against malignant melanoma through the design of highly potent and selective drugs with low associated toxicity. Ultimately, recognition of the restricted applicability of new chemotherapies in certain genetic contexts has led to significant improvements in the results of clinical trials, anticipating the existing need for investment in personalized therapies, and taking into account the molecular alterations observed in tumors. Although significant advances have been made in terms of extending the median overall survival rate and improving the quality of life for patients, the mechanisms that compromise in vivo drug efficacy remain poorly understood, particularly those concerning therapeutic resistance phenomena. This review summarizes recently validated targets from the perspective of the medicinal chemistry carried out in the design of the most promising structures.
Collapse
Affiliation(s)
- Ana Marta Matos
- Research Institute for Medicines and Pharmaceutical Sciences (i Med. UL), Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon (Portugal)
| | | |
Collapse
|
87
|
Abstract
Phosphoinositides are the phosphorylated derivatives of phosphatidylinositol, and play a very significant role in a diverse range of signaling processes in eukaryotic cells. A number of phosphoinositide-metabolizing enzymes, including phosphoinositide-kinases and phosphatases are involved in the synthesis and degradation of these phospholipids. Recently, the function of various phosphatases in the phosphatidylinositol signaling pathway has been of great interest. In the present review we summarize the structural insights and biochemistry of various phosphatases in regulating phosphoinositide metabolism.
Collapse
Affiliation(s)
- Young Jun Kim
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | | | | |
Collapse
|
88
|
Membrane phosphoinositides and protein–membrane interactions. Amino Acids 2013; 45:751-4. [DOI: 10.1007/s00726-013-1512-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
|
89
|
Visser MB, Sun CX, Koh A, Ellen RP, Glogauer M. Treponema denticola major outer sheath protein impairs the cellular phosphoinositide balance that regulates neutrophil chemotaxis. PLoS One 2013; 8:e66209. [PMID: 23755300 PMCID: PMC3670873 DOI: 10.1371/journal.pone.0066209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/06/2013] [Indexed: 12/16/2022] Open
Abstract
The major outer sheath protein (Msp) of Treponema denticola inhibits neutrophil polarization and directed chemotaxis together with actin dynamics in vitro in response to the chemoattractant N-formyl-methionine-leucine-phenylanine (fMLP). Msp disorients chemotaxis through inhibition of a Rac1-dependent signaling pathway, but the upstream mechanisms are unknown. We challenged murine bone marrow neutrophils with enriched native Msp to determine the role of phospholipid modifying enzymes in chemotaxis and actin assembly downstream of fMLP-stimulation. Msp modulated cellular phosphoinositide levels through inhibition of phosphatidylinositol 3-kinase (PI3-kinase) together with activation of the lipid phosphatase, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Impaired phosphatidylinositol[(3,4,5)]-triphosphate (PIP3) levels prevented recruitment and activation of the downstream mediator Akt. Release of the actin capping proteins gelsolin and CapZ in response to fMLP was also inhibited by Msp exposure. Chemical inhibition of PTEN restored PIP3 signaling, as measured by Akt activation, Rac1 activation, actin uncapping, neutrophil polarization and chemotaxis in response to fMLP-stimulation, even in the presence of Msp. Transduction with active Rac1 also restored fMLP-mediated actin uncapping, suggesting that Msp acts at the level of PIP3 in the hierarchical feedback loop of PIP3 and Rac1 activation. Taken together, Msp alters the phosphoinositide balance in neutrophils, impairing the cell “compass”, which leads to inhibition of downstream chemotactic events.
Collapse
Affiliation(s)
- Michelle B Visser
- Matrix Dynamics Group, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
90
|
Gumbleton M, Kerr WG. Role of inositol phospholipid signaling in natural killer cell biology. Front Immunol 2013; 4:47. [PMID: 23508471 PMCID: PMC3589743 DOI: 10.3389/fimmu.2013.00047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/08/2013] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are important for host defense against malignancy and infection. At a cellular level NK cells are activated when signals from activating receptors exceed signaling from inhibitory receptors. At a molecular level NK cells undergo an education process to both prevent autoimmunity and acquire lytic capacity. Mouse models have shown important roles for inositol phospholipid signaling in lymphocytes. NK cells from mice with deletion in different members of the inositol phospholipid signaling pathway exhibit defects in development, NK cell repertoire expression and effector function. Here we review the current state of knowledge concerning the function of inositol phospholipid signaling components in NK cell biology.
