51
|
Martinez-Sanchez A, Murphy CL. miR-1247 functions by targeting cartilage transcription factor SOX9. J Biol Chem 2013; 288:30802-14. [PMID: 24014021 DOI: 10.1074/jbc.m113.496729] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
microRNAs are a large and essential class of gene regulators that play key roles in development, homeostasis, and disease. They are necessary for normal skeletal development, and their expression is altered in arthritis. However, the specific role of individual microRNAs is only beginning to be unraveled. Using microRNA expression profiling in healthy human articular cartilage cells (chondrocytes), we identified miR-1247 expression as highly correlated with that of the differentiated cell phenotype. Transcribed from the DLK1-DIO3 locus, the function of miR-1247 is completely unknown. In mice its expression level was relatively high in cartilage tissue, and correlated with cartilage-associated microRNA miR-675 across a range of 15 different mouse tissues. To further probe miR-1247 function, overexpression and inhibition studies were performed in isolated human chondrocytes. Modulation of miR-1247 was found to exert profound phenotypic effects altering expression levels of cartilage master regulator transcription factor SOX9. SOX9 is essential for cartilage development and subsequent function throughout life, and mutations in this gene result in severe dwarfism. Putative miR-1247 binding sites were further investigated using luciferase reporter assays, which indicated binding of miR-1247 to a highly conserved region in the coding sequence of SOX9 but not in its 3'-UTR. Interestingly, depletion of SOX9 in human chondrocytes resulted in increased levels of the mature, processed microRNA, suggesting a negative feedback loop between miR-1247 and its target SOX9.
Collapse
Affiliation(s)
- Aida Martinez-Sanchez
- From the Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, United Kingdom
| | | |
Collapse
|
52
|
MicroRNA-9 regulates survival of chondroblasts and cartilage integrity by targeting protogenin. Cell Commun Signal 2013; 11:66. [PMID: 24007463 PMCID: PMC3848287 DOI: 10.1186/1478-811x-11-66] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 08/23/2013] [Indexed: 12/03/2022] Open
Abstract
Background Studies have shown the roles of miR-9 and its validated target, protogenin (PRTG) in the differentiation of chondroblasts to chondrocyte and in the pathogenesis of osteoarthritis (OA). We hypothesized that miR-9 plays a distinct role in endochondral ossification and OA pathogenesis and the present study was undertaken to identify this role. In the studies, chondroblasts were isolated from limb bud of chick and mouse embryos and articular chondrocytes were isolated from rabbit and human cartilage. Osteoarthritic chondrocytes were isolated from cartilage from patients undergoing total knee replacement. Using these cells, we analyzed the changes in the expression of genes and proteins, tested the expression level of miR-9, and applied a target validation system. We also performed functional study of miR-9 and PRTG. Results With the progression of chondrogenesis, decreased miR-9 level was observed at the time of numerous apoptotic cell deaths. And chondrocytes isolated from normal human articular cartilage expressed miR-9, and this expression was significantly reduced in OA chondrocytes, especially decreased its expression in parallel with the degree of cartilage degradation. Over-expression of PRTG induced the activation of caspase-3 signaling and increased apoptosis. However, the co-treatment with the miR-9 precursor or PRTG-specific siRNA blocked this apoptotic signaling. Conclusion This study shows that PRTG is regulated by miR-9, plays an inhibitory action on survival of chondroblasts and articular chondrocytes during chondrogenesis and OA pathogenesis.
