51
|
Jain S, Caforio A, Fodran P, Lolkema JS, Minnaard AJ, Driessen AJM. Identification of CDP-archaeol synthase, a missing link of ether lipid biosynthesis in Archaea. ACTA ACUST UNITED AC 2014; 21:1392-1401. [PMID: 25219966 DOI: 10.1016/j.chembiol.2014.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 12/11/2022]
Abstract
Archaeal membrane lipid composition is distinct from Bacteria and Eukarya, consisting of isoprenoid chains etherified to the glycerol carbons. Biosynthesis of these lipids is poorly understood. Here we identify and characterize the archaeal membrane protein CDP-archaeol synthase (CarS) that catalyzes the transfer of the nucleotide to its specific archaeal lipid substrate, leading to the formation of a CDP-activated precursor (CDP-archaeol) to which polar head groups are attached. The discovery of CarS enabled reconstitution of the entire archaeal lipid biosynthesis pathway in vitro, starting from simple isoprenoid building blocks and using a set of five purified enzymes. The cell free synthetic strategy for archaeal lipids we describe opens opportunity for studies of archaeal lipid biochemistry. Additionally, insights into archaeal lipid biosynthesis reported here allow addressing the evolutionary hypothesis of the lipid divide between Archaea and Bacteria.
Collapse
Affiliation(s)
- Samta Jain
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands; Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Antonella Caforio
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands; Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Peter Fodran
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Juke S Lolkema
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands; Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands; Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
52
|
Tamura Y, Sesaki H, Endo T. Phospholipid transport via mitochondria. Traffic 2014; 15:933-45. [PMID: 24954234 DOI: 10.1111/tra.12188] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 12/27/2022]
Abstract
In eukaryotic cells, complex membrane structures called organelles are highly developed to exert specialized functions. Mitochondria are one of such organelles consisting of the outer and inner membranes (OM and IM) with characteristic protein and phospholipid compositions. Maintaining proper phospholipid compositions of the membranes is crucial for mitochondrial integrity, thereby contributing to normal cell activities. As cellular locations for phospholipid synthesis are restricted to specific compartments such as the endoplasmic reticulum (ER) membrane and the mitochondrial inner membrane, newly synthesized phospholipids have to be transported and distributed properly from the ER or mitochondria to other cellular membranes. Although understanding of molecular mechanisms of phospholipid transport are much behind those of protein transport, recent studies using yeast as a model system began to provide intriguing insights into phospholipid exchange between the ER and mitochondria as well as between the mitochondrial OM and IM. In this review, we summarize the latest findings of phospholipid transport via mitochondria and discuss the implicated molecular mechanisms.
Collapse
Affiliation(s)
- Yasushi Tamura
- Research Center for Materials Science, Nagoya University, Nagoya, 464-8602, Japan
| | | | | |
Collapse
|
53
|
Liu X, Yin Y, Wu J, Liu Z. Structure and mechanism of an intramembrane liponucleotide synthetase central for phospholipid biosynthesis. Nat Commun 2014; 5:4244. [PMID: 24968740 PMCID: PMC4083444 DOI: 10.1038/ncomms5244] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/28/2014] [Indexed: 11/09/2022] Open
Abstract
Phospholipids are elemental building-block molecules for biological membranes. Biosynthesis of phosphatidylinositol, phosphatidylglycerol and phosphatidylserine requires a central liponucleotide intermediate named cytidine-diphosphate diacylglycerol (CDP-DAG). The CDP-DAG synthetase (Cds) is an integral membrane enzyme catalysing the formation of CDP-DAG, an essential step for phosphoinositide recycling during signal transduction. Here we report the structure of the Cds from Thermotoga maritima (TmCdsA) at 3.4 Å resolution. TmCdsA forms a homodimer and each monomer contains nine transmembrane helices arranged into a novel fold with three domains. An unusual funnel-shaped cavity penetrates half way into the membrane, allowing the enzyme to simultaneously accept hydrophilic substrate (cytidine 5'-triphosphate (CTP)/deoxy-CTP) from cytoplasm and hydrophobic substrate (phosphatidic acid) from membrane. Located at the bottom of the cavity, a Mg(2+)-K(+) hetero-di-metal centre coordinated by an Asp-Asp dyad serves as the cofactor of TmCdsA. The results suggest a two-metal-ion catalytic mechanism for the Cds-mediated synthesis of CDP-DAG at the membrane-cytoplasm interface.
Collapse
Affiliation(s)
- Xiuying Liu
- 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China [2]
| | - Yan Yin
- 1] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China [3]
| | - Jinjun Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| |
Collapse
|
54
|
Lilley AC, Major L, Young S, Stark MJR, Smith TK. The essential roles of cytidine diphosphate-diacylglycerol synthase in bloodstream form Trypanosoma brucei. Mol Microbiol 2014; 92:453-70. [PMID: 24533860 PMCID: PMC4114554 DOI: 10.1111/mmi.12553] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2014] [Indexed: 12/23/2022]
Abstract
Lipid metabolism in Trypanosoma brucei, the causative agent of African sleeping sickness, differs from its human host in several fundamental ways. This has lead to the validation of a plethora of novel drug targets, giving hope of novel chemical intervention against this neglected disease. Cytidine diphosphate diacylglycerol (CDP‐DAG) is a central lipid intermediate for several pathways in both prokaryotes and eukaryotes, being produced by CDP‐DAG synthase (CDS). However, nothing is known about the single T. brucei CDS gene (Tb927.7.220/EC 2.7.7.41) or its activity. In this study we show TbCDS is functional by complementation of a non‐viable yeast CDS null strain and that it is essential in the bloodstream form of the parasite via a conditional knockout. The TbCDS conditional knockout showed morphological changes including a cell‐cycle arrest due in part to kinetoplast segregation defects. Biochemical phenotyping of TbCDS conditional knockout showed drastically altered lipid metabolism where reducing levels of phosphatidylinositol detrimentally impacted on glycoylphosphatidylinositol biosynthesis. These studies also suggest that phosphatidylglycerol synthesized via the phosphatidylglycerol‐phosphate synthase is not synthesized from CDP‐DAG, as was previously thought. TbCDS was shown to localized the ER and Golgi, probably to provide CDP‐DAG for the phosphatidylinositol synthases.
Collapse
Affiliation(s)
- Alison C Lilley
- Biomedical Sciences Research Centre, School of Biology, The University of St. Andrews, The North Haugh, St. Andrews, Fife Scotland, KY16 9ST, UK
| | | | | | | | | |
Collapse
|
55
|
Klug L, Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res 2014; 14:369-88. [DOI: 10.1111/1567-1364.12141] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/23/2014] [Accepted: 02/02/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Lisa Klug
- Institute of Biochemistry; Graz University of Technology; Graz Austria
| | - Günther Daum
- Institute of Biochemistry; Graz University of Technology; Graz Austria
| |
Collapse
|
56
|
The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast. Chem Phys Lipids 2014; 180:23-43. [PMID: 24418527 DOI: 10.1016/j.chemphyslip.2013.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 12/26/2013] [Indexed: 12/13/2022]
Abstract
This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed.
Collapse
|
57
|
Baile MG, Lu YW, Claypool SM. The topology and regulation of cardiolipin biosynthesis and remodeling in yeast. Chem Phys Lipids 2013; 179:25-31. [PMID: 24184646 DOI: 10.1016/j.chemphyslip.2013.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 01/06/2023]
Abstract
The signature mitochondrial phospholipid cardiolipin plays an important role in mitochondrial function, and alterations in cardiolipin metabolism are associated with human disease. Topologically, cardiolipin biosynthesis and remodeling are complex. Precursor phospholipids must be transported from the ER, across the mitochondrial outer membrane to the matrix-facing leaflet of the inner membrane, where cardiolipin biosynthesis commences. Post-synthesis, cardiolipin undergoes acyl chain remodeling, requiring additional trafficking steps, before it achieves its final distribution within both mitochondrial membranes. This process is regulated at several points via multiple independent mechanisms. Here, we review the regulation and topology of cardiolipin biosynthesis and remodeling in the yeast Saccharomyces cerevisiae. Although cardiolipin metabolism is more complicated in mammals, yeast have been an invaluable model for dissecting the steps required for this process.