Collapse
Affiliation(s)
- Matthew Gumbleton
- Department of Microbiology and Immunology, State University of New York Upstate Medical University Syracuse, NY, USA
| | | |
Collapse
|
91
|
Klarenbeek S, van Miltenburg MH, Jonkers J. Genetically engineered mouse models of PI3K signaling in breast cancer. Mol Oncol 2013; 7:146-64. [PMID: 23478237 DOI: 10.1016/j.molonc.2013.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/11/2013] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common type of cancer in women. A substantial fraction of breast cancers have acquired mutations that lead to activation of the phosphoinositide 3-kinase (PI3K) signaling pathway, which plays a central role in cellular processes that are essential in cancer, such as cell survival, growth, division and motility. Oncogenic mutations in the PI3K pathway generally involve either activating mutation of the gene encoding PI3K (PIK3CA) or AKT (AKT1), or loss or reduced expression of PTEN. Several kinases involved in PI3K signaling are being explored as a therapeutic targets for pharmacological inhibition. Despite the availability of a range of inhibitors, acquired resistance may limit the efficacy of single-agent therapy. In this review we discuss the role of PI3K pathway mutations in human breast cancer and relevant genetically engineered mouse models (GEMMs), with special attention to the role of PI3K signaling in oncogenesis, in therapeutic response, and in resistance to therapy. Several sophisticated GEMMs have revealed the cause-and-effect relationships between PI3K pathway mutations and mammary oncogenesis. These GEMMs enable us to study the biology of tumors induced by activated PI3K signaling, as well as preclinical response and resistance to PI3K pathway inhibitors.
Collapse
Affiliation(s)
- Sjoerd Klarenbeek
- Division of Molecular Pathology, Cancer Genomics Centre Netherlands and Cancer Systems Biology Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
92
|
Huber M. Activation/Inhibition of mast cells by supra-optimal antigen concentrations. Cell Commun Signal 2013; 11:7. [PMID: 23339289 PMCID: PMC3598417 DOI: 10.1186/1478-811x-11-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/13/2013] [Indexed: 01/12/2023] Open
Abstract
Mast cells (MCs) are tissue resident cells of hemopoietic origin and are critically involved in allergic diseases. MCs bind IgE by means of their high-affinity receptor for IgE (FcεRI). The FcεRI belongs to a family of multi-chain immune recognition receptors and is activated by cross-linking in response to multivalent antigens (Ags)/allergens. Activation of the FcεRI results in immediate release of preformed granular substances (e.g. histamine, heparin, and proteases), generation of arachidonic acid metabolites, and production of pro-inflammatory cytokines. The FcεRI shows a remarkable, bell-shaped dose-response behavior with weak induction of effector responses at both low and high (so-called supra-optimal) Ag concentrations. This is significantly different from many other receptors, which reach a plateau phase in response to high ligand concentrations. To explain this unusual dose-response behavior of the FcεRI, scientists in the past have drawn parallels to so-called precipitin curves resulting from titration of Ag against a fixed concentration of antibody (Ab) in solution (a.k.a. Heidelberger curves). Thus, for high, supra-optimal Ag concentrations one could assume that every IgE-bound FcεRI formed a monovalent complex with “its own Ag”, thus resulting in marginal induction of effector functions due to absence of receptor cross-linking. However, this was never proven to be the case. More recently, careful studies of FcεRI activation and signaling events in MCs in response to supra-optimal Ag concentrations have suggested a molecular explanation for the descending part of this bell-shaped curve. It is obvious now that extensive FcεRI/IgE/Ag clusters are formed and inhibitory molecules and signalosomes are engaged in response to supra-optimal cross-linking (amongst them the Src family kinase Lyn and the inositol-5′-phosphatase SHIP1) and they actively down-regulate MC effector responses. Thus, the analysis of MC signaling triggered by supra-optimal crosslinking holds great potential for identifying novel targets for pharmacologic therapeutic intervention to benefit patients with acute and chronic allergic diseases.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, University Clinic, RWTH Aachen University, Pauwelsstr, 30, 52074, Aachen, Germany.
