51
|
de Bari L, Atlante A, Guaragnella N, Principato G, Passarella S. D-Lactate transport and metabolism in rat liver mitochondria. Biochem J 2002; 365:391-403. [PMID: 11955284 PMCID: PMC1222695 DOI: 10.1042/bj20020139] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Revised: 04/03/2002] [Accepted: 04/09/2002] [Indexed: 11/17/2022]
Abstract
In the present study we investigated whether isolated rat liver mitochondria can take up and metabolize D-lactate. We found the following: (1) externally added D-lactate causes oxygen uptake by mitochondria [P/O ratio (the ratio of mol of ATP synthesized to mol of oxygen atoms reduced to water during oxidative phosphorylation)=2] and membrane potential (Delta(psi)) generation in processes that are rotenone-insensitive, but inhibited by antimycin A and cyanide, and proton release from coupled mitochondria inhibited by alpha-cyanocinnamate, but not by phenylsuccinate; (2) the activity of the putative flavoprotein (D-lactate dehydrogenase) was detected in inside-out submitochondrial particles, but not in mitochondria and mitoplasts, as it is localized in the matrix phase of the mitochondrial inner membrane; (3) three novel separate translocators exist to mediate D-lactate traffic across the mitochondrial inner membrane: the D-lactate/H(+) symporter, which was investigated by measuring fluorimetrically the rate of endogenous flavin reduction, the D-lactate/oxoacid antiporter (which mediates both the D-lactate/pyruvate and D-lactate/oxaloacetate exchanges) and D-lactate/malate antiporter studied by monitoring photometrically the appearance of the D-lactate counteranions outside mitochondria. The D-lactate translocators, in the light of their different inhibition profiles separate from the monocarboxylate carrier, were found to differ from each other in the V(max) values and in the inhibition and pH profiles and were shown to regulate mitochondrial D-lactate metabolism in vitro. The D-lactate translocators and the D-lactate dehydrogenase could account for the removal of the toxic methylglyoxal from cytosol, as well as for D-lactate-dependent gluconeogenesis.
Collapse
Affiliation(s)
- Lidia de Bari
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari, Via Orabona 4, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
52
|
Baumann F, Neupert W, Herrmann JM. Insertion of bitopic membrane proteins into the inner membrane of mitochondria involves an export step from the matrix. J Biol Chem 2002; 277:21405-13. [PMID: 11932259 DOI: 10.1074/jbc.m201670200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial inner membrane contains a large number of polytopic proteins that are derived from prokaryotic ancestors of mitochondria. Little is known about the intramitochondrial sorting of these proteins. We chose two proteins of known topology as examples to study the pathway of insertion into the inner membrane; Mrs2 and Yta10 are bitopic proteins that expose negatively charged loops of different complexity into the intermembrane space. Here we show that both Mrs2 and Yta10 transiently accumulate as sorting intermediates in the matrix before they integrate into the inner membrane. The sorting pathway of both proteins can be separated into two sequential reactions: (i) import into the matrix and (ii) insertion from the matrix into the inner membrane. The latter process was found to depend on the membrane potential and, in this respect, is similar to the insertion of membrane proteins in bacteria. A comparison of the charge distribution of intermembrane space loops in a variety of mitochondrial inner membrane proteins suggests that this mode of "conservative sorting" might be the typical insertion route for polytopic inner membrane proteins that originated from bacterial ancestors.
Collapse
Affiliation(s)
- Frank Baumann
- Institut für Physiologische Chemie, Butenandtstrasse 5, 81377 München, Germany
| | | | | |
Collapse
|
53
|
Petersen KM, Westall S, Jespersen L. Microbial succession of Debaryomyces hansenii strains during the production of Danish surfaced-ripened cheeses. J Dairy Sci 2002; 85:478-86. [PMID: 11949849 DOI: 10.3168/jds.s0022-0302(02)74098-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Surface-ripened cheeses of the Danbo type were analyzed for the presence of yeasts with special emphasis on Debaryomyces hansenii. Samples were taken from pasteurized milk, brine, and inoculation slurries and from cheese surfaces during ripening at a Danish dairy. D. hansenii was found to be the dominant yeast species throughout the ripening period, whereas other yeast species such as Trichosporon spp., Rhodotorula spp., and Candida spp. were found in minor concentrations during early stages of cheese ripening. Mitochondrial DNA RFLP was used to show that several strains of D. hansenii were present from the onset of ripening. Thereafter, a microbial succession among the strains took place during the ripening. After 3 d of ripening, only one strain was found. This particular strain was found to be dominant in 16 additional batches of surface-ripened cheeses. We investigated the cause of the observed microbial succession by determining the variation in strains with regard to their ability to grow on lactate and at different pH and NaCl concentrations. The strains were shown to vary in their ability to grow on lactate. In a full factorial design at three levels with factor levels close to the actual levels on the cheese surface, differences in pH and NaCl tolerances were observed. The dominant strain was found to be better adapted than other strains to the environmental conditions existing in surface-ripened cheeses during production [e.g., lactate as the main carbon source, pH 5.5 to 6.0 and NaCl concentrations of 7 to 10% (wt/vol)].
