51
|
Mohammadi M, Bergado-Acosta JR, Fendt M. Relief learning is distinguished from safety learning by the requirement of the nucleus accumbens. Behav Brain Res 2014; 272:40-5. [PMID: 24995614 DOI: 10.1016/j.bbr.2014.06.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
Abstract
Aversive events induce aversive memories (fear learning) and can also establish appetitive memories. This is the case for cues associated with the cessation of an aversive event (relief learning) or occurring in an explicitly unpaired fashion (safety learning). However, the neural basis of relief and safety learning is poorly understood. In particular, it is not clear whether relief learning and safety learning are neuronally distinct. In the present study, we ask whether the nucleus accumbens is required for the acquisition of relief- and/or safety memory. Temporary inactivation of the nucleus accumbens by local injections of the GABA-A receptor agonist muscimol during the learning session abolished relief learning whereas safety learning was not affected. Thus, the requirement for a functional nucleus accumbens distinguishes relief from safety learning, showing that these two forms of learning are neuronally distinct.
Collapse
Affiliation(s)
- Milad Mohammadi
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Integrative Neuroscience Program, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jorge R Bergado-Acosta
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
52
|
Thomson E, Lou J, Sylvester K, McDonough A, Tica S, Nicolelis MA. Basal forebrain dynamics during a tactile discrimination task. J Neurophysiol 2014; 112:1179-91. [PMID: 24920019 DOI: 10.1152/jn.00040.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleus basalis (NB) is a cholinergic neuromodulatory structure that projects liberally to the entire cortical mantle and regulates information processing in all cortical layers. Here, we recorded activity from populations of single units in the NB as rats performed a whisker-dependent tactile discrimination task. Over 80% of neurons responded with significant modulation in at least one phase of the task. Such activity started before stimulus onset and continued for seconds after reward delivery. Firing rates monotonically increased with reward magnitude during the task, suggesting that NB neurons are not indicating the absolute deviation from expected reward amounts. Individual neurons also encoded significant amounts of information about stimulus identity. Such robust coding was not present when the same stimuli were delivered to lightly anesthetized animals, suggesting that the NB neurons contain a sensorimotor, rather than purely sensory or motor, representation of the environment. Overall, these results support the hypothesis that neurons in the NB provide a value-laden representation of the sensorimotor state of the animal as it engages in significant behavioral tasks.
Collapse
Affiliation(s)
- Eric Thomson
- Department of Neurobiology, Duke University, Durham, North Carolina; Edmond and Lily Safra International Institute for Neuroscience of Natal, Natal, Brazil
| | - Jason Lou
- Department of Neurobiology, Duke University, Durham, North Carolina
| | | | - Annie McDonough
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Stefani Tica
- Department of Neurobiology, Duke University, Durham, North Carolina
| | - Miguel A Nicolelis
- Department of Neurobiology, Duke University, Durham, North Carolina; Department of Biomedical Engineering, Duke University, Durham, North Carolina; Department of Psychology and Neuroscience, Duke University, Durham, North Carolina; Center for Neuroengineering, Duke University, Durham, North Carolina; and Edmond and Lily Safra International Institute for Neuroscience of Natal, Natal, Brazil
| |
Collapse
|
53
|
Qi HX, Kaas JH, Reed JL. The reactivation of somatosensory cortex and behavioral recovery after sensory loss in mature primates. Front Syst Neurosci 2014; 8:84. [PMID: 24860443 PMCID: PMC4026759 DOI: 10.3389/fnsys.2014.00084] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/22/2014] [Indexed: 02/04/2023] Open
Abstract
In our experiments, we removed a major source of activation of somatosensory cortex in mature monkeys by unilaterally sectioning the sensory afferents in the dorsal columns of the spinal cord at a high cervical level. At this level, the ascending branches of tactile afferents from the hand are cut, while other branches of these afferents remain intact to terminate on neurons in the dorsal horn of the spinal cord. Immediately after such a lesion, the monkeys seem relatively unimpaired in locomotion and often use the forelimb, but further inspection reveals that they prefer to use the unaffected hand in reaching for food. In addition, systematic testing indicates that they make more errors in retrieving pieces of food, and start using visual inspection of the rotated hand to confirm the success of the grasping of the food. Such difficulties are not surprising as a complete dorsal column lesion totally deactivates the contralateral hand representation in primary somatosensory cortex (area 3b). However, hand use rapidly improves over the first post-lesion weeks, and much of the hand representational territory in contralateral area 3b is reactivated by inputs from the hand in roughly a normal somatotopic pattern. Quantitative measures of single neuron response properties reveal that reactivated neurons respond to tactile stimulation on the hand with high firing rates and only slightly longer latencies. We conclude that preserved dorsal column afferents after nearly complete lesions contribute to the reactivation of cortex and the recovery of the behavior, but second-order sensory pathways in the spinal cord may also play an important role. Our microelectrode recordings indicate that these preserved first-order, and second-order pathways are initially weak and largely ineffective in activating cortex, but they are potentiated during the recovery process. Therapies that would promote this potentiation could usefully enhance recovery after spinal cord injury.
Collapse
Affiliation(s)
- Hui-Xin Qi
- Department of Psychology, Vanderbilt University Nashville, TN, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University Nashville, TN, USA
| | - Jamie L Reed
- Department of Psychology, Vanderbilt University Nashville, TN, USA
| |
Collapse
|
54
|
|
55
|
AMPA and GABA(A/B) receptor subunit expression in the cuneate nucleus of adult squirrel monkeys during peripheral nerve regeneration. Neurosci Lett 2013; 559:141-6. [PMID: 24315976 DOI: 10.1016/j.neulet.2013.11.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/23/2013] [Accepted: 11/26/2013] [Indexed: 11/22/2022]
Abstract
The primate somatosensory neuroaxis provides an excellent model system with which to investigate adult neural plasticity. Here, we report immunohistochemical staining data for AMPA and GABAA/B receptor subunits in the cuneate nucleus of adult squirrel monkeys 1 and 5 months after median nerve compression. This method of nerve injury allowed the investigation of the way in which patterns of receptor correlates change during peripheral nerve regeneration. These results are compared to cortical data collected within the same animals. As observed in the cortex, the pattern of subunit staining in the brainstem 1 month after nerve compression suggests that the sensory deprived nucleus enters a state of reorganization. That is, the expression of GluR2/3 AMPA receptor subunits is significantly increased, while GABA α1 and GABABR1b receptor subunits are significantly decreased. Five months after nerve injury, the pattern of subunit expression is again very similar to that observed in the infragranular layers of cortex. At this later time we observe a significant increase in GluR2/3 and GABABR1a, with no change in GABAAα1, and a significant decrease in GABABR1b. Together these results suggest that during reorganization and recovery from injury the brainstem and cortex are governed by homogeneous mechanisms of plasticity.
Collapse
|
56
|
Abstract
The thalamus integrates and transmits sensory information to the neocortex. The activity of thalamocortical relay (TC) cells is modulated by specific inhibitory circuits. Although this inhibition plays a crucial role in regulating thalamic activity, little is known about long-term changes in synaptic strength at these inhibitory synapses. Therefore, we studied long-term plasticity of inhibitory inputs to TC cells in the posterior medial nucleus of the thalamus by combining patch-clamp recordings with two-photon fluorescence microscopy in rat brain slices. We found that specific activity patterns in the postsynaptic TC cell induced inhibitory long-term potentiation (iLTP). This iLTP was non-Hebbian because it did not depend on the timing between presynaptic and postsynaptic activity, but it could be induced by postsynaptic burst activity alone. iLTP required postsynaptic dendritic Ca(2+) influx evoked by low-threshold Ca(2+) spikes. In contrast, tonic postsynaptic spiking from a depolarized membrane potential (-50 mV), which suppressed these low-threshold Ca(2+) spikes, induced no plasticity. The postsynaptic dendritic Ca(2+) increase triggered the synthesis of nitric oxide that retrogradely activated presynaptic guanylyl cyclase, resulting in the presynaptic expression of iLTP. The dependence of iLTP on the membrane potential and therefore on the postsynaptic discharge mode suggests that this form of iLTP might occur during sleep, when TC cells discharge in bursts. Therefore, iLTP might be involved in sleep state-dependent modulation of thalamic information processing and thalamic oscillations.
Collapse
|
57
|
Bidirectional effects of aversive learning on perceptual acuity are mediated by the sensory cortex. Nat Neurosci 2013; 16:994-6. [PMID: 23817548 DOI: 10.1038/nn.3443] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/20/2013] [Indexed: 12/14/2022]
Abstract
Although emotional learning affects sensory acuity, little is known about how these changes are facilitated in the brain. We found that auditory fear conditioning in mice elicited either an increase or a decrease in frequency discrimination acuity depending on how specific the learned response was to the conditioned tone. Using reversible pharmacological inactivation, we found that the auditory cortex mediated learning-evoked changes in acuity in both directions.