| |
Collapse
|
93
|
Wang K, Jiang D, Sims CE, Allbritton NL. Separation of fluorescently labeled phosphoinositides and sphingolipids by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 907:79-86. [PMID: 23000742 PMCID: PMC3475496 DOI: 10.1016/j.jchromb.2012.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/20/2012] [Accepted: 09/03/2012] [Indexed: 12/16/2022]
Abstract
Phosphoinositides (PIs) and sphingolipids regulate many aspects of cell behavior and are often involved in disease processes such as oncogenesis. Capillary electrophoresis with laser induced fluorescence detection (CE-LIF) is emerging as an important tool for enzymatic assays of the metabolism of these lipids, particularly in cell-based formats. Previous separations of phosphoinositide lipids by CE required a complex buffer with polymer additives which had the disadvantages of high cost and/or short shelf life. Further a simultaneous separation of these classes of lipids has not been demonstrated in a robust buffer system. In the current work, a simple separation buffer based on NaH(2)PO(4) and 1-propanol was optimized to separate two sphingolipids and multiple phosphoinositides by CE. The NaH(2)PO(4) concentration, pH, 1-propanol fraction, and a surfactant additive to the buffer were individually optimized to achieve simultaneous separation of the sphingolipids and phosphoinositides. Fluorescein-labeled sphingosine (SFL) and sphingosine 1-phosphate (S1PFL), fluorescein-labeled phosphatidyl-inositol 4,5-bisphosphate (PIP2) and phosphatidyl-inositol 3,4,5-trisphosphate (PIP3), and bodipy-fluorescein (BFL)-labeled PIP2 and PIP3 were separated pairwise and in combination to demonstrate the generalizability of the method. Theoretical plate numbers achieved were as high as 2×10(5) in separating fluorophore-labeled PIP2 and PIP3. Detection limits for the 6 analytes were in the range of 10(-18)-10(-20)mol. The method also showed high reproducibility, as the relative standard deviation of the normalized migration time for each analyte in the simultaneous separation of all 6 compounds was less than 1%. The separation of a mixture composed of diacylglycerol (DAG) and multiple phosphoinositides was also demonstrated. As a final test, fluorescent lipid metabolites formed within cells loaded with BFLPIP2 were separated from a cell lysate as well as a single cell. This simple and robust separation method for SFL and S1PFL and various metabolites of phosphoinositide-related signal transduction is expected to enable improved enzymatic assays for biological and clinical applications.
Collapse
Affiliation(s)
- Kelong Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | - Dechen Jiang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, 27599 and North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
94
|
Sahin AO, Buitenhuis M. Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells. Cell Adh Migr 2012; 6:39-48. [PMID: 22647939 DOI: 10.4161/cam.18975] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cell transplantation is the most powerful treatment modality for a large number of hematopoietic malignancies, including leukemia. Successful hematopoietic recovery after transplantation depends on homing of hematopoietic stem cells to the bone marrow and subsequent lodging of those cells in specific niches in the bone marrow. Migration of hematopoietic stem cells to the bone marrow is a highly regulated process that requires correct regulation of the expression and activity of various molecules including chemoattractants, selectins and integrins. This review will discuss recent studies that have extended our understanding of the molecular mechanisms underlying adhesion, migration and bone marrow homing of hematopoietic stem cells.
Collapse
Affiliation(s)
- Aysegul Ocal Sahin
- Department of Hematology and Erasmus MC Stem Cell Institute for Regenerative Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
95
|
Lee DW, Futami M, Carroll M, Feng Y, Wang Z, Fernandez M, Whichard Z, Chen Y, Kornblau S, Shpall EJ, Bueso-Ramos CE, Corey SJ. Loss of SHIP-1 protein expression in high-risk myelodysplastic syndromes is associated with miR-210 and miR-155. Oncogene 2012; 31:4085-94. [PMID: 22249254 DOI: 10.1038/onc.2011.579] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/22/2011] [Accepted: 11/07/2011] [Indexed: 02/03/2023]
Abstract
The myelodysplastic syndromes (MDSs) comprise a group of disorders characterized by multistage progression from cytopenias to acute myeloid leukemia (AML). They display exaggerated apoptosis in early stages, but lose this behavior during evolution to AML. The molecular basis for loss of apoptosis is unknown. To investigate this critical event, we analyzed phosphatidylinositol (PI) 3'kinase signaling, implicated as a critical pathway of cell survival control in epithelial and hematological malignancies. PI 3'kinase activates Akt through its production of 3' phosphoinositides. In turn, the phosphoinositides are dephosphorylated by two lipid phosphatases, PTEN and SHIP-1, in myeloid cells. We studied primary MDS-enriched bone marrow cells and bone marrow sections by western blotting, immunohistochemistry, immunocytochemistry and quantitative PCR for components of the SHIP/PTEN/PI 3'kinase signaling circuit. We reported constitutively activated Akt, variable levels of PTEN and uniformly decreased SHIP-1 expression in MDS progenitor cells. Overexpression of SHIP-1, but not the phosphatase-deficient form, inhibited myeloid leukemic growth. Levels of microRNA (miR)-210 and miR-155 transcripts, which target SHIP-1, were increased in CD34(+) MDS cells compared with their normal counterparts. Direct binding of miR-210 to the 3' untranslated region of SHIP-1 was confirmed by luciferase reporter assay. Transfection of a myeloid cell line with miR-210 resulted in loss of SHIP-1 protein expression. These data suggest that miR-155 and miR-210/SHIP-1/Akt pathways could serve as clinical biomarkers for disease progression, and that miR-155 and miR-210 might serve as novel therapeutic targets in MDS.