Collapse
Affiliation(s)
- K M Petersen
- The Royal Veterinary and Agricultural University, Department of Dairy and Food Science, Food Microbiology, Frederiksberg, Copenhagen, Denmark.
| | | | | |
Collapse
|
54
|
Emanuelsson O, von Heijne G, Schneider G. Analysis and prediction of mitochondrial targeting peptides. Methods Cell Biol 2002; 65:175-87. [PMID: 11381593 DOI: 10.1016/s0091-679x(01)65011-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- O Emanuelsson
- Stockholm Bioinformatics Center, Stockholm University, S-10691 Stockholm, Sweden
| | | | | |
Collapse
|
55
|
Colin M, Moritz S, Fontanges P, Kornprobst M, Delouis C, Keller M, Miller AD, Capeau J, Coutelle C, Brahimi-Horn MC. The nuclear pore complex is involved in nuclear transfer of plasmid DNA condensed with an oligolysine-RGD peptide containing nuclear localisation properties. Gene Ther 2001; 8:1643-53. [PMID: 11895003 DOI: 10.1038/sj.gt.3301572] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
One of the major barriers to efficient gene transfer and expression of nonviral vectors for gene therapy is passage across the nuclear envelope. We have previously shown that an oligolysine-RGD peptide that condenses plasmid DNA and binds to cell surface integrins can mediate increased internalisation of plasmid DNA into cells and synergistic enhancement of gene expression when complexed to a cationic lipid. In this report, we show that this enhancement is due to increased nuclear transfer of the plasmid DNA. We have applied the digitonin-permeabilised cell system that has been well established for the study of the nuclear transport of proteins to examine the nuclear transfer of plasmid DNA. Nuclear transfer of plasmid DNA complexed to an oligolysine-RGD peptide and lipofectamine appears to be an energy-dependent process involving the nuclear pore complex, since it is inhibited at 4 degrees C and by treatment with wheat germ agglutinin or with an antibody to the nuclear pore complex which all block nuclear protein import. In accordance with active nuclear transport, we have shown that all these treatments inhibit expression of a luciferase reporter plasmid in permeabilised cells. Nuclear transfer of pDNA is enhanced in mitotic cells, but cell division is not a prerequisite for transfer. We propose that the oligolysine-RGD peptide acts as a nuclear localisation signal and that the cationic lipid is more important for cell entry and endosome destabilisation than nuclear transfer.
Collapse
Affiliation(s)
- M Colin
- INSERM U402, Faculté de Médecine Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Preuss M, Leonhard K, Hell K, Stuart RA, Neupert W, Herrmann JM. Mba1, a novel component of the mitochondrial protein export machinery of the yeast Saccharomyces cerevisiae. J Cell Biol 2001; 153:1085-96. [PMID: 11381092 PMCID: PMC2174334 DOI: 10.1083/jcb.153.5.1085] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The biogenesis of mitochondria requires the integration of many proteins into the inner membrane from the matrix side. The inner membrane protein Oxa1 plays an important role in this process. We identified Mba1 as a second mitochondrial component that is required for efficient protein insertion. Like Oxa1, Mba1 specifically interacts both with mitochondrial translation products and with conservatively sorted, nuclear-encoded proteins during their integration into the inner membrane. Oxa1 and Mba1 overlap in function and substrate specificity, but both can act independently of each other. We conclude that Mba1 is part of the mitochondrial protein export machinery and represents the first component of a novel Oxa1-independent insertion pathway into the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Marc Preuss
- Insitute for Phyisiological Chemistry, 80336 München, Germany
| | - Klaus Leonhard
- Insitute for Phyisiological Chemistry, 80336 München, Germany
| | - Kai Hell
- Insitute for Phyisiological Chemistry, 80336 München, Germany
| | | | - Walter Neupert
- Insitute for Phyisiological Chemistry, 80336 München, Germany
| | | |
Collapse
|
57
|
Dalbey RE, Kuhn A. Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins. Annu Rev Cell Dev Biol 2001; 16:51-87. [PMID: 11031230 DOI: 10.1146/annurev.cellbio.16.1.51] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The inner membranes of eubacteria and mitochondria, as well as the chloroplast thylakoid membrane, contain essential proteins that function in oxidative phosphorylation and electron transport processes or in photosynthesis. Because most of the organellar proteins are nuclear encoded, they are synthesized in the cytoplasm and subsequently imported into the organelle before they are inserted into the membrane. This review focuses on the pathways of protein insertion into the inner membrane of eubacteria and mitochondria and into the chloroplast thylakoid membrane. In many respects, insertion of proteins into the inner membrane of bacteria is a process similar to that used by proteins of the thylakoid membrane. In both of these systems a signal recognition particle (SRP) and a SecYE-translocase are involved, as in translocation into the endoplasmic reticulum. The pathway of proteins into the mitochondrial membranes appears to be different in that it involves no SecYE-like components. A conservative pathway, recently identified in mitochondria, involves the Oxa1 protein for the insertion of proteins from the matrix. The presence of Oxa1 homologues in eubacteria and chloroplasts suggests that this pathway is evolutionarily conserved.
