51
|
Kugaevskaya E, Gureeva T, Timoshenko O, Solovyeva N. The urokinase-type plasminogen activator system and its role in tumor progression. ACTA ACUST UNITED AC 2018; 64:472-486. [DOI: 10.18097/pbmc20186406472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the multistage process of carcinogenesis, the key link in the growth and progression of the tumor is the invasion of malignant cells into normal tissue and their distribution and the degree of destruction of tissues. The most important role in the development of these processes is played by the system of urokinase-type plasminogen activator (uPA system), which consists of several components: serine proteinase – uPA, its receptor – uPAR and its two endogenous inhibitors – PAI-1 and PAI-2. The components of the uPA system are expressed by cancer cells to a greater extent than normal tissue cells. uPA converts plasminogen into broad spectrum, polyfunctional protease plasmin, which, in addition to the regulation of fibrinolysis, can hydrolyze a number of components of the connective tissue matrix (СTM), as well as activate the zymogens of secreted matrix metalloproteinases (MMР) – pro-MMР. MMРs together can hydrolyze all the main components of the СTM, and thus play a key role in the development of invasive processes, as well as to perform regulatory functions by activating and releasing from STM a number of biologically active molecules that are involved in the regulation of the main processes of carcinogenesis. The uPA system promotes tumor progression not only through the proteolytic cascade, but also through uPAR, PAI-1 and PAI-2, which are involved in both the regulation of uPA/uPAR activity and are involved in proliferation, apoptosis, chemotaxis, adhesion, migration and activation of epithelial-mesenchymal transition pathways. All of the above processes are aimed at regulating invasion, metastasis and angiogenesis. The components of the uPA system are used as prognostic and diagnostic markers of many cancers, as well as serve as targets for anticancer therapy.
Collapse
Affiliation(s)
| | - T.A. Gureeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | |
Collapse
|
52
|
Hypoxia-induced reactive oxygen species mediate N-cadherin and SERPINE1 expression, EGFR signalling and motility in MDA-MB-468 breast cancer cells. Sci Rep 2017; 7:15140. [PMID: 29123322 PMCID: PMC5680275 DOI: 10.1038/s41598-017-15474-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
One of the hallmarks of the tumour microenvironment is hypoxia resulting from increased oxygen consumption by proliferative cancer cells and altered vasculature. Hypoxic tension initiates various cellular signals and can drive epithelial to mesenchymal transition (EMT), a process important in cancer progression. In this study, using the antioxidant N-acetylcysteine (NAC), we show that hypoxia-induced reactive oxygen species (ROS) in MDA-MB-468 breast cancer cells, selectively regulate hypoxia-induced increases in N-cadherin and SERPINE1, two proteins involved in cell adhesion. Treatment of cells with NAC also attenuated hypoxia-mediated activation of EGFR, but did not have any effect on hypoxia-mediated induction of HIF1α. Exogenous hydrogen peroxide phenocopied the effects of hypoxia on N-cadherin and SERPINE1 expression and EGFR activation, suggesting its possible involvement in these hypoxia-mediated events. Reflective of their effect on cell adhesion proteins and EGFR (associated with migratory phenotypes), NAC also reduced cell migration under hypoxic conditions, a crucial event in metastasis. Our findings suggest a selective role for redox signalling in the regulation of specific components of the responses to hypoxia and induction of EMT in breast cancer cells. This study provides new evidence supporting the potential of targeting ROS as a therapeutic strategy for the control of breast cancer metastasis.
Collapse
|
53
|
Long SL, Li YK, Xie YJ, Long ZF, Shi JF, Mo ZC. Neurite Outgrowth Inhibitor B Receptor: A Versatile Receptor with Multiple Functions and Actions. DNA Cell Biol 2017; 36:1142-1150. [PMID: 29058484 DOI: 10.1089/dna.2017.3813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Members of the reticulon protein family are predominantly distributed within the endoplasmic reticulum. The neurite outgrowth inhibitor (Nogo) has three subtypes, including Nogo-A (200 kDa), Nogo-B (55 kDa), and Nogo-C (25 kDa). Nogo-A and Nogo-C are potent Nogos that are predominantly expressed in the central nervous system. Nogo-B, the splice variant of reticulon-4, is expressed widely in multiple human organ systems, including the liver, lung, kidney, blood vessels, and inflammatory cells. Moreover, the Nogo-B receptor (NgBR) can interact with Nogo-B and can independently affect nervous system regeneration, the chemotaxis of endothelial cells, proliferation, and apoptosis. In recent years, it has been demonstrated that NgBR plays an important role in human pathophysiological processes, including lipid metabolism, angiogenesis, N-glycosylation, cell apoptosis, chemoresistance in human hepatocellular carcinoma, and epithelial-mesenchymal transition. The pathophysiologic effects of NgBR have garnered increased attention, and the detection and enhancement of NgBR expression may be a novel approach to monitor the development and to improve the prognosis of relevant human clinical diseases.
Collapse
Affiliation(s)
- Shuang-Lian Long
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Yu-Kun Li
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Yuan-Jie Xie
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Zhi-Feng Long
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Jin-Feng Shi
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| | - Zhong-Cheng Mo
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China , Hengyang, China
| |
Collapse
|
54
|
Mishra DK, Srivastava P, Sharma A, Prasad R, Bhuyan SK, Malage R, Kumar P, Yadava PK. Translationally controlled tumor protein (TCTP) is required for TGF-β1 induced epithelial to mesenchymal transition and influences cytoskeletal reorganization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:67-75. [PMID: 28958626 DOI: 10.1016/j.bbamcr.2017.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 12/27/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a programed course of developmental changes resulting in the acquisition of invasiveness and mobility in cells. In cancer, this course is used by epithelial cells to attain movability. Translationally controlled tumor protein (TCTP) has been extensively characterized following the observation on tumor reversion ensuing its depletion. However, the role of TCTP in cancer progression is still elusive. Here, we demonstrate for the first time that TCTP is a target of transforming growth factor-β1 (TGF-β1), a key regulator of EMT in A549 cells. We here present changes in expression patterns of intermediate filament markers (vimentin and cytokeratin 18a) of EMT following TCTP knockdown or over expression. The TCTP over-expression in cancer cells is associated with mesenchymal characters, while downregulation promotes the epithelial markers in the cells. Interaction of TCTP with β-catenin seems to stabilize β-catenin, preparative to its nuclear localization highlighting a role for β-catenin signaling in EMT. Moreover, the induction of urokinase plasminogen activator (uPA) following ectopic expression of TCTP leads to destabilization of ECM. The cells knocked down for TCTP show diminished invasiveness and migration under TGF-β1 treatment. The present results for the first time demonstrate that TGF-β1 dependent TCTP expression is required for EMT in cells.
Collapse
Affiliation(s)
- Deepak Kumar Mishra
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pratibha Srivastava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amod Sharma
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ramraj Prasad
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Soubhagya Kumar Bhuyan
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rahuldev Malage
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod Kumar
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod Kumar Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
55
|
HMGA1 regulates the Plasminogen activation system in the secretome of breast cancer cells. Sci Rep 2017; 7:11768. [PMID: 28924209 PMCID: PMC5603555 DOI: 10.1038/s41598-017-11409-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/31/2017] [Indexed: 01/19/2023] Open
Abstract
Cancer cells secrete proteins that modify the extracellular environment acting as autocrine and paracrine stimulatory factors and have a relevant role in cancer progression. The HMGA1 oncofetal protein has a prominent role in controlling the expression of an articulated set of genes involved in various aspect of cancer cell transformation. However, little is known about its role in influencing the secretome of cancer cells. Performing an iTRAQ LC–MS/MS screening for the identification of secreted proteins, in an inducible model of HMGA1 silencing in breast cancer cells, we found that HMGA1 has a profound impact on cancer cell secretome. We demonstrated that the pool of HMGA1–linked secreted proteins has pro–migratory and pro-invasive stimulatory roles. From an inspection of the HMGA1–dependent secreted factors it turned out that HMGA1 influences the presence in the extra cellular milieu of key components of the Plasminogen activation system (PLAU, SERPINE1, and PLAUR) that has a prominent role in promoting metastasis, and that HMGA1 has a direct role in regulating the transcription of two of them, i.e. PLAU and SERPINE1. The ability of HMGA1 to regulate the plasminogen activator system may constitute an important mechanism by which HMGA1 promotes cancer progression.
Collapse
|
56
|
Kalender Atak Z, Imrichova H, Svetlichnyy D, Hulselmans G, Christiaens V, Reumers J, Ceulemans H, Aerts S. Identification of cis-regulatory mutations generating de novo edges in personalized cancer gene regulatory networks. Genome Med 2017; 9:80. [PMID: 28854983 PMCID: PMC5575942 DOI: 10.1186/s13073-017-0464-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/02/2017] [Indexed: 01/05/2023] Open
Abstract
The identification of functional non-coding mutations is a key challenge in the field of genomics. Here we introduce μ-cisTarget to filter, annotate and prioritize cis-regulatory mutations based on their putative effect on the underlying "personal" gene regulatory network. We validated μ-cisTarget by re-analyzing the TAL1 and LMO1 enhancer mutations in T-ALL, and the TERT promoter mutation in melanoma. Next, we re-sequenced the full genomes of ten cancer cell lines and used matched transcriptome data and motif discovery to identify master regulators with de novo binding sites that result in the up-regulation of nearby oncogenic drivers. μ-cisTarget is available from http://mucistarget.aertslab.org .
