51
|
Peske F, Wintermeyer W. Antibiotics Inhibiting the Translocation Step of Protein Elongation on the Ribosome. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
52
|
Mateyak MK, Kinzy TG. ADP-ribosylation of translation elongation factor 2 by diphtheria toxin in yeast inhibits translation and cell separation. J Biol Chem 2013; 288:24647-55. [PMID: 23853096 DOI: 10.1074/jbc.m113.488783] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation elongation factor 2 (eEF2) facilitates the movement of the peptidyl tRNA-mRNA complex from the A site of the ribosome to the P site during protein synthesis. ADP-ribosylation (ADP(R)) of eEF2 by bacterial toxins on a unique diphthamide residue inhibits its translocation activity, but the mechanism is unclear. We have employed a hormone-inducible diphtheria toxin (DT) expression system in Saccharomyces cerevisiae which allows for the rapid induction of ADP(R)-eEF2 to examine the effects of DT in vivo. ADP(R) of eEF2 resulted in a decrease in total protein synthesis consistent with a defect in translation elongation. Association of eEF2 with polyribosomes, however, was unchanged upon expression of DT. Upon prolonged exposure to DT, cells with an abnormal morphology and increased DNA content accumulated. This observation was specific to DT expression and was not observed when translation elongation was inhibited by other methods. Examination of these cells by electron microscopy indicated a defect in cell separation following mitosis. These results suggest that expression of proteins late in the cell cycle is particularly sensitive to inhibition by ADP(R)-eEF2.
Collapse
Affiliation(s)
- Maria K Mateyak
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
53
|
Mousa WK, Raizada MN. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 2013; 4:65. [PMID: 23543048 PMCID: PMC3608919 DOI: 10.3389/fmicb.2013.00065] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/06/2013] [Indexed: 02/03/2023] Open
Abstract
Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens.
Collapse
Affiliation(s)
- Walaa Kamel Mousa
- Department of Plant Agriculture, University of Guelph Guelph, ON, Canada ; Department of Pharmacognosy, Mansoura University Mansoura, Egypt
| | | |
Collapse
|
54
|
The amidation step of diphthamide biosynthesis in yeast requires DPH6, a gene identified through mining the DPH1-DPH5 interaction network. PLoS Genet 2013; 9:e1003334. [PMID: 23468660 PMCID: PMC3585130 DOI: 10.1371/journal.pgen.1003334] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 01/07/2013] [Indexed: 01/31/2023] Open
Abstract
Diphthamide is a highly modified histidine residue in eukaryal translation elongation factor 2 (eEF2) that is the target for irreversible ADP ribosylation by diphtheria toxin (DT). In Saccharomyces cerevisiae, the initial steps of diphthamide biosynthesis are well characterized and require the DPH1-DPH5 genes. However, the last pathway step—amidation of the intermediate diphthine to diphthamide—is ill-defined. Here we mine the genetic interaction landscapes of DPH1-DPH5 to identify a candidate gene for the elusive amidase (YLR143w/DPH6) and confirm involvement of a second gene (YBR246w/DPH7) in the amidation step. Like dph1-dph5, dph6 and dph7 mutants maintain eEF2 forms that evade inhibition by DT and sordarin, a diphthamide-dependent antifungal. Moreover, mass spectrometry shows that dph6 and dph7 mutants specifically accumulate diphthine-modified eEF2, demonstrating failure to complete the final amidation step. Consistent with an expected requirement for ATP in diphthine amidation, Dph6 contains an essential adenine nucleotide hydrolase domain and binds to eEF2. Dph6 is therefore a candidate for the elusive amidase, while Dph7 apparently couples diphthine synthase (Dph5) to diphthine amidation. The latter conclusion is based on our observation that dph7 mutants show drastically upregulated interaction between Dph5 and eEF2, indicating that their association is kept in check by Dph7. Physiologically, completion of diphthamide synthesis is required for optimal translational accuracy and cell growth, as indicated by shared traits among the dph mutants including increased ribosomal −1 frameshifting and altered responses to translation inhibitors. Through identification of Dph6 and Dph7 as components required for the amidation step of the diphthamide pathway, our work paves the way for a detailed mechanistic understanding of diphthamide formation. Diphthamide is an unusual modified amino acid found uniquely in a single protein, eEF2, which is required for cells to synthesize new proteins. The name refers to its target function for eEF2 inactivation by diphtheria toxin, the disease-inducing agent produced by the pathogen Corynebacterium diphtheriae. Why cells require eEF2 to contain diphthamide is unclear, although mice unable to make it fail to complete embryogenesis. Cells generate diphthamide by modifying a specific histidine residue in eEF2 using a three-step biosynthetic pathway, the first two steps of which are well defined. However, the enzyme(s) involved in the final amidation step are unknown. Here we integrate genomic and molecular approaches to identify a candidate for the elusive amidase (Dph6) and confirm involvement of a second protein (Dph7) in the amidation step, showing that failure to synthesize diphthamide affects the accuracy of protein synthesis. In contrast to Dph6, however, Dph7 may be regulatory. Our data strongly suggest that it promotes dissociation of eEF2 from diphthine synthase (Dph5), which carries out the second step of diphthamide synthesis, and that Dph5 has a novel role as an eEF2 inhibitor when diphthamide synthesis is incomplete.
Collapse
|
55
|
Chakraborty B, Mukherjee R, Sengupta J. Structural insights into the mechanism of translational inhibition by the fungicide sordarin. J Comput Aided Mol Des 2013; 27:173-84. [PMID: 23397219 DOI: 10.1007/s10822-013-9636-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 01/25/2013] [Indexed: 11/25/2022]
Abstract
The translational machinery has been found to be the target for a number of antibiotics. One such antibiotic sordarin selectively inhibits fungal translation by impairing the function of elongation factor 2 (eEF2) while being ineffective to higher eukaryotes. Surprisingly, sordarin is not even equally effective in impairing translation for all fungal species. The binding cavity of sordarin on eEF2 has been localized by X-ray crystallographic study and its unique specificity towards sordarin has been attributed to the species specific substitutions within a stretch of amino acids (sordarin specificity region, SSR) at the entrance of the cavity. In this study, we have analyzed the sordarin-binding cavity of eEF2 from different species both in isolated and ribosome-bound forms in order to decipher the mechanism of sordarin binding selectivity. Our results reveal that the molecular architecture as well as the microenvironment of the sordarin-binding cavity changes significantly from one species to another depending on the species specific substitutions within the cavity. Moreover, eEF2 binding to ribosome aggravates the effects of these substitutions. Thus, this study, while shedding light on the molecular mechanism underpinning the selective inhibitory effects of sordarin, will also be a helpful guide for future studies aiming at developing novel antifungal drugs with broader spectrum of activity.
