51
|
Rodríguez M, Domingo E, Alonso S, Frade JG, Eiros J, Crespo MS, Fernández N. The unfolded protein response and the phosphorylations of activating transcription factor 2 in the trans-activation of il23a promoter produced by β-glucans. J Biol Chem 2014; 289:22942-22957. [PMID: 24982422 DOI: 10.1074/jbc.m113.522656] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Current views on the control of IL-23 production focus on the regulation of il23a, the gene encoding IL-23 p19, by NF-κB in combination with other transcription factors. C/EBP homologous protein (CHOP), X2-Box-binding protein 1 (XBP1), activator protein 1 (AP1), SMAD, CCAAT/enhancer-binding protein (C/EBPβ), and cAMP-response element-binding protein (CREB) have been involved in response to LPS, but no data are available regarding the mechanism triggered by the fungal mimic and β-glucan-containing stimulus zymosan, which produces IL-23 and to a low extent the related cytokine IL-12 p70. Zymosan induced the mobilization of CHOP from the nuclear fractions to phagocytic vesicles. Hypha-forming Candida also induced the nuclear disappearance of CHOP. Assay of transcription factor binding to the il23a promoter showed an increase of Thr(P)-71-Thr(P)-69-activating transcription factor 2 (ATF2) binding in response to zymosan. PKC and PKA/mitogen- and stress-activated kinase inhibitors down-regulated Thr(P)-71-ATF2 binding to the il23a promoter and il23a mRNA expression. Consistent with the current concept of complementary phosphorylations on N-terminal Thr-71 and Thr-69 of ATF2 by ERK and p38 MAPK, MEK, and p38 MAPK inhibitors blunted Thr(P)-69-ATF2 binding. Knockdown of atf2 mRNA with siRNA correlated with inhibition of il23a mRNA, but it did not affect the expression of il12/23b and il10 mRNA. These data indicate the following: (i) zymosan decreases nuclear proapoptotic CHOP, most likely by promoting its accumulation in phagocytic vesicles; (ii) zymosan-induced il23a mRNA expression is best explained through coordinated κB- and ATF2-dependent transcription; and (iii) il23a expression relies on complementary phosphorylation of ATF2 on Thr-69 and Thr-71 dependent on PKC and MAPK activities.
Collapse
Affiliation(s)
- Mario Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, 47005-Valladolid
| | - Esther Domingo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47003-Valladolid
| | - Sara Alonso
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47003-Valladolid
| | - Javier García Frade
- Division of Hematology, Hospital Universitario Rio Hortega, 47012-Valladolid, and
| | - José Eiros
- Division of Microbiology, Hospital Universitario Rio Hortega, 47012-Valladolid, Spain
| | - Mariano Sánchez Crespo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47003-Valladolid,.
| | - Nieves Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valladolid, 47005-Valladolid
| |
Collapse
|
52
|
The regulatory role of activating transcription factor 2 in inflammation. Mediators Inflamm 2014; 2014:950472. [PMID: 25049453 PMCID: PMC4090481 DOI: 10.1155/2014/950472] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 05/30/2014] [Indexed: 01/06/2023] Open
Abstract
Activating transcription factor 2 (ATF2) is a member of the leucine zipper family of DNA-binding proteins and is widely distributed in tissues including the liver, lung, spleen, and kidney. Like c-Jun and c-Fos, ATF2 responds to stress-related stimuli and may thereby influence cell proliferation, inflammation, apoptosis, oncogenesis, neurological development and function, and skeletal remodeling. Recent studies clarify the regulatory role of ATF2 in inflammation and describe potential inhibitors of this protein. In this paper, we summarize the properties and functions of ATF2 and explore potential applications of ATF2 inhibitors as tools for research and for the development of immunosuppressive and anti-inflammatory drugs.