Collapse
Affiliation(s)
- Zeynep Kalender Atak
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Hana Imrichova
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Dmitry Svetlichnyy
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Valerie Christiaens
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Joke Reumers
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Hugo Ceulemans
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
57
|
Santibanez JF, Obradović H, Kukolj T, Krstić J. Transforming growth factor-β, matrix metalloproteinases, and urokinase-type plasminogen activator interaction in the cancer epithelial to mesenchymal transition. Dev Dyn 2017; 247:382-395. [PMID: 28722327 DOI: 10.1002/dvdy.24554] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a pleiotropic factor that acts as a tumor suppressor in the early stages, while it exerts tumor promoting activities in advanced stages of cancer development. One of the hallmarks of cancer progression is the capacity of cancer cells to migrate and invade surrounding tissues with subsequent metastasis to different organs. Matrix metalloproteinases (MMPs) together with urokinase-type plasminogen activator (uPA) and its receptor (uPAR), whose main original function described is the proteolytic degradation of the extracellular matrix, play key cellular roles in the enhancement of cell malignancy during cancer progression. TGF-β tightly regulates the expression of several MMPs and uPA/uPAR in cancer cells, which in return can participate in TGF-β activation, thus contributing to tumor malignancy. TGF-β is one of the master factors in the induction of cancer-associated epithelial to mesenchymal transition (EMT), and recently both MMPs and uPA/uPAR have also been shown to be implicated in the cancer-associated EMT process. In this review, we analyze the main molecular mechanisms underlying MMPs and uPA/uPAR regulation by TGF-β, as well as their mutual implication in the development of EMT in cancer cells. Developmental Dynamics 247:382-395, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Jelena Krstić
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia.,Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| |
Collapse
|
58
|
Li X, Wu B, Chen L, Ju Y, Li C, Meng S. Urokinase-type plasminogen activator receptor inhibits apoptosis in triple-negative breast cancer through miR-17/20a suppression of death receptors 4 and 5. Oncotarget 2017; 8:88645-88657. [PMID: 29179464 PMCID: PMC5687634 DOI: 10.18632/oncotarget.20435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/23/2017] [Indexed: 12/19/2022] Open
Abstract
Dissection and understanding of the molecular pathways driving triple-negative breast cancer (TNBC) are urgently needed to develop efficient tailored therapies. Aside from cell invasion and metastasis, the urokinase-type plasminogen activator receptor (uPAR) has been linked to apoptosis resistance in breast tumors. We explored the mechanism of uPAR-disrupted apoptosis in breast cancer. We found that depletion of uPAR by RNAi increases death receptor 4 (DR4) and death receptor 5 (DR5) expression and triggers TRAIL-induced apoptosis in TNBC cells. The microRNAs miR-17-5p and miR-20a inhibit cell apoptosis via suppression of DR4/DR5. We provide evidence that uPAR enhances miR-17-5p/20a expression through upregulation of c-myc. Blocking miR-17-5p/20a with antagomiRNA suppressed the growth of uPAR-overexpressing breast tumor xenografts in mice. These results indicate that uPAR suppresses cell apoptosis by inhibiting the c-myc-miR-17/5p/20a-DR4/DR5 pathway. Therapy directed at uPAR-induced miR-17/20a is a potential option for breast cancer and TNBC.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Bo Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lizhao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ying Ju
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
59
|
Hugo HJ, Gunasinghe NPAD, Hollier BG, Tanaka T, Blick T, Toh A, Hill P, Gilles C, Waltham M, Thompson EW. Epithelial requirement for in vitro proliferation and xenograft growth and metastasis of MDA-MB-468 human breast cancer cells: oncogenic rather than tumor-suppressive role of E-cadherin. Breast Cancer Res 2017; 19:86. [PMID: 28750639 PMCID: PMC5530912 DOI: 10.1186/s13058-017-0880-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is associated with downregulated E-cadherin and frequently with decreased proliferation. Proliferation may be restored in secondary metastases by mesenchymal-to-epithelial transition (MET). We tested whether E-cadherin maintains epithelial proliferation in MDA-MB-468 breast cancer cells, facilitating metastatic colonization in severe combined immunodeficiency (SCID) mice. METHODS EMT/MET markers were assessed in xenograft tumors by immunohistochemistry. Stable E-cadherin manipulation was effected by transfection and verified by Western blotting, immunocytochemistry, and quantitative polymerase chain reaction (qPCR). Effects of E-cadherin manipulation on proliferation and chemomigration were assessed in vitro by performing sulforhodamine B assays and Transwell assays, respectively. Invasion was assessed by Matrigel outgrowth; growth in vivo was assessed in SCID mice; and EMT status was assessed by qPCR. Hypoxic response of E-cadherin knockdown cell lines was assessed by qPCR after hypoxic culture. Repeated measures analysis of variance (ANOVA), one- and two-way ANOVA with posttests, and paired Student's t tests were performed to determine significance (p < 0.05). RESULTS EMT occurred at the necrotic interface of MDA-MB-468 xenografts in regions of hypoxia. Extratumoral deposits (vascular and lymphatic inclusions, local and axillary nodes, and lung metastases) strongly expressed E-cadherin. MDA-MB-468 cells overexpressing E-cadherin were more proliferative and less migratory in vitro, whereas E-cadherin knockdown (short hairpin CDH1 [shCDH1]) cells were more migratory and invasive, less proliferative, and took longer to form tumors. shCDH1-MDA-MB-468 xenografts did not contain the hypoxia-induced necrotic areas observed in wild-type (WT) and shSCR-MDA-MB-468 tumors, but they did not exhibit an impaired hypoxic response in vitro. Although vimentin expression was not stimulated by E-cadherin knockdown in 2D or 3D cultures, xenografts of these cells were globally vimentin-positive rather than exhibiting regional EMT, and they expressed higher SNA1 than their in vitro counterparts. E-cadherin suppression caused a trend toward reduced lung metastasis, whereas E-cadherin overexpression resulted in the reverse trend, consistent with the increased proliferation rate and predominantly epithelial phenotype of MDA-MB-468 cells outside the primary xenograft. This was also originally observed in WT xenografts. Furthermore, we found that patients with breast cancer that expressed E-cadherin were more likely to have metastases. CONCLUSIONS E-cadherin expression promotes growth of primary breast tumors and conceivably the formation of metastases, supporting a role for MET in metastasis. E-cadherin needs to be reevaluated as a tumor suppressor.
Collapse
Affiliation(s)
- H J Hugo
- Invasion and Metastasis Unit, St. Vincent's Institute, Melbourne, VIC, Australia. .,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia. .,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia. .,Translational Research Institute, Woolloongabba, QLD, Australia.
| | - N P A D Gunasinghe
- Invasion and Metastasis Unit, St. Vincent's Institute, Melbourne, VIC, Australia
| | - B G Hollier
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Australian Prostate Cancer Research Centre-Queensland, Brisbane, Australia
| | - T Tanaka
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - T Blick
- Invasion and Metastasis Unit, St. Vincent's Institute, Melbourne, VIC, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - A Toh
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - P Hill
- Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - C Gilles
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA)-Cancer, Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - M Waltham
- Invasion and Metastasis Unit, St. Vincent's Institute, Melbourne, VIC, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - E W Thompson
- Invasion and Metastasis Unit, St. Vincent's Institute, Melbourne, VIC, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,Department of Surgery, University of Melbourne, St. Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
60
|
Magnussen SN, Hadler-Olsen E, Costea DE, Berg E, Jacobsen CC, Mortensen B, Salo T, Martinez-Zubiaurre I, Winberg JO, Uhlin-Hansen L, Svineng G. Cleavage of the urokinase receptor (uPAR) on oral cancer cells: regulation by transforming growth factor - β1 (TGF-β1) and potential effects on migration and invasion. BMC Cancer 2017; 17:350. [PMID: 28526008 PMCID: PMC5438506 DOI: 10.1186/s12885-017-3349-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Urokinase plasminogen activator (uPA) receptor (uPAR) is up-regulated at the invasive tumour front of human oral squamous cell carcinoma (OSCC), indicating a role for uPAR in tumour progression. We previously observed elevated expression of uPAR at the tumour-stroma interface in a mouse model for OSCC, which was associated with increased proteolytic activity. The tumour microenvironment regulated uPAR expression, as well as its glycosylation and cleavage. Both full-length- and cleaved uPAR (uPAR (II-III)) are involved in highly regulated processes such as cell signalling, proliferation, migration, stem cell mobilization and invasion. The aim of the current study was to analyse tumour associated factors and their effect on uPAR cleavage, and the potential implications for cell proliferation, migration and invasion. METHODS Mouse uPAR was stably overexpressed in the mouse OSCC cell line AT84. The ratio of full-length versus cleaved uPAR as analysed by Western blotting and its regulation was assessed by addition of different protease inhibitors and transforming growth factor - β1 (TGF-β1). The role of uPAR cleavage in cell proliferation and migration was analysed using real-time cell analysis and invasion was assessed using the myoma invasion model. RESULTS We found that when uPAR was overexpressed a proportion of the receptor was cleaved, thus the cells presented both full-length uPAR and uPAR (II-III). Cleavage was mainly performed by serine proteases and urokinase plasminogen activator (uPA) in particular. When the OSCC cells were stimulated with TGF-β1, the production of the uPA inhibitor PAI-1 was increased, resulting in a reduction of uPAR cleavage. By inhibiting cleavage of uPAR, cell migration was reduced, and by inhibiting uPA activity, invasion was reduced. We could also show that medium containing soluble uPAR (suPAR), and cleaved soluble uPAR (suPAR (II-III)), induced migration in OSCC cells with low endogenous levels of uPAR. CONCLUSIONS These results show that soluble factors in the tumour microenvironment, such as TGF-β1, PAI-1 and uPA, can influence the ratio of full length and uPAR (II-III) and thereby potentially effect cell migration and invasion. Resolving how uPAR cleavage is controlled is therefore vital for understanding how OSCC progresses and potentially provides new targets for therapy.
Collapse
Affiliation(s)
- Synnove Norvoll Magnussen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.
