51
|
Moyon S, Liang J, Casaccia P. Epigenetics in NG2 glia cells. Brain Res 2016; 1638:183-198. [PMID: 26092401 PMCID: PMC4683112 DOI: 10.1016/j.brainres.2015.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/11/2015] [Accepted: 06/02/2015] [Indexed: 12/16/2022]
Abstract
The interplay of transcription and epigenetic marks is essential for oligodendrocyte progenitor cell (OPC) proliferation and differentiation during development. Here, we review the recent advances in this field and highlight mechanisms of transcriptional repression and activation involved in OPC proliferation, differentiation and plasticity. We also describe how dysregulation of these epigenetic events may affect demyelinating disorders, and consider potential ways to manipulate NG2 cell behavior through modulation of the epigenome. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Sarah Moyon
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jialiang Liang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrizia Casaccia
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
52
|
Blanc RS, Vogel G, Chen T, Crist C, Richard S. PRMT7 Preserves Satellite Cell Regenerative Capacity. Cell Rep 2016; 14:1528-1539. [PMID: 26854227 DOI: 10.1016/j.celrep.2016.01.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/13/2015] [Accepted: 01/04/2016] [Indexed: 02/02/2023] Open
Abstract
Regeneration of skeletal muscle requires the continued presence of quiescent muscle stem cells (satellite cells), which become activated in response to injury. Here, we report that whole-body protein arginine methyltransferase PRMT7(-/-) adult mice and mice conditionally lacking PRMT7 in satellite cells using Pax7-CreERT2 both display a significant reduction in satellite cell function, leading to defects in regenerative capacity upon muscle injury. We show that PRMT7 is preferentially expressed in activated satellite cells and, interestingly, PRMT7-deficient satellite cells undergo cell-cycle arrest and premature cellular senescence. These defects underlie poor satellite cell stem cell capacity to regenerate muscle and self-renew after injury. PRMT7-deficient satellite cells express elevated levels of the CDK inhibitor p21CIP1 and low levels of its repressor, DNMT3b. Restoration of DNMT3b in PRMT7-deficient cells rescues PRMT7-mediated senescence. Our findings define PRMT7 as a regulator of the DNMT3b/p21 axis required to maintain muscle stem cell regenerative capacity.
Collapse
Affiliation(s)
- Roméo Sébastien Blanc
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H3T 1E2, Canada
| | - Gillian Vogel
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H3T 1E2, Canada
| | - Taiping Chen
- Department of Molecular Carcinogenesis and Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Colin Crist
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Human Genetics, McGill University, Montréal, QC H3T 1E2, Canada.
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Departments of Oncology and Medicine, McGill University, Montréal, QC H3T 1E2, Canada.
| |
Collapse
|
53
|
Liu L, Zhao X, Zhao L, Li J, Yang H, Zhu Z, Liu J, Huang G. Arginine Methylation of SREBP1a via PRMT5 Promotes De Novo Lipogenesis and Tumor Growth. Cancer Res 2016; 76:1260-72. [PMID: 26759235 DOI: 10.1158/0008-5472.can-15-1766] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/17/2015] [Indexed: 11/16/2022]
Abstract
Dysregulation of the sterol regulatory element-binding transcription factors sterol regulatory element-binding protein (SREBP) and SREBF activates de novo lipogenesis to high levels in cancer cells, a critical event in driving malignant growth. In this study, we identified an important posttranslational mechanism by which SREBP1a is regulated during metabolic reprogramming in cancer cells. Mass spectrometry revealed protein arginine methyltransferase 5 (PRMT5) as a binding partner of SREBP1a that symmetrically dimethylated it on R321, thereby promoting transcriptional activity. Furthermore, PRMT5-induced methylation prevented phosphorylation of SREBP1a on S430 by GSK3β, leading to its disassociation from Fbw7 (FBXW7) and its evasion from degradation through the ubiquitin-proteasome pathway. Consequently, methylation-stabilized SREBP1a increased de novo lipogenesis and accelerated the growth of cancer cells in vivo and in vitro. Clinically, R321 symmetric dimethylation status was associated with malignant progression of human hepatocellular carcinoma, where it served as an independent risk factor of poor prognosis. By showing how PRMT5-induced methylation of SREBP1a triggers hyperactivation of lipid biosynthesis, a key event in tumorigenesis, our findings suggest a new generalized strategy to selectively attack tumor metabolism.