Collapse
Affiliation(s)
- Biprashekhar Chakraborty
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology (Council of Scientific and Industrial Research), 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | | | | |
Collapse
|
56
|
Morrow CA, Valkov E, Stamp A, Chow EWL, Lee IR, Wronski A, Williams SJ, Hill JM, Djordjevic JT, Kappler U, Kobe B, Fraser JA. De novo GTP biosynthesis is critical for virulence of the fungal pathogen Cryptococcus neoformans. PLoS Pathog 2012; 8:e1002957. [PMID: 23071437 PMCID: PMC3469657 DOI: 10.1371/journal.ppat.1002957] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/26/2012] [Indexed: 01/01/2023] Open
Abstract
We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus.
Collapse
Affiliation(s)
- Carl A. Morrow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Eugene Valkov
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Anna Stamp
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Eve W. L. Chow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - I. Russel Lee
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Ania Wronski
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Simon J. Williams
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Justine M. Hill
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Julianne T. Djordjevic
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Sydney, New South Wales, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
57
|
Fernández-Pevida A, Rodríguez-Galán O, Díaz-Quintana A, Kressler D, de la Cruz J. Yeast ribosomal protein L40 assembles late into precursor 60 S ribosomes and is required for their cytoplasmic maturation. J Biol Chem 2012; 287:38390-407. [PMID: 22995916 DOI: 10.1074/jbc.m112.400564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most ribosomal proteins play important roles in ribosome biogenesis and function. Here, we have examined the contribution of the essential ribosomal protein L40 in these processes in the yeast Saccharomyces cerevisiae. Deletion of either the RPL40A or RPL40B gene and in vivo depletion of L40 impair 60 S ribosomal subunit biogenesis. Polysome profile analyses reveal the accumulation of half-mers and a moderate reduction in free 60 S ribosomal subunits. Pulse-chase, Northern blotting, and primer extension analyses in the L40-depleted strain clearly indicate that L40 is not strictly required for the precursor rRNA (pre-rRNA) processing reactions but contributes to optimal 27 SB pre-rRNA maturation. Moreover, depletion of L40 hinders the nucleo-cytoplasmic export of pre-60 S ribosomal particles. Importantly, all these defects most likely appear as the direct consequence of impaired Nmd3 and Rlp24 release from cytoplasmic pre-60 S ribosomal subunits and their inefficient recycling back into the nucle(ol)us. In agreement, we show that hemagglutinin epitope-tagged L40A assembles in the cytoplasm into almost mature pre-60 S ribosomal particles. Finally, we have identified that the hemagglutinin epitope-tagged L40A confers resistance to sordarin, a translation inhibitor that impairs the function of eukaryotic elongation factor 2, whereas the rpl40a and rpl40b null mutants are hypersensitive to this antibiotic. We conclude that L40 is assembled at a very late stage into pre-60 S ribosomal subunits and that its incorporation into 60 S ribosomal subunits is a prerequisite for subunit joining and may ensure proper functioning of the translocation process.
Collapse
|
58
|
Chan JNY, Vuckovic D, Sleno L, Olsen JB, Pogoutse O, Havugimana P, Hewel JA, Bajaj N, Wang Y, Musteata MF, Nislow C, Emili A. Target identification by chromatographic co-elution: monitoring of drug-protein interactions without immobilization or chemical derivatization. Mol Cell Proteomics 2012; 11:M111.016642. [PMID: 22357554 DOI: 10.1074/mcp.m111.016642] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bioactive molecules typically mediate their biological effects through direct physical association with one or more cellular proteins. The detection of drug-target interactions is therefore essential for the characterization of compound mechanism of action and off-target effects, but generic label-free approaches for detecting binding events in biological mixtures have remained elusive. Here, we report a method termed target identification by chromatographic co-elution (TICC) for routinely monitoring the interaction of drugs with cellular proteins under nearly physiological conditions in vitro based on simple liquid chromatographic separations of cell-free lysates. Correlative proteomic analysis of drug-bound protein fractions by shotgun sequencing is then performed to identify candidate target(s). The method is highly reproducible, does not require immobilization or derivatization of drug or protein, and is applicable to diverse natural products and synthetic compounds. The capability of TICC to detect known drug-protein target physical interactions (K(d) range: micromolar to nanomolar) is demonstrated both qualitatively and quantitatively. We subsequently used TICC to uncover the sterol biosynthetic enzyme Erg6p as a novel putative anti-fungal target. Furthermore, TICC identified Asc1 and Dak1, a core 40 S ribosomal protein that represses gene expression, and dihydroxyacetone kinase involved in stress adaptation, respectively, as novel yeast targets of a dopamine receptor agonist.
Collapse
Affiliation(s)
- Janet N Y Chan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Combining functional genomics and chemical biology to identify targets of bioactive compounds. Curr Opin Chem Biol 2011; 15:66-78. [DOI: 10.1016/j.cbpa.2010.10.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 10/20/2010] [Indexed: 01/08/2023]
|
60
|
Calugi C, Trabocchi A, Guarna A. Novel small molecules for the treatment of infections caused byCandida albicans: a patent review (2002 – 2010). Expert Opin Ther Pat 2011; 21:381-97. [DOI: 10.1517/13543776.2011.551116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
61
|
An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 2010; 9:719-27. [PMID: 20725094 DOI: 10.1038/nrd3074] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Invasive fungal infections are increasing in incidence and are associated with substantial mortality. Improved diagnostics and the availability of new antifungals have revolutionized the field of medical mycology in the past decades. This Review focuses on recent developments in the antifungal pipeline, concentrating on promising candidates such as new azoles, polyenes and echinocandins, as well as agents such as nikkomycin Z and the sordarins. Developments in vaccines and antibody-based immunotherapy are also discussed. Few therapeutic products are currently in active development, and progression of therapeutic agents with fungus-specific mechanisms of action is of key importance.
Collapse
|
62
|
|
63
|
Abstract
Following transcription, genomic information begins a long journey toward translation of its nucleotide sequence into the amino acids of a protein. In eukaryotes, synthesized pre-mRNAs become processed to mature mRNAs by 5'-end capping, splicing, 3'-end cleavage and polyadenylation in the nucleus, before being scrutinized for premature stop codons. Each step requires high precision and control to ensure that an intact and readable message is exported to the cytoplasm before finally becoming translated. Two important aspects of these processes are accurately managed by ribonucleoprotein machineries-the spliceosome and the ribosome. Recently, several natural products targeting these macromolecular assemblies have been reported. For the first time in eukaryotes, these molecules allow chemical disruption and dissection of the sophisticated machinery that regulates post-transcriptional events. Beyond their great potential as bioprobes for investigating mRNA regulation and protein synthesis, these compounds also show promise in opening new therapeutic approaches.