Collapse
|
53
|
Zhong SY, Chen YX, Fang M, Zhu XL, Zhao YX, Liu XY. Low-dose levodopa protects nerve cells from oxidative stress and up-regulates expression of pCREB and CD39. PLoS One 2014; 9:e95387. [PMID: 24743653 PMCID: PMC3990701 DOI: 10.1371/journal.pone.0095387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/25/2014] [Indexed: 11/18/2022] Open
Abstract
Objective This study aimed to investigate the influence of low-dose levodopa (L-DOPA) on neuronal cell death under oxidative stress. Methods PC12 cells were treated with L-DOPA at different concentrations. We detected the L-DOPA induced reactive oxygen species (ROS). Meanwhile, MTT and LDH assay were performed to determine the proliferation and growth of PC12 cells with or without ROS scavenger. In addition, after pretreatment with L-DOPA at different concentrations alone or in combination with CD39 inhibitor, PC12 cells were incubated with hydrogen peroxide (H2O2) and the cell viability was evaluated by MTT and LDH assay. In addition, the expression of pCREB and CD39 was detected by immunofluorescence staining and Western blot assay in both cells and rat’s brain after L-DOPA treatment. Results After treatment with L-DOPA for 3 days, the cell proliferation and growth were promoted when the L-DOPA concentration was <30 µM, while cell proliferation was comparable to that in control group when the L-DOPA concentration was >30 µM. Low dose L-DOPA could protect the PC12 cells from H2O2 induced oxidative stress, which was compromised by CD39 inhibitor. In addition, the expression of CD39 and pCREB increased in both PC12 cells and rats’ brain after L-DOPA treatment. Conclusions L-DOPA at different concentrations has distinct influence on proliferation and growth of PC12 cells, and low dose (<30 µM) L-DOPA protects PC12 cells against oxidative stress which might be related to the up-regulation of CD39 and pCREB expression.
Collapse
Affiliation(s)
- Shi-Ying Zhong
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Yong-Xing Chen
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Min Fang
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Xiao-Long Zhu
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
| | - Yan-Xin Zhao
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
- * E-mail: (YXZ); (XYL)
| | - Xue-Yuan Liu
- Department of Neurology, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Shanghai, China
- * E-mail: (YXZ); (XYL)
| |
Collapse
|
54
|
Esther CR, Alexis NE, Picher M. Regulation of airway nucleotides in chronic lung diseases. Subcell Biochem 2014; 55:75-93. [PMID: 21560045 DOI: 10.1007/978-94-007-1217-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physiological relevance of the purinergic signaling network for airway defenses is emerging through cumulating reports of abnormal ATP and adenosine (ADO) levels in the airway secretions of patients with asthma, chronic pulmonary obstructive diseases, cystic fibrosis and idiopathic pulmonary fibrosis. The consequences for airway defenses range from abnormal clearance responses to the destruction of lung tissue by excessive inflammation. This chapter reviews the challenges of assessing airway purines in human subjects, and identifies the general trend in aberrant airway composition. Most diseases are associated with an accumulation of ATP and/or ADO in bronchoalveolar lavage, sputum or exhaled breadth condensate. Intriguing is the case of cystic fibrosis patients, which do not accumulate airway ADO, but its precursor, AMP. This observation launched the investigation of ectonucleotidases as target proteins for the correction of airway purine levels in chronic respiratory diseases. This chapter exposes the extensive rearrangement of the enzymatic network taking place in diseased airways, and identifies signaling pathways likely involved in the aberrant regulation of the airway purines.
Collapse
Affiliation(s)
- Charles R Esther
- Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC, 27599, USA,
| | | | | |
Collapse
|
55
|
Kochetkova I, Thornburg T, Callis G, Holderness K, Maddaloni M, Pascual DW. Oral Escherichia coli colonization factor antigen I fimbriae ameliorate arthritis via IL-35, not IL-27. THE JOURNAL OF IMMUNOLOGY 2013; 192:804-16. [PMID: 24337375 DOI: 10.4049/jimmunol.1302018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A Salmonella therapeutic expressing enterotoxigenic Escherichia coli colonization factor Ag I (CFA/I) fimbriae protects against collagen-induced arthritis (CIA) by eliciting two regulatory T cell (Treg) subsets: TGF-β-producing Foxp3(-)CD39(+)CD4(+) T cells and IL-10-producing Foxp3(+)CD39(+)CD4(+) T cells. However, it is unclear whether CFA/I fimbriae alone are protective and whether other regulatory cytokines are involved, especially in the context for the EBI3-sharing cytokines, Treg-derived IL-35 and APC-derived IL-27, both capable of suppressing Th17 cells and regulating autoimmune diseases. Subsequent evaluation revealed that a single oral dose of purified, soluble CFA/I fimbriae protected against CIA as effectively as did Salmonella-CFA/I and found that Foxp3(+)CD39(+)CD4(+) T cells were the source of secreted IL-35, whereas IL-27 production by CD11c(+) cells was inhibited. Inquiring into their relevance, CFA/I fimbriae-treated IL-27R-deficient (WSX-1(-/-)) mice were equally protected against CIA as were wild-type mice, suggesting a limited role for IL-27. In contrast, CFA/I fimbriae-mediated protection was abated in EBI3(-/-) mice, accompanied by the loss of TGF-β- and IL-10-producing Tregs. Adoptive transfer of C57BL/6 CD39(+)CD4(+) T cells to EBI3(-/-) mice with concurrent CFA/I plus IL-35 treatment effectively stimulated Tregs suppressing proinflammatory collagen II-specific Th cells. In contrast, recipients cotransferred with C57BL/6 and EBI3(-/-) CD39(+)CD4(+) T cells and treated with CFA/I plus IL-35 were not protected, implicating the importance of endogenous IL-35 for conferring CFA/I-mediated protection. Thus, CFA/I fimbriae stimulate IL-35 required for the coinduction of TGF-β and IL-10.