Collapse
|
53
|
Brini AT, Niada S, Lambertini E, Torreggiani E, Arrigoni E, Lisignoli G, Piva R. Chondrogenic potential of human mesenchymal stem cells and expression of Slug transcription factor. J Tissue Eng Regen Med 2013; 9:740-4. [DOI: 10.1002/term.1772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Anna T. Brini
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Italy
- IRCCS Galeazzi Orthopaedic Institute; Milan Italy
| | - Stefania Niada
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Italy
- IRCCS Galeazzi Orthopaedic Institute; Milan Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences; University of Ferrara; Italy
| | - Elena Torreggiani
- Department of Biomedical and Specialty Surgical Sciences; University of Ferrara; Italy
| | - Elena Arrigoni
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Italy
| | - Gina Lisignoli
- SC Laboratory of Immunorheumatology and Tissue Regeneration; Rizzoli Orthopaedic Institute; Bologna Italy
- RAMSES laboratory; Rizzoli Orthopaedic Institute; Bologna Italy
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences; University of Ferrara; Italy
| |
Collapse
|
54
|
Abstract
MicroRNAs (miRNAs) are a class of ~22 nucleotide-long small noncoding RNAs that target mRNAs for translational repression or degradation. miRNAs target mRNAs by base-pairing with the 3'-untranslated regions (3'-UTRs) of mRNAs. miRNAs are present in various species, from animals to plants. In this review, we summarize the identification, expression, and function of miRNAs in four important farm animal species: cattle, chicken, pig and sheep. In each of these species, hundreds of miRNAs have been identified through homology search, small RNA cloning and next generation sequencing. Real-time RT-PCR and microarray experiments reveal that many miRNAs are expressed in a tissue-specific or spatiotemporal-specific manner in farm animals. Limited functional studies suggest that miRNAs have important roles in muscle development and hypertrophy, adipose tissue growth, oocyte maturation and early embryonic development in farm animals. Increasing evidence suggests that single-nucleotide polymorphisms in miRNA target sites or miRNA gene promoters may contribute to variation in production or health traits in farm animals.
Collapse
|
55
|
Calloni R, Cordero EAA, Henriques JAP, Bonatto D. Reviewing and updating the major molecular markers for stem cells. Stem Cells Dev 2013; 22:1455-76. [PMID: 23336433 PMCID: PMC3629778 DOI: 10.1089/scd.2012.0637] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stem cells (SC) are able to self-renew and to differentiate into many types of committed cells, making SCs interesting for cellular therapy. However, the pool of SCs in vivo and in vitro consists of a mix of cells at several stages of differentiation, making it difficult to obtain a homogeneous population of SCs for research. Therefore, it is important to isolate and characterize unambiguous molecular markers that can be applied to SCs. Here, we review classical and new candidate molecular markers that have been established to show a molecular profile for human embryonic stem cells (hESCs), mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs). The commonly cited markers for embryonic ESCs are Nanog, Oct-4, Sox-2, Rex-1, Dnmt3b, Lin-28, Tdgf1, FoxD3, Tert, Utf-1, Gal, Cx43, Gdf3, Gtcm1, Terf1, Terf2, Lefty A, and Lefty B. MSCs are primarily identified by the expression of CD13, CD29, CD44, CD49e, CD54, CD71, CD73, CD90, CD105, CD106, CD166, and HLA-ABC and lack CD14, CD31, CD34, CD45, CD62E, CD62L, CD62P, and HLA-DR expression. HSCs are mainly isolated based on the expression of CD34, but the combination of this marker with CD133 and CD90, together with a lack of CD38 and other lineage markers, provides the most homogeneous pool of SCs. Here, we present new and alternative markers for SCs, along with microRNA profiles, for these cells.
Collapse
Affiliation(s)
- Raquel Calloni
- Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | | | | |
Collapse
|
56
|
Nassirpour R, Mehta PP, Baxi SM, Yin MJ. miR-221 promotes tumorigenesis in human triple negative breast cancer cells. PLoS One 2013; 8:e62170. [PMID: 23637992 PMCID: PMC3634767 DOI: 10.1371/journal.pone.0062170] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/18/2013] [Indexed: 12/13/2022] Open
Abstract
Patients with triple-negative breast cancers (TNBCs) typically have a poor prognosis. TNBCs are characterized by their resistance to apoptosis, aggressive cellular proliferation, migration and invasion, and currently lack molecular markers and effective targeted therapy. Recently, miR-221/miR-222 have been shown to regulate ERα expression and ERα-mediated signaling in luminal breast cancer cells, and also to promote EMT in TNBCs. In this study, we characterized the role of miR-221 in a panel of TNBCs as compared to other breast cancer types. miR-221 knockdown not only blocked cell cycle progression, induced cell apoptosis, and inhibited cell proliferation in-vitro but it also inhibited in-vivo tumor growth by targeting p27(kip1). Furthermore, miR-221 knockdown inhibited cell migration and invasion by altering E-cadherin expression, and its regulatory transcription factors Snail and Slug in human TNBC cell lines. Therefore, miR-221 functions as an oncogene and is essential in regulating tumorigenesis in TNBCs both in vitro as well as in vivo.