| | - Elin Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.,Diagnostic Clinic - Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Eli Berg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Cristiane Cavalcanti Jacobsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Bente Mortensen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Tuula Salo
- Cancer and Translational Research Medicine Unit, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital, Oulu, Finland.,Oral and Maxillofacial diseases, Clinicum, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital Helsinki, Helsinki, Finland.,Department of Oral Diagnosis, Oral Pathology Division, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, SP-13414-903, Brazil
| | - Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Jan-Olof Winberg
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Lars Uhlin-Hansen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway.,Diagnostic Clinic - Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Gunbjorg Svineng
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037, Tromsø, Norway
| |
Collapse
|
61
|
Campbell JJ, Husmann A, Hume RD, Watson CJ, Cameron RE. Development of three-dimensional collagen scaffolds with controlled architecture for cell migration studies using breast cancer cell lines. Biomaterials 2017; 114:34-43. [DOI: 10.1016/j.biomaterials.2016.10.048] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022]
|
62
|
Piperigkou Z, Bouris P, Onisto M, Franchi M, Kletsas D, Theocharis AD, Karamanos NK. Estrogen receptor beta modulates breast cancer cells functional properties, signaling and expression of matrix molecules. Matrix Biol 2016; 56:4-23. [DOI: 10.1016/j.matbio.2016.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/08/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023]
|
63
|
Škalamera D, Dahmer-Heath M, Stevenson AJ, Pinto C, Shah ET, Daignault SM, Said NAB, Davis M, Haass NK, Williams ED, Hollier BG, Thompson EW, Gabrielli B, Gonda TJ. Genome-wide gain-of-function screen for genes that induce epithelial-to-mesenchymal transition in breast cancer. Oncotarget 2016; 7:61000-61020. [PMID: 27876705 PMCID: PMC5308632 DOI: 10.18632/oncotarget.11314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/27/2016] [Indexed: 01/08/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a developmental program that has been implicated in progression, metastasis and therapeutic resistance of some carcinomas. To identify genes whose overexpression drives EMT, we screened a lentiviral expression library of 17000 human open reading frames (ORFs) using high-content imaging to quantitate cytoplasmic vimentin. Hits capable of increasing vimentin in the mammary carcinoma-derived cell line MDA-MB-468 were confirmed in the non-tumorigenic breast-epithelial cell line MCF10A. When overexpressed in this model, they increased the rate of cell invasion through Matrigel™, induced mesenchymal marker expression and reduced expression of the epithelial marker E-cadherin. In gene-expression datasets derived from breast cancer patients, the expression of several novel genes correlated with expression of known EMT marker genes, indicating their in vivo relevance. As EMT-associated properties are thought to contribute in several ways to cancer progression, genes identified in this study may represent novel targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Dubravka Škalamera
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Mareike Dahmer-Heath
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Alexander J. Stevenson
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Cletus Pinto
- St Vincent's Institute of Medical Research and University of Melbourne Department of Surgery, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Esha T. Shah
- Australian Prostate Cancer Research Centre-Queensland, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Sheena M. Daignault
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Nur Akmarina B.M. Said
- Monash Institute of Medical Research (now Hudson Institute of Medical Research), Monash University, Melbourne, VIC, Australia
- University of Malaya, Kuala Lumpur, Malaysia
| | - Melissa Davis
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Nikolas K. Haass
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Elizabeth D. Williams
- Australian Prostate Cancer Research Centre-Queensland, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
- Monash Institute of Medical Research (now Hudson Institute of Medical Research), Monash University, Melbourne, VIC, Australia
| | - Brett G. Hollier
- Australian Prostate Cancer Research Centre-Queensland, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Erik W. Thompson
- St Vincent's Institute of Medical Research and University of Melbourne Department of Surgery, St. Vincent's Hospital, Melbourne, VIC, Australia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Brian Gabrielli
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Thomas J. Gonda
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
64
|
Carnero A, Lleonart M. The hypoxic microenvironment: A determinant of cancer stem cell evolution. Bioessays 2016; 38 Suppl 1:S65-74. [DOI: 10.1002/bies.201670911] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Amancio Carnero
- Oncohematology and Genetic Department, Molecular Biology of Cancer Group; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla); Seville Spain
| | - Matilde Lleonart
- Pathology Department, Oncology and Pathology Group; Institut de Recerca Hospital Vall d'Hebron; Barcelona Spain
| |
Collapse
|
65
|
Son HK, Park I, Kim JY, Kim DK, Illeperuma RP, Bae JY, Lee DY, Oh ES, Jung DW, Williams DR, Kim J. A distinct role for interleukin-6 as a major mediator of cellular adjustment to an altered culture condition. J Cell Biochem 2016; 116:2552-62. [PMID: 25939389 PMCID: PMC4832257 DOI: 10.1002/jcb.25200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 12/22/2022]
Abstract
Tissue microenvironment adjusts biological properties of different cells by modulating signaling pathways and cell to cell interactions. This study showed that epithelial–mesenchymal transition (EMT)/ mesenchymal–epithelial transition (MET) can be modulated by altering culture conditions. HPV E6/E7‐transfected immortalized oral keratinocytes (IHOK) cultured in different media displayed reversible EMT/MET accompanied by changes in cell phenotype, proliferation, gene expression at transcriptional, and translational level, and migratory and invasive activities. Cholera toxin, a major supplement to culture medium, was responsible for inducing the morphological and biological changes of IHOK. Cholera toxin per se induced EMT by triggering the secretion of interleukin 6 (IL‐6) from IHOK. We found IL‐6 to be a central molecule that modulates the reversibility of EMT based not only on the mRNA level but also on the level of secretion. Taken together, our results demonstrate that IL‐6, a cytokine whose transcription is activated by alterations in culture conditions, is a key molecule for regulating reversible EMT/MET. This study will contribute to understand one way of cellular adjustment for surviving in unfamiliar conditions. J. Cell. Biochem. 116: 2552–2562, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hwa-Kyung Son
- Department of Dental Hygiene, Division of Health science, Yeungnam University College, Daegu, Korea.,Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Iha Park
- Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Jue Young Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Do Kyeong Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Rasika P Illeperuma
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Sri Lanka
| | - Jung Yoon Bae
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Doo Young Lee
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| | - Eun-Sang Oh
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| | - Darren R Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea
| | - Jin Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Brain Korea 21 Plus Project, Yonsei University, College of Dentistry, Seoul, Korea
| |
Collapse
|
66
|
Thuma F, Heiler S, Schnölzer M, Zöller M. Palmitoylated claudin7 captured in glycolipid-enriched membrane microdomains promotes metastasis via associated transmembrane and cytosolic molecules. Oncotarget 2016; 7:30659-77. [PMID: 27120791 PMCID: PMC5058708 DOI: 10.18632/oncotarget.8928] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/31/2016] [Indexed: 12/13/2022] Open
Abstract
In epithelial cells claudin7 (cld7) is a major component of tight junctions, but is also recovered from glycolipid-enriched membrane microdomains (GEM). In tumor cells, too, cld7 exists in two stages. Only GEM-located cld7, which is palmitoylated, promotes metastasis. Searching for the underlying mechanism(s) revealed the following.The metastatic capacity of the rat pancreatic adenocarcinoma cell line ASML is lost by a knockdown (kd) of cld7 and is not regained by rescuing cld7 with a mutated palmitoylation site (cld7mPalm). ASML-cld7kd and ASML-cld7mPalm cells show reduced motility and invasiveness. This is due to cld7, but not cld7mPalm associating with α6β4, ezrin, uPAR and MMP14, which jointly support motility and invasion. Palmitoylated cld7 also is engaged in drug resistance by repressing Pten, allowing activation of the antiapoptotic PI3K/Akt pathway. An association of cld7mPalm with the major Pten phosphorylating kinases does not restore apoptosis resistance as phosphorylated Pten is not guided towards GEM to compete with non-phosphorylated Pten. The pathway whereby palmitoylated cld7 supports expression of several EMT genes and nuclear translocation of EMT transcription factors remains to be unraveled. An association with Notch, reduced in ASML-cld7mPalm cells, might be the starting point. Finally, GEM-located, palmitoylated cld7 associates with several components of vesicle transport machineries engaged in exosome biogenesis.Taken together, prerequisites for cld7 acting as a cancer-initiating cell marker are GEM location and palmitoylation, which support a multitude of associations and integration into exosomes. The latter suggests palmitoylated cld7 contributing to message transfer via exosomes.
Collapse
Affiliation(s)
- Florian Thuma
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Sarah Heiler
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Martina Schnölzer
- Department of Functional Proteome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| |
Collapse
|
67
|
Stewart TA, Azimi I, Brooks AJ, Thompson EW, Roberts-Thomson SJ, Monteith GR. Janus kinases and Src family kinases in the regulation of EGF-induced vimentin expression in MDA-MB-468 breast cancer cells. Int J Biochem Cell Biol 2016; 76:64-74. [PMID: 27163529 DOI: 10.1016/j.biocel.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/07/2016] [Accepted: 05/06/2016] [Indexed: 12/20/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an important process associated with the metastasis of breast cancer cells. Members of the Janus kinases (JAKs) and Src family kinases (SFKs) are implicated in the regulation of an invasive phenotype in various cancer cell types. Using the pharmacological inhibitors JAK Inhibitor I (a pan-JAK inhibitor) and PP2 we investigated the role of the JAKs and SFKs, respectively, in the regulation of EMT markers in the MDA-MB-468 breast cancer cell line model of epidermal growth factor (EGF)-induced EMT. We identified selective inhibition of EGF induction of the mesenchymal marker vimentin by PP2 and JAK Inhibitor I. The effect of JAK Inhibitor I on vimentin protein induction occurred at a concentration lower than that required to significantly inhibit EGF-mediated signal transducer and activator of transcription 3 (STAT3)-phosphorylation, suggesting involvement of a STAT3-independent mechanism of EGF-induced vimentin regulation by JAKs. Despite our identification of a role for the JAK family in EGF-induced vimentin protein expression, siRNA-mediated silencing of each member of the JAK family was unable to phenocopy pharmacological inhibition, indicating potential redundancy among the JAK family members in this pathway. While SFKs and JAKs do not represent global regulators of the EMT phenotype, our findings have identified a role for members of these signaling pathways in the regulation of EGF-induced vimentin expression in the MDA-MB-468 breast cancer cell line.
Collapse
Affiliation(s)
- Teneale A Stewart
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Iman Azimi
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia; Mater Research, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J Brooks
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia; Australia and Translational Research Institute, Brisbane, QLD, Australia
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia; Mater Research, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
68
|
Zhao LP, Xu TM, Kan MJ, Xiao YC, Cui MH. A novel uPAg-KPI fusion protein inhibits the growth and invasion of human ovarian cancer cells in vitro. Int J Mol Med 2016; 37:1310-6. [PMID: 27035617 PMCID: PMC4829131 DOI: 10.3892/ijmm.2016.2540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/17/2016] [Indexed: 12/19/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA) acts by breaking down the basement membrane and is involved in cell proliferation, migration and invasion. These actions are mediated by binding to the uPA receptor (uPAR) via its growth factor domain (GFD). The present study evaluated the effects of uPAg-KPI, a fusion protein of uPA-GFD and a kunitz protease inhibitor (KPI) domain that is present in the amyloid β-protein precursor. Using SKOV-3 cells, an ovarian cancer cell line, we examined cell viability, migration, invasion and also protein expression. Furthermore, we examined wound healing, and migration and invasion using a Transwell assay. Our data showed that uPAg-KPI treatment reduced the viability of ovarian cancer SKOV-3 cells in both a concentration and time-dependent manner by arresting tumor cells at G1/G0 phase of the cell cycle. The IC50 of uPAg-KPI was 0.5 µg/µl after 48 h treatment. At this concentration, uPAg-KPI also inhibited tumor cell colony formation, wound closure, as well as cell migration and invasion capacity. At the protein level, western blot analysis demonstrated that uPAg-KPI exerted no significant effect on the expression of total extracellular signal-regulated kinase (ERK)1/ERK2 and AKT, whereas it suppressed levels of phosphorylated ERK1/ERK2 and AKT. Thus, we suggest that this novel uPAg-KPI fusion protein reduced cell viability, colony formation, wound healing and the invasive ability of human ovarian cancer SKOV-3 cells in vitro by regulating ERK and AKT signaling. Further studies using other cell lines will confirm these findings.
Collapse
Affiliation(s)
- Li-Ping Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Tian-Min Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Mu-Jie Kan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye-Chen Xiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Man-Hua Cui
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
69
|
Moirangthem A, Bondhopadhyay B, Mukherjee M, Bandyopadhyay A, Mukherjee N, Konar K, Bhattacharya S, Basu A. Simultaneous knockdown of uPA and MMP9 can reduce breast cancer progression by increasing cell-cell adhesion and modulating EMT genes. Sci Rep 2016. [PMID: 26906973 DOI: 10.1038/srep21903%2010.1038/srep21903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In cancer progression, proteolytic enzymes like serine proteases and metalloproteinases degrade the basement membrane enabling the tumor cells to invade the adjacent tissues. Thus, invasion and metastasis are augmented by these enzymes. Simultaneous silencing of uPA and MMP9 in breast cancer cells decreased the wound healing, migratory, invasive and adhesive capacity of the cells. After simultaneous down regulation, cells were seen to be arrested in the cell cycle. There was a remarkable increase in the expression of cell to cell adhesion molecule E-cadherin, and decrease in Vimentin and Snail expression. In addition, there was a significant decrease in the expression of the stem cell marker Oct-4. In the breast tumor samples it has been observed that, tumors, expressing higher level of uPA and MMP9, express less amount of E-cadherin. It has also been observed that few tumors also show, Vimentin positive in the ductal epithelial area. Thus, our model can help for checking the aggressive tumor invasion by blocking of uPA and MMP9. Our present observations also give the concept of the presence of aggressive epithelial cells with mesenchymal nature in the tumor micro-environment, altering the expression of EMT genes.