Collapse
|
64
|
Di Santo R. Natural products as antifungal agents against clinically relevant pathogens. Nat Prod Rep 2010; 27:1084-98. [DOI: 10.1039/b914961a] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
65
|
Abstract
Protein synthesis is one of the major targets in the cell for antibiotics. This review endeavors to provide a comprehensive "post-ribosome structure" A-Z of the huge diversity of antibiotics that target the bacterial translation apparatus, with an emphasis on correlating the vast wealth of biochemical data with more recently available ribosome structures, in order to understand function. The binding site, mechanism of action, and modes of resistance for 26 different classes of protein synthesis inhibitors are presented, ranging from ABT-773 to Zyvox. In addition to improving our understanding of the process of translation, insight into the mechanism of action of antibiotics is essential to the development of novel and more effective antimicrobial agents to combat emerging bacterial resistance to many clinically-relevant drugs.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, LMU, Munich, Germany.
| |
Collapse
|
66
|
Van Dyke N, Pickering BF, Van Dyke MW. Stm1p alters the ribosome association of eukaryotic elongation factor 3 and affects translation elongation. Nucleic Acids Res 2009; 37:6116-25. [PMID: 19666721 PMCID: PMC2764444 DOI: 10.1093/nar/gkp645] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stm1p is a Saccharomyces cerevisiae protein that is primarily associated with cytosolic 80S ribosomes and polysomes. Several lines of evidence suggest that Stm1p plays a role in translation under nutrient stress conditions, although its mechanism of action is not yet known. In this study, we show that yeast lacking Stm1p (stm1Delta) are hypersensitive to the translation inhibitor anisomycin, which affects the peptidyl transferase reaction in translation elongation, but show little hypersensitivity to other translation inhibitors such as paromomycin and hygromycin B, which affect translation fidelity. Ribosomes isolated from stm1Delta yeast have intrinsically elevated levels of eukaryotic elongation factor 3 (eEF3) associated with them. Overexpression of eEF3 in cells lacking Stm1p results in a growth defect phenotype and increased anisomycin sensitivity. In addition, ribosomes with increased levels of Stm1p exhibit decreased association with eEF3. Taken together, our data indicate that Stm1p plays a complementary role to eEF3 in translation.
Collapse
Affiliation(s)
- Natalya Van Dyke
- Department of Molecular and Cellular Oncology, Unit 079, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | | | | |
Collapse
|
67
|
Vicente F, Basilio A, Platas G, Collado J, Bills GF, González Del Val A, Martín J, Tormo JR, Harris GH, Zink DL, Justice M, Nielsen Kahn J, Peláez F. Distribution of the antifungal agents sordarins across filamentous fungi. ACTA ACUST UNITED AC 2009; 113:754-70. [DOI: 10.1016/j.mycres.2009.02.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/10/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
|
68
|
Wiederhold NP. Pharmacology, in vitro activity, and in vivo efficacy of new antifungal agents. CURRENT FUNGAL INFECTION REPORTS 2009. [DOI: 10.1007/s12281-009-0011-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
69
|
Chhillar AK, Yadav V, Kumar A, Kumar M, Parmar VS, Prasad A, Sharma GL. Differential expression ofAspergillus fumigatusprotein in response to treatment with a novel antifungal compound, diethyl 4-(4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridin-3,5-dicarboxylate. Mycoses 2009; 52:223-7. [DOI: 10.1111/j.1439-0507.2008.01563.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
70
|
A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nat Biotechnol 2009; 27:369-77. [PMID: 19349972 DOI: 10.1038/nbt.1534] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 03/09/2009] [Indexed: 01/23/2023]
Abstract
We present a yeast chemical-genomics approach designed to identify genes that when mutated confer drug resistance, thereby providing insight about the modes of action of compounds. We developed a molecular barcoded yeast open reading frame (MoBY-ORF) library in which each gene, controlled by its native promoter and terminator, is cloned into a centromere-based vector along with two unique oligonucleotide barcodes. The MoBY-ORF resource has numerous genetic and chemical-genetic applications, but here we focus on cloning wild-type versions of mutant drug-resistance genes using a complementation strategy and on simultaneously assaying the fitness of all transformants with barcode microarrays. The complementation cloning was validated by mutation detection using whole-genome yeast tiling microarrays, which identified unique polymorphisms associated with a drug-resistant mutant. We used the MoBY-ORF library to identify the genetic basis of several drug-resistant mutants and in this analysis discovered a new class of sterol-binding compounds.
Collapse
|
71
|
Santos PM, Simões T, Sá-Correia I. Insights into yeast adaptive response to the agricultural fungicide mancozeb: A toxicoproteomics approach. Proteomics 2009; 9:657-70. [DOI: 10.1002/pmic.200800452] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
72
|
Schulé A, Liang H, Vors JP, Ciufolini MA. Synthetic Studies toward Sordarin: Building Blocks for the Terpenoid Core and for Analogues Thereof. J Org Chem 2009; 74:1587-97. [DOI: 10.1021/jo801911s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arnaud Schulé
- Laboratoire de Synthèse et Méthodologie Organiques, CNRS UMR 5181, Université Claude Bernard Lyon 1 and Ecole Supérieure de Chimie, Physique, Electronique de Lyon, 43, Bd. du 11 Novembre 1918, 69622 Villeurbanne, France, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada, and Bayer CropScience SA, Rue Pierre Baizet, 69005 Lyon, France
| | - Huan Liang
- Laboratoire de Synthèse et Méthodologie Organiques, CNRS UMR 5181, Université Claude Bernard Lyon 1 and Ecole Supérieure de Chimie, Physique, Electronique de Lyon, 43, Bd. du 11 Novembre 1918, 69622 Villeurbanne, France, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada, and Bayer CropScience SA, Rue Pierre Baizet, 69005 Lyon, France
| | - Jean-Pierre Vors
- Laboratoire de Synthèse et Méthodologie Organiques, CNRS UMR 5181, Université Claude Bernard Lyon 1 and Ecole Supérieure de Chimie, Physique, Electronique de Lyon, 43, Bd. du 11 Novembre 1918, 69622 Villeurbanne, France, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada, and Bayer CropScience SA, Rue Pierre Baizet, 69005 Lyon, France
| | - Marco A. Ciufolini
- Laboratoire de Synthèse et Méthodologie Organiques, CNRS UMR 5181, Université Claude Bernard Lyon 1 and Ecole Supérieure de Chimie, Physique, Electronique de Lyon, 43, Bd. du 11 Novembre 1918, 69622 Villeurbanne, France, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada, and Bayer CropScience SA, Rue Pierre Baizet, 69005 Lyon, France
| |
Collapse
|
73
|
Hanadate T, Tomishima M, Shiraishi N, Tanabe D, Morikawa H, Barrett D, Matsumoto S, Ohtomo K, Maki K. FR290581, a novel sordarin derivative: synthesis and antifungal activity. Bioorg Med Chem Lett 2009; 19:1465-8. [PMID: 19196509 DOI: 10.1016/j.bmcl.2009.01.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 12/17/2008] [Accepted: 01/09/2009] [Indexed: 10/21/2022]
Abstract
Sordarin is a unique natural product antifungal agent that is an inhibitor of elongation factor 2. To improve biological activity, we synthesized various compounds by novel modification of the aglycone, sordaricin. As a result, we have discovered the novel sordarin derivative FR290581. This compound exhibited superior activity and a good pharmacokinetic profile, and also displayed good in vivo activity against Candida albicans.