Collapse
Affiliation(s)
- Rounak Nassirpour
- Oncology Research, Pfizer Worldwide Research and Development, San Diego, California, United States of America
| | - Pramod P. Mehta
- Oncology Research, Pfizer Worldwide Research and Development, San Diego, California, United States of America
| | - Sangita M. Baxi
- Oncology Research, Pfizer Worldwide Research and Development, San Diego, California, United States of America
| | - Min-Jean Yin
- Oncology Research, Pfizer Worldwide Research and Development, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
57
|
Hong E, Reddi AH. Dedifferentiation and Redifferentiation of Articular Chondrocytes from Surface and Middle Zones: Changes in MicroRNAs-221/-222, -140, and -143/145 Expression. Tissue Eng Part A 2013. [DOI: 10.1089/ten.tea.2012.0055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Eunmee Hong
- Department of Orthopaedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California, Davis, Sacramento, California
| | - A. Hari Reddi
- Department of Orthopaedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California, Davis, Sacramento, California
| |
Collapse
|
58
|
Sulfuretin-induced miR-30C selectively downregulates cyclin D1 and D2 and triggers cell death in human cancer cell lines. Biochem Biophys Res Commun 2013; 431:572-8. [PMID: 23318178 DOI: 10.1016/j.bbrc.2013.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 12/17/2022]
Abstract
Sulfuretin (3',4',6'-trihydroxyaurone), one of the key flavonoids isolated from Rhus verniciflua, is known to suppress inflammation and oxidative stress. However, the anti-cancer properties of sulfuretin as well as its mechanism of action remain poorly understood. Here, we show that the expression of miR-30C is markedly enhanced in sulfuretin-stimulated cells, consequently promoting apoptosis and cell cycle arrest in human cancer cell lines. The transient transfection of pre-miR-30C resulted in greater than 70% growth inhibition in PC-3 cells and provided strong evidence that miR-30C selectively suppresses the expression of cyclin D1 and D2, but not cyclin D3. Target validation analysis revealed that 3'-UTR of cyclin D2 is a direct target of miR-30C, whereas suppression by miR-30C of cyclin D1 may occur through indirect mRNA regulation. In addition, silencing miR-30C expression partially reversed sulfuretin-induced cell death. Taken together, our data suggest that miR-30C, a tumor suppressor miRNA, contributes to anti-cancer properties of sulfuretin by negatively regulating cyclin D1 and D2, providing important implications of sulfuretin and miR-30C for the therapeutic intervention of human cancers.
Collapse
|
59
|
Song J, Kim D, Chun CH, Jin EJ. MicroRNA-375, a new regulator of cadherin-7, suppresses the migration of chondrogenic progenitors. Cell Signal 2012. [PMID: 23178988 DOI: 10.1016/j.cellsig.2012.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Endochondral bone formation requires a complex interplay among immature mesenchymal progenitor cells to form the cartilaginous anlagen, involving migration, aggregation and condensation. Even though condensation of chondrogenic progenitors is an essential step in this process, the mechanism(s) by which this occurs has not been well studied. Here, we investigated the involvement of microRNAs (miRNAs) in this process and found that the expression of miR-375 decreased upon chondrogenic differentiation of limb mesenchymal cells. Blockade of miR-375 via peptide nucleic acid (PNA)-based antisense oligonucleotides (ASOs) increased the migration of chondrogenic progenitors, the formation of precartilage condensations and the expression level of cadherin-7. Furthermore, miR-375 was necessary and sufficient to down-regulate cell migration through negative regulation of cadherin-7 by the direct interaction with 3' UTR of cadherin-7. In addition, miR-375 is also involved in the cell migration and precartilage condensation mediated by p38MAPK, a positive signaling in the chondrogenic differentiation. Collectively, our results suggest that miR-375 negatively modulates cell migration and subsequent precartilage condensation by targeting cadherin-7.