Collapse
Affiliation(s)
- Anuradha Moirangthem
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Banashree Bondhopadhyay
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Mala Mukherjee
- Department of Pathology, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Arghya Bandyopadhyay
- Department of Pathology, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Narendranath Mukherjee
- Department of Surgery, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Karabi Konar
- Department of Pathology, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Shubham Bhattacharya
- Department of Pathology, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Anupam Basu
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| |
Collapse
|
70
|
Moirangthem A, Bondhopadhyay B, Mukherjee M, Bandyopadhyay A, Mukherjee N, Konar K, Bhattacharya S, Basu A. Simultaneous knockdown of uPA and MMP9 can reduce breast cancer progression by increasing cell-cell adhesion and modulating EMT genes. Sci Rep 2016; 6:21903. [PMID: 26906973 PMCID: PMC4764826 DOI: 10.1038/srep21903] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/28/2016] [Indexed: 11/09/2022] Open
Abstract
In cancer progression, proteolytic enzymes like serine proteases and metalloproteinases degrade the basement membrane enabling the tumor cells to invade the adjacent tissues. Thus, invasion and metastasis are augmented by these enzymes. Simultaneous silencing of uPA and MMP9 in breast cancer cells decreased the wound healing, migratory, invasive and adhesive capacity of the cells. After simultaneous down regulation, cells were seen to be arrested in the cell cycle. There was a remarkable increase in the expression of cell to cell adhesion molecule E–cadherin, and decrease in Vimentin and Snail expression. In addition, there was a significant decrease in the expression of the stem cell marker Oct-4. In the breast tumor samples it has been observed that, tumors, expressing higher level of uPA and MMP9, express less amount of E–cadherin. It has also been observed that few tumors also show, Vimentin positive in the ductal epithelial area. Thus, our model can help for checking the aggressive tumor invasion by blocking of uPA and MMP9. Our present observations also give the concept of the presence of aggressive epithelial cells with mesenchymal nature in the tumor micro-environment, altering the expression of EMT genes.
Collapse
Affiliation(s)
- Anuradha Moirangthem
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Banashree Bondhopadhyay
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Mala Mukherjee
- Department of Pathology, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Arghya Bandyopadhyay
- Department of Pathology, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Narendranath Mukherjee
- Department of Surgery, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Karabi Konar
- Department of Pathology, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Shubham Bhattacharya
- Department of Pathology, Burdwan Medical College and Hospital, BurdwanWest Bengal 713104, India
| | - Anupam Basu
- Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| |
Collapse
|
71
|
Matouk IJ, Halle D, Raveh E, Gilon M, Sorin V, Hochberg A. The role of the oncofetal H19 lncRNA in tumor metastasis: orchestrating the EMT-MET decision. Oncotarget 2016; 7:3748-65. [PMID: 26623562 PMCID: PMC4826167 DOI: 10.18632/oncotarget.6387] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/15/2015] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) genes are emerging as key players in the metastatic cascade. Current evidence indicate that H19 lncRNA and the microRNA(miRNA) miR-675, which is processed from it, play crucial roles in metastasis, through the regulation of critical events specifically the epithelial to mesenchymal (EMT) and the mesenchymal to epithelial transitions (MET). This review summarizes recent mechanistic pathways and tries to put together seemingly conflicting data from different reports under one proposed general scheme underlying the various roles of H19/miR-675 in the metastatic cascade. We propose several approaches to harnessing this knowledge for translational medicine.
Collapse
Affiliation(s)
- Imad J. Matouk
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Sciences, Faculty of Science and Technology, Al-Quds University, Jerusalem, West Bank
| | - David Halle
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eli Raveh
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Gilon
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vladimir Sorin
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avraham Hochberg
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
72
|
Azimi I, Beilby H, Davis FM, Marcial DL, Kenny PA, Thompson EW, Roberts-Thomson SJ, Monteith GR. Altered purinergic receptor-Ca²⁺ signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Mol Oncol 2016; 10:166-78. [PMID: 26433470 PMCID: PMC5528926 DOI: 10.1016/j.molonc.2015.09.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023] Open
Abstract
Hypoxia is a feature of the microenvironment of many cancers and can trigger epithelial-mesenchymal transition (EMT), a process by which cells acquire a more invasive phenotype with enriched survival. A remodeling of adenosine 5'-triphosphate (ATP)-induced Ca(2+) signaling via purinergic receptors is associated with epidermal growth factor (EGF)-induced EMT in MDA-MB-468 breast cancer cells. Here, we assessed ATP-mediated Ca(2+) signaling in a model of hypoxia-induced EMT in MDA-MB-468 cells. Like EGF, hypoxia treatment (1% O2) was also associated with a significant reduction in the sensitivity of MDA-MB-468 cells to ATP (EC50 of 0.5 μM for normoxic cells versus EC50 of 5.8 μM for hypoxic cells). Assessment of mRNA levels of a panel of P2X and P2Y purinergic receptors following hypoxia revealed a change in levels of a suite of purinergic receptors. P2X4, P2X5, P2X7, P2Y1 and P2Y11 mRNAs decreased with hypoxia, whereas P2Y6 mRNA increased. Up-regulation of P2Y6 was a common feature of both growth factor- and hypoxia-induced models of EMT. P2Y6 levels were also significantly increased in basal-like breast tumors compared to other subtypes and breast cancer patients with higher P2Y6 levels showed reduced overall survival rates. P2Y6 siRNA-mediated silencing and the P2Y6 pharmacological inhibitor MRS2578 reduced hypoxia-induced vimentin protein expression in MDA-MB-468 cells. P2Y6 inhibition also reduced the migration of mesenchymal-like MDA-MB-231 breast cancer cells. The up-regulation of P2Y6 appears to be a common feature of the mesenchymal phenotype of breast cancer cells and inhibition of this receptor may represent a novel therapeutic target in breast cancer metastasis.
Collapse
Affiliation(s)
- Iman Azimi
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Hannah Beilby
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Felicity M Davis
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Daneth L Marcial
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Paraic A Kenny
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, WI, USA
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia; University of Melbourne Department of Surgery, St Vincent's Hospital, Fitzroy, Victoria, Australia; St Vincent's Institute, Fitzroy, Victoria, Australia
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
73
|
Su SC, Lin CW, Yang WE, Fan WL, Yang SF. The urokinase-type plasminogen activator (uPA) system as a biomarker and therapeutic target in human malignancies. Expert Opin Ther Targets 2015; 20:551-66. [DOI: 10.1517/14728222.2016.1113260] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
74
|
Urokinase Receptor Promotes Skin Tumor Formation by Preventing Epithelial Cell Activation of Notch1. Cancer Res 2015; 75:4895-909. [DOI: 10.1158/0008-5472.can-15-0378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/28/2015] [Indexed: 11/16/2022]
|
75
|
Liu ZJ, Semenza GL, Zhang HF. Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci B 2015; 16:32-43. [PMID: 25559953 DOI: 10.1631/jzus.b1400221] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulating evidence has shown that the hypoxic microenvironment, which is critical during cancer development, plays a key role in regulating breast cancer progression and metastasis. The effects of hypoxia-inducible factor 1 (HIF-1), a master regulator of the hypoxic response, have been extensively studied during these processes. In this review, we focus on the roles of HIF-1 in regulating breast cancer cell metastasis, specifically its effects on multiple key steps of metastasis, such as epithelial-mesenchymal transition (EMT), invasion, extravasation, and metastatic niche formation. We also discuss the roles of HIF-1-regulated non-coding RNAs in breast cancer metastasis, and therapeutic opportunities for breast cancer through targeting the HIF-1 pathway.
Collapse
Affiliation(s)
- Zhao-Ji Liu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
76
|
Rikardsen OG, Magnussen SN, Svineng G, Hadler-Olsen E, Uhlin-Hansen L, Steigen SE. Plectin as a prognostic marker in non-metastatic oral squamous cell carcinoma. BMC Oral Health 2015; 15:98. [PMID: 26306491 PMCID: PMC4548848 DOI: 10.1186/s12903-015-0084-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/13/2015] [Indexed: 01/12/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is associated with a poor 5-year survival rate. In general, patients diagnosed with small tumors have a fairly good prognosis, but some small tumors have an aggressive behavior leading to early death. There are at present no reliable prognostic biomarkers for oral cancers. Thus, to optimize treatment for the individual patient, there is a need for biomarkers that can predict tumor behavior. Method In the present study the potential prognostic value of plectin was evaluated by a tissue microarray (TMA) based immunohistochemical analysis of primary tumor tissue obtained from a North Norwegian cohort of 115 patients diagnosed with OSCC. The expression of plectin was compared with clinicopathological variables and 5 year survival. Results The statistical analysis revealed that low expression of plectin in the tumor cells predicted a favorable outcome for patients with non-metastatic disease (p = 0.008). Furthermore, the expression of plectin was found to correlate (p = 0.01) with the expression of uPAR, which we have previously found to be a potential prognostic marker for T1N0 tumors. Conclusions Our results indicate that low expression of plectin predicts a favorable outcome for patients with non-metastatic OSCC and the expression level of plectin may therefore be used in the treatment stratification for patients with early stage disease.
Collapse
Affiliation(s)
- Oddveig G Rikardsen
- Department of Otorhinolaryngology, University Hospital of North Norway, Tromsø, Norway. .,Department of Medical Biology - Tumor Biology Research Group, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Synnøve N Magnussen
- Department of Medical Biology - Tumor Biology Research Group, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Gunbjørg Svineng
- Department of Medical Biology - Tumor Biology Research Group, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Elin Hadler-Olsen
- Department of Medical Biology - Tumor Biology Research Group, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Lars Uhlin-Hansen
- Department of Medical Biology - Tumor Biology Research Group, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway. .,Department of Clinical Pathology, University Hospital of North Norway, N-9038, Tromsø, Norway.
| | - Sonja E Steigen
- Department of Medical Biology - Tumor Biology Research Group, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway. .,Department of Clinical Pathology, University Hospital of North Norway, N-9038, Tromsø, Norway.
| |
Collapse
|
77
|
Gonias SL, Hu J. Urokinase receptor and resistance to targeted anticancer agents. Front Pharmacol 2015; 6:154. [PMID: 26283964 PMCID: PMC4515545 DOI: 10.3389/fphar.2015.00154] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022] Open
Abstract
The urokinase receptor (uPAR) is a GPI-anchored membrane protein, which regulates protease activity at the cell surface and, in collaboration with a system of co-receptors, triggers cell-signaling and regulates gene expression within the cell. In normal tissues, uPAR gene expression is limited; however, in cancer, uPAR is frequently over-expressed and the gene may be amplified. Hypoxia, which often develops in tumors, further increases uPAR expression by cancer cells. uPAR-initiated cell-signaling promotes cancer cell migration, invasion, metastasis, epithelial-mesenchymal transition, stem cell-like properties, survival, and release from states of dormancy. Newly emerging data suggest that the pro-survival cell-signaling activity of uPAR may allow cancer cells to "escape" from the cytotoxic effects of targeted anticancer drugs. Herein, we review the molecular properties of uPAR that are responsible for its activity in cancer cells and its ability to counteract the activity of anticancer drugs.