Collapse
|
58
|
Pais-Vieira M, Lebedev MA, Wiest MC, Nicolelis MAL. Simultaneous top-down modulation of the primary somatosensory cortex and thalamic nuclei during active tactile discrimination. J Neurosci 2013; 33:4076-93. [PMID: 23447616 PMCID: PMC3674835 DOI: 10.1523/jneurosci.1659-12.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 11/21/2022] Open
Abstract
The rat somatosensory system contains multiple thalamocortical loops (TCLs) that altogether process, in fundamentally different ways, tactile stimuli delivered passively or actively sampled. To elucidate potential top-down mechanisms that govern TCL processing in awake, behaving animals, we simultaneously recorded neuronal ensemble activity across multiple cortical and thalamic areas while rats performed an active aperture discrimination task. Single neurons located in the primary somatosensory cortex (S1), the ventroposterior medial, and the posterior medial thalamic nuclei of the trigeminal somatosensory pathways exhibited prominent anticipatory firing modulations before the whiskers touching the aperture edges. This cortical and thalamic anticipatory firing could not be explained by whisker movements or whisker stimulation, because neither trigeminal ganglion sensory-evoked responses nor EMG activity were detected during the same period. Both thalamic and S1 anticipatory activity were predictive of the animal's discrimination accuracy. Inactivation of the primary motor cortex (M1) with muscimol affected anticipatory patterns in S1 and the thalamus, and impaired the ability to predict the animal's performance accuracy based on thalamocortical anticipatory activity. These findings suggest that neural processing in TCLs is launched in anticipation of whisker contact with objects, depends on top-down effects generated in part by M1 activity, and cannot be explained by the classical feedforward model of the rat trigeminal system.
Collapse
Affiliation(s)
| | - Mikhail A. Lebedev
- Departments of Neurobiology
- Center for Neuroengineering, Duke University, Durham, North Carolina 27710
| | - Michael C. Wiest
- Neuroscience Program, Wellesley College, Wellesley, Massachusetts 02481, and
| | - Miguel A. L. Nicolelis
- Departments of Neurobiology
- Biomedical Engineering, and
- Psychology and Neuroscience and
- Center for Neuroengineering, Duke University, Durham, North Carolina 27710
- Edmond and Lily Safra International Institute for Neuroscience of Natal, 59066-060 Natal, Brazil
| |
Collapse
|
59
|
Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural Netw 2013; 37:1-47. [PMID: 23149242 DOI: 10.1016/j.neunet.2012.09.017] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/24/2012] [Accepted: 09/24/2012] [Indexed: 11/17/2022]
|
60
|
Abstract
Developmental dyslexia, a severe and persistent reading and spelling impairment, is characterized by difficulties in processing speech sounds (i.e., phonemes). Here, we test the hypothesis that these phonological difficulties are associated with a dysfunction of the auditory sensory thalamus, the medial geniculate body (MGB). By using functional MRI, we found that, in dyslexic adults, the MGB responded abnormally when the task required attending to phonemes compared with other speech features. No other structure in the auditory pathway showed distinct functional neural patterns between the two tasks for dyslexic and control participants. Furthermore, MGB activity correlated with dyslexia diagnostic scores, indicating that the task modulation of the MGB is critical for performance in dyslexics. These results suggest that deficits in dyslexia are associated with a failure of the neural mechanism that dynamically tunes MGB according to predictions from cortical areas to optimize speech processing. This view on task-related MGB dysfunction in dyslexics has the potential to reconcile influential theories of dyslexia within a predictive coding framework of brain function.
Collapse
|
61
|
Mowery TM, Sarin RM, Elliott KS, E Garraghty P. Nerve injury-induced changes in GABA(A) and GABA(B) sub-unit expression in area 3b and cuneate nucleus of adult squirrel monkeys: further evidence of developmental recapitulation. Brain Res 2011; 1415:63-75. [PMID: 21880301 DOI: 10.1016/j.brainres.2011.07.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 07/24/2011] [Accepted: 07/30/2011] [Indexed: 11/27/2022]
Abstract
The primate somatosensory system provides an excellent model system with which to investigate adult neural plasticity. Here, we report immunohistochemical staining data for the GABA(A) α1, GABA(B)R1a, and GABA(B)R1b receptor subunits in somatosensory area 3b, and cuneate nucleus one week after median nerve compression in adult squirrel monkeys. We find a significant decrease in GABA(A) α1 subunit staining across all cortical layers and within both soma and neuropil of the deprived cortical and brainstem regions. The GABA(B) staining showed an opposing shift in deprived regions, with a significant increase in presynaptic GABA(B)R1a staining, and a significant decrease in postsynaptic GABA(B)R1b staining in deprived regions of the cortex and brainstem. These changes in receptor subunit expression generate patterns that are very similar to those reported in the neonate. Furthermore, the similarities between brainstem and cortical expression suggest conserved forms of adult plasticity in these two regions. Taken together these results, along with the results from our previous paper investigating AMPA subunit expression in these same animals, support the hypothesis that deprived neurons enter a previously hidden state of developmental recapitulation that serves to prime the brain for NMDA receptor mediated receptive field reorganization.
Collapse
Affiliation(s)
- Todd M Mowery
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
62
|
Villanueva L. Sensory motor cortex, maladaptative changes and impaired orofacial functions. Arch Oral Biol 2011; 56:1437-9. [PMID: 21802654 DOI: 10.1016/j.archoralbio.2011.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/27/2011] [Accepted: 07/05/2011] [Indexed: 10/17/2022]
|
63
|
Palma J, Versace M, Grossberg S. After-hyperpolarization currents and acetylcholine control sigmoid transfer functions in a spiking cortical model. J Comput Neurosci 2011; 32:253-80. [PMID: 21779754 DOI: 10.1007/s10827-011-0354-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 06/09/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
Recurrent networks are ubiquitous in the brain, where they enable a diverse set of transformations during perception, cognition, emotion, and action. It has been known since the 1970's how, in rate-based recurrent on-center off-surround networks, the choice of feedback signal function can control the transformation of input patterns into activity patterns that are stored in short term memory. A sigmoid signal function may, in particular, control a quenching threshold below which inputs are suppressed as noise and above which they may be contrast enhanced before the resulting activity pattern is stored. The threshold and slope of the sigmoid signal function determine the degree of noise suppression and of contrast enhancement. This article analyses how sigmoid signal functions and their shape may be determined in biophysically realistic spiking neurons. Combinations of fast, medium, and slow after-hyperpolarization (AHP) currents, and their modulation by acetylcholine (ACh), can control sigmoid signal threshold and slope. Instead of a simple gain in excitability that was previously attributed to ACh, cholinergic modulation may cause translation of the sigmoid threshold. This property clarifies how activation of ACh by basal forebrain circuits, notably the nucleus basalis of Meynert, may alter the vigilance of category learning circuits, and thus their sensitivity to predictive mismatches, thereby controlling whether learned categories code concrete or abstract information, as predicted by Adaptive Resonance Theory.
Collapse
Affiliation(s)
- Jesse Palma
- Center for Adaptive Systems, Department of Cognitive and Neural Systems, and Center of Excellence for Learning in Education, Science, and Technology, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
64
|
du Hoffmann J, Kim JJ, Nicola SM. An inexpensive drivable cannulated microelectrode array for simultaneous unit recording and drug infusion in the same brain nucleus of behaving rats. J Neurophysiol 2011; 106:1054-64. [PMID: 21613588 DOI: 10.1152/jn.00349.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons are functionally segregated into discrete populations that perform specific computations. These computations, mediated by neuron-neuron electrochemical signaling, form the neural basis of behavior. Thus fundamental to a brain-based understanding of behavior is the precise determination of the contribution made by specific neurotransmitters to behaviorally relevant neural activity. To facilitate this understanding, we have developed a cannulated microelectrode array for use in behaving rats that enables simultaneous neural ensemble recordings and local infusion of drugs in the same brain nucleus. The system is inexpensive, easy to use, and produces robust and quantitatively reproducible drug effects on recorded neurons.
Collapse
Affiliation(s)
- Johann du Hoffmann
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
65
|
Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci U S A 2011; 108:E183-91. [PMID: 21576480 DOI: 10.1073/pnas.1101914108] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most processing of sensation involves the cortical hemisphere opposite (contralateral) to the stimulated limb. Stroke patients can exhibit changes in the interhemispheric balance of sensory signal processing. It is unclear whether these changes are the result of poststroke rewiring and experience, or whether they could result from the immediate effect of circuit loss. We evaluated the effect of mini-strokes over short timescales (<2 h) where cortical rewiring is unlikely by monitoring sensory-evoked activity throughout much of both cortical hemispheres using voltage-sensitive dye imaging. Blockade of a single pial arteriole within the C57BL6J mouse forelimb somatosensory cortex reduced the response evoked by stimulation of the limb contralateral to the stroke. However, after stroke, the ipsilateral (uncrossed) forelimb response within the unaffected hemisphere was spared and became independent of the contralateral forelimb cortex. Within the unaffected hemisphere, mini-strokes in the opposite hemisphere significantly enhanced sensory responses produced by stimulation of either contralateral or ipsilateral pathways within 30-50 min of stroke onset. Stroke-induced enhancement of responses within the spared hemisphere was not reproduced by inhibition of either cortex or thalamus using pharmacological agents in nonischemic animals. I/LnJ acallosal mice showed similar rapid interhemispheric redistribution of sensory processing after stroke, suggesting that subcortical connections and not transcallosal projections were mediating the novel activation patterns. Thalamic inactivation before stroke prevented the bilateral rearrangement of sensory responses. These findings suggest that acute stroke, and not merely loss of activity, activates unique pathways that can rapidly redistribute function within the spared cortical hemisphere.