Collapse
Affiliation(s)
- Jinsoo Song
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk, 570-749, Republic of Korea
| | | | | | | |
Collapse
|
60
|
Rutnam ZJ, Wight TN, Yang BB. miRNAs regulate expression and function of extracellular matrix molecules. Matrix Biol 2012; 32:74-85. [PMID: 23159731 DOI: 10.1016/j.matbio.2012.11.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a family of small non-coding RNA molecules that are made up of 18-25 nucleotides that function in post-transcriptional gene regulation. The expression of miRNAs is highly conserved and essential in regulating many cellular processes including formation, maintenance and the remodelling of the extracellular matrix (ECM). In this review, we examine different ECM molecules and the miRNAs involved in regulating their abundance and how these changes influence cell phenotype. For example, miRNAs and their target messenger RNAs (mRNAs) are involved in cell adhesion, by regulating the synthesis and turnover of key ECM adhesion molecules and their receptors including cadherins, integrins and other non-integrin ECM receptors. Other miRNAs regulate the abundance of cytokines and growth factors which in turn stimulate cells to synthesize and secrete specialized ECMs. For example, miR-125a/b and miR-146a and their downstream target mRNAs influence the production of the epidermal growth factor family which has a significant impact on the nature of the ECM formed. miRNAs affect structural ECM proteins important in the assembly, composition and organization of the ECM. Proteins such as collagen, fibronectin, versican, and nephronectin are targeted by several miRNAs. miRNAs can also control the expression of proteins such as matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs), which are involved in ECM remodelling and are important for tissue development, cell motility and wound healing. It has become clear that many different miRNAs control the balance in ECM composition that determines normal tissue function and alterations in the expression of these miRNAs can lead to pathological consequences.
Collapse
Affiliation(s)
- Zina Jeyapalan Rutnam
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
61
|
Torreggiani E, Lisignoli G, Manferdini C, Lambertini E, Penolazzi L, Vecchiatini R, Gabusi E, Chieco P, Facchini A, Gambari R, Piva R. Role of Slug transcription factor in human mesenchymal stem cells. J Cell Mol Med 2012; 16:740-51. [PMID: 21645238 PMCID: PMC3822845 DOI: 10.1111/j.1582-4934.2011.01352.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathways that control mesenchymal stem cells (MSCs) differentiation are not well understood, and although some of the involved transcription factors (TFs) have been characterized, the role of others remains unclear. We used human MSCs from tibial plateau (TP) trabecular bone, iliac crest (IC) bone marrow and Wharton’s jelly (WJ) umbilical cord demonstrating a variability in their mineral matrix deposition, and in the expression levels of TFs including Runx2, Sox9, Sox5, Sox6, STAT1 and Slug, all involved in the control of osteochondroprogenitors differentiation program. Because we reasoned that the basal expression level of some TFs with crucial role in the control of MSC fate may be correlated with osteogenic potential, we considered the possibility to affect the hMSCs behaviour by using gene silencing approach without exposing cells to induction media. In this study we found that Slug-silenced cells changed in morphology, decreased in their migration ability, increased Sox9 and Sox5 and decreased Sox6 and STAT1 expression. On the contrary, the effect of Slug depletion on Runx2 was influenced by cell type. Interestingly, we demonstrated a direct in vivo regulatory action of Slug by chromatin immunoprecipitation, showing a specific recruitment of this TF in the promoter of Runx2 and Sox9 genes. As a whole, our findings have important potential implication on bone tissue engineering applications, reinforcing the concept that manipulation of specific TF expression levels may elucidate MSC biology and the molecular mechanisms, which promote osteogenic differentiation.