Collapse
Affiliation(s)
- Tadaatsu Hanadate
- Chemistry Research Labs., Astellas Pharma Inc., 2-1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Liang H. Sordarin, an antifungal agent with a unique mode of action. Beilstein J Org Chem 2008; 4:31. [PMID: 18941619 PMCID: PMC2568878 DOI: 10.3762/bjoc.4.31] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 08/26/2008] [Indexed: 11/23/2022] Open
Abstract
The sordarin family of compounds, characterized by a unique tetracyclic diterpene core including a norbornene system, inhibits protein synthesis in fungi by stabilizing the ribosome/EF2 complex. This mode of action is in contrast to typical antifungals, which target the cell membrane. This unusual bioactivity makes sordarin a promising candidate for the development of new fungicidal agents, and provided the motivation for extensive research. Three total syntheses (by the Kato, Mander and Narasaka groups), modifications of the glycosyl unit, and changes to the diterpene core (Cuevas and Ciufolini models) will also be discussed in this review.
Collapse
Affiliation(s)
- Huan Liang
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
75
|
Bär C, Zabel R, Liu S, Stark MJR, Schaffrath R. A versatile partner of eukaryotic protein complexes that is involved in multiple biological processes: Kti11/Dph3. Mol Microbiol 2008; 69:1221-33. [PMID: 18627462 DOI: 10.1111/j.1365-2958.2008.06350.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Kluyveromyces lactis killer toxin zymocin insensitive 11 (KTI11) gene from Saccharomyces cerevisiae is allelic with the diphthamide synthesis 3 (DPH3) locus. Here, we present evidence that the KTI11 gene product is a versatile partner of proteins and operates in multiple biological processes. Notably, Kti11 immune precipitates contain Elp2 and Elp5, two subunits of the Elongator complex which is involved in transcription, tRNA modification and zymocin toxicity. KTI11 deletion phenocopies Elongator-minus cells and causes antisuppression of nonsense and missense suppressor tRNAs (SUP4, SOE1), zymocin resistance and protection against the tRNase attack of zymocin. In addition and unlike Elongator mutants, kti11 mutants resist diphtheria toxin (DT), protect against ADP-ribosylation of eukaryotic translation elongation factor 2 (eEF2) by DT and induce resistance against sordarin, an eEF2 poisoning antifungal. The latter phenotype applies to all diphthamide mutants (dph1-dph5) tested and Kti11/Dph3 physically interacts with diphthamide synthesis factors Dph1 and Dph2, presumably as part of a trimeric complex. Moreover, we present a separation of function mutation in KTI11, kti11-1, which dissociates zymocin resistance from DT sensitivity. It encodes a C-terminal Kti11 truncation that almost entirely abolishes Elongator interaction without affecting association with Kti13, another Kti11 partner protein.
Collapse
Affiliation(s)
- Christian Bär
- Biologicum, Institut für Genetik, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, D-06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
76
|
A chemical genomic screen in Saccharomyces cerevisiae reveals a role for diphthamidation of translation elongation factor 2 in inhibition of protein synthesis by sordarin. Antimicrob Agents Chemother 2008; 52:1623-9. [PMID: 18285480 DOI: 10.1128/aac.01603-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Sordarin and its derivatives are antifungal compounds of potential clinical interest. Despite the highly conserved nature of the fungal and mammalian protein synthesis machineries, sordarin is a selective inhibitor of protein synthesis in fungal organisms. In cells sensitive to sordarin, its mode of action is through preventing the release of translation elongation factor 2 (eEF2) during the translocation step, thus blocking protein synthesis. To further investigate the cellular components required for the effects of sordarin in fungal cells, we have used the haploid deletion collection of Saccharomyces cerevisiae to systematically identify genes whose deletion confers sensitivity or resistance to the compound. Our results indicate that genes in a number of cellular pathways previously unknown to play a role in sordarin response are involved in its growth effects on fungal cells and reveal a specific requirement for the diphthamidation pathway of cells in causing eEF2 to be sensitive to the effects of sordarin on protein synthesis. Our results underscore the importance of the powerful genomic tools developed in yeast (Saccharomyces cerevisiae) to more comprehensively understanding the cellular mechanisms involved in the response to therapeutic agents.
Collapse
|
77
|
Interaction of the cyanobacterial toxin cylindrospermopsin with the eukaryotic protein synthesis system. Toxicon 2008; 51:191-8. [DOI: 10.1016/j.toxicon.2007.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 08/31/2007] [Accepted: 09/03/2007] [Indexed: 11/22/2022]
|
78
|
Hu ZY, Li YY, Huang YJ, Su WJ, Shen YM. Three New Sesquiterpenoids fromXylaria sp. NCY2. Helv Chim Acta 2008. [DOI: 10.1002/hlca.200890011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
79
|
Bartish G, Moradi H, Nygård O. Amino acids Thr56 and Thr58 are not essential for elongation factor 2 function in yeast. FEBS J 2007; 274:5285-97. [PMID: 17892487 DOI: 10.1111/j.1742-4658.2007.06054.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Yeast elongation factor 2 is an essential protein that contains two highly conserved threonine residues, T56 and T58, that could potentially be phosphorylated by the Rck2 kinase in response to environmental stress. The importance of residues T56 and T58 for elongation factor 2 function in yeast was studied using site directed mutagenesis and functional complementation. Mutations T56D, T56G, T56K, T56N and T56V resulted in nonfunctional elongation factor 2 whereas mutated factor carrying point mutations T56M, T56C, T56S, T58S and T58V was functional. Expression of mutants T56C, T56S and T58S was associated with reduced growth rate. The double mutants T56M/T58W and T56M/T58V were also functional but the latter mutant caused increased cell death and considerably reduced growth rate. The results suggest that the physiological role of T56 and T58 as phosphorylation targets is of little importance in yeast under standard growth conditions. Yeast cells expressing mutants T56C and T56S were less able to cope with environmental stress induced by increased growth temperatures. Similarly, cells expressing mutants T56M and T56M/T58W were less capable of adapting to increased osmolarity whereas cells expressing mutant T58V behaved normally. All mutants tested were retained their ability to bind to ribosomes in vivo. However, mutants T56D, T56G and T56K were under-represented on the ribosome, suggesting that these nonfunctional forms of elongation factor 2 were less capable of competing with wild-type elongation factor 2 in ribosome binding. The presence of nonfunctional but ribosome binding forms of elongation factor 2 did not affect the growth rate of yeast cells also expressing wild-type elongation factor 2.