Collapse
Affiliation(s)
- Matthew G Baile
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ya-Wen Lu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
58
|
Mejia EM, Nguyen H, Hatch GM. Mammalian cardiolipin biosynthesis. Chem Phys Lipids 2013; 179:11-6. [PMID: 24144810 DOI: 10.1016/j.chemphyslip.2013.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/28/2013] [Accepted: 10/02/2013] [Indexed: 12/22/2022]
Abstract
Cardiolipin is a major phospholipid in mitochondria and is involved in the generation of cellular energy in the form of ATP. In mammalian and eukaryotic cells it is synthesized via the cytidine-5'-diphosphate-1,2-diacyl-sn-glycerol phosphate pathway. This brief review will describe some of the more recent studies on mammalian cardiolipin biosynthesis and provide an overview of regulation of cardiolipin biosynthesis. In addition, the important role that this key phospholipid plays in disease processes including heart failure, diabetes, thyroid hormone disease and the genetic disease Barth Syndrome will be discussed.
Collapse
Affiliation(s)
- Edgard M Mejia
- Department of Pharmacology and Therapeutics, Center for Research and Treatment of Atherosclerosis, University of Manitoba, DREAM Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Hieu Nguyen
- Department of Pharmacology and Therapeutics, Center for Research and Treatment of Atherosclerosis, University of Manitoba, DREAM Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, Center for Research and Treatment of Atherosclerosis, University of Manitoba, DREAM Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, Center for Research and Treatment of Atherosclerosis, University of Manitoba, DREAM Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada.
| |
Collapse
|
59
|
Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res 2013; 52:590-614. [PMID: 24007978 DOI: 10.1016/j.plipres.2013.07.002] [Citation(s) in RCA: 658] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 07/31/2013] [Indexed: 01/06/2023]
Abstract
A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described.
Collapse
Affiliation(s)
- Susanne E Horvath
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
60
|
Zhou Y, Peisker H, Weth A, Baumgartner W, Dörmann P, Frentzen M. Extraplastidial cytidinediphosphate diacylglycerol synthase activity is required for vegetative development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:867-879. [PMID: 23711240 DOI: 10.1111/tpj.12248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Cytidinediphosphate diacylglycerol synthase (CDS) catalyzes the activation of phosphatidic acid to cytidinediphosphate (CDP)-diacylglycerol, a central intermediate in glycerolipid biosynthesis in prokaryotic and eukaryotic organisms. Cytidinediphosphate-diacylglycerol is the precursor to phosphatidylinositol, phosphatidylglycerol (PG) and cardiolipin of eukaryotic phospholipids that are essential for various cellular functions. Isoforms of CDS are located in plastids, mitochondria and the endomembrane system of plants and are encoded by five genes in Arabidopsis. Two genes have previously been shown to code for the plastidial isoforms which are indispensable for the biosynthesis of plastidial PG, and thus biogenesis and function of thylakoid membranes. Here we have focused on the extraplastidial CDS isoforms, encoded by CDS1 and CDS2 which are constitutively expressed contrary to CDS3. We provide evidence that these closely related CDS genes code for membrane proteins located in the endoplasmic reticulum and possess very similar enzymatic properties. Development and analysis of Arabidopsis mutants lacking either one or both CDS1 and CDS2 genes clearly shows that these two genes have redundant functions. As reflected in the seedling lethal phenotype of the cds1cds2 double mutant, plant cells require at least one catalytically active microsomal CDS isoform for cell division and expansion. According to the altered glycerolipid composition of the double mutant in comparison with wild-type seedlings, it is likely that the drastic decrease in the level of phosphatidylinositol and the increase in phosphatidic acid cause defects in cell division and expansion.
Collapse
Affiliation(s)
- Yonghong Zhou
- Unit of Botany, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
61
|
Tamura Y, Harada Y, Nishikawa SI, Yamano K, Kamiya M, Shiota T, Kuroda T, Kuge O, Sesaki H, Imai K, Tomii K, Endo T. Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria. Cell Metab 2013; 17:709-18. [PMID: 23623749 PMCID: PMC3654088 DOI: 10.1016/j.cmet.2013.03.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/23/2013] [Accepted: 03/28/2013] [Indexed: 12/28/2022]
Abstract
CDP-diacylglycerol (CDP-DAG) is central to the phospholipid biosynthesis pathways in cells. A prevailing view is that only one CDP-DAG synthase named Cds1 is present in both the endoplasmic reticulum (ER) and mitochondrial inner membrane (IM) and mediates generation of CDP-DAG from phosphatidic acid (PA) and CTP. However, we demonstrate here by using yeast Saccharomyces cerevisiae as a model organism that Cds1 resides in the ER but not in mitochondria, and that Tam41, a highly conserved mitochondrial maintenance protein, directly catalyzes the formation of CDP-DAG from PA in the mitochondrial IM. We also find that inositol depletion by overexpressing an arrestin-related protein Art5 partially restores the defects of cell growth and CL synthesis in the absence of Tam41. The present findings unveil the missing step of the cardiolipin synthesis pathway in mitochondria as well as the flexibile regulation of phospholipid biosynthesis to respond to compromised CDP-DAG synthesis in mitochondria.
Collapse
Affiliation(s)
- Yasushi Tamura
- Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog Lipid Res 2013; 52:374-94. [PMID: 23631861 DOI: 10.1016/j.plipres.2013.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/28/2013] [Accepted: 04/16/2013] [Indexed: 11/24/2022]
Abstract
Glycerophospholipids are the most abundant membrane lipid constituents in most eukaryotic cells. As a consequence, phospholipid class and acyl chain homeostasis are crucial for maintaining optimal physical properties of membranes that in turn are crucial for membrane function. The topic of this review is our current understanding of membrane phospholipid homeostasis in the reference eukaryote Saccharomyces cerevisiae. After introducing the physical parameters of the membrane that are kept in optimal range, the properties of the major membrane phospholipids and their contributions to membrane structure and dynamics are summarized. Phospholipid metabolism and known mechanisms of regulation are discussed, including potential sensors for monitoring membrane physical properties. Special attention is paid to processes that maintain the phospholipid class specific molecular species profiles, and to the interplay between phospholipid class and acyl chain composition when yeast membrane lipid homeostasis is challenged. Based on the reviewed studies, molecular species selectivity of the lipid metabolic enzymes, and mass action in acyl-CoA metabolism are put forward as important intrinsic contributors to membrane lipid homeostasis.
Collapse
|
63
|
Dowhan W. A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:471-94. [PMID: 22925633 PMCID: PMC3513495 DOI: 10.1016/j.bbalip.2012.08.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 12/11/2022]
Abstract
Although the study of individual phospholipids and their synthesis began in the 1920s first in plants and then mammals, it was not until the early 1960s that Eugene Kennedy using Escherichia coli initiated studies of bacterial phospholipid metabolism. With the base of information already available from studies of mammalian tissue, the basic blueprint of phospholipid biosynthesis in E. coli was worked out by the late 1960s. In 1970s and 1980s most of the enzymes responsible for phospholipid biosynthesis were purified and many of the genes encoding these enzymes were identified. By the late 1990s conditional and null mutants were available along with clones of the genes for every step of phospholipid biosynthesis. Most of these genes had been sequenced before the complete E. coli genome sequence was available. Strains of E. coli were developed in which phospholipid composition could be changed in a systematic manner while maintaining cell viability. Null mutants, strains in which phospholipid metabolism was artificially regulated, and strains synthesizing foreign lipids not found in E. coli have been used to this day to define specific roles for individual phospholipid. This review will trace the findings that have led to the development of E. coli as an excellent model system to study mechanisms underlying the synthesis and function of phospholipids that are widely applicable to other prokaryotic and eukaryotic systems. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- William Dowhan
- Department of Biochemistry and Molecular Biology, University of Texas Medical School-Houston, Houston, TX 77030, USA.
| |
Collapse
|
64
|
Abstract
Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways.