Collapse
Affiliation(s)
- Irina Kochetkova
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59717
| | | | | | | | | | | |
Collapse
|
56
|
The gep proto-oncogene Gα12 mediates LPA-stimulated activation of CREB in ovarian cancer cells. Cell Signal 2013; 26:122-32. [PMID: 24055910 DOI: 10.1016/j.cellsig.2013.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/24/2013] [Indexed: 01/21/2023]
Abstract
Lysophosphatidic acid (LPA) plays a critical role in the pathophysiology of ovarian cancers. Previous studies have shown that LPA stimulates the proliferation of ovarian cancer cells via Gα12. The present study utilizing Protein/DNA array analyses of LPA-stimulated HeyA8 cells in which the expression of Gα12 was silenced, demonstrates for the first time that Gα12-dependent mitogenic signaling by LPA involves the atypical activation cAMP-response element binding protein (CREB). Results indicate that the robust activation of CREB by LPA is an early event that can be monitored by the phosphorylation of SER133 of CREB as early as 3min. The findings that the expression of the constitutively activated mutant of Gα12 stimulates CREB even in the absence of LPA in multiple ovarian cancer cell lines confirm the direct role of Gα12 in the activation of CREB. This is further substantiated by the observation that the silencing of Gα12 drastically attenuates LPA-stimulated phosphorylation of CREB. Our results also establish that LPA-Gα12-dependent activation of CREB is through a cAMP-independent, but Ras-ERK-dependent mechanism. More significantly, our findings indicate that the expression of the dominant negative S133A mutant of CREB leads to a reduction in LPA-stimulated proliferation of HeyA8 ovarian cancer cells. Thus, results presented here demonstrate for the first time that CREB is a critical signaling node in LPA-LPAR and Gα12/gep proto-oncogene stimulated oncogenic signaling in ovarian cancer cells.
Collapse
|
57
|
Baek AE, Kanthi Y, Sutton NR, Liao H, Pinsky DJ. Regulation of ecto-apyrase CD39 (ENTPD1) expression by phosphodiesterase III (PDE3). FASEB J 2013; 27:4419-28. [PMID: 23901069 DOI: 10.1096/fj.13-234625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The ectoenzyme CD39 suppresses thrombosis and inflammation by suppressing ATP and ADP to AMP. However, mechanisms of CD39 transcriptional and post-translational regulation are not well known. Here we show that CD39 levels are modulated by inhibition of phosphodiesterase 3 (PDE3). RAW macrophages and human umbilical vein endothelial cells (HUVECs) were treated with the PDE3 inhibitors cilostazol and milrinone, then analyzed using qRT-PCR, immunoprecipitation/Western blot, immunofluorescent staining, radio-thin-layer chromatography, a malachite green assay, and ELISA. HUVECs expressed elevated CD39 protein (2-fold [P<0.05] for cilostazol and 2.5-fold [P<0.01] for milrinone), while macrophage CD39 mRNA and protein were both elevated after PDE3 inhibition. HUVEC ATPase activity increased by 25% with cilostazol and milrinone treatment (P<0.05 and P<0.01, respectively), as did ADPase activity (47% and 61%, P<0.001). There was also a dose-dependent elevation of soluble CD39 after treatment with 8-Br-cAMP, with maximal elevation of 60% more CD39 present compared to controls (1 mM, P<0.001). Protein harvested after 8-Br-cAMP treatment showed that ubiquitination of CD39 was decreased by 43% compared to controls. A DMSO or PBS vehicle control was included for each experiment based on solubility of cilostazol, milrinone, and 8-Br-cAMP. These results indicate that PDE3 inhibition regulates endothelial CD39 at a post-translational level.