Collapse
Affiliation(s)
- Galyna Bartish
- School of Life Sciences, Södertörns högskola, Huddinge, Sweden
| | | | | |
Collapse
|
80
|
Abstract
The first total synthesis of (-)-sordarin (1) was accomplished exploiting the following key reactions: (i) Ag(I)-catalyzed oxidative radical cyclization of a cyclopropanol derivative leading to a bicyclo[5.3.0]decan-3-one skeleton; (ii) Pd(0)-catalyzed intramolecular allylation reaction resulting in the entire strained bicyclo[2.2.1]heptan-2-one framework of sordaricin (2); (iii) selective dihydroxylation of terminal alkenes by the combined use of OsO(4) and PhB(OH)(2); and (iv) beta(1,2-cis)-selective glycosidation via a 1,3-anchimeric assistance from a 4-methoxybenzoyl group.
Collapse
Affiliation(s)
- Shunsuke Chiba
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
81
|
Demeshkina N, Hirokawa G, Kaji A, Kaji H. Novel activity of eukaryotic translocase, eEF2: dissociation of the 80S ribosome into subunits with ATP but not with GTP. Nucleic Acids Res 2007; 35:4597-607. [PMID: 17586816 PMCID: PMC1950535 DOI: 10.1093/nar/gkm468] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ribosomes must dissociate into subunits in order to begin protein biosynthesis. The enzymes that catalyze this fundamental process in eukaryotes remained unknown. Here, we demonstrate that eukaryotic translocase, eEF2, which catalyzes peptide elongation in the presence of GTP, dissociates yeast 80S ribosomes into subunits in the presence of ATP but not GTP or other nucleoside triphosphates. Dissociation was detected by light scattering or ultracentrifugation after the split subunits were stabilized. ATP was hydrolyzed during the eEF2-dependent dissociation, while a non-hydrolyzable analog of ATP was inactive in ribosome splitting by eEF2. GTP inhibited not only ATP hydrolysis but also dissociation. Sordarin, a fungal eEF2 inhibitor, averted the splitting but stimulated ATP hydrolysis. Another elongation inhibitor, cycloheximide, also prevented eEF2/ATP-dependent splitting, while the inhibitory effect of fusidic acid on the splitting was nominal. Upon dissociation of the 80S ribosome, eEF2 was found on the subunits. We propose that the dissociation activity of eEF2/ATP plays a role in mobilizing 80S ribosomes for protein synthesis during the shift up of physiological conditions.
Collapse
Affiliation(s)
- Natalia Demeshkina
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Go Hirokawa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akira Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hideko Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- *To whom correspondence should be addressed.+1 215 503 6547+1 215 923 7343
| |
Collapse
|
82
|
Fitzgerald-Hughes DH, Coleman DC, O'Connell BC. Differentially expressed proteins in derivatives of Candida albicans displaying a stable histatin 3-resistant phenotype. Antimicrob Agents Chemother 2007; 51:2793-800. [PMID: 17485506 PMCID: PMC1932542 DOI: 10.1128/aac.00094-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histatin-resistant derivatives of Candida albicans strain 132A, generated by successive exposure to increasing concentrations of histatin 3, were previously reported to be similar to the parent strain in their histatin binding, internalization, oxygen consumption, ATP efflux, and histatin degradation. Proteomic analysis of further histatin-resistant secondary derivatives of this series revealed that 59 proteins were differentially expressed compared to the parental strain. Of these 59 proteins, 3 were absent in histatin-resistant secondary derivatives and 11 were absent in the parent strain. Of the proteins absent in the histatin-resistant derivatives, the most notable was elongation factor 2, a target for the natural antifungal sordarin. Of the proteins absent in the parent strain but present in histatin-resistant derivatives, those identified included isocitrate lyase (Icl1p), fructose biphosphate aldolase (Fba1p), pyruvate decarboxylase (Pdc2p), and ketol-acid reductoisomerase (Ilv5p). The present secondary derivatives showed significantly decreased rates of oxygen consumption and histatin 3-mediated ATP release compared to the parent strain and also showed stability of the histatin-resistant phenotype. A significant (twofold) decrease in transcript levels of the potassium transporter encoded by TRK1, a critical mediator of histatin killing, was found in only one of the secondary histatin-resistant derivatives compared to the parent strain. The sequential exposure of C. albicans to histatin 3 described here resulted in the induction or selection of a phenotype with impaired metabolic function. The results support an important role for metabolic pathways in the histatin resistance mechanism and suggest that there may be several intracellular targets for histatin 3 in C. albicans.
Collapse
Affiliation(s)
- Deirdre H Fitzgerald-Hughes
- Microbiology Research Unit, Division of Oral Biosciences, School of Dental Science and Dublin Dental Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
83
|
Taylor DJ, Nilsson J, Merrill AR, Andersen GR, Nissen P, Frank J. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J 2007; 26:2421-31. [PMID: 17446867 PMCID: PMC1864975 DOI: 10.1038/sj.emboj.7601677] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 03/15/2007] [Indexed: 11/10/2022] Open
Abstract
On the basis of kinetic data on ribosome protein synthesis, the mechanical energy for translocation of the mRNA-tRNA complex is thought to be provided by GTP hydrolysis of an elongation factor (eEF2 in eukaryotes, EF-G in bacteria). We have obtained cryo-EM reconstructions of eukaryotic ribosomes complexed with ADP-ribosylated eEF2 (ADPR-eEF2), before and after GTP hydrolysis, providing a structural basis for analyzing the GTPase-coupled mechanism of translocation. Using the ADP-ribosyl group as a distinct marker, we observe conformational changes of ADPR-eEF2 that are due strictly to GTP hydrolysis. These movements are likely representative of native eEF2 motions in a physiological context and are sufficient to uncouple the mRNA-tRNA complex from two universally conserved bases in the ribosomal decoding center (A1492 and A1493 in Escherichia coli) during translocation. Interpretation of these data provides a detailed two-step model of translocation that begins with the eEF2/EF-G binding-induced ratcheting motion of the small ribosomal subunit. GTP hydrolysis then uncouples the mRNA-tRNA complex from the decoding center so translocation of the mRNA-tRNA moiety may be completed by a head rotation of the small subunit.