Collapse
|
65
|
The size and phospholipid composition of lipid droplets can influence their proteome. Biochem Biophys Res Commun 2011; 415:455-62. [DOI: 10.1016/j.bbrc.2011.10.091] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 10/19/2011] [Indexed: 02/04/2023]
|
66
|
Abstract
The yeast Saccharomyces cerevisiae, with its full complement of organelles, synthesizes membrane phospholipids by pathways that are generally common to those found in higher eukaryotes. Phospholipid synthesis in yeast is regulated in response to a variety of growth conditions (e.g., inositol supplementation, zinc depletion, and growth stage) by a coordination of genetic (e.g., transcriptional activation and repression) and biochemical (e.g., activity modulation and localization) mechanisms. Phosphatidate (PA), whose cellular levels are controlled by the activities of key phospholipid synthesis enzymes, plays a central role in the transcriptional regulation of phospholipid synthesis genes. In addition to the regulation of gene expression, phosphorylation of key phospholipid synthesis catalytic and regulatory proteins controls the metabolism of phospholipid precursors and products.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
67
|
Fei W, Shui G, Zhang Y, Krahmer N, Ferguson C, Kapterian TS, Lin RC, Dawes IW, Brown AJ, Li P, Huang X, Parton RG, Wenk MR, Walther TC, Yang H. A role for phosphatidic acid in the formation of "supersized" lipid droplets. PLoS Genet 2011; 7:e1002201. [PMID: 21829381 PMCID: PMC3145623 DOI: 10.1371/journal.pgen.1002201] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 06/08/2011] [Indexed: 01/21/2023] Open
Abstract
Lipid droplets (LDs) are important cellular organelles that govern the storage and turnover of lipids. Little is known about how the size of LDs is controlled, although LDs of diverse sizes have been observed in different tissues and under different (patho)physiological conditions. Recent studies have indicated that the size of LDs may influence adipogenesis, the rate of lipolysis and the oxidation of fatty acids. Here, a genome-wide screen identifies ten yeast mutants producing “supersized” LDs that are up to 50 times the volume of those in wild-type cells. The mutated genes include: FLD1, which encodes a homologue of mammalian seipin; five genes (CDS1, INO2, INO4, CHO2, and OPI3) that are known to regulate phospholipid metabolism; two genes (CKB1 and CKB2) encoding subunits of the casein kinase 2; and two genes (MRPS35 and RTC2) of unknown function. Biochemical and genetic analyses reveal that a common feature of these mutants is an increase in the level of cellular phosphatidic acid (PA). Results from in vivo and in vitro analyses indicate that PA may facilitate the coalescence of contacting LDs, resulting in the formation of “supersized” LDs. In summary, our results provide important insights into how the size of LDs is determined and identify novel gene products that regulate phospholipid metabolism. Lipid droplets (LD) are primary lipid storage structures that also function in membrane and lipid trafficking, protein turnover, and the reproduction of deadly viruses. Increased LD accumulation in liver, skeletal muscle, and adipose tissue is a hallmark of the metabolic syndrome. Enlarged LDs are often found in these tissues under disease conditions. However, little is known about how the size of LDs is controlled in eukaryotic cells. In this study, we use genetic and biochemical methods to identify important gene products that regulate the size of the LDs. Notably, a common feature among these mutants with “supersized” LDs is an increased level of phosphatidic acid (PA). We also show that a small amount of PA can increase the size of artificial LDs in vitro. Overall, our study identifies important lipids and proteins in determining LD size. These results provide valuable insights into how human cells/tissues handle abnormal influx of lipids in today's obesogenic environment.
Collapse
Affiliation(s)
- Weihua Fei
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Guanghou Shui
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yuxi Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Natalie Krahmer
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Charles Ferguson
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Tamar S. Kapterian
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Ruby C. Lin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Ian W. Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Andrew J. Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Peng Li
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | - Xun Huang
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Robert G. Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Markus R. Wenk
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Tobias C. Walther
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
68
|
Kuroda T, Tani M, Moriguchi A, Tokunaga S, Higuchi T, Kitada S, Kuge O. FMP30 is required for the maintenance of a normal cardiolipin level and mitochondrial morphology in the absence of mitochondrial phosphatidylethanolamine synthesis. Mol Microbiol 2011; 80:248-65. [PMID: 21306442 DOI: 10.1111/j.1365-2958.2011.07569.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mitochondria of the yeast Saccharomyces cerevisiae contain enzymes Crd1p and Psd1p, which synthesize cardiolipin (CL) and phosphatidylethanolamine respectively. A previous study indicated that crd1Δ is synthetically lethal with psd1Δ. In this study, to identify novel genes involved in CL metabolism, we searched for genes that genetically interact with Psd1p, and found that deletion of FMP30 encoding a mitochondrial inner membrane protein results in a synthetic growth defect with psd1Δ. Although fmp30Δ cells grew normally and exhibited a slightly decreased CL level, fmp30Δpsd1Δ cells exhibited a severe growth defect and an about 20-fold reduction in the CL level, as compared with the wild-type control. We found also that deletion of FMP30 caused a defect in mitochondrial morphology. Furthermore, FMP30 genetically interacted with seven mitochondrial morphology genes. These results indicated that Fmp30p is involved in the maintenance of mitochondrial morphology and required for the accumulation of a normal level of CL in the absence of mitochondrial phosphatidylethanolamine synthesis.
Collapse
Affiliation(s)
- Takuya Kuroda
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Mitochondria are dynamic organelles whose functional integrity requires a coordinated supply of proteins and phospholipids. Defined functions of specific phospholipids, like the mitochondrial signature lipid cardiolipin, are emerging in diverse processes, ranging from protein biogenesis and energy production to membrane fusion and apoptosis. The accumulation of phospholipids within mitochondria depends on interorganellar lipid transport between the endoplasmic reticulum (ER) and mitochondria as well as intramitochondrial lipid trafficking. The discovery of proteins that regulate mitochondrial membrane lipid composition and of a multiprotein complex tethering ER to mitochondrial membranes has unveiled novel mechanisms of mitochondrial membrane biogenesis.
Collapse
Affiliation(s)
- Christof Osman
- Institute for Genetics, Centre for Molecular Medicine, Cologne Excellence Cluster: Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
70
|
Déchamps S, Shastri S, Wengelnik K, Vial HJ. Glycerophospholipid acquisition in Plasmodium - a puzzling assembly of biosynthetic pathways. Int J Parasitol 2010; 40:1347-65. [PMID: 20600072 DOI: 10.1016/j.ijpara.2010.05.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 01/06/2023]
Abstract
Throughout the Plasmodium life cycle, malaria parasites repeatedly undergo rapid cellular growth and prolific divisions, necessitating intense membrane neogenesis and, in particular, the acquisition of high amounts of phospholipids. At the intraerythrocytic stage, glycerophospholipids are the main parasite membrane constituents, which mostly originate from the Plasmodium-encoded enzymatic machinery. Several proteins and entire pathways have been characterized and their features reported, thereby generating a global view of glycerophospholipid synthesis across Plasmodium spp. The malaria parasite displays a panoply of pathways that are seldom found together in a single organism. The major glycerophospholipids are synthesized via ancestral prokaryotic CDP-diacylglycerol-dependent pathways and eukaryotic-type de novo pathways. The parasite exhibits additional reactions that bridge some of these routes and are otherwise restricted to some organisms, such as plants, while base-exchange mechanisms are largely unexplored in Plasmodium. Marked differences between Plasmodium spp. have also been reported in phosphatidylcholine and phosphatidylethanolamine synthesis. Little is currently known about glycerophospholipid acquisition at non-erythrocytic stages, but recent data reveal that intrahepatocytic parasites, oocysts and sporozoites import various host lipids, and that de novo fatty acid synthesis is only crucial at the late liver stage. More studies on the different Plasmodium developmental stages are needed, to further assemble the different pieces of this glycerophospholipid synthesis puzzle, which contains highly promising therapeutic targets.