Collapse
Affiliation(s)
- Amy E Baek
- 17240 Medical Science Research Bldg. III, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
58
|
Hsiao YW, Li CF, Chi JY, Tseng JT, Chang Y, Hsu LJ, Lee CH, Chang TH, Wang SM, Wang DDH, Cheng HC, Wang JM. CCAAT/enhancer binding protein δ in macrophages contributes to immunosuppression and inhibits phagocytosis in nasopharyngeal carcinoma. Sci Signal 2013; 6:ra59. [PMID: 23861541 DOI: 10.1126/scisignal.2003648] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although tumors tend to be associated with immune cells and inflammation, this immune response often fails to eliminate the cancer and instead promotes cancer progression. Tumor-associated macrophages (TAMs) fail to phagocytose tumor cells, and they also produce signals that suppress the adaptive immune response. We showed that immunosuppressive prostaglandin E₂ (PGE₂) led to the production and activity of the transcription factor CCAAT/enhancer binding protein δ (C/EBPδ) by stimulating the nucleocytoplasmic shuttling of the RNA binding protein Hu antigen R (HuR), which bound to and stabilized CEBPD mRNA in macrophages. An increase in C/EBPδ abundance in macrophages in response to PGE₂ resulted in enhanced production of the immunosuppressive cytokine interleukin-10 (IL-10) and of pentraxin 3 (PTX3), which suppresses the ability of macrophages to phagocytose tumor cells. Furthermore, conditioned medium from C/EBPδ-replete, but not C/EBPδ-deficient, macrophages inhibited the phagocytosis of tumor cells by macrophages, suggesting an autocrine mode of regulation. Immunohistochemical analysis demonstrated that the amount of cytosolic HuR protein correlated with increased C/EBPδ abundance in TAMs in malignant nasopharyngeal carcinoma. Together, these data suggest that the inflammatory PGE₂-HuR-C/EBPδ axis in macrophages promotes tumor progression by preventing the phagocytosis of tumor cells and inducing immunosuppressive cytokine production.
Collapse
Affiliation(s)
- Yu-Wei Hsiao
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Lau E, Ronai ZA. ATF2 - at the crossroad of nuclear and cytosolic functions. J Cell Sci 2012; 125:2815-24. [PMID: 22685333 DOI: 10.1242/jcs.095000] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An increasing number of transcription factors have been shown to elicit oncogenic and tumor suppressor activities, depending on the tissue and cell context. Activating transcription factor 2 (ATF2; also known as cAMP-dependent transcription factor ATF-2) has oncogenic activities in melanoma and tumor suppressor activities in non-malignant skin tumors and breast cancer. Recent work has shown that the opposing functions of ATF2 are associated with its subcellular localization. In the nucleus, ATF2 contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. ATF2 can also translocate to the cytosol, primarily following exposure to severe genotoxic stress, where it impairs mitochondrial membrane potential and promotes mitochondrial-based cell death. Notably, phosphorylation of ATF2 by the epsilon isoform of protein kinase C (PKCε) is the master switch that controls its subcellular localization and function. Here, we summarize our current understanding of the regulation and function of ATF2 in both subcellular compartments. This mechanism of control of a non-genetically modified transcription factor represents a novel paradigm for 'oncogene addiction'.
Collapse
Affiliation(s)
- Eric Lau
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92130, USA.
| | | |
Collapse
|
60
|
Mauricio Rueda C, Andrea Velilla P, Rojas M, Teresa Rugeles M. AMPc: una molécula clave en los eventos de regulación inmune y en el control de la replicación del VIH. INFECTIO 2012. [DOI: 10.1016/s0123-9392(12)70058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
61
|
Wheeler DG, Joseph ME, Mahamud SD, Aurand WL, Mohler PJ, Pompili VJ, Dwyer KM, Nottle MB, Harrison SJ, d'Apice AJF, Robson SC, Cowan PJ, Gumina RJ. Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol 2012; 52:958-61. [PMID: 22269791 DOI: 10.1016/j.yjmcc.2012.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 01/03/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED CD39 (ectonucleoside triphosphate diphosphohydrolase-1; ENTPD-1) rapidly hydrolyzes ATP and ADP to AMP; AMP is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, an anti-thrombotic and cardiovascular protective mediator. While expression of human CD39 in a murine model of myocardial ischemia/reperfusion (I/R) injury confers cardiac protection, the translational therapeutic potential of these findings requires further testing in a large animal model. To determine if transgenic expression of CD39 reduces infarct size in a swine model of myocardial ischemia/reperfusion injury, transgenic pigs expressing human CD39 (hCD39) were generated via somatic cell nuclear transfer and characterized. Expression of hC39 in cardiac tissue was confirmed by immunoblot and immunohistochemistry. Myocardial I/R injury was induced by intracoronary balloon inflation in the left anterior descending (LAD) artery for 60 min followed by 3 hours of reperfusion. The ischemic area was delineated by perfusion with 5% phthalo blue and the myocardial infarct size was determined by triphenyl tetrazolium chloride (TTC) staining. During ischemia, the rate-pressure product was significantly lower in control versus hCD39-Tg swine. Following reperfusion, compared to littermate control swine, hCD39-Tg animals displayed a significant reduction in infarct size (hCD39-Tg: 17.2 ± 4.3% vs. CONTROL 44.7 ± 5.2%, P=0.0025). Our findings demonstrate for the first time that the findings in transgenic mouse models translate to large animal transgenic models and validate the potential to translate CD39 into the clinical arena to attenuate human myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Debra G Wheeler