Collapse
Affiliation(s)
- Steven L Gonias
- Department of Pathology, School of Medicine, University of California, San Diego , San Diego, CA, USA
| | - Jingjing Hu
- Department of Pathology, School of Medicine, University of California, San Diego , San Diego, CA, USA
| |
Collapse
|
78
|
Chang J, Wang H, Wang X, Zhao Y, Zhao D, Wang C, Li Y, Yang Z, Lu S, Zeng Q, Zimmerman J, Shi Q, Wang Y, Yang Y. Molecular mechanisms of Polyphyllin I-induced apoptosis and reversal of the epithelial-mesenchymal transition in human osteosarcoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2015; 170:117-127. [PMID: 25978954 DOI: 10.1016/j.jep.2015.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/22/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
Osteosarcoma is a most common highly malignant bone tumor in children and adolescents. Polyphyllin I (PPI) is an ethanol extraction from Paris polyphylla Smith var.yunnanensis (Franch.) Hand.-Mazz, which belongs to antipyretic-detoxicate family and has been used as a natural medicine in the treatment of infectious disease and cancer in China for centuries. The proteasome activity inhibitory and anti-osteosarcoma effects of PPI have not been known. Here we found PPI exhibited a selective inhibitory effect on proteasomal chymotrypsin (CT)-like activity, both in purified human proteasome and in cultured osteosarcoma cellular proteasome, and caused an accumulation of ubiquitinated proteins. PPI also inhibited viability, proliferation, migration, and invasion of MG-63, Saos-2, and U-2 OS osteosarcoma cells and resulted in S phase arrest and apoptosis. Furthermore, we explored the molecular targets involved. Exposure of osteosarcoma cells to PPI caused an inactivation of the intrinsic nuclear factor κB (NF-κB) and activation of unfolded protein response (UPR)/endoplasmic reticulum (ER) stress signaling cascade in osteosarcoma cells, followed by down-regulation of anti-apoptotic proteins, with up-regulation of pro-apoptotic proteins. We also demonstrated down-regulation of c-Myc, Cyclin B1, Cyclin D1, and CDK1, which are involved in the cell cycle and growth. Finally, we identified down-regulation of Vimentin, Snail, Slug, and up-regulation of E-cadherin, which are integral proteins involved in epithelial-mesenchymal transition (EMT). Taken together, our data provide insights into the mechanism underlying the anticancer activity of PPI in human osteosarcoma cells.
Collapse
Affiliation(s)
- Junli Chang
- Department of Orthopedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hongshen Wang
- Department of Orthopedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xianyang Wang
- Department of Orthopedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yongjian Zhao
- Department of Orthopedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Dongfeng Zhao
- Department of Orthopedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chenglong Wang
- Department of Orthopedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yimian Li
- Department of Orthopedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhilie Yang
- Department of Orthopedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Sheng Lu
- Department of Orthopedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qinghua Zeng
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jacquelyn Zimmerman
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qi Shi
- Department of Orthopedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yongjun Wang
- Department of Orthopedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yanping Yang
- Department of Orthopedics & Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
79
|
Song H, Lee AY, Jung H, Choi JH, Roh K, Ha S, Kim KD, Bae KB, Kang MS, Park S, Choi IW, Seo SK, Park S. A8, an anti-uPA agonistic antibody, promotes metastasis of cancer cells via ERK pathway. Monoclon Antib Immunodiagn Immunother 2015; 33:312-8. [PMID: 25357998 DOI: 10.1089/mab.2014.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Urokinase-type plasminogen activator (uPA) and uPA receptor (uPAR) are expressed in many tumors and have been reported to be correlated to protein expression and poor prognosis in malignant tumors. In a previous study, we reported on the selection of human single-chain variable fragment (scFv) A8 specific to uPA from phage-displayed human naïve scFv library. In this study, scFv A8 was converted to minibody form and evaluated for its functional ability on the uPA system involved in cellular signaling and cancer cell metastasis. A8 minibody increased enzyme activity of uPA and enhanced the migration and invasion of HT1080 colon cancer cells in a dose-dependent manner. A8 increased ERK phosphorylation, and enhanced migration was blocked by U0126, but not by LY0294002, SB2203580, and SP600125. A8 minibody also enhanced migration of MDA-MB231 by mediated expressing surface uPA, but not that of MCF-7 non-expressing surface uPA. Taken together, the A8 anti-uPA antibody is a uPA agonistic antibody, enhancing migration and invasion of cancer cells that express uPA via activation of ERK pathway.
Collapse
Affiliation(s)
- Hyunkeun Song
- 1 Department of Microbiology and Immunology, INJE University College of Medicine , Busan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Stimulus-dependent differences in signalling regulate epithelial-mesenchymal plasticity and change the effects of drugs in breast cancer cell lines. Cell Commun Signal 2015; 13:26. [PMID: 25975820 PMCID: PMC4432969 DOI: 10.1186/s12964-015-0106-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/22/2015] [Indexed: 12/18/2022] Open
Abstract
Introduction The normal process of epithelial mesenchymal transition (EMT) is subverted by carcinoma cells to facilitate metastatic spread. Cancer cells rarely undergo a full conversion to the mesenchymal phenotype, and instead adopt positions along the epithelial-mesenchymal axis, a propensity we refer to as epithelial mesenchymal plasticity (EMP). EMP is associated with increased risk of metastasis in breast cancer and consequent poor prognosis. Drivers towards the mesenchymal state in malignant cells include growth factor stimulation or exposure to hypoxic conditions. Methods We have examined EMP in two cell line models of breast cancer: the PMC42 system (PMC42-ET and PMC42-LA sublines) and MDA-MB-468 cells. Transition to a mesenchymal phenotype was induced across all three cell lines using epidermal growth factor (EGF) stimulation, and in MDA-MB-468 cells by hypoxia. We used RNA sequencing to identify gene expression changes that occur as cells transition to a more-mesenchymal phenotype, and identified the cell signalling pathways regulated across these experimental systems. We then used inhibitors to modulate signalling through these pathways, verifying the conclusions of our transcriptomic analysis. Results We found that EGF and hypoxia both drive MDA-MB-468 cells to phenotypically similar mesenchymal states. Comparing the transcriptional response to EGF and hypoxia, we have identified differences in the cellular signalling pathways that mediate, and are influenced by, EMT. Significant differences were observed for a number of important cellular signalling components previously implicated in EMT, such as HBEGF and VEGFA. We have shown that EGF- and hypoxia-induced transitions respond differently to treatment with chemical inhibitors (presented individually and in combinations) in these breast cancer cells. Unexpectedly, MDA-MB-468 cells grown under hypoxic growth conditions became even more mesenchymal following exposure to certain kinase inhibitors that prevent growth-factor induced EMT, including the mTOR inhibitor everolimus and the AKT1/2/3 inhibitor AZD5363. Conclusions While resulting in a common phenotype, EGF and hypoxia induced subtly different signalling systems in breast cancer cells. Our findings have important implications for the use of kinase inhibitor-based therapeutic interventions in breast cancers, where these heterogeneous signalling landscapes will influence the therapeutic response. Electronic supplementary material The online version of this article (doi:10.1186/s12964-015-0106-x) contains supplementary material, which is available to authorized users.
Collapse
|
81
|
Wang Q, Wang Y, Zhang Y, Zhang Y, Xiao W. Involvement of urokinase in cigarette smoke extract-induced epithelial-mesenchymal transition in human small airway epithelial cells. J Transl Med 2015; 95:469-79. [PMID: 25706093 DOI: 10.1038/labinvest.2015.33] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/23/2014] [Accepted: 12/05/2014] [Indexed: 01/04/2023] Open
Abstract
Urokinase-type plasminogen activator (uPA) augments inflammation and tissue remodeling during lung injury and repair. The uPA expression in small airway epithelium of chronic obstructive pulmonary disease (COPD) increases. Epithelial-mesenchymal transition (EMT) is important in the small airway fibrosis of COPD. This study shows the uPA regulation in cigarette smoke extract (CSE)-induced EMT in human small airway epithelial cell lines (HSAEpiCs). uPA is overexpressed in the small airway epithelium of COPD patients and CSE-treated cell lines. Furthermore, uPA expression correlated with vimentin expression in the small airway epithelium of COPD patients. uPA inhibition blocks CSE-induced EMT by reversing E-cadherin and α-catenin expression and retarding the induction of N-cadherin and vimentin, resulting in reduction in migration. uPA overexpression in HSAEpiC cells also promotes EMT and migration. EMT is partly reversed in uPA-overexpressing HSAEpiC cells through the silencing expression of uPA receptor. In conclusion, this study provides new insights into the contribution of uPA upregulation to EMT associated with small airway remodeling in COPD.
Collapse
Affiliation(s)
- Qin Wang
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Yunshan Wang
- 1] Department of Anatomy, Shandong University School of Medicine, Jinan, China [2] School of Ocean, Shandong University, Weihai, China
| | - Yi Zhang
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Yuke Zhang
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Wei Xiao
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
82
|
Tizioto PC, Coutinho LL, Decker JE, Schnabel RD, Rosa KO, Oliveira PSN, Souza MM, Mourão GB, Tullio RR, Chaves AS, Lanna DPD, Zerlotini-Neto A, Mudadu MA, Taylor JF, Regitano LCA. Global liver gene expression differences in Nelore steers with divergent residual feed intake phenotypes. BMC Genomics 2015; 16:242. [PMID: 25887532 PMCID: PMC4381482 DOI: 10.1186/s12864-015-1464-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/13/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Efficiency of feed utilization is important for animal production because it can reduce greenhouse gas emissions and improve industry profitability. However, the genetic basis of feed utilization in livestock remains poorly understood. Recent developments in molecular genetics, such as platforms for genome-wide genotyping and sequencing, provide an opportunity to identify genes and pathways that influence production traits. It is known that transcriptional networks influence feed efficiency-related traits such as growth and energy balance. This study sought to identify differentially expressed genes in animals genetically divergent for Residual Feed Intake (RFI), using RNA sequencing methodology (RNA-seq) to obtain information from genome-wide expression profiles in the liver tissues of Nelore cattle. RESULTS Differential gene expression analysis between high Residual Feed Intake (HRFI, inefficient) and low Residual Feed Intake (LRFI, efficient) groups was performed to provide insights into the molecular mechanisms that underlie feed efficiency-related traits in beef cattle. A total of 112 annotated genes were identified as being differentially expressed between animals with divergent RFI phenotypes. These genes are involved in ion transport and metal ion binding; act as membrane or transmembrane proteins; and belong to gene clusters that are likely related to the transport and catalysis of molecules through the cell membrane and essential mechanisms of nutrient absorption. Genes with functions in cellular signaling, growth and proliferation, cell death and survival were also differentially expressed. Among the over-represented pathways were drug or xenobiotic metabolism, complement and coagulation cascades, NRF2-mediated oxidative stress, melatonin degradation and glutathione metabolism. CONCLUSIONS Our data provide new insights and perspectives on the genetic basis of feed efficiency in cattle. Some previously identified mechanisms were supported and new pathways controlling feed efficiency in Nelore cattle were discovered. We potentially identified genes and pathways that play key roles in hepatic metabolic adaptations to oxidative stress such as those involved in antioxidant mechanisms. These results improve our understanding of the metabolic mechanisms underlying feed efficiency in beef cattle and will help develop strategies for selection towards the desired phenotype.
Collapse
Affiliation(s)
- Polyana C Tizioto
- Embrapa Southeast Livestock, São Carlos, SP, Brazil. .,Division of Animal Sciences, University of Missouri Columbia, Columbia, MO, USA.
| | - Luiz L Coutinho
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil.
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri Columbia, Columbia, MO, USA.