Collapse
Affiliation(s)
- R E Dalbey
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
58
|
Melo AM, Duarte M, Møller IM, Prokisch H, Dolan PL, Pinto L, Nelson MA, Videira A. The external calcium-dependent NADPH dehydrogenase from Neurospora crassa mitochondria. J Biol Chem 2001; 276:3947-51. [PMID: 11073955 DOI: 10.1074/jbc.m008199200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have inactivated the nuclear gene coding for a putative NAD(P)H dehydrogenase from the inner membrane of Neurospora crassa mitochondria by repeat-induced point mutations. The respiratory rates of mitochondria from the resulting mutant (nde-1) were measured, using NADH or NADPH as substrates under different assay conditions. The results showed that the mutant lacks an external calcium-dependent NADPH dehydrogenase. The observation of NADH and NADPH oxidation by intact mitochondria from the nde-1 mutant suggests the existence of a second external NAD(P)H dehydrogenase. The topology of the NDE1 protein was further studied by protease accessibility, in vitro import experiments, and in silico analysis of the amino acid sequence. Taken together, it appears that most of the NDE1 protein extends into the intermembrane space in a tightly folded conformation and that it remains anchored to the inner mitochondrial membrane by an N-terminal transmembrane domain.
Collapse
Affiliation(s)
- A M Melo
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Metzler DE, Metzler CM, Sauke DJ. Electron Transport, Oxidative Phosphorylation, and Hydroxylation. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
60
|
Herrmann JM, Neupert W. What fuels polypeptide translocation? An energetical view on mitochondrial protein sorting. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:331-8. [PMID: 11004448 DOI: 10.1016/s0005-2728(00)00169-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein sorting into mitochondria is achieved by the concerted action of at least four translocation complexes. Vectorial transport of polypeptide chains by these complexes requires different driving forces. In particular, Deltapsi, matrix adenosine triphosphate and the free energy of the binding to other protein components are used in series to achieve sorting of proteins to the various mitochondrial subcompartments. The processes providing the translocation energy are presented in this review and their impact for protein sorting into and within mitochondria is discussed.
Collapse
Affiliation(s)
- J M Herrmann
- Institut für Physiologische Chemie, Goethestrasse 33, 80336, München, Germany
| | | |
Collapse
|
61
|
Alberti A, Goffrini P, Ferrero I, Lodi T. Cloning and characterization of the lactate-specific inducible gene KlCYB2, encoding the cytochrome b(2) of Kluyveromyces lactis. Yeast 2000; 16:657-65. [PMID: 10806428 DOI: 10.1002/(sici)1097-0061(200005)16:7<657::aid-yea560>3.0.co;2-%23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
In yeast the utilization of lactate requires two enzymes, the D and L-lactate ferricytochrome c oxidoreductase (D and L-LCR), which stereospecifically oxidize D- and L-lactate to pyruvate. These enzymes are nuclearly encoded and localized in mitochondria. In the yeast Kluyveromyces lactis, a mutant devoid of D- and L-LCR activities and unable to grow on racemic lactate was isolated. Transformation of the mutant with a K. lactis genomic library allowed the isolation of the KlCYB2 gene, restoring the growth on lactate and the L-LCR activity. The KlCYB2 gene and its flanking regions were sequenced (Accession No. AJ243324; EMBL/GenBank databases). The deduced amino acid sequence is highly homologous to the corresponding Saccharomyces cerevisiae and Hansenula anomala protein sequences previously characterized. The homology is missed in the N-terminal region, corresponding to the presequence cleaved during import into mitochondria. Analysis of KlCYB2 gene expression indicated that, in contrast to S. cerevisiae, the major regulatory feature is induction by lactate.