- Division of Cardiovascular Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210-1252, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Sauer AV, Brigida I, Carriglio N, Aiuti A. Autoimmune dysregulation and purine metabolism in adenosine deaminase deficiency. Front Immunol 2012; 3:265. [PMID: 22969765 PMCID: PMC3427915 DOI: 10.3389/fimmu.2012.00265] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/02/2012] [Indexed: 12/12/2022] Open
Abstract
Genetic defects in the adenosine deaminase (ADA) gene are among the most common causes for severe combined immunodeficiency (SCID). ADA-SCID patients suffer from lymphopenia, severely impaired cellular and humoral immunity, failure to thrive, and recurrent infections. Currently available therapeutic options for this otherwise fatal disorder include bone marrow transplantation (BMT), enzyme replacement therapy with bovine ADA (PEG-ADA), or hematopoietic stem cell gene therapy (HSC-GT). Although varying degrees of immune reconstitution can be achieved by these treatments, breakdown of tolerance is a major concern in ADA-SCID. Immune dysregulation such as autoimmune hypothyroidism, diabetes mellitus, hemolytic anemia, and immune thrombocytopenia are frequently observed in milder forms of the disease. However, several reports document similar complications also in patients on long-term PEG-ADA and after BMT or GT treatment. A skewed repertoire and decreased immune functions have been implicated in autoimmunity observed in certain B-cell and/or T-cell immunodeficiencies, but it remains unclear to what extent specific mechanisms of tolerance are affected in ADA deficiency. Herein we provide an overview about ADA-SCID and the autoimmune manifestations reported in these patients before and after treatment. We also assess the value of the ADA-deficient mouse model as a useful tool to study both immune and metabolic disease mechanisms. With focus on regulatory T- and B-cells we discuss the lymphocyte subpopulations particularly prone to contribute to the loss of self-tolerance and onset of autoimmunity in ADA deficiency. Moreover we address which aspects of immune dysregulation are specifically related to alterations in purine metabolism caused by the lack of ADA and the subsequent accumulation of metabolites with immunomodulatory properties.
Collapse
Affiliation(s)
| | | | - Nicola Carriglio
- San Raffaele Telethon Institute for Gene TherapyMilan, Italy
- Università degli Studi di Roma Tor VergataRome, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene TherapyMilan, Italy
- Università degli Studi di Roma Tor VergataRome, Italy
- *Correspondence: Alessandro Aiuti, San Raffaele Telethon Institute for Gene Therapy, Via Olgettina 58, Dibit 2A2, Milan 20132, Italy. e-mail:
| |
Collapse
|
63
|
Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID. Blood 2011; 119:1428-39. [PMID: 22184407 DOI: 10.1182/blood-2011-07-366781] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.
Collapse
|
64
|
Frequency of circulating regulatory T cells increases during chronic HIV infection and is largely controlled by highly active antiretroviral therapy. PLoS One 2011; 6:e28118. [PMID: 22162758 PMCID: PMC3230597 DOI: 10.1371/journal.pone.0028118] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/01/2011] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Tregs) act by suppressing the activation and effector functions of innate and adaptive immune responses. HIV infection impacts Treg proportion and phenotype, although discrepant results have been reported depending on the patient population and the way Tregs were characterized. The effects of highly active antiretroviral therapy (HAART) on Treg frequency have not been thoroughly documented. We performed a detailed longitudinal analysis of Treg frequency and phenotype in 11 HIV-infected individuals enrolled in a single, prospective clinical trial, in which all patients underwent the same treatment protocol and were sampled at the same time points. Tregs were characterized for their expression of molecules associated with activation, cell cycle, apoptosis, or function, and compared to circulating Tregs from a group of age-matched healthy individuals. Our results revealed increased proportions, but reduced absolute numbers of circulating CD3+CD4+FOXP3+ Tregs in chronically infected HIV-infected patients. Treg frequency was largely normalized by HAART. Importantly, we show that similar conclusions were drawn regardless of the combination of markers used to define Tregs. Our results also showed increased expression of cell cycle markers (Ki67 and cyclin B) in Tregs from untreated infected individuals, which were decreased by HAART. However, the Treg phenotype in untreated patients was not consistent with a higher level of generalized activation, as they expressed very low levels of CD69, slightly elevated levels of HLA-DR and similar levels of GARP compared to Tregs from uninfected donors. Moreover, none of these markers was significantly changed by HAART. Treg expression of CTLA-4 and cytotoxic molecules was identical between patients and controls. The most striking difference in terms of functional molecules was the high expression of CD39 by Tregs in untreated patients, which HAART only partially controlled.