Collapse
Affiliation(s)
- Elena Torreggiani
- Dipartimento di Biochimica e Biologia Molecolare, Sezione di Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
BAKHSHANDEH BEHNAZ, SOLEIMANI MASOUD, PAYLAKHI SEYEDHASSAN, GHAEMI NASSER. A microRNA signature associated with chondrogenic lineage commitment. J Genet 2012; 91:171-82. [DOI: 10.1007/s12041-012-0168-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
63
|
Hong E, Reddi AH. MicroRNAs in chondrogenesis, articular cartilage, and osteoarthritis: implications for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:445-53. [PMID: 22670839 DOI: 10.1089/ten.teb.2012.0116] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coordinated actions of various regulators, including morphogens are required for chondrogenesis and maintenance of articular cartilage function. Bone morphogenetic proteins, and related signaling molecules and transcription factors form a complex regulatory network. MicroRNAs (miRNAs) are noncoding small RNAs that negatively regulate the expression of downstream targets by repressing the translation or inducing the cleavage of messenger RNAs (mRNAs). Increasing evidence indicates that miRNAs are an integral part of the regulatory network in chondrocyte differentiation and cartilage function. The aim of this article is to review the progress in miRNA expression and target genes in cartilage differentiation, homeostasis, and in the pathobiology of osteoarthritis. The recent progress in miRNAs in cartilage has implications for tissue engineering.
Collapse
Affiliation(s)
- Eunmee Hong
- Department of Orthopedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| | | |
Collapse
|
64
|
Hamada N, Fujita Y, Kojima T, Kitamoto A, Akao Y, Nozawa Y, Ito M. MicroRNA expression profiling of NGF-treated PC12 cells revealed a critical role for miR-221 in neuronal differentiation. Neurochem Int 2012; 60:743-50. [DOI: 10.1016/j.neuint.2012.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 02/05/2023]
|
65
|
Kim D, Song J, Kim S, Park HM, Chun CH, Sonn J, Jin EJ. MicroRNA-34a modulates cytoskeletal dynamics through regulating RhoA/Rac1 cross-talk in chondroblasts. J Biol Chem 2012; 287:12501-9. [PMID: 22351754 DOI: 10.1074/jbc.m111.264382] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) have been implicated in various cellular processes, such as cell fate determination, cell death, and tumorigenesis. In the present study, we investigated the role of miRNA-34a (miR-34a) in the reorganization of the actin cytoskeleton, which is essential for chondrocyte differentiation. miRNA arrays to identify genes that appeared to be up-regulated or down-regulated during chondrogenesis were applied with chondrogenic progenitors treated with JNK inhibitor. PNA-based antisense oligonucleotides and miRNA precursor were used for investigation of the functional roles of miR-34a. We found that, in chick chondroprogenitors treated with JNK inhibitor, which suppresses chondrogenic differentiation, the expression levels of miR-34a and RhoA1 are up-regulated through modulation of Rac1 expression. Blockade of miR-34a via the use of PNA-based antisense oligonucleotides was associated with decreased protein expression of RhoA (a known modulator of stress fiber expression), down-regulation of stress fibers, up-regulation of Rac1, and recovery of protein level of type II collagen. miR-34a regulates RhoA/Rac1 cross-talk and negatively modulates reorganization of the actin cytoskeleton, which is one of the essential processes for establishing chondrocyte-specific morphology.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Biological Sciences, College of Natural Sciences, Wonkwang University, Iksan, Chunbuk 570-749, Korea
| | | | | | | | | | | | | |
Collapse
|
66
|
Dong S, Yang B, Guo H, Kang F. MicroRNAs regulate osteogenesis and chondrogenesis. Biochem Biophys Res Commun 2012; 418:587-91. [PMID: 22306817 DOI: 10.1016/j.bbrc.2012.01.075] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/14/2012] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a class of small molecules and non-coding single strand RNAs that regulate gene expression at the post-transcriptional level by binding to specific sequences within target genes. miRNAs have been recognized as important regulatory factors in organism development and disease expression. Some miRNAs regulate the proliferation and differentiation of osteoblasts, osteoclasts and chondrocytes, eventually influencing metabolism and bone formation. miRNAs are expected to provide potential gene therapy targets for the clinical treatment of metabolic bone diseases and bone injuries. Here, we review the recent research progress on the regulation of miRNAs in bone biology, with a particular focus on the miRNA-mediated control mechanisms of bone and cartilage formation.