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri Columbia, Columbia, MO, USA.
| | - Kamila O Rosa
- Department of Animal Science, State University of Sao Paulo, Jaboticabal, SP, Brazil.
| | - Priscila S N Oliveira
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, SP, Brazil.
| | - Marcela M Souza
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, SP, Brazil.
| | - Gerson B Mourão
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil.
| | | | - Amália S Chaves
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil.
| | - Dante P D Lanna
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil.
| | | | | | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri Columbia, Columbia, MO, USA.
| | | |
Collapse
|
83
|
The Regulatory Role of MicroRNAs in EMT and Cancer. JOURNAL OF ONCOLOGY 2015; 2015:865816. [PMID: 25883654 PMCID: PMC4389820 DOI: 10.1155/2015/865816] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/09/2014] [Indexed: 02/07/2023]
Abstract
The epithelial to mesenchymal transition (EMT) is a powerful process in tumor invasion, metastasis, and tumorigenesis and describes the molecular reprogramming and phenotypic changes that are characterized by a transition from polarized immotile epithelial cells to motile mesenchymal cells. It is now well known that miRNAs are important regulators of malignant transformation and metastasis. The aberrant expression of the miR-200 family in cancer and its involvement in the initiation and progression of malignant transformation has been well demonstrated. The metastasis suppressive role of the miR-200 members is strongly associated with a pathologic EMT. This review describes the most recent advances regarding the influence of miRNAs in EMT and the control they exert in major signaling pathways in various cancers. The ability of the autocrine TGF-β/ZEB/miR-200 signaling regulatory network to control cell plasticity between the epithelial and mesenchymal state is further discussed. Various miRNAs are reported to directly target EMT transcription factors and components of the cell architecture, as well as miRNAs that are able to reverse the EMT process by targeting the Notch and Wnt signaling pathways. The link between cancer stem cells and EMT is also reported and the most recent developments regarding clinical trials that are currently using anti-miRNA constructs are further discussed.
Collapse
|
84
|
Su B, Su J, He H, Wu Y, Xia H, Zeng X, Dai W, Ai X, Ling H, Jiang H, Su Q. Identification of potential targets for diallyl disulfide in human gastric cancer MGC-803 cells using proteomics approaches. Oncol Rep 2015; 33:2484-94. [PMID: 25812569 DOI: 10.3892/or.2015.3859] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/26/2015] [Indexed: 11/05/2022] Open
Abstract
Diallyl disulfide (DADS) is characterized as an effective agent for the prevention and therapy of cancer, however, mechanisms regarding its anticancer effects are not fully clarified. In the present study, we compared the protein expression profile of gastric cancer MGC-803 cells subjected to DADS treatment with that of untreated control cells to explore potential molecules regulated by DADS. Using proteomic approaches, we identified 23 proteins showing statistically significant differences in expression, including 9 upregulated and 14 downregulated proteins. RT-PCR and western blot analysis confirmed that retinoid-related orphan nuclear receptor α (RORα) and nM23 were increased by DADS, whereas LIM kinase-1 (LIMK1), urokinase-type plasminogen activator receptor (uPAR) and cyclin-dependent kinase-1 (CDK1) were decreased. DADS treatment and knockdown of uPAR caused suppression of ERK/Fra-1 pathway, downregulation of urokinase-type plasminogen activator (uPA), matrix metalloproteinase-9 (MMP-9) and vimentin, and upregulation of tissue inhibitor of metalloproteinase-3 (TIMP-3) and E-cadherin, concomitant with inhibition of cell migration and invasion. Moreover, knockdown of uPAR potentiated the effects of DADS on MGC-803 cells. These data demonstrate that downregulation of uPAR may partially be responsible for DADS-induced inhibition of ERK/Fra-1 pathway, as well as cell migration and invasion. Thus, the discovery of DADS-induced differential expression proteins is conducive to reveal unknown mechanisms of DADS anti-gastric cancer.
Collapse
Affiliation(s)
- Bo Su
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Su
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui He
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Youhua Wu
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong Xia
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xi Zeng
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wenxiang Dai
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaohong Ai
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui Ling
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hao Jiang
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qi Su
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
85
|
Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biol 2015; 43:42-60. [PMID: 25728938 DOI: 10.1016/j.matbio.2015.02.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 12/29/2022]
Abstract
The 17β-estradiol (E2)/estrogen receptor alpha (ERα) signaling pathway is one of the most important pathways in hormone-dependent breast cancer. E2 plays pivotal roles in cancer cell growth, survival, and architecture as well as in gene expression regulatory mechanisms. In this study, we established stably transfected MCF-7 cells by knocking down the ERα gene (designated as MCF-7/SP10+ cells), using specific shRNA lentiviral particles, and compared them with the control cells (MCF-7/c). Interestingly, ERα silencing in MCF-7 cells strongly induced cellular phenotypic changes accompanied by significant changes in gene and protein expression of several markers typical of epithelial to mesenchymal transition (EMT). Notably, these cells exhibited enhanced cell proliferation, migration and invasion. Moreover, ERα suppression strongly affected the gene and protein expression of EGFR and HER2 receptor tyrosine kinases, and various extracellular matrix (ECM) effectors, including matrix metalloproteinases and their endogenous inhibitors (MMPs/TIMPs) and components of the plasminogen activation system. The action caused by E2 in MCF-7/c cells in the expression of HER2, MT1-MMP, MMP1, MMP9, uPA, tPA, and PAI-1 was abolished in MCF-7/SP10+ cells lacking ERα. These data suggested a regulatory role for the E2/ERα pathway in respect to the composition and activity of the extracellular proteolytic molecular network. Notably, loss of ERα promoted breast cancer cell migration and invasion by inducing changes in the expression levels of certain matrix macromolecules (especially uPA, tPA, PAI-1) through the EGFR-ERK signaling pathway. In conclusion, loss of ERα in breast cancer cells results in a potent EMT characterized by striking changes in the expression profile of specific matrix macromolecules highlighting the potential nodal role of matrix effectors in breast cancer endocrine resistance.
Collapse
|
86
|
Emerging roles of exosomes during epithelial-mesenchymal transition and cancer progression. Semin Cell Dev Biol 2015; 40:60-71. [PMID: 25721809 DOI: 10.1016/j.semcdb.2015.02.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/02/2015] [Accepted: 02/18/2015] [Indexed: 02/08/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a highly conserved process defined by the loss of epithelial characteristics, and acquisition of the mesenchymal phenotype. In addition to its central role in development, EMT has been implicated as a cellular process during tumourigenesis which facilitates tumour cell invasion and metastasis. The EMT process has been largely defined by signal transduction networks and transcriptional factors that activate mesenchymal-associated gene expression. Knowledge of secretome components that influence EMT including secreted proteins/peptides and membrane-derived extracellular vesicles (EVs) (i.e., exosomes) has emerged. Here we review EV cargo associated with inducing the hallmarks of EMT and cancer progression, modulators of cell transformation, invasion/migration, angiogenesis, and components involved in establishing the metastatic niche.
Collapse
|
87
|
Laurenzana A, Biagioni A, Bianchini F, Peppicelli S, Chillà A, Margheri F, Luciani C, Pimpinelli N, Del Rosso M, Calorini L, Fibbi G. Inhibition of uPAR-TGFβ crosstalk blocks MSC-dependent EMT in melanoma cells. J Mol Med (Berl) 2015; 93:783-94. [PMID: 25694039 DOI: 10.1007/s00109-015-1266-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 12/26/2022]
Abstract
UNLABELLED The capacity of cancer cells to undergo epithelial-to-mesenchymal transition (EMT) is now considered a hallmark of tumor progression, and it is known that interactions between cancer cells and mesenchymal stem cells (MSCs) of tumor microenvironment may promote this program. Herein, we demonstrate that MSC-conditioned medium (MSC-CM) is a potent inducer of EMT in melanoma cells. The EMT profile acquired by MSC-CM-exposed melanoma cells is characterized by an enhanced level of mesenchymal markers, including TGFβ/TGFβ-receptors system upregulation, by increased invasiveness and uPAR expression, and in vivo tumor growth. Silencing TGFβ in MSC is found to abrogate ability of MSC to promote EMT characteristics in melanoma cells, together with uPAR expression, and this finding is strengthened using an antagonist peptide of TGFβRIII, the so-called P17. Finally, we demonstrate that the uPAR antisense oligonucleotide (uPAR aODN) may inhibit EMT of melanoma cells either stimulated by exogenous TGFβ or MSC-CM. Thus, uPAR upregulation in melanoma cells exposed to MSC-medium drives TGFβ-mediated EMT. On the whole, TGFβ/uPAR dangerous liaison in cancer cell/MSC interactions may disclose a new strategy to abrogate melanoma progression. KEY MESSAGE Mesenchymal stem cell (MSC)-conditioned medium induces EMT-like profile in melanoma. MSC-derived TGFβ promotes uPAR and TGFβ/TGFβ-receptor upregulation in melanoma. TGFβ gene silencing in MSCs downregulates uPAR expression and EMT in melanoma. uPAR downregulation prevents MSC-induced EMT-like profile in melanoma cells. Inhibition of the dangerous TGFβ/uPAR relationship might abrogate melanoma progression.
Collapse
Affiliation(s)
- Anna Laurenzana
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
LeBeau AM, Sevillano N, Markham K, Winter MB, Murphy ST, Hostetter DR, West J, Lowman H, Craik CS, VanBrocklin HF. Imaging active urokinase plasminogen activator in prostate cancer. Cancer Res 2015; 75:1225-35. [PMID: 25672980 DOI: 10.1158/0008-5472.can-14-2185] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/09/2015] [Indexed: 11/16/2022]
Abstract
The increased proteolytic activity of membrane-bound and secreted proteases on the surface of cancer cells and in the transformed stroma is a common characteristic of aggressive metastatic prostate cancer. We describe here the development of an active site-specific probe for detecting a secreted peritumoral protease expressed by cancer cells and the surrounding tumor microenvironment. Using a human fragment antigen-binding phage display library, we identified a human antibody termed U33 that selectively inhibited the active form of the protease urokinase plasminogen activator (uPA, PLAU). In the full-length immunoglobulin form, U33 IgG labeled with near-infrared fluorophores or radionuclides allowed us to noninvasively detect active uPA in prostate cancer xenograft models using optical and single-photon emission computed tomography imaging modalities. U33 IgG labeled with (111)In had a remarkable tumor uptake of 43.2% injected dose per gram (%ID/g) 72 hours after tail vein injection of the radiolabeled probe in subcutaneous xenografts. In addition, U33 was able to image active uPA in small soft-tissue and osseous metastatic lesions using a cardiac dissemination prostate cancer model that recapitulated metastatic human cancer. The favorable imaging properties were the direct result of U33 IgG internalization through an uPA receptor-mediated mechanism in which U33 mimicked the function of the endogenous inhibitor of uPA to gain entry into the cancer cell. Overall, our imaging probe targets a prostate cancer-associated protease, through a unique mechanism, allowing for the noninvasive preclinical imaging of prostate cancer lesions.