Collapse
|
66
|
Carey LM, Abbott DF, Harvey MR, Puce A, Seitz RJ, Donnan GA. Relationship between touch impairment and brain activation after lesions of subcortical and cortical somatosensory regions. Neurorehabil Neural Repair 2011; 25:443-57. [PMID: 21382887 DOI: 10.1177/1545968310395777] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND The neural basis underlying somatosensory impairment and recovery poststroke is virtually unexplored. OBJECTIVE To investigate the relationship between touch discrimination impairment and task-related brain activation in stroke survivors with somatosensory impairment following subcortical or cortical lesions. METHODS A total of 19 stroke survivors with touch impairment were investigated using fMRI and a touch discrimination paradigm 1-month poststroke; 11 had subcortical and 8 cortical sensory lesions; 12 age-matched healthy controls were also studied. Mean task-related contrast images were regressed with sensory impairment using random effects analysis for each subgroup and the total group. RESULTS There was no significant difference in touch impairment between stroke subgroups. Touch discrimination of the affected hand correlated negatively with task-related activation in the ipsilesional primary somatosensory cortex (SI; adjacent to the SI hand area activated in healthy controls); ipsilesional secondary somatosensory cortex (SII); contralesional thalamus; and attention-related frontal and occipital regions in the subcortical group. In contrast, the cortical group did not show significant correlated activity. Yet there was no significant between-group difference in a priori somatosensory regions: only in the superior medial frontal gyrus. A negative correlation was observed in the contralesional thalamus for the total group, irrespective of lesion type. CONCLUSION The findings provide novel evidence of neural correlates of poststroke touch impairment involving a distributed network of ipsilesional SI and SII, the contralesional thalamus, and frontal attention regions, particularly following subcortical lesions. Further systematic investigation of a modulatory role for ipsilesional SI, the thalamus, and frontal attention regions in sensory processing and recovery is warranted, particularly given implications for rehabilitation.
Collapse
Affiliation(s)
- Leeanne M Carey
- National Stroke Research Institute, Florey Neuroscience Institutes, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
67
|
Smith NJ, Horst NK, Liu B, Caetano MS, Laubach M. Reversible Inactivation of Rat Premotor Cortex Impairs Temporal Preparation, but not Inhibitory Control, During Simple Reaction-Time Performance. Front Integr Neurosci 2010; 4:124. [PMID: 21031033 PMCID: PMC2965050 DOI: 10.3389/fnint.2010.00124] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/06/2010] [Indexed: 11/13/2022] Open
Abstract
Previous studies by our lab and others have established a role for medial areas of the prefrontal cortex (mPFC) in the top-down control of action during simple reaction-time (RT) tasks. However, the neural circuits that allow mPFC to influence activity in the motor system have remained unclear. In the present study, we used a combination of tract-tracing and reversible inactivation methods to examine the role of a motor-related area in the rat frontal cortex, called the rostral forelimb area (RFA), in the top-down control of action. Neural tracing studies involved used electrical microstimulation to identify RFA and injections of biotinylated dextran amines (BDA) to map out connections of RFA with other parts of the frontal cortex. Connections were found between RFA and mPFC, the agranular insular cortex, and the primary motor cortex. Reversible inactivations using muscimol infusions into RFA increased response times and eliminated delay-dependent speeding, but did not increase premature responding. These results are markedly different from what is obtained when muscimol is infused into mPFC, which leads to excessive premature responding and a reduction of RTs to stimuli at short delays (Narayanan et al., 2006). We also tested animals during the RT task after inactivating the agranular insular cortex, which contains neurons that projects to and receives from RFA and mPFC, and found no effects on RT performance. Together, these studies suggest that RFA is a premotor region in the rat frontal cortex that competes with mPFC to control action selection. We suggest that RFA controls the threshold that is used to initiate responding and generates prepotent excitation over responding that is crucial for temporal preparation.
Collapse
|
68
|
Hsu CL, Yang HW, Yen CT, Min MY. Comparison of synaptic transmission and plasticity between sensory and cortical synapses on relay neurons in the ventrobasal nucleus of the rat thalamus. J Physiol 2010; 588:4347-63. [PMID: 20855435 DOI: 10.1113/jphysiol.2010.192864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Relay neurons in the ventrobasal nucleus of the thalamus transmit somatosensory information to the cerebral cortex and receive sensory and cortical (feedback) synaptic inputs via, respectively, medial lemniscal (ML) and corticothalamic (CT) fibres. Here, we report that calcium-permeable AMPA receptors are expressed at CT synapses, but not ML synapses, and that the NMDA receptor (NMDAR)-mediated/non-NMDAR-mediated synaptic current ratio is significantly larger at CT synapses than at ML synapses. Moreover, NMDAR-dependent LTP and L-type voltage-gated calcium channel-dependent LTD are readily induced at CT synapses, but not ML synapses. In particular, LTD of CT synaptic transmission is induced by spiking of postsynaptic relay neurons in continuous mode, but not burst mode, in current-clamp recordings. These results show that the strength of the cortical input to thalamic relay neurons is selectively subjected to use-dependent modification, which could be a mechanism for regulation of thalamocortical-corticothalamic interactions and the underlying sensory processing.
Collapse
Affiliation(s)
- Ching-Lung Hsu
- Institute of Zoology, National Taiwan University, No.1, Roosevelt Road, Section 4, Taipei 106, Taiwan
| | | | | | | |
Collapse
|
69
|
Spectral integration in primary auditory cortex attributable to temporally precise convergence of thalamocortical and intracortical input. J Neurosci 2010; 30:11114-27. [PMID: 20720119 DOI: 10.1523/jneurosci.0689-10.2010] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Primary sensory cortex integrates sensory information from afferent feedforward thalamocortical projection systems and convergent intracortical microcircuits. Both input systems have been demonstrated to provide different aspects of sensory information. Here we have used high-density recordings of laminar current source density (CSD) distributions in primary auditory cortex of Mongolian gerbils in combination with pharmacological silencing of cortical activity and analysis of the residual CSD, to dissociate the feedforward thalamocortical contribution and the intracortical contribution to spectral integration. We found a temporally highly precise integration of both types of inputs when the stimulation frequency was in close spectral neighborhood of the best frequency of the measurement site, in which the overlap between both inputs is maximal. Local intracortical connections provide both directly feedforward excitatory and modulatory input from adjacent cortical sites, which determine how concurrent afferent inputs are integrated. Through separate excitatory horizontal projections, terminating in cortical layers II/III, information about stimulus energy in greater spectral distance is provided even over long cortical distances. These projections effectively broaden spectral tuning width. Based on these data, we suggest a mechanism of spectral integration in primary auditory cortex that is based on temporally precise interactions of afferent thalamocortical inputs and different short- and long-range intracortical networks. The proposed conceptual framework allows integration of different and partly controversial anatomical and physiological models of spectral integration in the literature.
Collapse
|
70
|
Zuo CT, Hua XY, Guan YH, Xu WD, Xu JG, Gu YD. Long-range plasticity between intact hemispheres after contralateral cervical nerve transfer in humans. J Neurosurg 2010; 113:133-40. [PMID: 20136390 DOI: 10.3171/2010.1.jns09448] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Peripheral nerve injury in a limb usually causes intrahemispheric functional reorganization of the contralateral motor cortex. Recently, evidence has been emerging for significant interhemispheric cortical plasticity in humans, mostly from studies of direct cortical damage. However, in this study, a long-range interhemispheric plasticity was demonstrated in adults with brachial plexus avulsion injury (BPAI) who had received a contralateral cervical nerve transfer, and this plasticity reversed the BPAI-induced intrahemispheric cortical reorganization. METHODS In this study, 8 adult male patients with BPAI were studied using PET scanning. RESULTS The results indicated that the right somatomotor cortices, which may contribute to the control of the injured limb before brachial plexus deafferentation, still played an important role when patients with BPAI tried to move their affected limbs, despite the fact that the contralateral C-7 nerve transfer had been performed and the peripheral output had changed dramatically. Such findings are consistent with the results of the authors' previous animal study. CONCLUSIONS The brain may try to restore the control of an injured limb to its original cortex area, and a complicated change of peripheral pathway also can induce long-range interhemispheric cortical reorganization in human motor cortex.