Collapse
Affiliation(s)
- Liu Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajin Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Yang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zongping Zhu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
54
|
Hashimoto M, Murata K, Ishida J, Kanou A, Kasuya Y, Fukamizu A. Severe Hypomyelination and Developmental Defects Are Caused in Mice Lacking Protein Arginine Methyltransferase 1 (PRMT1) in the Central Nervous System. J Biol Chem 2015; 291:2237-45. [PMID: 26637354 DOI: 10.1074/jbc.m115.684514] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 12/24/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is involved in cell proliferation, DNA damage response, and transcriptional regulation. Although PRMT1 is extensively expressed in the CNS at embryonic and perinatal stages, the physiological role of PRMT1 has been poorly understood. Here, to investigate the primary function of PRMT1 in the CNS, we generated CNS-specific PRMT1 knock-out mice by the Cre-loxP system. These mice exhibited postnatal growth retardation with tremors, and most of them died within 2 weeks after birth. Brain histological analyses revealed prominent cell reduction in the white matter tracts of the mutant mice. Furthermore, ultrastructural analysis demonstrated that myelin sheath was almost completely ablated in the CNS of these animals. In agreement with hypomyelination, we also observed that most major myelin proteins including myelin basic protein (MBP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), and myelin-associated glycoprotein (MAG) were dramatically decreased, although neuronal and astrocytic markers were preserved in the brain of CNS-specific PRMT1 knock-out mice. These animals had a reduced number of OLIG2(+) oligodendrocyte lineage cells in the white matter. We found that expressions of transcription factors essential for oligodendrocyte specification and further maturation were significantly suppressed in the brain of the mutant mice. Our findings provide evidence that PRMT1 is required for CNS development, especially for oligodendrocyte maturation processes.
Collapse
Affiliation(s)
- Misuzu Hashimoto
- From the Ph.D. Program in Human Biology, School of Integrative and Global Majors
| | - Kazuya Murata
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), and
| | - Junji Ishida
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), and Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 and
| | - Akihiko Kanou
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 and
| | - Yoshitoshi Kasuya
- the Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan
| | - Akiyoshi Fukamizu
- From the Ph.D. Program in Human Biology, School of Integrative and Global Majors, Life Science Center, Tsukuba Advanced Research Alliance (TARA), and Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 and
| |
Collapse
|
55
|
Abstract
Inhibitor of DNA binding/differentiation protein 4 (ID4) is dominant negative helix loop helix transcriptional regulator is epigenetically silenced due to promoter hyper-methylation in many cancers including prostate. However, the underlying mechanism involved in epigenetic silencing of ID4 is not known. Here, we demonstrate that ID4 promoter methylation is initiated by EZH2 dependent tri-methylation of histone 3 at lysine 27 (H3K27me3). ID4 expressing (LNCaP) and non-expressing (DU145 and C81) prostate cancer cell lines were used to investigate EZH2, H3K27me3 and DNMT1 enrichment on ID4 promoter by Chromatin immuno-precipitation (ChIP). Enrichment of EZH2, H3K27Me3 and DNMT1 in DU145 and C81 cell lines compared to ID4 expressing LNCaP cell line. Knockdown of EZH2 in DU145 cell line led to re-expression of ID4 and decrease in enrichment of EZH2, H3K27Me3 and DNMT1 demonstrating that ID4 is regulated in an EZH2 dependent manner. ChIP data on prostate cancer tissue specimens and cell lines suggested EZH2 occupancy and H3K27Me3 marks on the ID4 promoter. Collectively, our data indicate a PRC2 dependent mechanism in ID4 promoter silencing in prostate cancer through recruitment of EZH2 and a corresponding increase in H3K27Me3. Increased EZH2 but decreased ID4 expression in prostate cancer strongly supports this model.
Collapse
|
56
|
Stopa N, Krebs JE, Shechter D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci 2015; 72:2041-59. [PMID: 25662273 PMCID: PMC4430368 DOI: 10.1007/s00018-015-1847-9] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/10/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
Post-translational arginine methylation is responsible for regulation of many biological processes. The protein arginine methyltransferase 5 (PRMT5, also known as Hsl7, Jbp1, Skb1, Capsuleen, or Dart5) is the major enzyme responsible for mono- and symmetric dimethylation of arginine. An expanding literature demonstrates its critical biological function in a wide range of cellular processes. Histone and other protein methylation by PRMT5 regulate genome organization, transcription, stem cells, primordial germ cells, differentiation, the cell cycle, and spliceosome assembly. Metazoan PRMT5 is found in complex with the WD-repeat protein MEP50 (also known as Wdr77, androgen receptor coactivator p44, or Valois). PRMT5 also directly associates with a range of other protein factors, including pICln, Menin, CoPR5 and RioK1 that may alter its subcellular localization and protein substrate selection. Protein substrate and PRMT5-MEP50 post-translation modifications induce crosstalk to regulate PRMT5 activity. Crystal structures of C. elegans PRMT5 and human and frog PRMT5-MEP50 complexes provide substantial insight into the mechanisms of substrate recognition and procession to dimethylation. Enzymological studies of PRMT5 have uncovered compelling insights essential for future development of specific PRMT5 inhibitors. In addition, newly accumulating evidence implicates PRMT5 and MEP50 expression levels and their methyltransferase activity in cancer tumorigenesis, and, significantly, as markers of poor clinical outcome, marking them as potential oncogenes. Here, we review the substantial new literature on PRMT5 and its partners to highlight the significance of understanding this essential enzyme in health and disease.