Collapse
Affiliation(s)
- Aaron M LeBeau
- Center for Molecular and Functional Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California.
| | - Natalia Sevillano
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Kate Markham
- CytomX Therapeutics, Inc., South San Francisco, California
| | - Michael B Winter
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Stephanie T Murphy
- Center for Molecular and Functional Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | | | - James West
- CytomX Therapeutics, Inc., South San Francisco, California
| | - Henry Lowman
- CytomX Therapeutics, Inc., South San Francisco, California
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Henry F VanBrocklin
- Center for Molecular and Functional Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
89
|
Pulkoski-Gross A, Zheng XE, Kim D, Cathcart J, Cao J. Epithelial to Mesenchymal Transition (EMT) and Intestinal Tumorigenesis. INTESTINAL TUMORIGENESIS 2015:309-364. [DOI: 10.1007/978-3-319-19986-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
90
|
In vivo anti-metastatic effects of uPAR retargeted measles virus in syngeneic and xenograft models of mammary cancer. Breast Cancer Res Treat 2014; 149:99-108. [PMID: 25519042 DOI: 10.1007/s10549-014-3236-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 02/07/2023]
Abstract
The urokinase receptor (uPAR) plays a critical role in breast cancer (BC) progression and metastases and is a validated target for novel therapies. The current study investigates the effects of MV-uPA, an oncolytic measles virus fully retargeted against uPAR in syngeneic and xenograft BC metastases models. In vitro replication and cytotoxicity of MVs retargeted against human (MV-h-uPA) or mouse (MV-m-uPA) uPAR were assessed in human and murine cancer and non-cancer mammary epithelial cells. The in vivo effects of species-specific uPAR retargeted MVs were assessed in syngeneic and xenograft models of experimental metastases, established by intravenous administration of luciferase expressing 4T1 or MDA-MD-231 cells. Metastases progression was assessed by in vivo bioluminescence imaging. Tumor targeting was evaluated by qRT-PCR of MV-N, rescue of viable viral particles, and immunostaining of MV particles in lungs from tumor bearing mice. In vitro, MV-h-uPA and MV-m-uPA selectively infected, replicated, and induced cytotoxicity in cancer compared to non-cancer cells in a species-specific manner. In vivo, MV-m-uPA delayed 4T1 lung metastases progression and prolonged survival. These effects were associated with identification of viable viral particles, viral RNA, and detection of MV-N by immunostaining from lung tissues in treated mice. In the human MDA-MB-231 metastases model, intravenous administration of MV-h-uPA markedly inhibited metastases progression and significantly improved survival, compared to controls. No significant treatment-related toxicity was observed in treated mice. The above preclinical findings strongly suggest that uPAR retargeted measles virotherapy is a novel and feasible systemic therapy strategy against metastatic breast cancer.
Collapse
|
91
|
Hu J, Muller KA, Furnari FB, Cavenee WK, VandenBerg SR, Gonias SL. Neutralizing the EGF receptor in glioblastoma cells stimulates cell migration by activating uPAR-initiated cell signaling. Oncogene 2014; 34:4078-88. [PMID: 25347738 PMCID: PMC4411189 DOI: 10.1038/onc.2014.336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/03/2014] [Accepted: 09/14/2014] [Indexed: 12/13/2022]
Abstract
In glioblastoma (GBM), the EGF receptor (EGFR) and Src family kinases (SFKs) contribute to an aggressive phenotype. EGFR may be targeted therapeutically; however, resistance to EGFR-targeting drugs such as Erlotinib and Gefitinib develops quickly. In many GBMs, a truncated form of the EGFR (EGFRvIII) is expressed. Although EGFRvIII is constitutively active and promotes cancer progression, its activity is attenuated compared with EGF-ligated wild-type EGFR, suggesting that EGFRvIII may function together with other signaling receptors in cancer cells to induce an aggressive phenotype. In this study, we demonstrate that in EGFRvIII-expressing GBM cells, the urokinase receptor (uPAR) functions as a major activator of SFKs, controlling phosphorylation of downstream targets, such as p130Cas and Tyr-845 in the EGFR in vitro and in vivo. When EGFRvIII expression in GBM cells was neutralized, either genetically or by treating the cells with Gefitinib, paradoxically, the cells demonstrated increased cell migration. The increase in cell migration was explained by a compensatory increase in expression of urokinase-type plasminogen activator, which activates uPAR-dependent cell signaling. GBM cells that were selected for their ability to grow in vivo in the absence of EGFRvIII also demonstrated increased cell migration, due to activation of the uPAR signaling system. The increase in GBM cell migration, induced by genetic or pharmacologic targeting of the EGFR, was blocked by Dasatinib, highlighting the central role of SFKs in uPAR-promoted cell migration. These results suggest that compensatory activation of uPAR-dependent cell signaling, in GBM cells treated with targeted therapeutics, may adversely affect the course of the disease by promoting cell migration, which may be associated with tumor progression.
Collapse
Affiliation(s)
- J Hu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - K A Muller
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - F B Furnari
- 1] Department of Pathology, University of California San Diego, La Jolla, CA, USA [2] The Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - W K Cavenee
- 1] The Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA [2] Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - S R VandenBerg
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - S L Gonias
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
92
|
Zhao B, Xu B, Hu W, Song C, Wang F, Liu Z, Ye M, Zou H, Miao QR. Comprehensive proteome quantification reveals NgBR as a new regulator for epithelial-mesenchymal transition of breast tumor cells. J Proteomics 2014; 112:38-52. [PMID: 25173099 DOI: 10.1016/j.jprot.2014.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/22/2014] [Accepted: 08/04/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED Nogo-B receptor (NgBR) is a type I receptor and specifically binds to ligand Nogo-B. Our previous work has shown that NgBR is highly expressed in human breast invasive ductal carcinoma. Here, comprehensive proteome quantification was performed to examine the alteration of protein expression profile in MDA-MB-231 breast tumor cells after knocking down NgBR using lentivirus-mediated shRNA approach. Among a total of 1771 proteins feasibly quantified, 994 proteins were quantified in two biological replicates with RSD <50%. There are 122 proteins significantly down-regulated in NgBR knockdown MDA-MB-231 breast tumor cells, such as vimentin and S100A4, well-known markers for mesenchymal cells, and CD44, a stemness indicator. The decrease of vimentin, S100A4 and CD44 protein expression levels was further confirmed by Western blot analysis. MDA-MB-231 cells are typical breast invasive ductal carcinoma cells showing mesenchymal phenotype. Cell morphology analysis demonstrates NgBR knockdown in MDA-MB-231 cells results in reversibility of epithelial-mesenchymal transition (EMT), which is one of the major mechanisms involved in breast cancer metastasis. Furthermore, we demonstrated that NgBR knockdown in MCF-7 cells significantly prevented the TGF-β-induced EMT process as determined by the morphology change, and staining of E-cadherin intercellular junction as well as the decreased expression of vimentin. BIOLOGICAL SIGNIFICANCE Our previous publication showed that NgBR is highly expressed in human breast invasive ductal carcinoma. However, the roles of NgBR and NgBR-mediated signaling pathway in breast tumor cells are still unclear. Here, we not only demonstrated that the quantitative proteomics analysis is a powerful tool to investigate the global biological function of NgBR, but also revealed that NgBR is involved in the transition of breast epithelial cells to mesenchymal stem cells, which is one of the major mechanisms involved in breast cancer metastasis. These findings provide new insights for understanding the roles of NgBR in regulating breast epithelial cell transform during the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Baofeng Zhao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Bo Xu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wenquan Hu
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Chunxia Song
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Fangjun Wang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhong Liu
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hanfa Zou
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Qing R Miao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
93
|
Nowrin K, Sohal SS, Peterson G, Patel R, Walters EH. Epithelial-mesenchymal transition as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and cancer. Expert Rev Respir Med 2014; 8:547-59. [PMID: 25113142 DOI: 10.1586/17476348.2014.948853] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex condition, frequently with a mix of airway and lung parenchymal damage. However, the earliest changes are in the small airways, where most of the airflow limitation occurs. The pathology of small airway damage seems to be wall fibrosis and obliteration, but the whole airway is involved in a 'field effect'. Our novel observations on active epithelial-mesenchymal transition (EMT) in the airways of smokers, particularly in those with COPD, are changing the understanding of this airway pathology and the aetiology of COPD. EMT involves a cascade of regulatory changes that destabilise the epithelium with a motile and mesenchymal epithelial cell phenotype emerging. One important manifestation of EMT activity involves up-regulation of specific key transcription factors (TFs), such as Smads, Twist, and β-catenin. Such TFs can be used as EMT biomarkers, in recognisable patterns reflecting the potential major drivers of the process; for example, TGFβ, Wnt, and integrin-linked kinase systems. Thus, understanding the relative changes in TF activity during EMT may provide rich information on the mechanisms driving this whole process, and how they may change over time and with therapy. We have sought to review the current literature on EMT and the relative expression of specific TF activity, to define the networks likely to be involved in a similar process in the airways of patients with smoking-related COPD.
Collapse
Affiliation(s)
- Kaosia Nowrin
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, Hobart, Australia
| | | | | | | | | |
Collapse
|
94
|
O'Kane D, Jackson MV, Kissenpfennig A, Spence S, Damkat-Thomas L, Tolland JP, Smyth AE, Denton CP, Stuart Elborn J, McAuley DF, O'Kane CM. SMAD inhibition attenuates epithelial to mesenchymal transition by primary keratinocytesin vitro. Exp Dermatol 2014; 23:497-503. [DOI: 10.1111/exd.12452] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Donal O'Kane
- Centre For Infection and Immunity; Queen's University Belfast; Belfast UK
| | - Megan V. Jackson
- Centre For Infection and Immunity; Queen's University Belfast; Belfast UK
| | | | - Shaun Spence
- Centre For Infection and Immunity; Queen's University Belfast; Belfast UK
| | | | | | | | - Christopher P. Denton
- Centre for Rheumatology and Connective Tissue Disease; University College London; London UK
| | - J. Stuart Elborn
- Centre For Infection and Immunity; Queen's University Belfast; Belfast UK
| | - Daniel F. McAuley
- Centre For Infection and Immunity; Queen's University Belfast; Belfast UK
| | - Cecilia M. O'Kane
- Centre For Infection and Immunity; Queen's University Belfast; Belfast UK
| |
Collapse
|
95
|
Nam H, Kim JH, Kim JW, Seo BM, Park JC, Kim JW, Lee G. Establishment of Hertwig's epithelial root sheath/epithelial rests of Malassez cell line from human periodontium. Mol Cells 2014; 37:562-7. [PMID: 25081036 PMCID: PMC4132309 DOI: 10.14348/molcells.2014.0161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 11/27/2022] Open
Abstract
Human Hertwig's epithelial root sheath/epithelial rests of Malassez (HERS/ERM) cells are epithelial remnants of teeth residing in the periodontium. Although the functional roles of HERS/ERM cells have yet to be elucidated, they are a unique epithelial cell population in adult teeth and are reported to have stem cell characteristics. Therefore, HERS/ERM cells might play a role as an epithelial component for the repair or regeneration of dental hard tissues; however, they are very rare population in periodontium and the primary isolation of them is considered to be difficult. To overcome these problems, we immortalized primary HERS/ERM cells isolated from human periodontium using SV40 large T antigen (SV40 LT) and performed a characterization of the immortalized cell line. Primary HERS/ERM cells could not be maintained for more than 6 passages; however, immortalized HERS/ERM cells were maintained for more than 20 passages. There were no differences in the morphological and immunophenotypic characteristics of HERS/ERM cells and immortalized HERS/ERM cells. The expression of epithelial stem cell and embryonic stem cell markers was maintained in immortalized HERS/ERM cells. Moreover, immortalized HERS/ERM cells could acquire mesenchymal phenotypes through the epithelial-mesenchymal transition via TGF-β1. In conclusion, we established an immortalized human HERS/ERM cell line with SV40 LT and expect this cell line to contribute to the understanding of the functional roles of HERS/ERM cells and the tissue engineering of teeth.