Collapse
Affiliation(s)
- Chuan-Tao Zuo
- Department of Hand Surgery, Huashan Hospital, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
71
|
Bajo VM, Nodal FR, Moore DR, King AJ. The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nat Neurosci 2009; 13:253-60. [PMID: 20037578 DOI: 10.1038/nn.2466] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/09/2009] [Indexed: 11/09/2022]
Abstract
Descending projections from sensory areas of the cerebral cortex are among the largest pathways in the brain, suggesting that they are important for subcortical processing. Although corticofugal inputs have been shown to modulate neuronal responses in the thalamus and midbrain, the behavioral importance of these changes remains unknown. In the auditory system, one of the major descending pathways is from cortical layer V pyramidal cells to the inferior colliculus in the midbrain. We examined the role of these neurons in experience-dependent recalibration of sound localization in adult ferrets by selectively killing the neurons using chromophore-targeted laser photolysis. When provided with appropriate training, animals normally relearn to localize sound accurately after altering the spatial cues available by reversibly occluding one ear. However, this ability was lost after eliminating corticocollicular neurons, whereas normal sound-localization accuracy was unaffected. The integrity of this descending pathway is therefore critical for learning-induced localization plasticity.
Collapse
Affiliation(s)
- Victoria M Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
72
|
Large-scale expansion of the face representation in somatosensory areas of the lateral sulcus after spinal cord injuries in monkeys. J Neurosci 2009; 29:12009-19. [PMID: 19776287 DOI: 10.1523/jneurosci.2118-09.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transection of dorsal columns of the spinal cord in adult monkeys results in large-scale expansion of the face inputs into the deafferented hand region in the primary somatosensory cortex (area 3b) and the ventroposterior nucleus of thalamus. Here, we determined whether the upstream cortical areas, secondary somatosensory (S2) and parietal ventral (PV) areas, also undergo reorganization after lesions of the dorsal columns. Areas S2, PV, and 3b were mapped after long-term unilateral lesions of the dorsal columns at cervical levels in adult macaque monkeys. In areas S2 and PV, we found neurons responding to touch on the face in regions in which responses to touch on the hand and other body parts are normally seen. In the reorganized parts of S2 and PV, inputs from the chin as well as other parts of the face were observed, whereas in area 3b only the chin inputs expand into the deafferented regions. The results show that deafferentations lead to a more widespread brain reorganization than previously known. The data also show that reorganization in areas S2 and PV shares a common substrate with area 3b, but there are specific features that emerge in S2 and PV.
Collapse
|
73
|
Negredo P, Martin YB, Lagares A, Castro J, Villacorta JA, Avendaño C. Trigeminothalamic barrelette neurons: natural structural side asymmetries and sensory input-dependent plasticity in adult rats. Neuroscience 2009; 163:1242-54. [PMID: 19664693 DOI: 10.1016/j.neuroscience.2009.07.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 11/30/2022]
Abstract
In the rodent trigeminal principal nucleus (Pr5) the barrelette thalamic-projecting neurons relay information from individual whiskers to corresponding contralateral thalamic barreloids. Here we investigated the presence of lateral asymmetries in the dendritic trees of these neurons, and the morphometric changes resulting from input-dependent plasticity in young adult rats. After retrograde labeling with dextran amines from the thalamus, neurons were digitally reconstructed with Neurolucida, and metrically and topologically analyzed with NeuroExplorer. The most unexpected and remarkable result was the observation of side-to-side asymmetries in the barrelette neurons of control rats. These asymmetries more significantly involved the number of low-grade trees and the total dendritic length, which were greater on the left side. Chronic global input loss resulting from infraorbital nerve (IoN) transection, or loss of active touch resulting from whisker clipping in the right neutralized, or even reversed, the observed lateral differences. While results after IoN transection have to be interpreted in the context of partial neuron death in this model, profound bilateral changes were found after haptic loss, which is achieved without inflicting any nerve damage. After whisker trimming, neurons on the left side closely resembled neurons on the right in controls, the natural dendritic length asymmetry being reversed mainly by a shortening of the left trees and a more moderate elongation of the right trees. These results demonstrate that dendritic morphometry is both side- and input-dependent, and that unilateral manipulation of the sensory periphery leads to bilateral morphometric changes in second order neurons of the whisker-barrel system. The presence of anatomical asymmetries in neural structures involved in early stages of somatosensory processing could help explain the expression of sensory input-dependent behavioral asymmetries.
Collapse
Affiliation(s)
- P Negredo
- Department of Anatomy, Histology, and Neuroscience, Medical School, Autonoma University of Madrid, c/ Arzobispo Morcillo 2, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
74
|
Three patterns of oscillatory activity differentially synchronize developing neocortical networks in vivo. J Neurosci 2009; 29:9011-25. [PMID: 19605639 DOI: 10.1523/jneurosci.5646-08.2009] [Citation(s) in RCA: 231] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coordinated patterns of electrical activity are important for the early development of sensory systems. The spatiotemporal dynamics of these early activity patterns and the role of the peripheral sensory input for their generation are essentially unknown. We performed extracellular multielectrode recordings in the somatosensory cortex of postnatal day 0 to 7 rats in vivo and observed three distinct patterns of synchronized oscillatory activity. (1) Spontaneous and periphery-driven spindle bursts of 1-2 s in duration and approximately 10 Hz in frequency occurred approximately every 10 s. (2) Spontaneous and sensory-driven gamma oscillations of 150-300 ms duration and 30-40 Hz in frequency occurred every 10-30 s. (3) Long oscillations appeared only every approximately 20 min and revealed the largest amplitude (250-750 microV) and longest duration (>40 s). These three distinct patterns of early oscillatory activity differently synchronized the neonatal cortical network. Whereas spindle bursts and gamma oscillations did not propagate and synchronized a local neuronal network of 200-400 microm in diameter, long oscillations propagated with 25-30 microm/s and synchronized 600-800 microm large ensembles. All three activity patterns were triggered by sensory activation. Single electrical stimulation of the whisker pad or tactile whisker activation elicited neocortical spindle bursts and gamma activity. Long oscillations could be only evoked by repetitive sensory stimulation. The neonatal oscillatory patterns in vivo depended on NMDA receptor-mediated synaptic transmission and gap junctional coupling. Whereas spindle bursts and gamma oscillations may represent an early functional columnar-like pattern, long oscillations may serve as a propagating activation signal consolidating these immature neuronal networks.
Collapse
|
75
|
Briggs F, Usrey WM. Parallel processing in the corticogeniculate pathway of the macaque monkey. Neuron 2009; 62:135-46. [PMID: 19376073 PMCID: PMC2789995 DOI: 10.1016/j.neuron.2009.02.024] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/13/2008] [Accepted: 02/19/2009] [Indexed: 10/20/2022]
Abstract
Although corticothalamic feedback is ubiquitous across species and modalities, its role in sensory processing is unclear. This study provides a detailed description of the visual physiology of corticogeniculate neurons in the primate. Using electrical stimulation to identify corticogeniculate neurons, we distinguish three groups of neurons with response properties that closely resemble those of neurons in the magnocellular, parvocellular, and koniocellular layers of their target structure, the lateral geniculate nucleus (LGN) of the thalamus. Our results indicate that corticogeniculate feedback in the primate is stream specific, and provide strong evidence in support of the view that corticothalamic feedback can influence the transmission of sensory information from the thalamus to the cortex in a stream-selective manner.
Collapse
Affiliation(s)
- Farran Briggs
- Center for Neuroscience and the Departments of Neurobiology, Physiology & Behavior and Neurology, University of California, Davis
| | - W. Martin Usrey
- Center for Neuroscience and the Departments of Neurobiology, Physiology & Behavior and Neurology, University of California, Davis
| |
Collapse
|
76
|
Wang N, Wang JY, Luo F. Corticofugal outputs facilitate acute, but inhibit chronic pain in rats. Pain 2009; 142:108-15. [PMID: 19167812 DOI: 10.1016/j.pain.2008.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 11/10/2008] [Accepted: 12/08/2008] [Indexed: 11/29/2022]
Abstract
It has been widely accepted that the primary somatosensory cortex (SI) plays an essential role in the sensory-discriminative aspect of pain perception. However, it remains unclear whether the SI has a role in the descending modulation of pain. Although there are abundant fibers projecting back from sensory cortex to thalamic nuclei, and the influence of cortical modulation from SI on the thalamic nociceptive relay neurons has been addressed, little is known about how the cortical outputs modulate the nociceptive behaviors resulting from tissue injury or evoked by painful stimulation. The present study was designed to test whether the cortical outputs influenced the nociceptive behaviors using rat models of noxious thermal-induced acute pain, formalin-induced acute and CFA-evoked chronic inflammatory pain. The results showed that intracortical microinjection of GABAA agonist muscimol significantly reduced the first and second phase behaviors in formalin tests and elevated the nociceptive thresholds in the thermal stimulus-elicited acute pain, suggesting a facilitatory influence of SI on the acute pain sensation. By contrast, microinjection of GABAA antagonist bicuculline remarkably reduced the thermal hyperalgesia of the CFA-inflamed hindpaws, indicating an inhibitory effect of SI output in the chronic pain state. The opposite modulatory effects in acute and chronic pain states suggest that there exists a functional switch for the SI cortex at different stages of pain disease, which is of great significance for the biological adaptation.