Collapse
Affiliation(s)
- Derek J Taylor
- Howard Hughes Medical Institute, Health Research Inc., at the Wadsworth Center, Albany, NY, USA
| | - Jakob Nilsson
- Macromolecular Crystallography, Department of Molecular Biology, University of Aarhus, Århus, Denmark
| | - A Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | - Gregers Rom Andersen
- Macromolecular Crystallography, Department of Molecular Biology, University of Aarhus, Århus, Denmark
| | - Poul Nissen
- Macromolecular Crystallography, Department of Molecular Biology, University of Aarhus, Århus, Denmark
| | - Joachim Frank
- Howard Hughes Medical Institute, Health Research Inc., at the Wadsworth Center, Albany, NY, USA
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA
- Howard Hughes Medical Institute, Health Research Inc., at the Wadsworth Center, Empire State Plaza, Albany, NY, 12201-0509 USA. Tel.: +1 518 474 7002; Fax: +1 518 486 2191; E-mail:
| |
Collapse
|
84
|
Harris GH, Dai P. APPLICATION OF pH-ZONE-REFINING CCC TO THE ISOLATION OF ANTIFUNGAL FERMENTATION PRODUCTS. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-100104378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Guy H. Harris
- a Department of Natural Products Drug Discovery , Merck Research Laboratories , R80Y-360, P.O. Box 2000, Rahway , NJ , 07065 , U.S.A
| | - Ping Dai
- a Department of Natural Products Drug Discovery , Merck Research Laboratories , R80Y-360, P.O. Box 2000, Rahway , NJ , 07065 , U.S.A
| |
Collapse
|
85
|
Alley MRK, Baker SJ, Beutner KR, Plattner J. Recent progress on the topical therapy of onychomycosis. Expert Opin Investig Drugs 2007; 16:157-67. [PMID: 17243936 DOI: 10.1517/13543784.16.2.157] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Onychomycosis is a fungal infection of the fingernails and toenails that results in thickening, discoloration, splitting of the nails and lifting of the nail from the nail bed. The disease is caused by dermatophytes and has a high incidence within the general population, especially among older individuals. Present treatment options include both oral and topical drugs, with oral therapies giving better outcomes; however, neither of these treatment options provides high cure rates that are durable. The difficulty in treating onychomycosis results from the deep-seated nature of the infection within the nail unit (nail plate, nail bed and surrounding tissue) and the inability of drugs to effectively reach all sites. Ongoing drug development activities have focused on novel delivery technologies to facilitate penetration of existing antifungal drugs through the nail plate and on the discovery of inherently penetrable antifungals. AN-2690 represents an oxaborole antifungal that is designed to penetrate the nail plate and is showing promising results in clinical trials.
Collapse
Affiliation(s)
- Michael R K Alley
- Anacor Pharmaceuticals, 1060 East Meadow Circle, Palo Alto, CA 94303, USA
| | | | | | | |
Collapse
|
86
|
Tully TP, Bergum JS, Schwarz SR, Durand SC, Howell JM, Patel RN, Cino PM. Improvement of sordarin production through process optimization: combining traditional approaches with DOE. J Ind Microbiol Biotechnol 2006; 34:193-202. [PMID: 17131104 DOI: 10.1007/s10295-006-0186-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 10/05/2006] [Indexed: 11/29/2022]
Abstract
BMS-353645, also known as sordarin, was of interest based on its activity against pathogenic fungi. The objective of these studies was to provide high quality starting substrate for chemical modification aimed at further improving biological activity, with particular interest in the inhibition of Aspergillus. In the work presented here, Design of Experiments, or DOE, was successfully combined with traditional approaches to significantly improve sordarin yields in fermentation flasks. Overall, yields were increased 25-fold from <100 microg/g to as high as 2,609 microg/g in flasks through the use of various medium and conduction changes supplemented with DOE. The improved process was then successfully scaled to pilot plant tanks with the best batch producing 2,389 microg/g sordarin at the 250-l scale.
Collapse
Affiliation(s)
- Thomas P Tully
- Enzyme Technology, Process Research and Development, Bristol-Myers Squibb Pharmaceutical Research Institute, P. O. Box 191, New Brunswick, NJ 08903, USA.
| | | | | | | | | | | | | |
Collapse
|
87
|
Søe R, Mosley RT, Justice M, Nielsen-Kahn J, Shastry M, Merrill AR, Andersen GR. Sordarin derivatives induce a novel conformation of the yeast ribosome translocation factor eEF2. J Biol Chem 2006; 282:657-66. [PMID: 17082187 DOI: 10.1074/jbc.m607830200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sordarins are fungal specific inhibitors of the translation factor eEF2, which catalyzes the translocation of tRNA and mRNA after peptide bond formation. We have determined the crystal structures of eEF2 in complex with two novel sordarin derivatives. In both structures, the three domains of eEF2 that form the ligand-binding pocket are oriented in a different manner relative to the rest of eEF2 compared with our previous structure of eEF2 in complex with the parent natural product sordarin. Yeast eEF2 is also shown to bind adenylic nucleotides, which can be displaced by sordarin, suggesting that ADP or ATP also bind to the three C-terminal domains of eEF2. Fusidic acid is a universal inhibitor of translation that targets EF-G or eEF2 and is widely used as an antibiotic against Gram-positive bacteria. Based on mutations conferring resistance to fusidic acid, cryo-EM reconstructions, and x-ray structures of eEF2, EF-G, and an EF-G homolog, we suggest that the conformation of EF-G stalled on the 70 S ribosome by fusidic acid is similar to that of eEF2 trapped on the 80 S ribosome by sordarin.
Collapse
Affiliation(s)
- Rikke Søe
- Centre for Structural Biology, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
88
|
Ortiz PA, Ulloque R, Kihara GK, Zheng H, Kinzy TG. Translation elongation factor 2 anticodon mimicry domain mutants affect fidelity and diphtheria toxin resistance. J Biol Chem 2006; 281:32639-48. [PMID: 16950777 DOI: 10.1074/jbc.m607076200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic elongation factor 2 (eEF2) mediates translocation in protein synthesis. The molecular mimicry model proposes that the tip of domain IV mimics the anticodon loop of tRNA. His-699 in this region is post-translationally modified to diphthamide, the target for Corynebacterium diphtheriae and Pseudomonas aeruginosa toxins. ADP-ribosylation by these toxins inhibits eEF2 function causing cell death. Mutagenesis of the tip of domain IV was used to assess both functions. A H694A mutant strain was non-functional, whereas D696A, I698A, and H699N strains conferred conditional growth defects, sensitivity to translation inhibitors, and decreased total translation in vivo. These mutant strains and those lacking diphthamide modification enzymes showed increased -1 frameshifting. The effects are not due to reduced protein levels, ribosome binding, or GTP hydrolysis. Functional eEF2 forms substituted in domain IV confer dominant diphtheria toxin resistance, which correlates with an in vivo effect on translation-linked phenotypes. These results provide a new mechanism in which the translational machinery maintains the accurate production of proteins, establishes a role for the diphthamide modification, and provides evidence of the ability to suppress the lethal effect of a toxin targeted to eEF2.