Collapse
Affiliation(s)
- A Alberti
- Istituto di Genetica, Università di Parma, Parma, Italy
| | | | | | | |
Collapse
|
62
|
Abstract
In order to keep subscribers up-to-date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly-published material on yeasts. Each bibliography is divided into 10 sections. 1 Books, Reviews & Symposia; 2 General; 3 Biochemistry; 4 Biotechnology; 5 Cell Biology; 6 Gene Expression; 7 Genetics; 8 Physiology; 9 Medical Mycology; 10 Recombinant DNA Technology. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted. (4 weeks journals - search completed 16th Feb 2000)
Collapse
Affiliation(s)
- A Alberti
- Istituto di Genetica, Università di Parma, Parma, Italy
| | | | | | | |
Collapse
|
63
|
Abstract
Mitochondria are made up of two membrane systems that subdivide this organelle into two aqueous subcompartments: the matrix, which is enclosed by the inner membrane, and the intermembrane space, which is located between the inner and the outer membrane. Protein import into mitochondria is a complex reaction, as every protein has to be routed to its specific destination within the organelle. In the past few years, studies with mitochondria of Neurospora crassa and Saccharomyces cerevisiae have led to the identification of four distinct translocation machineries that are conserved among eukaryotes. These translocases, in a concerted fashion, mediate import and sorting of proteins into the mitochondrial subcompartments.
Collapse
Affiliation(s)
- J M Herrmann
- Adolf-Butenandt-Institut für Physiologische Chemie, München, 80336, Germany
| | | |
Collapse
|
64
|
Esaki M, Kanamori T, Nishikawa SI, Endo T. Two distinct mechanisms drive protein translocation across the mitochondrial outer membrane in the late step of the cytochrome b(2) import pathway. Proc Natl Acad Sci U S A 1999; 96:11770-5. [PMID: 10518525 PMCID: PMC18361 DOI: 10.1073/pnas.96.21.11770] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The import of cytochrome b(2) into mitochondria consists of two steps. The translocation of the first part of the presequence across the inner membrane is coupled with the translocation of the tightly folded heme-binding domain across the outer membrane and requires a membrane potential DeltaPsi and the functions of mitochondrial Hsp70 (mHsp70) in the matrix. Once the heme-binding domain has passed the outer membrane, the translocation of the rest of the polypeptide chain across the outer membrane becomes independent of DeltaPsi and mHsp70. Here we analyzed the late DeltaPsi- and mHsp70-independent step in the transport of cytochrome b(2) fusion proteins into the intermembrane space (IMS). The import of the cytochrome b(2) fusion proteins containing two protein domains linked by a spacer segment into mitochondria was arrested at a stage at which one domain folded on each side of the outer membrane, along the pathway that is consistent with the stop-transfer model. The mature-size form of the translocation intermediate could move across the outer membrane in both directions, and the stabilization of the protein domain in the IMS promoted the forward translocation. On the other hand, the intermediate-size form of the translocation intermediate, which retains the anchorage to the inner membrane, was transported into the IMS independently of the stability of the protein domain in the IMS. These results suggest that two distinct mechanisms, the Brownian ratchet and the anchor diffusion mechanisms, can operate for the transmembrane movement of the mature-size form and the intermediate-size form, respectively, of cytochrome b(2) species.
Collapse
Affiliation(s)
- M Esaki
- Department of Chemistry, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
65
|
Steglich G, Neupert W, Langer T. Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria. Mol Cell Biol 1999; 19:3435-42. [PMID: 10207067 PMCID: PMC84136 DOI: 10.1128/mcb.19.5.3435] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prohibitins comprise a protein family in eukaryotic cells with potential roles in senescence and tumor suppression. Phb1p and Phb2p, members of the prohibitin family in Saccharomyces cerevisiae, have been implicated in the regulation of the replicative life span of the cells and in the maintenance of mitochondrial morphology. The functional activities of these proteins, however, have not been elucidated. We demonstrate here that prohibitins regulate the turnover of membrane proteins by the m-AAA protease, a conserved ATP-dependent protease in the inner membrane of mitochondria. The m-AAA protease is composed of the homologous subunits Yta10p (Afg3p) and Yta12p (Rca1p). Deletion of PHB1 or PHB2 impairs growth of Deltayta10 or Deltayta12 cells but does not affect cell growth in the presence of the m-AAA protease. A prohibitin complex with a native molecular mass of approximately 2 MDa containing Phb1p and Phb2p forms a supercomplex with the m-AAA protease. Proteolysis of nonassembled inner membrane proteins by the m-AAA protease is accelerated in mitochondria lacking Phb1p or Phb2p, indicating a negative regulatory effect of prohibitins on m-AAA protease activity. These results functionally link members of two conserved protein families in eukaryotes to the degradation of membrane proteins in mitochondria.
Collapse
Affiliation(s)
- G Steglich
- Institut für Physiologische Chemie der Universität München, 80336 Munich, Germany
| | | | | |
Collapse
|