Collapse
Affiliation(s)
- Ning Wang
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, PR China
| | | | | |
Collapse
|
77
|
Navarro X. Chapter 27: Neural plasticity after nerve injury and regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:483-505. [PMID: 19682656 DOI: 10.1016/s0074-7742(09)87027-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Injuries to the peripheral nerves result in partial or total loss of motor, sensory, and autonomic functions in the denervated segments of the body due to the interruption of axons, degeneration of distal nerve fibers, and eventual death of axotomized neurons. Functional deficits caused by nerve injuries can be compensated by reinnervation of denervated targets by regenerating injured axons or by collateral branching of undamaged axons, and remodeling of nervous system circuitry related to the lost functions. Plasticity of central connections may compensate functionally for the lack of adequate target reinnervation; however, plasticity has limited effects on disturbed sensory localization or fine motor control after injuries, and may even result in maladaptive changes, such as neuropathic pain and hyperreflexia. After axotomy, neurons shift from a transmitter to a regenerative phenotype, activating molecular pathways that promote neuronal survival and axonal regeneration. Peripheral nerve injuries also induce a cascade of events, at the molecular, cellular, and system levels, initiated by the injury and progressing throughout plastic changes at the spinal cord, brainstem nuclei, thalamus, and brain cortex. Mechanisms involved in these changes include neurochemical changes, functional alterations of excitatory and inhibitory synaptic connections, sprouting of new connections, and reorganization of sensory and motor central maps. An important direction for research is the development of therapeutic strategies that enhance axonal regeneration, promote selective target reinnervation, and are also able to modulate central nervous system reorganization, amplifying positive adaptive changes that improve functional recovery and also reducing undesirable effects.
Collapse
Affiliation(s)
- Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| |
Collapse
|
78
|
Ferris CF, Stolberg T, Kulkarni P, Murugavel M, Blanchard R, Blanchard DC, Febo M, Brevard M, Simon NG. Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neurosci 2008; 9:111. [PMID: 19014547 PMCID: PMC2601047 DOI: 10.1186/1471-2202-9-111] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 11/13/2008] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND With the advent of functional magnetic resonance imaging (fMRI) in awake animals it is possible to resolve patterns of neuronal activity across the entire brain with high spatial and temporal resolution. Synchronized changes in neuronal activity across multiple brain areas can be viewed as functional neuroanatomical circuits coordinating the thoughts, memories and emotions for particular behaviors. To this end, fMRI in conscious rats combined with 3D computational analysis was used to identifying the putative distributed neural circuit involved in aggressive motivation and how this circuit is affected by drugs that block aggressive behavior. RESULTS To trigger aggressive motivation, male rats were presented with their female cage mate plus a novel male intruder in the bore of the magnet during image acquisition. As expected, brain areas previously identified as critical in the organization and expression of aggressive behavior were activated, e.g., lateral hypothalamus, medial basal amygdala. Unexpected was the intense activation of the forebrain cortex and anterior thalamic nuclei. Oral administration of a selective vasopressin V1a receptor antagonist SRX251 or the selective serotonin reuptake inhibitor fluoxetine, drugs that block aggressive behavior, both caused a general suppression of the distributed neural circuit involved in aggressive motivation. However, the effect of SRX251, but not fluoxetine, was specific to aggression as brain activation in response to a novel sexually receptive female was unaffected. CONCLUSION The putative neural circuit of aggressive motivation identified with fMRI includes neural substrates contributing to emotional expression (i.e. cortical and medial amygdala, BNST, lateral hypothalamus), emotional experience (i.e. hippocampus, forebrain cortex, anterior cingulate, retrosplenial cortex) and the anterior thalamic nuclei that bridge the motor and cognitive components of aggressive responding. Drugs that block vasopressin neurotransmission or enhance serotonin activity suppress activity in this putative neural circuit of aggressive motivation, particularly the anterior thalamic nuclei.
Collapse
Affiliation(s)
- Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, Massachusetts, USA
- Department of Psychology, Northeastern University, Boston, Massachusetts 02115-5000, USA
| | - Tara Stolberg
- Center for Translational NeuroImaging, Northeastern University, Boston, Massachusetts, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, Massachusetts, USA
| | - Murali Murugavel
- Dept Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Robert Blanchard
- Department of Psychology, University of Hawaii, Honolulu, Hawaii, USA
| | | | - Marcelo Febo
- Center for Translational NeuroImaging, Northeastern University, Boston, Massachusetts, USA
| | - Mathew Brevard
- Insight Neuroimaging Systems, Worcester, Massachusetts, USA
| | - Neal G Simon
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
79
|
Jain N, Qi HX, Collins CE, Kaas JH. Large-scale reorganization in the somatosensory cortex and thalamus after sensory loss in macaque monkeys. J Neurosci 2008; 28:11042-60. [PMID: 18945912 PMCID: PMC2613515 DOI: 10.1523/jneurosci.2334-08.2008] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/15/2008] [Accepted: 09/18/2008] [Indexed: 11/21/2022] Open
Abstract
Adult brains undergo large-scale plastic changes after peripheral and central injuries. Although it has been shown that both the cortical and thalamic representations can reorganize, uncertainties exist regarding the extent, nature, and time course of changes at each level. We have determined how cortical representations in the somatosensory area 3b and the ventroposterior (VP) nucleus of thalamus are affected by long standing unilateral dorsal column lesions at cervical levels in macaque monkeys. In monkeys with recovery periods of 22-23 months, the intact face inputs expanded into the deafferented hand region of area 3b after complete or partial lesions of the dorsal columns. The expansion of the face region could extend all the way medially into the leg and foot representations. In the same monkeys, similar expansions of the face representation take place in the VP nucleus of the thalamus, indicating that both these processing levels undergo similar reorganizations. The receptive fields of the expanded representations were similar in somatosensory cortex and thalamus. In two monkeys, we determined the extent of the brain reorganization immediately after dorsal column lesions. In these monkeys, the deafferented regions of area 3b and the VP nucleus became unresponsive to the peripheral touch immediately after the lesion. No reorganization was seen in the cortex or the VP nucleus. A comparison of the extents of deafferentation across the monkeys shows that even if the dorsal column lesion is partial, preserving most of the hand representation, it is sufficient to induce an expansion of the face representation.
Collapse
Affiliation(s)
- Neeraj Jain
- National Brain Research Centre, Manesar, Haryana 122050, India, and Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203, USA.
| | | | | | | |
Collapse
|
80
|
Xerri C. Imprinting of idyosyncratic experience in cortical sensory maps: Neural substrates of representational remodeling and correlative perceptual changes. Behav Brain Res 2008; 192:26-41. [DOI: 10.1016/j.bbr.2008.02.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 02/27/2008] [Accepted: 02/27/2008] [Indexed: 11/25/2022]
|
81
|
Allen TA, Narayanan NS, Kholodar-Smith DB, Zhao Y, Laubach M, Brown TH. Imaging the spread of reversible brain inactivations using fluorescent muscimol. J Neurosci Methods 2008; 171:30-8. [PMID: 18377997 PMCID: PMC2440580 DOI: 10.1016/j.jneumeth.2008.01.033] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 01/31/2008] [Accepted: 01/31/2008] [Indexed: 11/28/2022]
Abstract
Muscimol is a GABA A-agonist that causes rapid and reversible suppression of neurophysiological activity. Interpretations of the effects of muscimol infusions into the brain have been limited because of uncertainty about spread of the drug around the injection site. To solve this problem, the present study explored the use of a fluorophore-conjugated muscimol molecule (FCM). Whole-cell recordings from horizontal brain slices demonstrated that bath-applied FCM acts like muscimol in reversibly suppressing excitatory synaptic transmission. Two types of in vivo experiments demonstrated that the behavioral effects of FCM infusion are similar to the behavioral effects of muscimol infusion. FCM infusion into the rat amygdala before fear conditioning impaired both cued and contextual freezing, which were tested 24 or 48 h later. Normal fear conditioning occurred when these same rats were subsequently given phosphate-buffered saline infusions. FCM infusion into the dorsomedial prefrontal cortex impaired accuracy during a delayed-response task. Histological analysis showed that the region of fluorescence was restricted to 0.5-1mm from the injection site. Myelinated fiber tracts acted as diffusional barriers, thereby shaping the overall spread of fluorescence. The results suggest that FCM is indeed useful for exploring the function of small brain regions.