Collapse
Affiliation(s)
- Shiwu Dong
- Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing, China.
| | | | | | | |
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW This review focuses on the novel stress-induced and proinflammatory mechanisms underlying the pathogenesis of osteoarthritis, with particular attention to the role of synovitis and the contributions of other joint tissues to cellular events that lead to the onset and progression of the disease and irreversible cartilage damage. RECENT FINDINGS Studies during the past 2 years have uncovered novel pathways that, when activated, cause the normally quiescent articular chondrocytes to become activated and undergo a phenotypic shift, leading to the disruption of homeostasis and ultimately to the aberrant expression of proinflammatory and catabolic genes. Studies in animal models and retrieved human tissues indicate that proinflammatory factors may be produced by the chondrocytes themselves or by the synovium and other surrounding tissues, even in the absence of overt inflammation, and that multiple pathways converge on the upregulation of aggrecanases and collagenases, especially MMP-13. Particular attention has been paid to the contribution of synovitis in posttraumatic joint injury, such as meniscal tears, and the protective role of the pericellular matrix in mediating chondrocyte responses through receptors, such as discoidin domain receptor-2 and syndecan-4. New findings about intracellular signals, including the transcription factors NF-κB, C/EBPβ, ETS, Runx2, and hypoxia-inducible factor-2α, and their modulation by inflammatory cytokines, chemokines, adipokines, Toll-like receptor ligands, and receptor for advanced glycation end-products, as well as CpG methylation and microRNAs, are reviewed. SUMMARY Further work on mediators and pathways that are common across different models and occur in human osteoarthritis and that impact the osteoarthritis disease process at different stages of initiation and progression will inform us about new directions for targeted therapies.
Collapse
|
68
|
Hanin G, Soreq H. Cholinesterase-Targeting microRNAs Identified in silico Affect Specific Biological Processes. Front Mol Neurosci 2011; 4:28. [PMID: 22007158 PMCID: PMC3186941 DOI: 10.3389/fnmol.2011.00028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/14/2011] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) have emerged as important gene silencers affecting many target mRNAs. Here, we report the identification of 244 miRs that target the 3′-untranslated regions of different cholinesterase transcripts: 116 for butyrylcholinesterase (BChE), 47 for the synaptic acetylcholinesterase (AChE-S) splice variant, and 81 for the normally rare splice variant AChE-R. Of these, 11 and 6 miRs target both AChE-S and AChE-R, and AChE-R and BChE transcripts, respectively. BChE and AChE-S showed no overlapping miRs, attesting to their distinct modes of miR regulation. Generally, miRs can suppress a number of targets; thereby controlling an entire battery of functions. To evaluate the importance of the cholinesterase-targeted miRs in other specific biological processes we searched for their other experimentally validated target transcripts and analyzed the gene ontology enriched biological processes these transcripts are involved in. Interestingly, a number of the resulting categories are also related to cholinesterases. They include, for BChE, response to glucocorticoid stimulus, and for AChE, response to wounding and two child terms of neuron development: regulation of axonogenesis and regulation of dendrite morphogenesis. Importantly, all of the AChE-targeting miRs found to be related to these selected processes were directed against the normally rare AChE-R splice variant, with three of them, including the neurogenesis regulator miR-132, also directed against AChE-S. Our findings point at the AChE-R splice variant as particularly susceptible to miR regulation, highlight those biological functions of cholinesterases that are likely to be subject to miR post-transcriptional control, demonstrate the selectivity of miRs in regulating specific biological processes, and open new venues for targeted interference with these specific processes.
Collapse
Affiliation(s)
- Geula Hanin
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | | |
Collapse
|
69
|
Yang Z, Wang L. Regulation of microRNA expression and function by nuclear receptor signaling. Cell Biosci 2011; 1:31. [PMID: 21936947 PMCID: PMC3192659 DOI: 10.1186/2045-3701-1-31] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/21/2011] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA transcripts that affect various cellular pathways by serving as regulators of gene expression at the translational and transcriptional level. Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene transcription by binding to the promoter region or by interacting with other transcription factors. NRs can regulate miRNA expression either at the transcriptional level, or through posttranscriptional maturation by interacting with miRNA processing factors. This review will summarize recent advances in knowledge of the modulation of miRNA expression by NRs. Increased understanding of the molecular basis of miRNA expression may enable new therapeutic interventions that modulate miRNA activities through NR-mediated signaling.