Collapse
Affiliation(s)
- Sandrine Déchamps
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, Centre National de la Recherche Scientifique (CNRS) - Universite Montpellier 2, cc 107, Place Eugene Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
71
|
A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4. EMBO J 2010; 29:1976-87. [PMID: 20485265 DOI: 10.1038/emboj.2010.98] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/23/2010] [Indexed: 11/08/2022] Open
Abstract
Cardiolipin (CL), a unique dimeric phosphoglycerolipid predominantly present in mitochondrial membranes, has pivotal functions for the cellular energy metabolism, mitochondrial dynamics and the initiation of apoptotic pathways. Perturbations in the mitochondrial CL metabolism cause cardiomyopathy in Barth syndrome. Here, we identify a novel phosphatase in the mitochondrial matrix space, Gep4, and demonstrate that it dephosphorylates phosphatidylglycerolphosphate to generate phosphatidylglycerol, an essential step during CL biosynthesis. Expression of a mitochondrially targeted variant of Escherichia coli phosphatase PgpA restores CL levels in Gep4-deficient cells, indicating functional conservation. A genetic epistasis analysis combined with the identification of intermediates of CL biosynthesis allowed us to integrate Gep4 in the CL-biosynthetic pathway and assign an essential function during early steps of CL synthesis to Tam41, which has previously been shown to be essential for the maintenance of normal CL levels. Our experiments provide the framework for the further dissection of mechanisms that are required for accumulation and maintenance of CL levels in mitochondria.
Collapse
|
72
|
Shastri S, Zeeman AM, Berry L, Verburgh RJ, Braun-Breton C, Thomas AW, Gannoun-Zaki L, Kocken CHM, Vial HJ. Plasmodium CDP-DAG synthase: an atypical gene with an essential N-terminal extension. Int J Parasitol 2010; 40:1257-68. [PMID: 20385136 DOI: 10.1016/j.ijpara.2010.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
Abstract
Cytidine diphosphate diacylglycerol synthase (CDS) diverts phosphatidic acid towards the biosynthesis of CDP-DAG, an obligatory liponucleotide intermediate in anionic phospholipid biosynthesis. The 78kDa predicted Plasmodium falciparum CDS (PfCDS) is recovered as a 50 kDa conserved C-terminal cytidylyltransferase domain (C-PfCDS) and a 28kDa fragment that corresponds to the unusually long hydrophilic asparagine-rich N-terminal extension (N-PfCDS). Here, we show that the two fragments of PfCDS are the processed forms of the 78 kDa pro-form that is encoded from a single transcript with no alternate translation start site for C-PfCDS. PfCDS, which shares 54% sequence identity with Plasmodium knowlesi CDS (PkCDS), could substitute for PkCDS in P. knowlesi. Experiments to disrupt either the full-length or the N-terminal extension of PkCDS indicate that not only the C-terminal cytidylyltransferase domain but also the N-terminal extension is essential to Plasmodium spp. PkCDS and PfCDS introduced in P. knowlesi were processed in the parasite, suggesting a conserved parasite-dependent mechanism. The N-PfCDS appears to be a peripheral membrane protein and is trafficked outside the parasite to the parasitophorous vacuole. Although the function of this unusual N-PfCDS remains enigmatic, the study here highlights features of this essential gene and its biological importance during the intra-erythrocytic cycle of the parasite.
Collapse
Affiliation(s)
- Shilpa Shastri
- CNRS UMR5235, University of Montpellier 2, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Rijken PJ, Houtkooper RH, Akbari H, Brouwers JF, Koorengevel MC, de Kruijff B, Frentzen M, Vaz FM, de Kroon AIPM. Cardiolipin molecular species with shorter acyl chains accumulate in Saccharomyces cerevisiae mutants lacking the acyl coenzyme A-binding protein Acb1p: new insights into acyl chain remodeling of cardiolipin. J Biol Chem 2009; 284:27609-19. [PMID: 19656950 DOI: 10.1074/jbc.m109.016311] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the mitochondrial phospholipid cardiolipin (CL) is thought to depend on its acyl chain composition. The present study aims at a better understanding of the way the CL species profile is established in Saccharomyces cerevisiae by using depletion of the acyl-CoA-binding protein Acb1p as a tool to modulate the cellular acyl chain content. Despite the presence of an intact CL remodeling system, acyl chains shorter than 16 carbon atoms (C16) were found to accumulate in CL in cells lacking Acb1p. Further experiments revealed that Taz1p, a key CL remodeling enzyme, was not responsible for the shortening of CL in the absence of Acb1p. This left de novo CL synthesis as the only possible source of acyl chains shorter than C16 in CL. Experiments in which the substrate specificity of the yeast cardiolipin synthase Crd1p and the acyl chain composition of individual short CL species were investigated, indicated that both CL precursors (i.e. phosphatidylglycerol and CDP-diacylglycerol) contribute to comparable extents to the shorter acyl chains in CL in acb1 mutants. Based on the findings, we conclude that the fatty acid composition of mature CL in yeast is governed by the substrate specificity of the CL-specific lipase Cld1p and the fatty acid composition of the Taz1p substrates.
Collapse
Affiliation(s)
- Pieter J Rijken
- Department of Biochemistry of Membranes, Bijvoet Institute and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
|
75
|
Abstract
Phospholipid synthesis in the yeast Saccharomyces cerevisiae is a complex process that involves regulation by both genetic and biochemical mechanisms. The activity levels of phospholipid synthesis enzymes are controlled by gene expression (e.g., transcription) and by factors (lipids, water-soluble phospholipid precursors and products, and covalent modification of phosphorylation) that modulate catalysis. Phosphatidic acid, whose levels are controlled by the biochemical regulation of key phospholipid synthesis enzymes, plays a central role in the regulation of phospholipid synthesis gene expression.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
76
|
Snitkin ES, Dudley AM, Janse DM, Wong K, Church GM, Segrè D. Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions. Genome Biol 2008; 9:R140. [PMID: 18808699 PMCID: PMC2592718 DOI: 10.1186/gb-2008-9-9-r140] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/01/2008] [Accepted: 09/22/2008] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Understanding the response of complex biochemical networks to genetic perturbations and environmental variability is a fundamental challenge in biology. Integration of high-throughput experimental assays and genome-scale computational methods is likely to produce insight otherwise unreachable, but specific examples of such integration have only begun to be explored. RESULTS In this study, we measured growth phenotypes of 465 Saccharomyces cerevisiae gene deletion mutants under 16 metabolically relevant conditions and integrated them with the corresponding flux balance model predictions. We first used discordance between experimental results and model predictions to guide a stage of experimental refinement, which resulted in a significant improvement in the quality of the experimental data. Next, we used discordance still present in the refined experimental data to assess the reliability of yeast metabolism models under different conditions. In addition to estimating predictive capacity based on growth phenotypes, we sought to explain these discordances by examining predicted flux distributions visualized through a new, freely available platform. This analysis led to insight into the glycerol utilization pathway and the potential effects of metabolic shortcuts on model results. Finally, we used model predictions and experimental data to discriminate between alternative raffinose catabolism routes. CONCLUSIONS Our study demonstrates how a new level of integration between high throughput measurements and flux balance model predictions can improve understanding of both experimental and computational results. The added value of a joint analysis is a more reliable platform for specific testing of biological hypotheses, such as the catabolic routes of different carbon sources.