Collapse
|
65
|
Hsieh TH, Tsai CF, Hsu CY, Kuo PL, Lee JN, Chai CY, Wang SC, Tsai EM. Phthalates induce proliferation and invasiveness of estrogen receptor-negative breast cancer through the AhR/HDAC6/c-Myc signaling pathway. FASEB J 2011; 26:778-87. [PMID: 22049059 DOI: 10.1096/fj.11-191742] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The environmentally present group of chemical phthalates, or phthalate esters, has been recognized as a rising threat to public health, including cancer. While most studies have addressed the estrogenic effects of phthalates in malignancies of the breast and the prostate, little is known about their role in the etiology of hormone-independent cancer. Here we show that treatments with the phthalates n-butyl benzyl phthalate (BBP) and dibutyl phthalate (DBP) at 1 μM induced proliferation (BBP, 3.2-fold; DBP, 3.2-fold), migration (BBP, 2.6-fold; DBP, 2.6-fold), invasion (BBP, 2.7-fold; DBP, 3.1-fold), and tumor formation (EC(50): BBP, 0.12 μM; DBP, 0.22 μM) in estrogen receptor (ER)-negative breast cancer cells (MDA-MB-231). We further demonstrate that phthalates stimulated the cell surface aryl hydrocarbon receptor (AhR) and triggered the downstream cyclic AMP (cAMP)-PKA-CREB1 signaling cascade. The pathway led to increased expression of HDAC6, which facilitated nuclear assembly of the β-catenin-LEF1/TCF4 transcriptional complex and transactivation of the c-Myc oncogene. This nongenomic pathway emanated from the phthalate-induced AhR promoted tumorigenesis of ER-negative breast cancer. Collectively, our findings revealed a novel oncogenic mechanism of phthalates in breast cancer independent from their estrogenic activities.
Collapse
Affiliation(s)
- Tsung-Hua Hsieh
- Graduate Institute of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Overexpression of NTPDase2 in gliomas promotes systemic inflammation and pulmonary injury. Purinergic Signal 2011; 8:235-43. [PMID: 22038661 DOI: 10.1007/s11302-011-9276-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 10/06/2011] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most common and devastating type of primary brain tumor. Many non-neoplastic cells, including immune cells, comprise the tumor microenvironment where they create a milieu that appears to dictate cancer development. ATP and the phosphohydrolytic products ADP and adenosine by activating P2 and P1 receptors may participate in these interactions among malignant and immune cells. Purinergic receptor-mediated cell communication is closely regulated by ectonucleotidases, such as by members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family, which hydrolyze extracellular nucleotides. We have shown that gliomas, unlike astrocytes, exhibit low NTPDase activity. Furthermore, ATP induces glioma cell proliferation and the co-administration of apyrase decreases progression of injected cells in vivo. We have previously shown that NTPDase2 reconstitution dramatically increases tumor growth in vivo. Here we evaluated whether NTPDase2 reconstitution to gliomas modulates systemic inflammatory responses. We observed that NTPDase2 overexpression modulated pro-inflammatory cytokine production and platelet reactivity. Additionally, pathological alterations in the lungs were observed in rats bearing these tumors. Our results suggest that disruption of purinergic signaling via ADP accumulation creates an inflammatory state that may promote tumor spread and dictate clinical progression.