Collapse
Affiliation(s)
- Zhihong Yang
- Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|
70
|
Huang S, Leung V, Peng S, Li L, Lu FJ, Wang T, Lu W, Cheung KMC, Zhou G. Developmental definition of MSCs: new insights into pending questions. Cell Reprogram 2011; 13:465-72. [PMID: 21919705 DOI: 10.1089/cell.2011.0045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a rare heterogeneous population of multipotent cells that can be isolated from many different adult and fetal tissues. They exhibit the capacity to give rise to cells of multiple lineages and are defined by their phenotype and functional properties, such as spindle-shaped morphology, adherence to plastic, immune response modulation capacity, and multilineage differentiation potential. Accordingly, MSCs have a wide range of promising applications in the treatment of autoimmune diseases, tissue repair, and regeneration. Recent studies have shed some light on the exact identity and native distribution of MSCs, whereas controversial results are still being reported, indicating the need for further review on their definition and origin. In this article, we summarize the important progress and describe some of our own relevant work on the developmental definition of MSCs.
Collapse
Affiliation(s)
- Shishu Huang
- Department of Orthopaedics and Traumatology, the University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Bork S, Horn P, Castoldi M, Hellwig I, Ho AD, Wagner W. Adipogenic differentiation of human mesenchymal stromal cells is down-regulated by microRNA-369-5p and up-regulated by microRNA-371. J Cell Physiol 2011; 226:2226-34. [PMID: 21660946 DOI: 10.1002/jcp.22557] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Long-term culture of human mesenchymal stromal cells (MSC) has implications on their proliferation and differentiation potential and we have demonstrated that this is associated with up-regulation of the five microRNAs miR-29c, miR-369-5p, miR-371, miR-499, and let-7f. In this study, we examined the role of these senescence-associated microRNAs for cellular aging and differentiation of MSC. Proliferation was reduced upon transfection with miR-369-5p, miR-371, and miR-499. Adipogenic differentiation was impaired by miR-369-5p whereas it was highly increased by miR-371. This was accompanied by respective gene expression changes of some adipogenic key molecules (adiponectin and fatty acid-binding protein 4 [FABP4]). Furthermore luciferase reporter assay indicated that FABP4 is a direct target of miR-369-5p. Microarray analysis upon adipogenic or osteogenic differentiation revealed down-regulation of several microRNAs albeit miR-369-5p and miR-371 were not affected. Expression of the de novo DNA methyltransferases DNMT3A and DNMT3B was up-regulated by transfection of miR-371 whereas expression of DNMT3A was down-regulated by miR-369-5p. In summary, we identified miR-369-5p and miR-371 as antagonistic up-stream regulators of adipogenic differentiation and this might be indirectly mediated by epigenetic modifications.
Collapse
Affiliation(s)
- Simone Bork
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
72
|
Montero JA, Lorda-Diez CI, Hurlé JM. Regenerative medicine and connective tissues: cartilage versus tendon. J Tissue Eng Regen Med 2011; 6:337-47. [DOI: 10.1002/term.436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 04/25/2011] [Indexed: 12/21/2022]
|
73
|
Yan C, Wang Y, Shen XY, Yang G, Jian J, Wang HS, Chen GQ, Wu Q. MicroRNA regulation associated chondrogenesis of mouse MSCs grown on polyhydroxyalkanoates. Biomaterials 2011; 32:6435-44. [PMID: 21665270 DOI: 10.1016/j.biomaterials.2011.05.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/10/2011] [Indexed: 12/21/2022]
Abstract
Microbial polyhydroxyalkanoates (PHA) including poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) were found to induce chondrogenesis of mesenchymal stem cells (MSCs) and preserve chondrocytic phenotype as well as support chondrocytes-specific extracellular matrix (ECM) secretion. In this study, mouse MSCs cultured on the PHBHHx films for 24 h showed up-regulated expression of chondrogenic marker genes including aggrecan, col2, sox9, col10 and pthrp. To further illustrate this phenomonon, chondrogenesis-related microRNA expression profiling was examined by quantitative real-time PCR (RT-PCR) based on results of microRNA array obtained from comparison between mouse MSCs and mature mouse chondrocytes. Among 44 microRNAs related to chondrogenesis on microrray studies, considering only broadly-conserved microRNAs, seven differentially-expressed microRNAs were selected to study their target genes related to chondrogenesis. Two microRNAs out of the seven, namely, miR-29a and miR-29b, were revealed to directly target 3' UTR of col2a1 encoding type II collagen by dual-luciferase assay, and their activity was under the regulation of Sox9, the SRY-related high mobility group-box gene 9. For the first time microRNAs were shown to regulate the stem cell differentiation processes mediated by cell-material interactions.