Collapse
Affiliation(s)
- Evan S Snitkin
- Bioinformatics graduate Program, Boston University, Boston, MA 02215, USA
| | | | | | | | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel Segrè
- Bioinformatics graduate Program, Boston University, Boston, MA 02215, USA
- Departments of Biology and Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
77
|
Han GS, O'Hara L, Siniossoglou S, Carman GM. Characterization of the yeast DGK1-encoded CTP-dependent diacylglycerol kinase. J Biol Chem 2008; 283:20443-53. [PMID: 18458076 PMCID: PMC2459283 DOI: 10.1074/jbc.m802866200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae DGK1 gene encodes a diacylglycerol kinase enzyme that catalyzes the formation of phosphatidate from diacylglycerol. Unlike the diacylglycerol kinases from bacteria, plants, and animals, the yeast enzyme utilizes CTP, instead of ATP, as the phosphate donor in the reaction. Dgk1p contains a CTP transferase domain that is present in the SEC59-encoded dolichol kinase and CDS1-encoded CDP-diacylglycerol synthase enzymes. Deletion analysis showed that the CTP transferase domain was sufficient for diacylglycerol kinase activity. Point mutations (R76A, K77A, D177A, and G184A) of conserved residues within the CTP transferase domain caused a loss of diacylglycerol kinase activity. Analysis of DGK1 alleles showed that the in vivo functions of Dgk1p were specifically due to its diacylglycerol kinase activity. The DGK1-encoded enzyme had a pH optimum at 7.0-7.5, required Ca(2+) or Mg(2+) ions for activity, was potently inhibited by N-ethylmaleimide, and was labile at temperatures above 40 degrees C. The enzyme exhibited positive cooperative (Hill number = 2.5) kinetics with respect to diacylglycerol (apparent K(m) = 6.5 mol %) and saturation kinetics with respect to CTP (apparent K(m) = 0.3 mm). dCTP was both a substrate (apparent K(m) = 0.4 mm) and competitive inhibitor (apparent K(i) = 0.4 mm) of the enzyme. Diacylglycerol kinase activity was stimulated by major membrane phospholipids and was inhibited by CDP-diacylglycerol and sphingoid bases.
Collapse
Affiliation(s)
- Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
78
|
Sugimoto H, Banchio C, Vance DE. Transcriptional regulation of phosphatidylcholine biosynthesis. Prog Lipid Res 2008; 47:204-20. [PMID: 18295604 DOI: 10.1016/j.plipres.2008.01.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phosphatidylcholine biosynthesis in animal cells is primarily regulated by the rapid translocation of CTP:phosphocholine cytidylyltransferase alpha between a soluble form that is inactive and a membrane-associated form that is activated. Until less than 10 years ago there was no information on the transcriptional regulation of phosphatidylcholine biosynthesis. Research has identified the transcription factors Sp1, Rb, TEF4, Ets-1 and E2F as enhancing the expression of the cytidylyltransferase and Net as a factor that represses cytidylyltransferase expression. Key transcription factors involved in cholesterol or fatty acid metabolism (SREBPs, LXRs, PPARs) do not have a major role in transcriptional regulation of the cytidylyltransferase. Rather than being linked to cholesterol or energy metabolism, regulation of the cytidylyltransferase is linked to the cell cycle, cell growth and differentiation. Transcriptional regulation of phospholipid biosynthesis is more elegantly understood in yeast and involves responses to inositol, choline and zinc in the culture medium.
Collapse
Affiliation(s)
- Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan.
| | | | | |
Collapse
|
79
|
Carman GM, Henry SA. Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem 2007; 282:37293-7. [PMID: 17981800 PMCID: PMC3565216 DOI: 10.1074/jbc.r700038200] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
80
|
Abstract
Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.
Collapse
Affiliation(s)
- Athanasios Lykidis
- Genome Biology Program, DOE-Joint Genome Institute, Walnut Creek, CA 94598, USA.
| |
Collapse
|
81
|
Carman GM, Han GS. Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:322-30. [PMID: 16807089 PMCID: PMC1876696 DOI: 10.1016/j.bbalip.2006.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 05/10/2006] [Accepted: 05/10/2006] [Indexed: 11/20/2022]
Abstract
The synthesis of phospholipids in the yeast Saccharomyces cerevisiae is regulated by zinc, an essential mineral required for growth and metabolism. Cells depleted of zinc contain increased levels of phosphatidylinositol and decreased levels of phosphatidylethanolamine. In addition to the major phospholipids, the levels of the minor phospholipids phosphatidate and diacylglycerol pyrophosphate decrease in the vacuole membrane of zinc-depleted cells. Alterations in phosphatidylinositol and phosphatidylethanolamine can be ascribed to an increase in PIS1-encoded phosphatidylinositol synthase activity and to decreases in the activities of CDP-diacylglycerol pathway enzymes including the CHO1-encoded phosphatidylserine synthase, respectively. Alterations in the minor vacuole membrane phospholipids are due to the induction of the DPP1-encoded diacylglycerol pyrophosphate phosphatase. These changes in the activities of phospholipid biosynthetic enzymes result from differential regulation of gene expression at the level of transcription. Under zinc-deplete conditions, the positive transcription factor Zap1p stimulates the expression of the DPP1 and PIS1 genes through the cis-acting element UAS(ZRE). In contrast, the negative regulatory protein Opi1p, which is involved in inositol-mediated regulation of phospholipid synthesis, represses the expression of the CHO1 gene through the cis-acting element UAS(INO). Regulation of phospholipid synthesis may provide an important mechanism by which cells cope with the stress of zinc depletion, given the roles that phospholipids play in the structure and function of cellular membranes.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
82
|
Souza CM, Pichler H. Lipid requirements for endocytosis in yeast. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:442-54. [PMID: 16997624 DOI: 10.1016/j.bbalip.2006.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 01/19/2023]
Abstract
Endocytosis is, besides secretion, the most prominent membrane transport pathway in eukaryotic cells. In membrane transport, defined areas of the donor membranes engulf solutes of the compartment they are bordering and bud off with the aid of coat proteins to form vesicles. These transport vehicles are guided along cytoskeletal paths, often matured and, finally, fuse to the acceptor membrane they are targeted to. Lipids and proteins are equally important components in membrane transport pathways. Not only are they the structural units of membranes and vesicles, but both classes of molecules also participate actively in membrane transport processes. Whereas proteins form the cytoskeleton and vesicle coats, confer signals and constitute attachment points for membrane-membrane interaction, lipids modulate the flexibility of bilayers, carry protein recognition sites and confer signals themselves. Over the last decade it has been realized that all classes of bilayer lipids, glycerophospholipids, sphingolipids and sterols, actively contribute to functional membrane transport, in particular to endocytosis. Thus, abnormal bilayer lipid metabolism leads to endocytic defects of different severity. Interestingly, there seems to be a great deal of interdependence and interaction among lipid classes. It will be a challenge to characterize this plenitude of interactions and find out about their impact on cellular processes.
Collapse
|
83
|
Mercadé A, Sánchez A, Folch JM. Characterization and Physical Mapping of the PorcineCDS1andCDS2Genes. Anim Biotechnol 2007; 18:23-35. [PMID: 17364441 DOI: 10.1080/10495390601091073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CDP-diacylglycerol synthase (CDS) catalyzes the conversion of phosphatidic acid to CDP-diacylglycerol, an important precursor for the synthesis of phosphatidylinositol, phosphatidylglycerol, and cardiolipin. We amplified and sequenced 2,053 bp of the pig CDS1 mRNA. The structure of the pig CDS1 gene was determined, being very similar to that of the human, rat, and mouse genes with respect size and organization of the 13 exons. In addition, we identified three polymorphic positions in exons 10 and 11. One of them, the A/C1006, was genotyped in samples belonging to Iberian, Landrace, Large White, Pietrain, and Meishan pig breeds. Expression of this gene was also analyzed by real-time polymerase chain reaction (PCR) in different tissues showing a high CDS1 expression in testis. Moreover, a 1240-bp fragment of the pig CDS2 mRNA was amplified and sequenced. Finally, the CDS1 and CDS2 genes were physically mapped to porcine chromosomes 8 and 17, respectively, by using the INRA, University of Minnesota porcine Radiation Hybrid panel (IMpRH).