Collapse
|
67
|
Kochetkova I, Thornburg T, Callis G, Pascual DW. Segregated regulatory CD39+CD4+ T cell function: TGF-β-producing Foxp3- and IL-10-producing Foxp3+ cells are interdependent for protection against collagen-induced arthritis. THE JOURNAL OF IMMUNOLOGY 2011; 187:4654-66. [PMID: 21967895 DOI: 10.4049/jimmunol.1100530] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oral immunization with a Salmonella vaccine vector expressing enterotoxigenic Escherichia coli colonization factor Ag I (CFA/I) can protect against collagen-induced arthritis (CIA) by dampening IL-17 and IFN-γ via enhanced IL-4, IL-10, and TGF-β. To identify the responsible regulatory CD4(+) T cells making the host refractory to CIA, Salmonella-CFA/I induced CD39(+)CD4(+) T cells with enhanced apyrase activity relative to Salmonella vector-immunized mice. Adoptive transfer of vaccine-induced CD39(+)CD4(+) T cells into CIA mice conferred complete protection, whereas CD39(-)CD4(+) T cells did not. Subsequent analysis of vaccinated Foxp3-GFP mice revealed the CD39(+) T cells were composed of Foxp3-GFP(-) and Foxp3-GFP(+) subpopulations. Although each adoptively transferred Salmonella-CFA/I-induced Foxp3(-) and Foxp3(+)CD39(+)CD4(+) T cells could protect against CIA, each subset was not as efficacious as total CD39(+)CD4(+) T cells, suggesting their interdependence for optimal protection. Cytokine analysis revealed Foxp3(-) CD39(+)CD4(+) T cells produced TGF-β, and Foxp3(+)CD39(+)CD4(+) T cells produced IL-10, showing a segregation of function. Moreover, donor Foxp3-GFP(-) CD4(+) T cells converted to Foxp3-GFP(+) CD39(+)CD4(+) T cells in the recipients, showing plasticity of these regulatory T cells. TGF-β was found to be essential for protection because in vivo TGF-β neutralization reversed activation of CREB and reduced the development of CD39(+)CD4(+) T cells. Thus, CD39 apyrase-expressing CD4(+) T cells stimulated by Salmonella-CFA/I are composed of TGF-β-producing Foxp3(-) CD39(+)CD4(+) T cells and support the stimulation of IL-10-producing Foxp3(+) CD39(+)CD4(+) T cells.
Collapse
Affiliation(s)
- Irina Kochetkova
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59717, USA
| | | | | | | |
Collapse
|
68
|
Kukulski F, Lévesque SA, Sévigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. ADVANCES IN PHARMACOLOGY 2011; 61:263-99. [PMID: 21586362 DOI: 10.1016/b978-0-12-385526-8.00009-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2 receptors that are activated by extracellular nucleotides (e.g., ATP, ADP, UTP, UDP, Ap(n)A) and P1 receptors activated by adenosine control a diversity of biological processes. The activation of these receptors is tightly regulated by ectoenzymes that metabolize their ligands. This review presents these enzymes as well as their roles in the regulation of P2 and P1 receptor activation. We focus specifically on the role of ectoenzymes in processes of our interest, that is, inflammation, vascular tone, and neurotransmission. An update on the development of ectonucleotidase inhibitors is also presented.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | |
Collapse
|
69
|
Cieślak M, Kukulski F, Komoszyński M. Emerging role of extracellular nucleotides and adenosine in multiple sclerosis. Purinergic Signal 2011; 7:393-402. [PMID: 21792574 PMCID: PMC3224637 DOI: 10.1007/s11302-011-9250-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/11/2011] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides and adenosine play important roles in inflammation. These signaling molecules interact with the cell-surface-located P2 and P1 receptors, respectively, that are widely distributed in the central nervous system and generally exert opposite effects on immune responses. Indeed, extracellular ATP, ADP, UTP, and UDP serve as alarmins or damage-associated molecular patterns that activate mainly proinflammatory mechanisms, whereas adenosine has potent anti-inflammatory and immunosuppressive effects. This review discusses the actual and potential role of extracellular nucleotides and adenosine in multiple sclerosis (MS).
Collapse
Affiliation(s)
- Marek Cieślak
- Department of Neurology, WSZ Hospital, 53/59 St. Joseph Street, Toruń, 87-100, Poland,
| | | | | |
Collapse
|
70
|
Power Coombs MR, Belderbos ME, Gallington LC, Bont L, Levy O. Adenosine modulates Toll-like receptor function: basic mechanisms and translational opportunities. Expert Rev Anti Infect Ther 2011; 9:261-9. [PMID: 21342073 DOI: 10.1586/eri.10.158] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine is an endogenous purine metabolite whose concentration in human blood plasma rises from nanomolar to micromolar concentrations during the inflammatory process. Leukocytes express seven-transmembrane adenosine receptors whose engagement modulates Toll-like receptor-mediated cytokine responses, in part via modulation of intracellular cyclic adenosine monophosphate. Adenosine analogs are used clinically to treat arrhythmias and apnea of prematurity. Herein, we consider the potential of adenosine analogs as innate immune response modifiers to prevent and/or treat infection.