Collapse
Affiliation(s)
- D W Lee
- Division of Pediatrics, University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Montalto G, Cervello M, Nicoletti F, Fagone P, Malaponte G, Mazzarino MC, Candido S, Libra M, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Cocco L, Evangelisti C, Chiarini F, Martelli AM. Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget 2012; 3:954-87. [PMID: 23006971 PMCID: PMC3660063 DOI: 10.18632/oncotarget.652] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/17/2012] [Indexed: 02/07/2023] Open
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, MEK1, DUSP5, PP2A, PIK3CA, PIK3R1, PIK3R4, PIK3R5, IRS4, AKT, NFKB1, MTOR, PTEN, TSC1, and TSC2 may also be activated/inactivated by mutations or epigenetic silencing. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of these cascades can contribute to: resistance to other pathway inhibitors, chemotherapeutic drug resistance, premature aging as well as other diseases. This review will first describe these pathways and discuss how genetic mutations and epigenetic alterations can result in resistance to various inhibitors.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Braccini L, Ciraolo E, Martini M, Pirali T, Germena G, Rolfo K, Hirsch E. PI3K keeps the balance between metabolism and cancer. Adv Biol Regul 2012; 52:389-405. [PMID: 22884032 DOI: 10.1016/j.jbior.2012.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 06/01/2023]
Abstract
Epidemiological studies have established a positive correlation between cancer and metabolic disorders, suggesting that aberrant cell metabolism is a common feature of nearly all tumors. To meet their demand of building block molecules, cancer cells switch to a heavily glucose-dependent metabolism. As insulin triggers glucose uptake, most tumors are or become insulin-dependent. However, the effects of insulin and of other similar growth factors are not only limited to metabolic control but also favor tumor growth by stimulating proliferation and survival. A key signaling event mediating these metabolic and proliferative responses is the activation of the phosphatidylinositol-3 kinases (PI3K) pathway. In this review, we will thus discuss the current concepts of tumor metabolism and the opportunity of PI3K-targeted therapies to exploit the "sweet tooth" of cancer cells.
Collapse
Affiliation(s)
- L Braccini
- Department of Genetics, Biology and Biochemistry, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
98
|
Landego I, Jayachandran N, Wullschleger S, Zhang TT, Gibson IW, Miller A, Alessi DR, Marshall AJ. Interaction of TAPP adapter proteins with phosphatidylinositol (3,4)-bisphosphate regulates B-cell activation and autoantibody production. Eur J Immunol 2012; 42:2760-70. [DOI: 10.1002/eji.201242371] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 06/08/2012] [Accepted: 07/04/2012] [Indexed: 01/09/2023]
Affiliation(s)
- Ivan Landego
- Department of Immunology; University of Manitoba; Winnipeg; Canada
| | | | - Stephan Wullschleger
- MRC Protein Phosphorylation Unit; School of Life Sciences; Sir James Black Centre; University of Dundee; Dundee; UK
| | - Ting-ting Zhang
- Department of Immunology; University of Manitoba; Winnipeg; Canada
| | - Ian W. Gibson
- Department of Pathology; University of Manitoba; Winnipeg; Canada
| | - Angela Miller
- Department of Pathology; University of Manitoba; Winnipeg; Canada
| | - Dario R. Alessi
- MRC Protein Phosphorylation Unit; School of Life Sciences; Sir James Black Centre; University of Dundee; Dundee; UK
| | | |
Collapse
|
99
|
Brauer H, Strauss J, Wegner W, Müller-Tidow C, Horstmann M, Jücker M. Leukemia-associated mutations in SHIP1 inhibit its enzymatic activity, interaction with the GM-CSF receptor and Grb2, and its ability to inactivate PI3K/AKT signaling. Cell Signal 2012; 24:2095-101. [PMID: 22820502 DOI: 10.1016/j.cellsig.2012.07.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/28/2012] [Accepted: 07/14/2012] [Indexed: 12/16/2022]
Abstract