Collapse
Affiliation(s)
- A Mercadé
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | |
Collapse
|
84
|
Abstract
Drosophila phototransduction serves as a model for phosphoinositide (PI) signaling and for characterizing the mechanisms regulating transient receptor potential (TRP) channels in vivo. Activation of TRP and TRP-like (TRPL) requires hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), resulting in the generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Although a role for IP3 has been excluded, TRP channels have been proposed to be activated by either a reduction of inhibitory PIP2 or production of DAG/polyunsaturated fatty acids. Here, we characterize a protein, phosphatidylinositol synthase (dPIS), required for a key step during PIP2 regeneration, the production of phosphatidylinositol. Overexpression of dPIS suppressed the retinal degeneration resulting from two other mutations affecting PIP2 cycling, rdgB (retinal degeneration B) and cds (CDP-diacylglycerol synthase). To characterize the role of dPIS, we generated a mutation in dpis, which represented the first mutation in a gene encoding a PI synthase in an animal. In contrast to other mutations that reduce PIP2 regeneration, the dpis1 mutation eliminated all PI synthase activity in flies and resulted in lethality. In mosaic animals, we found that dPIS was essential for maintaining the photoresponse. Because the dpis1 mutation eliminates production of an enzyme essential for PIP2 regeneration, our data argue against activation of TRP and TRPL through a reduction of inhibitory PIP2.
Collapse
Affiliation(s)
- Tao Wang
- Departments of Biological Chemistry and Neuroscience, The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Craig Montell
- Departments of Biological Chemistry and Neuroscience, The Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
85
|
Human Dolichol Kinase, a Polytopic Endoplasmic Reticulum Membrane Protein with a Cytoplasmically Oriented CTP-binding Site. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84083-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
86
|
Shridas P, Waechter CJ. Human dolichol kinase, a polytopic endoplasmic reticulum membrane protein with a cytoplasmically oriented CTP-binding site. J Biol Chem 2006; 281:31696-704. [PMID: 16923818 DOI: 10.1074/jbc.m604087200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dolichol kinase (DK) catalyzes the CTP-dependent phosphorylation of dolichol in the biosynthesis de novo and possibly the recycling of dolichyl monophosphate in yeast and mammals. A cDNA clone from human brain encoding the mammalian homologue, hDKp, of the yeast enzyme has recently been identified. In this study hDK has been overexpressed in Chinese hamster ovary cells and shown to be a polytopic membrane protein localized in the endoplasmic reticulum with an N terminus extended into the lumen and a cytoplasmically oriented C terminus. A conserved sequence, DXXAXXXGXXXGX(8)KKTXEG, found in several enzymes utilizing CTP as substrate including DKs, phytol kinases, and several CDP-diacylglycerol synthetases has been identified, and the possibility that it is part of the CTP-binding domain of hDKp has been investigated. Topological studies indicate that the loop between transmembrane domains (TMD) 11 and TMD12 of hDKp, containing the putative CTP binding domain, faces the cytoplasm. Deletion of the loop between TMD11-12, hDK(Delta459-474), or mutation of selected conserved residues within the cytoplasmic loop results in either a partial or total loss of activity and significant reductions in the affinity for CTP. In addition, the SEC59 gene in the yeast DK mutant was sequenced, and a G420D substitution was found. Conversion of the corresponding residue Gly-443 in hDKp to aspartic acid resulted in inactivation of the mammalian enzyme. These results extend the information on the topological arrangement of hDKp and indicate that the cytoplasmic loop between TMDs 11-12, containing the critical conserved residues, lysine 470 and lysine 471 in the (470)KKTXEG(475) motif, is part of the CTP-binding site in hDK.
Collapse
Affiliation(s)
- Preetha Shridas
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
87
|
Gaspar ML, Aregullin MA, Jesch SA, Nunez LR, Villa-García M, Henry SA. The emergence of yeast lipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:241-54. [PMID: 16920401 DOI: 10.1016/j.bbalip.2006.06.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 06/16/2006] [Accepted: 06/19/2006] [Indexed: 11/30/2022]
Abstract
The emerging field of lipidomics, driven by technological advances in lipid analysis, provides greatly enhanced opportunities to characterize, on a quantitative or semi-quantitative level, the entire spectrum of lipids, or lipidome, in specific cell types. When combined with advances in other high throughput technologies in genomics and proteomics, lipidomics offers the opportunity to analyze the unique roles of specific lipids in complex cellular processes such as signaling and membrane trafficking. The yeast system offers many advantages for such studies, including the relative simplicity of its lipidome as compared to mammalian cells, the relatively high proportion of structural and regulatory genes of lipid metabolism which have been assigned and the excellent tools for molecular genetic analysis that yeast affords. The current state of application of lipidomic approaches in yeast and the advantages and disadvantages of yeast for such studies are discussed in this report.
Collapse
Affiliation(s)
- Maria L Gaspar
- Department of Molecular Biology and Genetics, Cornell University, 260 Roberts Hall, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
88
|
Abstract
The Saccharomyces cerevisiae cardiolipin (CL) synthase encoded by the CRD1 gene catalyses the synthesis of CL, which is localized to the inner mitochondrial membrane and plays an important role in mitochondrial function. To investigate how CRD1 expression is regulated, a lacZ reporter gene was placed under control of the CRD1 promoter and the 5'-untranslated region of its mRNA (P(CRD1)-lacZ). P(CRD1)-lacZ expression was 2.5 times higher in early stationary phase than in logarithmic phase for glucose grown cells. Non-fermentable growth resulted in a two-fold elevation in expression relative to glucose grown cells. A shift from glycerol to glucose rapidly repressed expression, whereas a shift from glucose to glycerol had the opposite effect. The derepression of P(CRD1)-lacZ expression by non-fermentable carbon sources was dependent on mitochondrial respiration. These results support a tight coordination between translation and transcription of the CRD1 gene, since similar effects by the above factors on CRD1 mRNA levels have been reported. In glucose-grown cells, P(CRD1)-lacZ expression was repressed 70% in a pgs1delta strain (lacks phosphatidylglycerol and CL) compared with wild-type and rho- cells and elevated 2.5-fold in crd1delta cells, which have increased phosphatidylglycerol levels, suggesting a role for phosphatidylglycerol in regulating CRD1 expression. Addition of inositol to the growth medium had no effect on expression. However, expression was elevated in an ino4delta mutant but not in ino2delta cells, suggesting multiple and separate functions for the inositol-responsive INO2/INO4 gene products, which normally function as a dimer in regulating gene function.