Collapse
Affiliation(s)
- Melanie R Power Coombs
- Department of Medicine/Infectious Diseases, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
71
|
Wagner MCE. The therapeutic potential of adenosine triphosphate as an immune modulator in the treatment of HIV/AIDS: a combination approach with HAART. Curr HIV Res 2011; 9:209-22. [PMID: 21675943 PMCID: PMC3343418 DOI: 10.2174/157016211796320289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/27/2011] [Accepted: 06/08/2011] [Indexed: 12/11/2022]
Abstract
Extracellular adenosine triphosphate (eATP) is a potent molecule that has the capacity to modulate various aspects of cell functions including gene expression. This element of modulation is essential to the role of ATP as a therapeutic agent. The hypothesis presented is that ATP can have an important impact on the treatment of HIV infection. This is supported in part by published research, although a much greater role for ATP is suggested than prior authors ever thought possible. ATP has the ability to enhance the immune system and could thus improve the host's own defense mechanisms to eradicate the virus-infected cells and restore normal immune function. This could provide effective therapy when used in conjunction with highly active antiretroviral therapies (HAART) to eliminate the latently infected cells. The key lies in applying ATP through the methodology described. This article presents a strategy for using ATP therapeutically along with background evidence to substantiate the importance of using ATP in the treatment of HIV infection.
Collapse
|
72
|
Deaglio S, Robson SC. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:301-32. [PMID: 21586363 PMCID: PMC5879773 DOI: 10.1016/b978-0-12-385526-8.00010-2] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evolving studies in models of transplant rejection, inflammatory bowel disease, and cancer, among others, have implicated purinergic signaling in clinical manifestations of vascular injury and thrombophilia, inflammation, and immune disturbance. Within the vasculature, spatial and temporal expression of CD39 nucleoside triphosphate diphosphohydrolase (NTPDase) family members together with CD73 ecto-5'-nucleotidase control platelet activation, thrombus size, and stability. This is achieved by closely regulated phosphohydrolytic activities to scavenge extracellular nucleotides, maintain P2-receptor integrity, and coordinate adenosinergic signaling responses. The CD38/CD157 family of extracellular NADases degrades NAD(+) and generates Ca(2+)-active metabolites, including cyclic ADP ribose and ADP ribose. These mediators regulate leukocyte adhesion and chemotaxis. These mechanisms are crucial in vascular homeostasis, hemostasis, thrombogenesis, and during inflammation. There has been recent interest in ectonucleotidase expression by immune cells. CD39 expression identifies Langerhans-type dendritic cells and efficiently distinguishes T regulatory cells from other resting or activated T cells. CD39, together with CD73 in mice, serves as an integral component of the suppressive machinery of T cells. Purinergic responses also impact generation of T helper-type 17 cells. Further, CD38 and changes in NAD(+) availability modulate ADP ribosylation of the cytolytic P2X7 receptor that deletes T regulatory cells. Expression of CD39, CD73, and CD38 ectonucleotidases on either endothelial or immune cells allows for homeostatic integration and control of vascular inflammatory and immune cell reactions at sites of injury. Ongoing development of therapeutic strategies targeting these and other ectonucleotidases offers promise for the management of vascular thrombosis, disordered inflammation, and aberrant immune reactivity.
Collapse
Affiliation(s)
- Silvia Deaglio
- Department of Genetics, Biology, and Biochemistry, University of Turin & Human Genetics Foundation, Italy
| | | |
Collapse
|
73
|
XBP1U inhibits the XBP1S-mediated upregulation of the iNOS gene expression in mammalian ER stress response. Cell Signal 2010; 22:1818-28. [PMID: 20637858 DOI: 10.1016/j.cellsig.2010.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 07/08/2010] [Indexed: 11/21/2022]
Abstract
Upregulation of the inducible nitric oxide synthase (iNOS) gene is associated with many pathological conditions such as endoplasmic reticulum (ER) stress, and X-box binding protein 1 (XBP1) is critical in mediating ER-stress responsive genes, including iNOS. Nonetheless, the mechanism by which XBP1 regulates iNOS during ER stress remains unexplored. Here we show that the active/spliced form of XBP1 protein, XBP1S, directly binds to the AABS (A-activator-binding site) in the iNOS promoter in vitro and in living cells. XBP1S exhibits dose-dependent activation of iNOS-specific reporter gene activity and endogenous iNOS expression. XBP1S is elevated whereas the unspliced form of XBP1, XBP1U, reduced in ER stress in HepG2 cells. In addition, XBP1U binds to XBP1S and this complex is associated with the iNOS promoter in response to ER stress. Furthermore, XBP1U acts as a negative mediator and suppresses XBP1S-mediated induction of iNOS. Collectively, we present the first evidence demonstrating the regulation of iNOS gene induction by the interaction between the spliced and unspliced forms of XBP1 in response to ER stress.
Collapse
|