Collapse
Affiliation(s)
- Hyun Nam
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Korea
- Present address: Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul 135-710, Korea
| | - Ji-Hye Kim
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Jae-Won Kim
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Byoung-Moo Seo
- Department of Oral and Maxillofacial Surgery, Seoul National University, Seoul 110-749, Korea
| | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology, Seoul National University, Seoul 110-749, Korea
| | - Jung-Wook Kim
- Department of Pediatric Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Gene Lee
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| |
Collapse
|
96
|
Bao YN, Cao X, Luo DH, Sun R, Peng LX, Wang L, Yan YP, Zheng LS, Xie P, Cao Y, Liang YY, Zheng FJ, Huang BJ, Xiang YQ, Lv X, Chen QY, Chen MY, Huang PY, Guo L, Mai HQ, Guo X, Zeng YX, Qian CN. Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis. Cell Cycle 2014; 13:1958-69. [PMID: 24763226 DOI: 10.4161/cc.28921] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignancies in southern China and Southeast Asia, with the highest metastasis rate among head and neck cancers. The mechanisms underlying NPC progression remain poorly understood. Genome-wide expression profiling on 18 NPC vs. 18 noncancerous nasopharyngeal tissues together with GeneGo pathway analysis and expression verification in NPC cells and tissues revealed a potential role of urokinase-type plasminogen activator receptor (uPAR) in NPC progression, which has not been investigated in NPC. We then observed that uPAR expression is increased in poorly differentiated, highly metastatic NPC cells compared with lowly metastatic cells or differentiated NPC cells. In vitro studies demonstrated that uPAR regulates NPC cell growth, colony formation, migration, and invasion and promotes the epithelial-mesenchymal transition (EMT). Additional tumor xenograft and spontaneous metastasis experiments revealed that uPAR promotes NPC cell growth and metastasis in vivo. The JAK-STAT pathway is involved in uPAR-regulated signaling in NPC cells as determined by immunoblotting. Moreover, uPAR-mediated growth and motility is partially abolished upon treatment with the Jak1/Jak2 inhibitor INCB018424. We suppressed uPA expression in uPAR-overexpressing NPC cells and found that uPAR-mediated cellular growth and motility is not exclusively dependent on uPA. In summary, uPAR is a significant regulator of NPC progression and could serve as a promising therapeutic target.
Collapse
Affiliation(s)
- Ying-Na Bao
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China; Department of Radiotherapy; Affiliated Hospital of Inner Mongolia Medical University; Hohhot City, Inner Mongolia Autonomous Region, China
| | - Xue Cao
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Dong-Hua Luo
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Rui Sun
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Lin Wang
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | | | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Ping Xie
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Yun Cao
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Ying-Ying Liang
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Fang-Jing Zheng
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Yan-Qun Xiang
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Xing Lv
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Qiu-Yan Chen
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Pei-Yu Huang
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Ling Guo
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Hai-Qiang Mai
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Xiang Guo
- Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China; Sun Yat-sen University Cancer Center; Guangzhou, China; Department of Nasopharyngeal Carcinoma; Sun Yat-sen University Cancer Center; Guangzhou, China
| |
Collapse
|
97
|
Matouk IJ, Raveh E, Abu-lail R, Mezan S, Gilon M, Gershtain E, Birman T, Gallula J, Schneider T, Barkali M, Richler C, Fellig Y, Sorin V, Hubert A, Hochberg A, Czerniak A. Oncofetal H19 RNA promotes tumor metastasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1414-26. [PMID: 24703882 DOI: 10.1016/j.bbamcr.2014.03.023] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/15/2014] [Accepted: 03/26/2014] [Indexed: 12/12/2022]
Abstract
The oncofetal H19 gene transcribes a long non-coding RNA(lncRNA) that is essential for tumor growth. Here we found that numerous established inducers of epithelial to mesenchymal transition(EMT) also induced H19/miR-675 expression. Both TGF-β and hypoxia concomitantly induced H19 and miR-675 with the induction of EMT markers. We identified the PI3K/AKT pathway mediating the inductions of Slug, H19 RNA and miR-675 in response to TGF-β treatment, while Slug induction depended on H19 RNA. In the EMT induced multidrug resistance model, H19 level was also induced. In a mouse breast cancer model, H19 expression was tightly correlated with metastatic potential. In patients, we detected high H19 expression in all common metastatic sites tested, regardless of tumor primary origin. H19 RNA suppressed the expression of E-cadherin protein. H19 up-regulated Slug expression concomitant with the suppression of E-cadherin protein through a mechanism that involved miR-675. Slug also up-regulated H19 expression and activated its promoter. Altogether, these results may support the existence of a positive feedback loop between Slug and H19/miR-675, that regulates E-cadherin expression. H19 RNA enhanced the invasive potential of cancer cells in vitro and enhanced tumor metastasis in vivo. Additionally, H19 knockdown attenuated the scattering and tumorigenic effects of HGF/SF. Our results present novel mechanistic insights into a critical role for H19 RNA in tumor progression and indicate a previously unknown link between H19/miR-675, Slug and E-cadherin in the regulation of cancer cell EMT programs.
Collapse
Affiliation(s)
- Imad J Matouk
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Eli Raveh
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rasha Abu-lail
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shaul Mezan
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michal Gilon
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eitan Gershtain
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tatiana Birman
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jennifer Gallula
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tamar Schneider
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Moshe Barkali
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Carmelit Richler
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yakov Fellig
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem 91240, Israel
| | - Vladimir Sorin
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ayala Hubert
- Department of Oncology, Hadassah University Hospital, Jerusalem 91000, Israel
| | - Abraham Hochberg
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Abraham Czerniak
- Department of HPB Surgery "A", Sheba Medical Center, Tel Hashomer, Tel Aviv 52621, Israel
| |
Collapse
|
98
|
Wu X, Cai M, Ji F, Lou LM. The impact of COX-2 on invasion of osteosarcoma cell and its mechanism of regulation. Cancer Cell Int 2014; 14:27. [PMID: 24666548 PMCID: PMC3998378 DOI: 10.1186/1475-2867-14-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 03/18/2014] [Indexed: 11/17/2022] Open
Abstract
Background Recently, cyclooxygenase-2 (COX-2) has become an important new target in the field of tumor metastasis. However, the relationship between COX-2 gene expression and the behavior of osteosarcoma metastasis is largely unknown. The study is to investigate how antisense oligonucleotides (ODNs) of COX-2 inhibit the invasion of human osteosarcoma cell line OS-732 and their mechanism of regulation. Methods A COX-2 antisense oligonucleotide was designed, synthesized, and transfected into OS-732 human osteosarcoma cells. RT-PCR and western blotting were performed to determine the transfection efficiency. A modified Boyden-transwell assay was used to measure the inhibition rate of tumor cell invasion. In OS-732 cells transfected with COX-2 antisense ODNs, RT-PCR was used to examine the mRNA expression of urokinase-type plasminogen activator (uPA) and that of its receptor, uPAR. Results Both the mRNA and protein expression levels of COX-2 were significantly reduced when cells were transfected with COX-2 antisense ODNs, which significantly reduced the invasive ability of OS-732 cells in a dose-dependent manner. The expression levels of uPA and uPAR were also significantly reduced (p < 0.01). Conclusion COX-2 antisense ODNs significantly inhibited the invasion of OS-732 cells, primarily by decreasing the mRNA expression of uPA and uPAR.
Collapse
Affiliation(s)
- Xing Wu
- Department of Orthopaedics, Shanghai tenth People's Hospital, Tongji University School of Medicine, No.301 Middle Yanchang Road, Shanghai 200072, China
| | - Ming Cai
- Department of Orthopaedics, Shanghai tenth People's Hospital, Tongji University School of Medicine, No.301 Middle Yanchang Road, Shanghai 200072, China
| | - Fang Ji
- Department of Orthopaedics, Shanghai tenth People's Hospital, Tongji University School of Medicine, No.301 Middle Yanchang Road, Shanghai 200072, China
| | - Lie-Ming Lou
- Department of Orthopaedics, Shanghai tenth People's Hospital, Tongji University School of Medicine, No.301 Middle Yanchang Road, Shanghai 200072, China
| |
Collapse
|
99
|
Mekkawy AH, Pourgholami MH, Morris DL. Involvement of urokinase-type plasminogen activator system in cancer: an overview. Med Res Rev 2014; 34:918-56. [PMID: 24549574 DOI: 10.1002/med.21308] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Currently, there are several studies supporting the role of urokinase-type plasminogen activator (uPA) system in cancer. The association of uPA to its receptor triggers the conversion of plasminogen into plasmin. This process is regulated by the uPA inhibitors (PAI-1 and PAI-2). Plasmin promotes degradation of basement membrane and extracellular matrix (ECM) components as well as activation of ECM latent matrix metalloproteases. Degradation and remodeling of the surrounding tissues is crucial in the early steps of tumor progression by facilitating expansion of the tumor mass, release of tumor growth factors, activation of cytokines as well as induction of tumor cell proliferation, migration, and invasion. Hence, many tumors showed a correlation between uPA system component levels and tumor aggressiveness and survival. Therefore, this review summarizes the structure of the uPA system, its contribution to cancer progression, and the clinical relevance of uPA family members in cancer diagnosis. In addition, the review evaluates the significance of uPA system in the development of cancer-targeted therapies.
Collapse
Affiliation(s)
- Ahmed H Mekkawy
- Department of Surgery, Cancer Research Laboratories, St. George Hospital, University of New South Wales, Sydney, NSW 2217, Australia
| | | | | |
Collapse
|
100
|
Huang C, Xie D, Cui J, Li Q, Gao Y, Xie K. FOXM1c promotes pancreatic cancer epithelial-to-mesenchymal transition and metastasis via upregulation of expression of the urokinase plasminogen activator system. Clin Cancer Res 2014; 20:1477-88. [PMID: 24452790 DOI: 10.1158/1078-0432.ccr-13-2311] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE The transcription factor Forkhead box M1 (FOXM1) plays important roles in the formation of several human tumors, including pancreatic cancer. However, the molecular mechanisms by which FOXM1 promotes pancreatic tumor epithelial-to-mesenchymal transition (EMT) and metastasis are unknown. EXPERIMENTAL DESIGN The effect of altered expression of FOXM1 and urokinase-type plasminogen activator receptor (uPAR) on EMT and metastasis was examined using animal models of pancreatic cancer. Also, the underlying mechanisms of altered pancreatic cancer invasion and metastasis were analyzed using in vitro molecular biology assays. Finally, the clinical relevance of dysregulated FOXM1/uPAR signaling was investigated using pancreatic tumor and normal pancreatic tissue specimens. RESULTS Pancreatic tumor specimens and cell lines predominantly overexpressed the FOXM1 isoform FOXM1c. FOXM1c overexpression promoted EMT in and migration, invasion, and metastasis of pancreatic cancer cells, whereas downregulation of FOXM1 expression inhibited these processes. The level of FOXM1 expression correlated directly with that of uPAR expression in pancreatic cancer cell lines and tumor specimens. Moreover, FOXM1c overexpression upregulated uPAR expression in pancreatic cancer cells, whereas inhibition of FOXM1 expression suppressed uPAR expression. Furthermore, transfection of FOXM1c into pancreatic cancer cells directly activated the uPAR promoter, whereas inhibition of FOXM1 expression by FOXM1 siRNA suppressed its activation in these cells. Finally, we identified an FOXM1-binding site in the uPAR promoter and demonstrated that FOXM1 protein bound directly to it. Deletion mutation of this site significantly attenuated uPAR promoter activity. CONCLUSIONS Our findings demonstrated that FOXM1c contributes to pancreatic cancer development and progression by enhancing uPAR gene transcription, and thus, tumor EMT and metastasis.
Collapse
Affiliation(s)
- Chen Huang
- Authors' Affiliations: Shanghai Key Laboratory of Pancreatic Diseases Research; Departments of General Surgery and Oncology, Shanghai Jiaotong University Affiliated First People's Hospital; Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China; and Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | |
Collapse
|