Collapse
Affiliation(s)
| | - William Dowhan
- Correspondence to: William Dowhan, Department of Biochemistry and Molecular Biology, University of Texas–Houston, Medical School, Houston, TX 77225, USA.,
| |
Collapse
|
89
|
Abstract
Most of the phospholipid biosynthetic genes of Saccharomyces cerevisiae are coordinately regulated in response to inositol and choline. Inositol affects the intracellular levels of phosphatidic acid (PA). Opi1p is a repressor of the phospholipid biosynthetic genes and specifically binds PA in the endoplasmic reticulum. In the presence of inositol, PA levels decrease, releasing Opi1p into the nucleus where it represses transcription. The opi1 mutant overproduces and excretes inositol into the growth medium in the absence of inositol and choline (Opi(-) phenotype). To better understand the mechanism of Opi1p repression, the viable yeast deletion set was screened to identify Opi(-) mutants. In total, 89 Opi(-) mutants were identified, of which 7 were previously known to have the Opi(-) phenotype. The Opi(-) mutant collection included genes with roles in phospholipid biosynthesis, transcription, protein processing/synthesis, and protein trafficking. Included in this set were all nonessential components of the NuA4 HAT complex and six proteins in the Rpd3p-Sin3p HDAC complex. It has previously been shown that defects in phosphatidylcholine synthesis (cho2 and opi3) yield the Opi(-) phenotype because of a buildup of PA. However, in this case the Opi(-) phenotype is conditional because PA can be shuttled through a salvage pathway (Kennedy pathway) by adding choline to the growth medium. Seven new mutants present in the Opi(-) collection (fun26, kex1, nup84, tps1, mrpl38, mrpl49, and opi10/yol032w) were also suppressed by choline, suggesting that these affect PC synthesis. Regulation in response to inositol is also coordinated with the unfolded protein response (UPR). Consistent with this, several Opi(-) mutants were found to affect the UPR (yhi9, ede1, and vps74).
Collapse
Affiliation(s)
- Leandria C Hancock
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
90
|
Kohlwein SD, Daum G, Schneiter R, Paltauf F. Phospholipids: synthesis, sorting, subcellular traffic - the yeast approach. Trends Cell Biol 2005; 6:260-6. [PMID: 15157452 DOI: 10.1016/0962-8924(96)10025-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most of the enzymes and genes required for lipid biosynthesis and degradation in the budding yeast Saccharomyces cerevisiae have now been identified and the global mechanisms that regulate their activity are being established. Synthesis of phospholipids is restricted to specific subcellular compartments, and the lipids migrate from their site of formation to their final destination. In addition to synthesis, remodelling and degradation of phospholipids controls the content of the lipid portion of cellular membranes, while highly specific phospholipases catalyse the release of lipid-based second messengers. In this review, we describe the current understanding of the organization and regulation of phospholipid metabolism in yeast, and discuss the mechanisms that have been proposed for intracellular lipid transport.
Collapse
Affiliation(s)
- S D Kohlwein
- Institut für Biochemie and Lebensmittelchemie, Technische Universität Graz, Petersgasse 12/2, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
91
|
Carman GM, Kersting MC. Phospholipid synthesis in yeast: regulation by phosphorylation. Biochem Cell Biol 2004; 82:62-70. [PMID: 15052328 DOI: 10.1139/o03-064] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is a model eukaryotic organism for the study of the regulation of phospholipid synthesis. The major phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine) are synthesized by complementary (CDP-diacylglycerol and Kennedy) pathways. The regulation of these pathways is complex and is controlled by genetic and biochemical mechanisms. Inositol plays a major role in the regulation of phospholipid synthesis. Inositol-mediated regulation involves the expression of genes and the modulation of enzyme activities. Phosphorylation is a major mechanism by which enzymes and transcription factors are regulated, and indeed, key phospholipid biosynthetic enzymes have been identified as targets of phosphorylation. Protein kinase A phosphorylates CTP synthetase, choline kinase, Mg2+-dependent phosphatidate phosphatase, phosphatidylserine synthase, and the transcription factor Opi1p. CTP synthetase and Opi1p are also phosphorylated by protein kinase C. The phosphorylation of these proteins plays a role in regulating their activities and (or) function in phospholipid synthesis.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
92
|
Iwanyshyn WM, Han GS, Carman GM. Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc. J Biol Chem 2004; 279:21976-83. [PMID: 15028711 DOI: 10.1074/jbc.m402047200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Zinc is an essential nutrient required for the growth and metabolism of eukaryotic cells. In this work, we examined the effects of zinc depletion on the regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Zinc depletion resulted in a decrease in the activity levels of the CDP-diacylglycerol pathway enzymes phosphatidylserine synthase, phosphatidylserine decarboxylase, phosphatidylethanolamine methyltransferase, and phospholipid methyltransferase. In contrast, the activity of phosphatidylinositol synthase was elevated in response to zinc depletion. The level of Aut7p, a marker for the induction of autophagy, was also elevated in zinc-depleted cells. For the CHO1-encoded phosphatidylserine synthase, the reduction in activity in response to zinc depletion was controlled at the level of transcription. This regulation was mediated through the UAS(INO) element and by the transcription factors Ino2p, Ino4p, and Opi1p that are responsible for the inositol-mediated regulation of UAS(INO)-containing genes involved in phospholipid synthesis. Analysis of the cellular composition of the major membrane phospholipids showed that zinc depletion resulted in a 66% decrease in phosphatidylethanolamine and a 29% increase in phosphatidylinositol. A zrt1Delta zrt2Delta mutant (defective in the plasma membrane zinc transporters Zrt1p and Zrt2p) grown in the presence of zinc exhibited a phospholipid composition similar to that of wild type cells depleted for zinc. These results indicated that a decrease in the cytoplasmic levels of zinc was responsible for the alterations in phospholipid composition.
Collapse
Affiliation(s)
- Wendy M Iwanyshyn
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | |
Collapse
|
93
|
|
94
|
Choi HS, Sreenivas A, Han GS, Carman GM. Regulation of phospholipid synthesis in the yeast cki1Delta eki1Delta mutant defective in the Kennedy pathway. The Cho1-encoded phosphatidylserine synthase is regulated by mRNA stability. J Biol Chem 2004; 279:12081-7. [PMID: 14739287 DOI: 10.1074/jbc.m400297200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the most abundant phospholipid phosphatidylcholine is synthesized by the complementary CDP-diacylglycerol and Kennedy pathways. Using a cki1Delta eki1Delta mutant defective in choline kinase and ethanolamine kinase, we examined the consequences of a block in the Kennedy pathway on the regulation of phosphatidylcholine synthesis by the CDP-diacylglycerol pathway. The cki1Delta eki1Delta mutant exhibited increases in the synthesis of phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine via the CDP-diacylglycerol pathway. The increase in phospholipid synthesis correlated with increased activity levels of the CDP-diacylglycerol pathway enzymes phosphatidylserine synthase, phosphatidylserine decarboxylase, phosphatidylethanolamine methyltransferase, and phospholipid methyltransferase. However, other enzyme activities, including phosphatidylinositol synthase and phosphatidate phosphatase, were not affected in the cki1Delta eki1Delta mutant. For phosphatidylserine synthase, the enzyme catalyzing the committed step in the pathway, activity was regulated by increases in the levels of mRNA and protein. Decay analysis of CHO1 mRNA indicated that a dramatic increase in transcript stability was a major component responsible for the elevated level of phosphatidylserine synthase. These results revealed a novel mechanism that controls phospholipid synthesis in yeast.
Collapse
Affiliation(s)
- Hyeon-Son Choi
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
95
|
Rehling P, Pfanner N, Meisinger C. Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane--a guided tour. J Mol Biol 2003; 326:639-57. [PMID: 12581629 DOI: 10.1016/s0022-2836(02)01440-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Only a few mitochondrial proteins are encoded by the organellar genome. The majority of mitochondrial proteins are nuclear encoded and thus have to be transported into the organelle from the cytosol. Within the mitochondrion proteins have to be sorted into one of the four sub-compartments: the outer or inner membranes, the intermembrane space or the matrix. These processes are mediated by complex protein machineries within the different compartments that act alone or in concert with each other. The translocation machinery of the outer membrane is formed by a multi-subunit protein complex (TOM complex), that is built up by signal receptors and the general import pore (GIP). The inner membrane houses two multi-subunit protein complexes that each handles special subsets of mitochondrial proteins on their way to their final destination. According to their primary function these two complexes have been termed the pre-sequence translocase (or TIM23 complex) and the protein insertion complex (or TIM22 complex). The identification of components of these complexes and the analysis of the molecular mechanisms underlying their function are currently an exciting and fast developing field of molecular cell biology.