Collapse
Affiliation(s)
| | - Nandakumar S. Narayanan
- Interneuroscience Program, Yale University, New Haven, CT 06520
- The John B. Pierce Laboratory, New Haven CT 06519 2 Hillhouse Ave., New Haven, CT 06520, tel: 203-432-7008, fax: 203-432-7009
| | | | - Yanjun Zhao
- Department of Psychology, Yale University, New Haven, CT 06520
| | - Mark Laubach
- Department of Neurobiology, Yale University, New Haven, CT 06520
- The John B. Pierce Laboratory, New Haven CT 06519 2 Hillhouse Ave., New Haven, CT 06520, tel: 203-432-7008, fax: 203-432-7009
| | - Thomas H. Brown
- Department of Psychology, Yale University, New Haven, CT 06520
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520
| |
Collapse
|
82
|
Jhaveri MD, Elmes SJR, Richardson D, Barrett DA, Kendall DA, Mason R, Chapman V. Evidence for a novel functional role of cannabinoid CB(2) receptors in the thalamus of neuropathic rats. Eur J Neurosci 2008; 27:1722-30. [PMID: 18380669 PMCID: PMC2327204 DOI: 10.1111/j.1460-9568.2008.06162.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cannabinoid CB1 receptors have analgesic effects in models of neuropathic pain, but can also produce psychoactive side-effects. A supraspinal location of CB2 receptors has recently been described. CB2 agonists are also antinociceptive, although the functional role of supraspinal CB2 receptors in the control of nociception is unknown. Herein, we provide evidence that CB2 receptors in the thalamus play a functional role in the modulation of responses of neurons in the ventral posterior nucleus (VPL) of the thalamus in neuropathic, but not sham-operated, rats. Spontaneous and mechanically evoked activity of VPL neurons was recorded with a multichannel electrode array in anaesthetized spinal nerve-ligated (SNL) rats and compared to sham-operated rats. Intra-VPL administration of the CB2 agonist JWH-133 (30 ng in 500 nL) significantly reduced spontaneous (P < 0.05), non-noxious (P < 0.001) and noxious (P < 0.01) mechanically evoked responses of VPL neurons in SNL rats, but not in sham-operated rats. Inhibitory effects of JWH-133 on spontaneous (P < 0.01) and noxious-evoked (P < 0.001) responses of neurons were blocked by the CB2 antagonist SR144528. Local administration of SR144528 alone did not alter spontaneous or evoked responses of VPL neurons, but increased burst activity of VPL neurons in SNL rats. There were, however, no differences in levels of the endocannabinoids anandamide and 2AG in the thalamus of SNL and sham-operated rats. These data suggest that supraspinal CB2 receptors in the thalamus may contribute to the modulation of neuropathic pain responses.
Collapse
Affiliation(s)
- M D Jhaveri
- School of Biomedical Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | | | | | | | |
Collapse
|
83
|
Grossberg S, Versace M. Spikes, synchrony, and attentive learning by laminar thalamocortical circuits. Brain Res 2008; 1218:278-312. [PMID: 18533136 DOI: 10.1016/j.brainres.2008.04.024] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 04/01/2008] [Accepted: 04/04/2008] [Indexed: 11/19/2022]
Abstract
This article develops the Synchronous Matching Adaptive Resonance Theory (SMART) neural model to explain how the brain may coordinate multiple levels of thalamocortical and corticocortical processing to rapidly learn, and stably remember, important information about a changing world. The model clarifies how bottom-up and top-down processes work together to realize this goal, notably how processes of learning, expectation, attention, resonance, and synchrony are coordinated. The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single-cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current source densities and local field potentials; and single-cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. In particular, the model predicts how laminar circuits of multiple cortical areas interact with primary and higher-order specific thalamic nuclei and nonspecific thalamic nuclei to carry out attentive visual learning and information processing. The model simulates how synchronization of neuronal spiking occurs within and across brain regions, and triggers STDP. Matches between bottom-up adaptively filtered input patterns and learned top-down expectations cause gamma oscillations that support attention, resonance, learning, and consciousness. Mismatches inhibit learning while causing beta oscillations during reset and hypothesis testing operations that are initiated in the deeper cortical layers. The generality of learned recognition codes is controlled by a vigilance process mediated by acetylcholine.
Collapse
Affiliation(s)
- Stephen Grossberg
- Department of Cognitive and Neural Systems, Center for Adaptive Systems, Center of Excellence for Learning in Education, Science, and Technology, Boston University, 677 Beacon Street, Boston, MA 02215, USA.
| | | |
Collapse
|
84
|
Rosselet C, Zennou-Azogui Y, Escoffier G, Kirmaci F, Xerri C. Experience-dependent changes in spatiotemporal properties of cutaneous inputs remodel somatosensory cortical maps following skin flap rotation. Eur J Neurosci 2008; 27:1245-60. [PMID: 18312588 DOI: 10.1111/j.1460-9568.2008.06081.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Contiguous skin surfaces that tend to be synchronously stimulated are represented in neighbouring sectors of primary somatosensory maps. Moreover, neuronal receptive fields (RFs) are reshaped through ongoing competitive/cooperative interactions that segregate/desegregate inputs converging onto cortical neuronal targets. The present study was designed to evaluate the influence of spatio-temporal constraints on somatotopic map organization. A vascularized and innervated pedicle flap of the ventrum skin bearing nipples was rotated by 180 degrees . Electrophysiological maps of ventrum skin were elaborated in the same rats at 24 h after surgery and 2 weeks after parturition. Neurones with split RFs resulting from the surgical separation of formerly adjoining skin surfaces were more numerous in non-nursing than nursing rats. RFs that included newly adjacent skin surfaces on both sides of the scar line emerged in nursing rats, suggesting that the spatial contiguity of formerly separated skin surfaces induced a fusion of their cortical representations through nursing-induced stimulation. In addition, nursing-dependent inputs were found to reincorporate the rotated skin flap representation in an updated topographical organization of the cortical map. A skin territory including recipient and translocated skin areas was costimulated for 7 h, using a brushing device. Neural responses evoked by a piezoelectric-induced skin indentation before and after skin brushing confirmed the emergence of RFs crossing the scar line and contraction of non-brushed components of split RFs. Our findings provide further evidence that the spatiotemporal structure of sensory inputs changing rapidly or evolving in a natural context is critical for experience-dependent reorganization of cortical map topography.
Collapse
Affiliation(s)
- Céline Rosselet
- Neurobiologie Intégrative et Adaptative, UMR 6149, Université de Provence/CNRS, Pole 3C, case B, 3 Place Victor Hugo, 13331 Marseille cedex 03, France
| | | | | | | | | |
Collapse
|
85
|
Distinct properties of corticothalamic and primary sensory synapses to thalamic neurons. Neurosci Res 2007; 59:377-82. [DOI: 10.1016/j.neures.2007.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 08/24/2007] [Accepted: 08/27/2007] [Indexed: 11/22/2022]
|
86
|
Pereira A, Ribeiro S, Wiest M, Moore LC, Pantoja J, Lin SC, Nicolelis MAL. Processing of tactile information by the hippocampus. Proc Natl Acad Sci U S A 2007; 104:18286-91. [PMID: 17989221 PMCID: PMC2084335 DOI: 10.1073/pnas.0708611104] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Indexed: 11/18/2022] Open
Abstract
The ability to detect unusual events occurring in the environment is essential for survival. Several studies have pointed to the hippocampus as a key brain structure in novelty detection, a claim substantiated by its wide access to sensory information through the entorhinal cortex and also distinct aspects of its intrinsic circuitry. Novelty detection is implemented by an associative match-mismatch algorithm involving the CA1 and CA3 hippocampal subfields that compares the stream of sensory inputs received by CA1 to the stored representation of spatiotemporal sequences in CA3. In some rodents, including the rat, the highly sensitive facial whiskers are responsible for providing accurate tactile information about nearby objects. Surprisingly, however, not much is known about how inputs from the whiskers reach CA1 and how they are processed therein. Using concurrent multielectrode neuronal recordings and chemical inactivation in behaving rats, we show that trigeminal inputs from the whiskers reach the CA1 region through thalamic and cortical relays associated with discriminative touch. Ensembles of hippocampal neurons also carry precise information about stimulus identity when recorded during performance in an aperture-discrimination task using the whiskers. We also found broad similarities between tactile responses of trigeminal stations and the hippocampus during different vigilance states (wake and sleep). Taken together, our results show that tactile information associated with fine whisker discrimination is readily available to the hippocampus for dynamic updating of spatial maps.
Collapse
Affiliation(s)
- Antonio Pereira
- *Departamento de Fisiologia, Universidade Federal do Pará, PA 66075-900, Belém, Brazil
- Department of Neurobiology
| | - Sidarta Ribeiro
- Edmond and Lily Safra International Institute of Neuroscience of Natal, RN 59066-060, Natal, Brazil
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Norte, RN 59072-970, Natal, Brazil; and
| | - Michael Wiest
- Department of Neurobiology
- Center for Neuroengineering
| | | | | | | | - Miguel A. L. Nicolelis
- Department of Neurobiology
- Center for Neuroengineering
- Department of Biomedical Engineering, and
- **Department of Cognitive and Brain Sciences, Duke University, Durham, NC 27710
- Edmond and Lily Safra International Institute of Neuroscience of Natal, RN 59066-060, Natal, Brazil
- Laboratory of Neural Ensemble Technology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
87
|
What's to lose and what's to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. ACTA ACUST UNITED AC 2007; 56:259-69. [DOI: 10.1016/j.brainresrev.2007.07.021] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/03/2007] [Accepted: 07/03/2007] [Indexed: 11/18/2022]
|
88
|
Abstract
A full understanding of consciousness requires that we identify the brain processes from which conscious experiences emerge. What are these processes, and what is their utility in supporting successful adaptive behaviors? Adaptive Resonance Theory (ART) predicted a functional link between processes of Consciousness, Learning, Expectation, Attention, Resonance and Synchrony (CLEARS), including the prediction that "all conscious states are resonant states". This connection clarifies how brain dynamics enable a behaving individual to autonomously adapt in real time to a rapidly changing world. The present article reviews theoretical considerations that predicted these functional links, how they work, and some of the rapidly growing body of behavioral and brain data that have provided support for these predictions. The article also summarizes ART models that predict functional roles for identified cells in laminar thalamocortical circuits, including the six layered neocortical circuits and their interactions with specific primary and higher-order specific thalamic nuclei and nonspecific nuclei. These predictions include explanations of how slow perceptual learning can occur without conscious awareness, and why oscillation frequencies in the lower layers of neocortex are sometimes slower beta oscillations, rather than the higher-frequency gamma oscillations that occur more frequently in superficial cortical layers. ART traces these properties to the existence of intracortical feedback loops, and to reset mechanisms whereby thalamocortical mismatches use circuits such as the one from specific thalamic nuclei to nonspecific thalamic nuclei and then to layer 4 of neocortical areas via layers 1-to-5-to-6-to-4.