Collapse
Affiliation(s)
- Chao Yan
- Ministry of Education Key Laboratory of Bioinformatics, Department of Biological Sciences and Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Goldring MB, Otero M, Plumb DA, Dragomir C, Favero M, El Hachem K, Hashimoto K, Roach HI, Olivotto E, Borzì RM, Marcu KB. Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater 2011; 21:202-20. [PMID: 21351054 PMCID: PMC3937960 DOI: 10.22203/ecm.v021a16] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human cartilage is a complex tissue of matrix proteins that vary in amount and orientation from superficial to deep layers and from loaded to unloaded zones. A major challenge to efforts to repair cartilage by stem cell-based and other tissue engineering strategies is the inability of the resident chondrocytes to lay down new matrix with the same structural and resilient properties that it had upon its original formation. This is particularly true of the collagen network, which is susceptible to cleavage once proteoglycans are depleted. Thus, a thorough understanding of the similarities and particularly the marked differences in mechanisms of cartilage remodeling during development, osteoarthritis, and aging may lead to more effective strategies for preventing cartilage damage and promoting repair. To identify and characterize effectors or regulators of cartilage remodeling in these processes, we are using culture models of primary human and mouse chondrocytes and cell lines and mouse genetic models to manipulate gene expression programs leading to matrix remodeling and subsequent chondrocyte hypertrophic differentiation, pivotal processes which both go astray in OA disease. Matrix metalloproteinases (MMP)-13, the major type II collagen-degrading collagenase, is regulated by stress-, inflammation-, and differentiation-induced signals that not only contribute to irreversible joint damage (progression) in OA, but importantly, also to the initiation/onset phase, wherein chondrocytes in articular cartilage leave their natural growth- and differentiation-arrested state. Our work points to common mediators of these processes in human OA cartilage and in early through late stages of OA in surgical and genetic mouse models.
Collapse
Affiliation(s)
- Mary B Goldring
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery,Weill Cornell Medical College, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Wang Z, Li B. Mdm2 links genotoxic stress and metabolism to p53. Protein Cell 2011; 1:1063-72. [PMID: 21213101 DOI: 10.1007/s13238-010-0140-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 11/30/2010] [Indexed: 01/06/2023] Open
Abstract
Mouse double minute 2 (Mdm2) gene was isolated from a cDNA library derived from transformed mouse 3T3 cells, and was classified as an oncogene as it confers 3T3 and Rat2 cells tumorigenicity when overexpressed. It encodes a nucleocytoplasmic shuttling ubiquitin E3 ligase, with its main target being tumor suppressor p53, which is mutated in more than 50% of human primary tumors. Mdm2's oncogenic activity is mainly mediated by p53, which is activated by various stresses, especially genotoxic stress, via Atm (ataxia telangiectasia mutated) and Atr (Atm and Rad3-related). Activated p53 inhibits cell proliferation, induces apoptosis or senescence, and maintains genome integrity. Mdm2 is also a target gene of p53 transcription factor. Thus, Mdm2 and p53 form a feedback regulatory loop. External and internal cues, through multiple signaling pathways, can act on Mdm2 to regulate p53 levels and cell proliferation, death, and senescence. This review will focus on how Mdm2 is regulated under genotoxic stress, and by the Akt1-mTOR-S6K1 pathway that is activated by insulin, growth factors, amino acids, or energy status.
Collapse
Affiliation(s)
- Zhongfeng Wang
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | | |
Collapse
|