The inositol 5-phosphatase SHIP1 is a negative regulator of the PI3K/AKT pathway, which is constitutively activated in 50-70% of acute myeloid leukemias (AML). Ten different missense mutations in SHIP1 have been described in 3% of AML patients suggesting a functional role of SHIP1 in AML. Here, we report the identification of two new SHIP1 mutations T162P and R225W that were detected in 2 and 1 out of 96 AML patients, respectively. The functional analysis of all 12 AML-associated SHIP1 mutations, one ALL-associated SHIP1 mutation (Q1076X) and a missense SNP (H1168Y) revealed that two mutations i.e. Y643H and P1039S abrogated the ability of SHIP1 to reduce constitutive PI3K/AKT signaling in Jurkat cells. The loss of function of SHIP1 mutant Y643H which is localized in the inositol phosphatase domain was due to a reduction of the specific activity by 84%. Because all other SHIP1 mutants had a normal enzymatic activity, we assumed that these SHIP1 mutants may be functionally impaired due to a loss of interaction with plasma membrane receptors or adapter proteins. In agreement with this model, we found that the SHIP1 mutant F28L located in the FLVR motif of the SH2 domain was incapable of binding tyrosine-phosphorylated proteins including the GM-CSF receptor and that the SHIP1 mutant Q1076X lost its ability to bind to the C-terminal SH3 domain of the adapter protein Grb2. In addition, SHIP1 mutant P1039S which does not reduce PI3K/AKT signaling anymore is located in a PXXP SH3 domain consensus binding motif suggesting that mutation of the conserved proline residue interferes with binding of SHIP1 to a so far unidentified SH3 domain containing protein. In summary, our data indicate that SHIP1 mutations detected in human leukemia patients impair the negative regulatory function of SHIP1 on PI3K/AKT signaling in leukemia cells either directly by reduced enzymatic activity or indirectly by disturbed protein interaction with tyrosine-phosphorylated membrane receptors or adapter proteins. These results further support a functional role of SHIP1 as tumor suppressor protein in the pathogenesis of AML.
Collapse
Affiliation(s)
- Helena Brauer
- Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
100
|
Condé C, Rambout X, Lebrun M, Lecat A, Di Valentin E, Dequiedt F, Piette J, Gloire G, Legrand S. The inositol phosphatase SHIP-1 inhibits NOD2-induced NF-κB activation by disturbing the interaction of XIAP with RIP2. PLoS One 2012; 7:e41005. [PMID: 22815893 PMCID: PMC3398883 DOI: 10.1371/journal.pone.0041005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/15/2012] [Indexed: 01/01/2023] Open
Abstract
SHIP-1 is an inositol phosphatase predominantly expressed in hematopoietic cells. Over the ten past years, SHIP-1 has been described as an important regulator of immune functions. Here, we characterize a new inhibitory function for SHIP-1 in NOD2 signaling. NOD2 is a crucial cytoplasmic bacterial sensor that activates proinflammatory and antimicrobial responses upon bacterial invasion. We observed that SHIP-1 decreases NOD2-induced NF-κB activation in macrophages. This negative regulation relies on its interaction with XIAP. Indeed, we observed that XIAP is an essential mediator of the NOD2 signaling pathway that enables proper NF-κB activation in macrophages. Upon NOD2 activation, SHIP-1 C-terminal proline rich domain (PRD) interacts with XIAP, thereby disturbing the interaction between XIAP and RIP2 in order to decrease NF-κB signaling.
Collapse
Affiliation(s)
- Claude Condé
- Laboratory of Virology and Immunology, Signal Transduction Unit, GIGA-R, University of Liège, Liège, Belgium
| | - Xavier Rambout
- The laboratory of protein signaling and interactions, Signal Transduction Unit, GIGA-R, University of Liège, Liège, Belgium
| | - Marielle Lebrun
- Laboratory of Virology and Immunology, Signal Transduction Unit, GIGA-R, University of Liège, Liège, Belgium
| | - Aurore Lecat
- Laboratory of Virology and Immunology, Signal Transduction Unit, GIGA-R, University of Liège, Liège, Belgium
| | | | - Franck Dequiedt
- The laboratory of protein signaling and interactions, Signal Transduction Unit, GIGA-R, University of Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, Signal Transduction Unit, GIGA-R, University of Liège, Liège, Belgium
| | - Geoffrey Gloire
- Interface Entreprises-Université Liège Science park, Liège, Belgium
| | - Sylvie Legrand
- Laboratory of Virology and Immunology, Signal Transduction Unit, GIGA-R, University of Liège, Liège, Belgium
| |
Collapse
|