Collapse
Affiliation(s)
- Peter Rehling
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
96
|
El Alaoui H, Bata J, Peyret P, Vivarès CP. Encephalitozoon cuniculi (Microspora): characterization of a phospholipid metabolic pathway potentially linked to therapeutics. Exp Parasitol 2001; 98:171-9. [PMID: 11560410 DOI: 10.1006/expr.2001.4635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipid metabolism of the microsporidian Encephalitozoon cuniculi, an obligate intracellular parasite, has been investigated. Labeled precursor incorporation experiments have shown that phosphatidylserine decarboxylase and phosphatidylethanolamine N-methyltransferase are more active in cells infected by E. cuniculi than in uninfected cells. In contrast, no difference was observed in the activity of Kennedy pathway's enzymes, the mammalian pathway. This suggests the occurrence in microsporidia of a bacteria- and fungi-typical pathway for phospholipid synthesis, which is supported by the identification of two genes implicated in this pathway, the cds gene encoding the key enzyme CDP-diacylglycerol synthase (E.C. 2.7.7.41) and the pss gene for CDP-alcohol phosphatidyltransferase. The pss gene could encode phosphatidylserine synthase (E.C. 2.7.8.8.), which catalyses the de novo synthesis of phosphatidylserine in bacteria and fungi. The complete CDP-diacylglycerol synthase messenger has been isolated and shows very short 5' and 3' untranslated regions. This is strong evidence for the functionality of a metabolic pathway which could be a potential target against microsporidia which infect humans.
Collapse
Affiliation(s)
- H El Alaoui
- Laboratoire de Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Biologie A, 63177 Aubière Cedex, France
| | | | | | | |
Collapse
|
97
|
Metzler DE, Metzler CM, Sauke DJ. Specific Aspects of Lipid Metabolism. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
98
|
Sato N, Hagio M, Wada H, Tsuzuki M. Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci U S A 2000; 97:10655-60. [PMID: 10984546 PMCID: PMC27080 DOI: 10.1073/pnas.97.19.10655] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2000] [Accepted: 06/30/2000] [Indexed: 11/18/2022] Open
Abstract
To investigate the role of phosphatidylglycerol (PG) in photosynthesis, we constructed a mutant defective in the CDP-diacylglycerol synthase gene from a cyanobacterium, Synechocystis sp. PCC6803. The mutant, designated as SNC1, required PG supplementation for growth. Growth was repressed in PG-free medium concomitantly with the decrease in cellular content of PG. These results indicate that PG is essential, and that SNC1 is defective in PG synthesis. Decrease in PG content was accompanied by a reduction in the cellular content of chlorophyll, but with little effect on the contents of phycobilisome pigments, which showed that levels of chlorophyll-protein complexes decreased without alteration of those of phycobilisomes. Regardless of the decrease in the PG content, CO(2)-dependent photosynthesis by SNC1 was similar to that by the wild type on a chlorophyll basis, but consequently became lower on a cell basis. Simultaneously, the ratio of oxygen evolution of photosystem II (PSII) measured with p-benzoquinone to that of CO(2)-dependent photosynthesis, which ranged between 1.3 and 1.7 in the wild type. However, it was decreased in SNC1 from 1.3 to 0.4 during the early growth phase where chlorophyll content and CO(2)-dependent photosynthesis were little affected, and then finally to 0.1, suggesting that PSII first lost its ability to reduce p-benzoquinone and then decreased in its level and actual activity. These results indicate that PG contributes to the accumulation of chlorophyll-protein complexes in thylakoid membranes, and also to normal functioning of PSII.
Collapse
Affiliation(s)
- N Sato
- School of Life Science, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | |
Collapse
|
99
|
Martin D, Gannoun-Zaki L, Bonnefoy S, Eldin P, Wengelnik K, Vial H. Characterization of Plasmodium falciparum CDP-diacylglycerol synthase, a proteolytically cleaved enzyme. Mol Biochem Parasitol 2000; 110:93-105. [PMID: 10989148 DOI: 10.1016/s0166-6851(00)00260-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cytidine diphosphate-diacylglycerol (CDP-DAG), an obligatory intermediate compound in the biosynthesis of the major anionic and zwitterionic phospholipids, is synthesized by CDP-DAG synthase (CDS). The gene encoding CDS was isolated from the human malaria parasite Plasmodium falciparum, based on sequence conservation to CDS from other organisms. The P. falciparum gene is located as a single copy on chromosome 14. The open reading frame (ORF) of PfCDS gene encodes a putative protein of 667 amino acids and 78 kDa. Only the C-terminal 422 amino acids share 40% homology with eukaryotic CDSs. The very long and non-conserved N-terminal region of 245 amino acids is hydrophilic and contains asparagine-rich and repetitive sequences. Two mRNA of 3.5 and 4 kb were detected. Transcription is developmentally regulated during the asexual intraerythrocytic cycle, being the weakest in the ring-stage. PfCDS enzyme activities in infected erythrocytes correlates with the transcription pattern, consistent with an increased synthesis of phospholipids in trophozoites and schizonts. Antisera raised against two synthetic peptides from the C-terminal region of PfCDS detected a single protein of 51 kDa in Western blot analysis, specific for parasitized erythrocytes. A protein of 28 kDa was recognized by an antiserum against an N-terminal peptide, indicating that PfCDS is proteolytically processed. Expression of 51- and 28-kDa proteins was developmentally regulated similar to regulation of the transcripts and the enzyme activity. The conserved C-terminal region of PfCDS, cloned into a eukaryote expression vector and transfected in COS-7 cells, showed a two-fold increase CDP-DAG synthase activities, indicating that the isolated gene most likely encoded the P. falciparum CDS enzyme.
Collapse
Affiliation(s)
- D Martin
- UMR 5539, CNRS/Université Montpellier II, cc 107, Place E. Bataillon, 34095 Cedex 05, Montpellier, France
| | | | | | | | | | | |
Collapse
|
100
|
Grauslund M, Lopes JM, Rønnow B. Expression of GUT1, which encodes glycerol kinase in Saccharomyces cerevisiae, is controlled by the positive regulators Adr1p, Ino2p and Ino4p and the negative regulator Opi1p in a carbon source-dependent fashion. Nucleic Acids Res 1999; 27:4391-8. [PMID: 10536147 PMCID: PMC148721 DOI: 10.1093/nar/27.22.4391] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Saccharomyces cerevisiae glycerol utilization is mediated by two enzymes, glycerol kinase (Gut1p) and mitochondrial glycerol-3-phosphate dehydrogenase (Gut2p). The carbon source regulation of GUT1 was studied using promoter-reporter gene fusions. The promoter activity was lowest during growth on glucose and highest on the non-fermentable carbon sources, glycerol, ethanol, lactate, acetate and oleic acid. Mutational analysis of the GUT1 promoter region showed that two upstream activation sequences, UAS(INO) and UAS(ADR1), are responsible for approximately 90% of the expression during growth on glycerol. UAS(ADR1) is a presumed binding site for the zinc finger transcription factor Adr1p and UAS(INO) is a presumed binding site for the basic helix-loop-helix transcription factors Ino2p and Ino4p. In vitro experiments showed Adr1 and Ino2/Ino4 protein-dependent binding to UAS(ADR1) and UAS(INO). The negative regulator Opi1p mediates repression of the GUT1 promoter, whereas the effects of the glucose repressors Mig1p and Mig2p are minor. Together, the experiments show that GUT1 is carbon source regulated by different activation and repression systems.
Collapse
Affiliation(s)
- M Grauslund
- Danisco Biotechnology, Danisco A/S, Langebrogade 1, DK-1001 Copenhagen K, Denmark
| | | | | |
Collapse
|