Collapse
Affiliation(s)
- Stephen Grossberg
- Department of Cognitive and Neural Systems, Center for Adaptive Systems, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
89
|
Pelled G, Chuang KH, Dodd SJ, Koretsky AP. Functional MRI detection of bilateral cortical reorganization in the rodent brain following peripheral nerve deafferentation. Neuroimage 2007; 37:262-73. [PMID: 17544301 PMCID: PMC2253720 DOI: 10.1016/j.neuroimage.2007.03.069] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/19/2007] [Accepted: 03/23/2007] [Indexed: 11/24/2022] Open
Abstract
Evidence is emerging for significant inter-hemispheric cortical plasticity in humans, opening important questions about the significance and mechanism for this long range plasticity. In this work, peripheral nerve deafferentation was performed on both the rat forepaw and hindpaw and cortical reorganization was assessed using functional MRI (fMRI). Sensory stimulation of the forepaw or the hindpaw in rats that experienced only partial denervation resulted in activation in only the appropriate, contralateral, primary somatosensory cortex (SI). However, 2-3 weeks following complete denervation of the rats' forepaw or hindpaw, stimulation of the intact paw resulted in fMRI activation of ipsilateral as well as contralateral SI. To address whether inter-cortical communication is required for this cortical reorganization, the healthy hindpaw SI representation was stereotaxically lesioned in rats which had the other hindpaw denervated. No fMRI activation was detected in the ipsilateral SI cortex after lesioning of the contralateral cortex. These results indicate that extensive inter-hemispheric cortical-cortical reorganization can occur in the rodent brain after peripheral nerve deafferentation and that cortical-cortical connections play a role in mediating this inter-hemispheric cortical reorganization.
Collapse
Affiliation(s)
- Galit Pelled
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, B1D728, 10 Center Drive, Bethesda, MD, USA
| | | | | | | |
Collapse
|
90
|
Burman MA, Gewirtz JC. Hippocampal activity, but not plasticity, is required for early consolidation of fear conditioning with a short trace interval. Eur J Neurosci 2007; 25:2483-90. [PMID: 17445243 DOI: 10.1111/j.1460-9568.2007.05493.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dorsal hippocampus is required for explicit cue fear conditioning only when a temporal gap is inserted between conditioned stimulus (CS) termination and unconditioned stimulus (US) onset (trace fear conditioning). To examine the role of the dorsal hippocampus in associating temporally discontiguous stimuli and to minimize the potential contribution of contextual cues, fear conditioning was conducted using a relatively short (3-s) trace interval. Inactivation of the dorsal hippocampus using the AMPA receptor antagonist NBQX (3 microg/hemisphere) or the GABA(A) agonist muscimol (5 microg/hemisphere) disrupted trace fear conditioning when conducted immediately following training. Trace conditioning was not disrupted significantly when NBQX was infused either before or 2 h after training. Similarly, NBQX infusions were not effective when the CS and US overlapped (delay conditioning). Moreover, trace conditioning was not impaired by intrahippocampal infusion of either the NMDA receptor antagonist AP5 (5 microg/hemisphere) or the L-type voltage-gated calcium channel (VGCC) blocker diltiazem (20 or 40 microg/hemisphere). These data suggest that the involvement of the dorsal hippocampus in short trace interval fear conditioning is largely restricted to the early period of memory consolidation, during which time it mediates the storage of long-term memory in other brain regions.
Collapse
Affiliation(s)
- Michael A Burman
- Department of Psychology, University of Minnesota, N218 Elliott Hall, 75 East River Rd, Minneapolis, MN 55455, USA
| | | |
Collapse
|
91
|
Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 2007; 82:163-201. [PMID: 17643733 DOI: 10.1016/j.pneurobio.2007.06.005] [Citation(s) in RCA: 641] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/18/2007] [Accepted: 06/14/2007] [Indexed: 01/01/2023]
Abstract
Injuries to the peripheral nerves result in partial or total loss of motor, sensory and autonomic functions conveyed by the lesioned nerves to the denervated segments of the body, due to the interruption of axons continuity, degeneration of nerve fibers distal to the lesion and eventual death of axotomized neurons. Injuries to the peripheral nervous system may thus result in considerable disability. After axotomy, neuronal phenotype switches from a transmitter to a regenerative state, inducing the down- and up-regulation of numerous cellular components as well as the synthesis de novo of some molecules normally not expressed in adult neurons. These changes in gene expression activate and regulate the pathways responsible for neuronal survival and axonal regeneration. Functional deficits caused by nerve injuries can be compensated by three neural mechanisms: the reinnervation of denervated targets by regeneration of injured axons, the reinnervation by collateral branching of undamaged axons, and the remodeling of nervous system circuitry related to the lost functions. Plasticity of central connections may compensate functionally for the lack of specificity in target reinnervation; plasticity in human has, however, limited effects on disturbed sensory localization or fine motor control after injuries, and may even result in maladaptive changes, such as neuropathic pain, hyperreflexia and dystonia. Recent research has uncovered that peripheral nerve injuries induce a concurrent cascade of events, at the systemic, cellular and molecular levels, initiated by the nerve injury and progressing throughout plastic changes at the spinal cord, brainstem relay nuclei, thalamus and brain cortex. Mechanisms for these changes are ubiquitous in central substrates and include neurochemical changes, functional alterations of excitatory and inhibitory connections, atrophy and degeneration of normal substrates, sprouting of new connections, and reorganization of somatosensory and motor maps. An important direction for ongoing research is the development of therapeutic strategies that enhance axonal regeneration, promote selective target reinnervation, but are also able to modulate central nervous system reorganization, amplifying those positive adaptive changes that help to improve functional recovery but also diminishing undesirable consequences.
Collapse
Affiliation(s)
- X Navarro
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | | | | |
Collapse
|
92
|
Narayanan NS, Laubach M. Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex. Neuron 2007; 52:921-31. [PMID: 17145511 PMCID: PMC3995137 DOI: 10.1016/j.neuron.2006.10.021] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 09/05/2006] [Accepted: 10/09/2006] [Indexed: 10/23/2022]
Abstract
Dorsomedial prefrontal cortex is critical for the temporal control of behavior. Dorsomedial prefrontal cortex might alter neuronal activity in areas such as motor cortex to inhibit temporally inappropriate responses. We tested this hypothesis by recording from neuronal ensembles in rodent dorsomedial prefrontal cortex during a delayed-response task. One-third of dorsomedial prefrontal neurons were significantly modulated during the delay period. The activity of many of these neurons was predictive of premature responding. We then reversibly inactivated dorsomedial prefrontal cortex while recording ensemble activity in motor cortex. Inactivation of dorsomedial prefrontal cortex reduced delay-related firing, but not response-related firing, in motor cortex. Finally, we made simultaneous recordings in dorsomedial prefrontal cortex and motor cortex and found strong delay-related temporal correlations between neurons in the two cortical areas. These data suggest that functional interactions between dorsomedial prefrontal cortex and motor cortex might serve as a top-down control signal that inhibits inappropriate responding.
Collapse
Affiliation(s)
- Nandakumar S. Narayanan
- The John B. Pierce Laboratory, Yale University School of Medicine
- Interdepartmental Neuroscience Program, Yale University School of Medicine
| | - Mark Laubach
- The John B. Pierce Laboratory, Yale University School of Medicine
- Department of Neurobiology, Yale University School of Medicine
| |
Collapse
|
93
|
Galvez R, Weible AP, Disterhoft JF. Cortical barrel lesions impair whisker-CS trace eyeblink conditioning. Learn Mem 2007; 14:94-100. [PMID: 17272654 PMCID: PMC1838550 DOI: 10.1101/lm.418407] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Whisker deflection is an effective conditioned stimulus (CS) for trace eyeblink conditioning that has been shown to induce a learning-specific expansion of whisker-related cortical barrels, suggesting that memory storage for an aspect of the trace association resides in barrel cortex. To examine the role of the barrel cortex in acquisition and retrieval of trace eyeblink associations, the barrel cortex was lesioned either prior to (acquisition group) or following (retention group) trace conditioning. The acquisition lesion group was unable to acquire the trace conditioned response, suggesting that the whisker barrel cortex is vital for learning trace eyeblink conditioning with whisker deflection as the CS. The retention lesion group exhibited a significant reduction in expression of the previously acquired conditioned response, suggesting that an aspect of the trace association may reside in barrel cortex. These results demonstrate that the barrel cortex is important for both acquisition and retention of whisker trace eyeblink conditioning. Furthermore, these results, along with prior anatomical whisker barrel analyses suggest that the barrel cortex is a site for long-term storage of whisker trace eyeblink associations.