Collapse
Affiliation(s)
- Pedro A Ortiz
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | | | | | | | | |
Collapse
|
89
|
Liu M, Healy MD, Dougherty BA, Esposito KM, Maurice TC, Mazzucco CE, Bruccoleri RE, Davison DB, Frosco M, Barrett JF, Wang YK. Conserved fungal genes as potential targets for broad-spectrum antifungal drug discovery. EUKARYOTIC CELL 2006; 5:638-49. [PMID: 16607011 PMCID: PMC1459659 DOI: 10.1128/ec.5.4.638-649.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 01/26/2006] [Indexed: 11/20/2022]
Abstract
The discovery of novel classes of antifungal drugs depends to a certain extent on the identification of new, unexplored targets that are essential for growth of fungal pathogens. Likewise, the broad-spectrum capacity of future antifungals requires the target gene(s) to be conserved among key fungal pathogens. Using a genome comparison (or concordance) tool, we identified 240 conserved genes as candidates for potential antifungal targets in 10 fungal genomes. To facilitate the identification of essential genes in Candida albicans, we developed a repressible C. albicans MET3 (CaMET3) promoter system capable of evaluating gene essentiality on a genome-wide scale. The CaMET3 promoter was found to be highly amenable to controlled gene expression, a prerequisite for use in target-based whole-cell screening. When the expression of the known antifungal target C. albicans ERG1 was reduced via down-regulation of the CaMET3 promoter, the CaERG1 conditional mutant strain became hypersensitive, specifically to its inhibitor, terbinafine. Furthermore, parallel screening against a small compound library using the CaERG1 conditional mutant under normal and repressed conditions uncovered several hypersensitive compound hits. This work therefore demonstrates a streamlined process for proceeding from selection and validation of candidate antifungal targets to screening for specific inhibitors.
Collapse
Affiliation(s)
- Mengping Liu
- Bristol-Myers Squibb Company Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, CT 06492, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Basilio A, Justice M, Harris G, Bills G, Collado J, de la Cruz M, Diez MT, Hernandez P, Liberator P, Nielsen kahn J, Pelaez F, Platas G, Schmatz D, Shastry M, Tormo JR, Andersen GR, Vicente F. The discovery of moriniafungin, a novel sordarin derivative produced by Morinia pestalozzioides. Bioorg Med Chem 2006; 14:560-6. [PMID: 16183294 DOI: 10.1016/j.bmc.2005.08.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/15/2005] [Accepted: 08/19/2005] [Indexed: 11/21/2022]
Abstract
A novel sordarin derivative, moriniafungin (1), containing a 2-hydroxysebacic acid residue linked to C-3' of the sordarose residue of sordarin through a 1,3-dioxolan-4-one ring was isolated from the fungus Morinia pestalozzioides. Isolation of moriniafungin employed a highly specific bioassay consisting of a panel of Saccharomyces cerevisiae strains containing chimeric eEF2 for Candida glabrata, Candida krusei, Candida lusitaniae, Crytpococcus neoformans, and Aspergillus fumigatus as well as wild type and human eEF2. Moriniafungin exhibited an MIC of 6 microg/mL versus Candida albicans and IC(50)'s ranging from 0.9 to 70 microg/mL against a panel of clinically relevant Candida strains. Moriniafungin was shown to inhibit in vitro translation in the chimeric S. cerevisae strains at levels consistent with the observed IC(50). Moriniafungin has the broadest antifungal spectrum and most potent activity of any natural sordarin analog identified to date.
Collapse
Affiliation(s)
- A Basilio
- Centro de Investigación Básica, Merck Research Laboratories, Merck, Sharp and Dohme de España, Josefa Valcárcel 38, 28027 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Román E, Nombela C, Pla J. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Mol Cell Biol 2005; 25:10611-27. [PMID: 16287872 PMCID: PMC1291223 DOI: 10.1128/mcb.25.23.10611-10627.2005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Sho1 adaptor protein is an important element of one of the two upstream branches of the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway in Saccharomyces cerevisiae, a signal transduction cascade involved in adaptation to stress. In the present work, we describe its role in the pathogenic yeast Candida albicans by the construction of mutants altered in this gene. We report here that sho1 mutants are sensitive to oxidative stress but that Sho1 has a minor role in the transmission of the phosphorylation signal to the Hog1 MAP kinase in response to oxidative stress, which mainly occurs through a putative Sln1-Ssk1 branch of the HOG pathway. Genetic analysis revealed that double ssk1 sho1 mutants were still able to grow on high-osmolarity media and activate Hog1 in response to this stress, indicating the existence of alternative inputs of the pathway. We also demonstrate that the Cek1 MAP kinase is constitutively active in hog1 and ssk1 mutants, a phenotypic trait that correlates with their resistance to the cell wall inhibitor Congo red, and that Sho1 is essential for the activation of the Cek1 MAP kinase under different conditions that require active cell growth and/or cell wall remodeling, such as the resumption of growth upon exit from the stationary phase. sho1 mutants are also sensitive to certain cell wall interfering compounds (Congo red, calcofluor white), presenting an altered cell wall structure (as shown by the ability to aggregate), and are defective in morphogenesis on different media, such as SLAD and Spider, that stimulate hyphal growth. These results reveal a role for the Sho1 protein in linking oxidative stress, cell wall biogenesis, and morphogenesis in this important human fungal pathogen.
Collapse
Affiliation(s)
- Elvira Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | | | | |
Collapse
|
92
|
Abstract
Comparative analyses of fungal genomes and molecular research on genes associated with fungal viability and virulence has led to the identification of many putative targets for novel antifungal agents. So far the rational approach to antifungal discovery, in which compounds are optimized against an individual target then progressed to efficacy against intact fungi and ultimately to infected humans has delivered no new agents. However, the approach continues to hold promise for the future. This review critically assesses the molecular target-based approach to antifungal discovery, outlines problems and pitfalls inherent in the genomics and target discovery strategies and describes the status of heavily investigated examples of target-based research.
Collapse
Affiliation(s)
- Frank C Odds
- Aberdeen Fungal Group, Institute of Medical Sciences, Department of Molecular and Cell Biology, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|
93
|
Ruge E, Korting HC, Borelli C. Current state of three-dimensional characterisation of antifungal targets and its use for molecular modelling in drug design. Int J Antimicrob Agents 2005; 26:427-41. [PMID: 16289513 DOI: 10.1016/j.ijantimicag.2005.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The alarming rise in life-threatening systemic fungal infections due to the emergence of drug-resistant fungal strains had produced an increased demand for new antimycotics, especially those targeting novel antifungal structures. Drug discovery has developed from screening natural products and chemical synthesis to a modern approach, namely structure-based drug design. Whilst many antifungal agents currently in use were discovered more than 30 years ago, characterisation of various drug targets has only been achieved recently, contributing immensely to understanding the structure-activity relationships of antifungals and their targets. Three-dimensional characterisation has become a well established tool for modern antifungal drug research and should play an important role in investigations for new antifungal agents.