Collapse
Affiliation(s)
- Roberto Galvez
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Corresponding author.E-mail ; fax (312) 503-5101
| | - Aldis P. Weible
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - John F. Disterhoft
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
94
|
Gourévitch B, Eggermont JJ. Evaluating information transfer between auditory cortical neurons. J Neurophysiol 2007; 97:2533-43. [PMID: 17202243 DOI: 10.1152/jn.01106.2006] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transfer entropy, presented as a new tool for investigating neural assemblies, quantifies the fraction of information in a neuron found in the past history of another neuron. The asymmetry of the measure allows feedback evaluations. In particular, this tool has potential applications in investigating windows of temporal integration and stimulus-induced modulation of firing rate. Transfer entropy is also able to eliminate some effects of common history in spike trains and obtains results that are different from cross-correlation. The basic transfer entropy properties are illustrated with simulations. The information transfer through a network of 16 simultaneous multiunit recordings in cat's auditory cortex was examined for a large number of acoustic stimulus types. Application of the transfer entropy to a large database of multiple single-unit activity in cat's primary auditory cortex revealed that most windows of temporal integration found during spontaneous activity range between 2 and 15 ms. The normalized transfer entropy shows similarities and differences with the strength of cross-correlation; these form the basis for revisiting the neural assembly concept.
Collapse
Affiliation(s)
- Boris Gourévitch
- Department of Physiology and Biophysics and Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
95
|
Li L, Ebner FF. Cortical modulation of spatial and angular tuning maps in the rat thalamus. J Neurosci 2007; 27:167-79. [PMID: 17202484 PMCID: PMC6672283 DOI: 10.1523/jneurosci.4165-06.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/20/2006] [Accepted: 11/28/2006] [Indexed: 11/21/2022] Open
Abstract
The massive feedback projections from cortex to the thalamus modulate sensory information transmission in many ways. We investigated the role of corticothalamic feedback projections on the directional selectivity (angular tuning) of neurons in the rat ventral posterior medial (VPM) nucleus to stimulation of their principal whisker. The angular tuning properties of single VPM neurons were compared before and after epochs of electrical stimulation of layer VI feedback neurons in the ipsilateral cortex under urethane anesthesia. Microstimulation of layer VI in "matched" (homologous) barrel columns sharpens the angular tuning curves of single VPM neurons that are tuned to the same direction as the stimulation site in the cortex. Further, microstimulation rotates the angular preference of VPM neurons initially tuned to a different direction toward the direction that cortical neurons prefer. Stimulation in "mismatched" (nonhomologous) barrel columns suppresses responses without consistent effects on angular tuning. We conclude that the primary sensory cortex exerts a significant influence on both spatial and angular tuning maps in the relay nuclei that project to it. The results suggest that the tuning properties of VPM cells in the behaving animal are continually modified to optimize perception of the most salient incoming messages.
Collapse
Affiliation(s)
- Lu Li
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203
| | - Ford F. Ebner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203
| |
Collapse
|
96
|
Grossberg S. Towards a unified theory of neocortex: laminar cortical circuits for vision and cognition. PROGRESS IN BRAIN RESEARCH 2007; 165:79-104. [DOI: 10.1016/s0079-6123(06)65006-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
97
|
Stavrinou ML, Della Penna S, Pizzella V, Torquati K, Cianflone F, Franciotti R, Bezerianos A, Romani GL, Rossini PM. Temporal Dynamics of Plastic Changes in Human Primary Somatosensory Cortex after Finger Webbing. Cereb Cortex 2006; 17:2134-42. [PMID: 17110591 DOI: 10.1093/cercor/bhl120] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The primary somatosensory cortex (SI) exhibits a detailed topographic organization of the hand and fingers, which has been found to undergo plastic changes following modifications of the sensory input. Although the spatial properties of these changes have been extensively investigated, little is known about their temporal dynamics. In this study, we adapted the paradigm of finger webbing, in which 4 fingers are temporarily webbed together, hence modifying their sensory feedback. We used magnetoencephalography, to measure changes in the hand representation in SI, before, during, and after finger webbing for about 5 h. Our results showed a decrease in the Euclidean distance (ED) between cortical sources activated by electrical stimuli to the index and small finger 30 min after webbing, followed by an increase lasting for about 2 h after webbing, which was followed by a return toward baseline values. These results provide a unique frame in which the different representational changes occur, merging previous findings that were only apparently controversial, in which either increases or decreases in ED were reported after sensory manipulation for relatively long or short duration, respectively. Moreover, these observations further confirm that the mechanisms that underlie cortical reorganization are extremely rapid in their expression and, for the first time, show how brain reorganization occurs over time.
Collapse
Affiliation(s)
- Maria L Stavrinou
- Institute for Advanced Biomedical Technologies, G. D'Annunzio University Foundation, Chieti, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Churchill JD, Garraghty PE. The influence of post-nerve injury survival duration on receptive field size: Location, location, location. Neurosci Lett 2006; 405:10-3. [DOI: 10.1016/j.neulet.2006.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 05/08/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
|
99
|
Grossberg S, Seidman D. Neural dynamics of autistic behaviors: cognitive, emotional, and timing substrates. Psychol Rev 2006; 113:483-525. [PMID: 16802879 DOI: 10.1037/0033-295x.113.3.483] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
What brain mechanisms underlie autism, and how do they give rise to autistic behavioral symptoms? This article describes a neural model, called the Imbalanced Spectrally Timed Adaptive Resonance Theory (iSTART) model, that proposes how cognitive, emotional, timing, and motor processes that involve brain regions such as the prefrontal and temporal cortex, amygdala, hippocampus, and cerebellum may interact to create and perpetuate autistic symptoms. These model processes were originally developed to explain data concerning how the brain controls normal behaviors. The iSTART model shows how autistic behavioral symptoms may arise from prescribed breakdowns in these brain processes, notably a combination of underaroused emotional depression in the amygdala and related affective brain regions, learning of hyperspecific recognition categories in the temporal and prefrontal cortices, and breakdowns of adaptively timed attentional and motor circuits in the hippocampal system and cerebellum. The model clarifies how malfunctions in a subset of these mechanisms can, through a systemwide vicious circle of environmentally mediated feedback, cause and maintain problems with them all.
Collapse
Affiliation(s)
- Stephen Grossberg
- Department of Cognitive and Neural Systems, Center for Adaptive Systems and Center of Excellence for Learning in Education, Science, and Technology, Boston University, 677 Beacon Street, Boston, MA 02215, USA.
| | | |
Collapse
|
100
|
Monconduit L, Lopez-Avila A, Molat JL, Chalus M, Villanueva L. Corticofugal output from the primary somatosensory cortex selectively modulates innocuous and noxious inputs in the rat spinothalamic system. J Neurosci 2006; 26:8441-50. [PMID: 16914669 PMCID: PMC6674349 DOI: 10.1523/jneurosci.1293-06.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 06/21/2006] [Accepted: 07/01/2006] [Indexed: 11/21/2022] Open
Abstract
Sensory maps for pain can be modified by deafferentation or injury, and such plasticity has been attributed mainly to changes in the convergence of projections in "bottom-up" mechanisms. We addressed the possible contribution of "top-down" mechanisms by investigating the functional significance of corticofugal influences from the primary somatosensory cortex (S1) to the ventroposterolateral thalamic nucleus (VPL). The strong convergence of spinal and lemniscal afferents to the VPL and the close correspondence between afferents and efferents within the VPL-S1 network suggest the existence of functionally related thalamocortical circuits that are implicated in the detection of innocuous and noxious inputs. Functional characterization of single nociceptive, wide dynamic range, and non-nociceptive VPL neurons and labeling the axons and terminal fields with the juxtacellular technique showed that all three types of cells project to a restricted area, within S1. The convergence of the terminal trees of axons from VPL neurons activated by innocuous, noxious, or both inputs suggests that their inputs are not segregated into anatomically distinct regions. Microinjections within S1 were performed for pharmacological manipulation of corticofugal modulation. Glutamatergic activation of corticofugal output enhanced noxious-evoked responses and affected in a biphasic way tactile-evoked responses of VPL cells. GABA(A)-mediated depression of corticofugal output concomitantly depressed noxious and enhanced innocuous-evoked responses of VPL neurons. Microinjections of a GABA(A) antagonist on corticofugal cells enhanced noxious-evoked responses of VPL cells. Our findings demonstrate that corticofugal influences from S1 contribute to selectively modulate somatosensory submodalities at the thalamic level.
Collapse
|