Collapse
Affiliation(s)
- E Ruge
- Department of Dermatology, University of Munich, Frauenlobstr. 9-11, 80337 Munich, Germany.
| | | | | |
Collapse
|
94
|
Santos C, Ballesta JPG. Characterization of the 26S rRNA-binding domain in Saccharomyces cerevisiae ribosomal stalk phosphoprotein P0. Mol Microbiol 2005; 58:217-26. [PMID: 16164560 DOI: 10.1111/j.1365-2958.2005.04816.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stalk is a universal structure of the large ribosomal subunit involved in the function of translation factors. The bacterial stalk is highly stable but its stability is notably reduced in eukaryotes, favouring a translation regulatory activity of this ribosomal domain, which has not been reported in prokaryotes. The RNA-binding protein P0 plays a key role in determining the eukaryotic stalk activities, and characterization of the P0/RNA interaction is essential to understand the evolutionary process. Using a series of Saccharomyces cerevisiae-truncated proteins, a direct involvement of two N-terminal regions, I3-M58 and K81-V121, in the interaction of P0 with the ribosome has been shown. Two other conserved regions, R122-T149 and G162-T182, affect P0 interaction with other stalk components and the sensitivity to sordarin anti-fungals but are not essential for RNA binding. Moreover, P0 and a P0 fragment comprising only the first 121 amino acids show a similar in vitro affinity for the highly conserved 26S rRNA binding site. A protein chimera containing the first 165 amino acids of L10, the P0 bacterial counterpart, is able to complement the absence of P0 and also shows the same P0 RNA binding characteristics. Altogether, the results indicate that the affinity of the stalk RNA-binding protein for its substrate has been highly conserved, and changes in the stability of the interaction of P0 with the ribosome, which are essential for the new eukaryotic functions, result from the evolution of the overall stalk structure.
Collapse
Affiliation(s)
- Cruz Santos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
| | | |
Collapse
|
95
|
Srikantha T, Zhao R, Daniels K, Radke J, Soll DR. Phenotypic switching in Candida glabrata accompanied by changes in expression of genes with deduced functions in copper detoxification and stress. EUKARYOTIC CELL 2005; 4:1434-45. [PMID: 16087748 PMCID: PMC1214528 DOI: 10.1128/ec.4.8.1434-1445.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 05/31/2005] [Indexed: 11/20/2022]
Abstract
Most strains of Candida glabrata switch spontaneously between a number of phenotypes distinguishable by graded brown coloration on agar containing 1 mM CuSO4, a phenomenon referred to as "core switching." C. glabrata also switches spontaneously and reversibly from core phenotypes to an irregular wrinkle (IWr) phenotype, a phenomenon referred to as "irregular wrinkle switching." To identify genes differentially expressed in the core phenotypes white (Wh) and dark brown (DB), a cDNA subtraction strategy was employed. Twenty-three genes were identified as up-regulated in DB, four in Wh, and six in IWr. Up-regulation was verified in two unrelated strains, one a and one alpha strain. The functions of these genes were deduced from the functions of their Saccharomyces cerevisiae orthologs. The majority of genes up-regulated in DB (78%) played deduced roles in copper assimilation, sulfur assimilation, and stress responses. These genes were differentially up-regulated in DB even though the conditions of growth for Wh and DB, including CuSO4 concentration, were identical. Hence, the regulation of these genes, normally regulated by environmental cues, has been usurped by switching, presumably as an adaptation to the challenging host environment. These results are consistent with the suggestion that switching provides colonizing populations with a minority of cells expressing a phenotype that allows them to enrich in response to an environmental challenge, a form of rapid adaptation. However, DB is the most commonly expressed phenotype at sites of host colonization, in the apparent absence of elevated copper levels. Hence, up-regulation of these genes by switching suggests that in some cases they may play roles in colonization and virulence not immediately obvious from the roles played by their orthologs in S. cerevisiae.
Collapse
|
96
|
|
97
|
Wills EA, Redinbo MR, Perfect JR, Poeta MD. New potential targets for antifungal development. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.3.265] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
98
|
Abstract
An enantioconvergent total synthesis of sordaricin (3), the diterpene aglycon of an important class of antifungal compounds, is described. Two approaches were explored, the first of which utilized a possible biogenetic intramolecular [4 + 2] cycloaddition to form the complete carbon skeleton of the target molecule as a single regioisomer 30. A second approach employed a tandem cycloreversion/intramolecular [4 + 2] cycloaddition process to afford not only the desired product 30 but also significant quantities of the undesired regioisomer iso-30. An investigation into the reasons for the difference in regioselectivity between these two reactions revealed the intervention of a cycloreversion/cycloaddition pathway at elevated temperatures leading to the formation of iso-30. Experimental evidence supports the hypothesis that iso-30 is the more thermodynamically stable of the two regioisomers.
Collapse
Affiliation(s)
- Lewis N Mander
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
99
|
Santos C, Rodríguez-Gabriel MA, Remacha M, Ballesta JPG. Ribosomal P0 protein domain involved in selectivity of antifungal sordarin derivatives. Antimicrob Agents Chemother 2004; 48:2930-6. [PMID: 15273103 PMCID: PMC478497 DOI: 10.1128/aac.48.8.2930-2936.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ribosomal stalk protein P0 is involved in the susceptibility to the antifungal sordarin derivatives, as reported for a number of Saccharomyces cerevisiae resistant mutants. Mammals and some lower eukaryotes are naturally resistant to these compounds. It is shown here that expression in S. cerevisiae of the ribosomal protein P0 from Homo sapiens and from other sordarin-resistant organisms results in a decrease in the sensitivity of the cells to an agent of this class. To further characterize the P0 region responsible for inducing sordarin resistance, a series of protein chimeras containing complementary regions of the human and yeast P0 proteins were constructed and expressed in yeast. The chimeras complement the absence of the native yeast P0 except in chimeras containing the human P0 carboxyl-terminal domain. Resistance to sordarins was found to be associated with the presence of an HsP0 amino acid sequence comprising P118 to F138, which unexpectedly led to higher resistance than the presence of the complete human P0. A comparison of the corresponding region in P0 from yeast and sordarin-insensitive organisms, followed by site-directed mutagenesis, indicates that residues in positions 119, 124, and 126 have an important role in determining resistance to sordarins. Moreover, since sordarins block the eukaryotic elongation factor 2 (EF2) function, the P0 region affecting sordarin susceptibility must correspond to EF2-interacting domains of the ribosomal stalk protein, which affects the drug-binding site in the elongation factor.
Collapse
Affiliation(s)
- C Santos
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Canto Blanco, Madrid 28049, Spain
| | | | | | | |
Collapse
|
100
|
|