Collapse
Affiliation(s)
- Nicole Stopa
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Jocelyn E. Krebs
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
57
|
Simandi Z, Czipa E, Horvath A, Koszeghy A, Bordas C, Póliska S, Juhász I, Imre L, Szabó G, Dezso B, Barta E, Sauer S, Karolyi K, Kovacs I, Hutóczki G, Bognár L, Klekner Á, Szucs P, Bálint BL, Nagy L. PRMT1 and PRMT8 Regulate Retinoic Acid-Dependent Neuronal Differentiation with Implications to Neuropathology. Stem Cells 2015; 33:726-41. [DOI: 10.1002/stem.1894] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Zoltan Simandi
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Erik Czipa
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Aron Koszeghy
- Department of Physiology; University of Debrecen; Debrecen Hungary
| | - Csilla Bordas
- Department of Physiology; University of Debrecen; Debrecen Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - István Juhász
- Department of Dermatology; University of Debrecen; Debrecen Hungary
- Department of Surgery and Operative Techniques; Faculty of Dentistry University of Debrecen; Debrecen Hungary
| | - László Imre
- Department of Biophysics and Cell biology; University of Debrecen; Debrecen Hungary
| | - Gábor Szabó
- Department of Biophysics and Cell biology; University of Debrecen; Debrecen Hungary
| | - Balazs Dezso
- Department of Pathology; University of Debrecen; Debrecen Hungary
| | - Endre Barta
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Sascha Sauer
- Otto Warburg Laboratory; Max Planck Institute for Molecular Genetics; Berlin Germany
| | - Katalin Karolyi
- Department of Pathology; Kenézy Hospital and Outpatient Clinic; Debrecen Hungary
| | - Ilona Kovacs
- Department of Pathology; Kenézy Hospital and Outpatient Clinic; Debrecen Hungary
| | - Gábor Hutóczki
- Department of Neurosurgery; University of Debrecen; Debrecen Hungary
| | - László Bognár
- Department of Neurosurgery; University of Debrecen; Debrecen Hungary
| | - Álmos Klekner
- Department of Neurosurgery; University of Debrecen; Debrecen Hungary
| | - Peter Szucs
- Department of Physiology; University of Debrecen; Debrecen Hungary
- MTA-DE-NAP B-Pain Control Group; University of Debrecen; Debrecen Hungary
| | - Bálint L. Bálint
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology; University of Debrecen; Debrecen Hungary
- MTA-DE “Lendulet” Immunogenomics Research Group; University of Debrecen; Debrecen Hungary
- Sanford-Burnham Medical Research Institute at Lake Nona; Orlando Florida USA
| |
Collapse
|
58
|
Paul C, Sardet C, Fabbrizio E. The Wnt-target gene Dlk-1 is regulated by the Prmt5-associated factor Copr5 during adipogenic conversion. Biol Open 2015; 4:312-6. [PMID: 25681392 PMCID: PMC4359737 DOI: 10.1242/bio.201411247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein arginine methyl transferase 5 (Prmt5) regulates various differentiation processes, including adipogenesis. Here, we investigated adipogenic conversion in cells and mice in which Copr5, a Prmt5- and histone-binding protein, was genetically invalidated. Compared to control littermates, the retroperitoneal white adipose tissue (WAT) of Copr5 KO mice was slightly but significantly reduced between 8 and 16 week/old and contained fewer and larger adipocytes. Moreover, the adipogenic conversion of Copr5 KO embryoid bodies (EB) and of primary embryo fibroblasts (Mefs) was markedly delayed. Differential transcriptomic analysis identified Copr5 as a negative regulator of the Dlk-1 gene, a Wnt target gene involved in the control of adipocyte progenitors cell fate. Dlk-1 expression was upregulated in Copr5 KO Mefs and the Vascular Stromal Fraction (VSF) of Copr5 KO WAT. Chromatin immunoprecipitation (ChIP) show that the ablation of Copr5 has impaired both the recruitment of Prmt5 and β-catenin at the Dlk-1 promoter. Overall, our data suggest that Copr5 is involved in the transcriptional control exerted by the Wnt pathway on early steps of adipogenesis.
Collapse
Affiliation(s)
- Conception Paul
- Equipe labellisée Ligue Contre le Cancer, Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 34293 Montpellier, France Université Montpellier I and II, 34000 Montpellier, France
| | - Claude Sardet
- Equipe labellisée Ligue Contre le Cancer, Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 34293 Montpellier, France Université Montpellier I and II, 34000 Montpellier, France Institut de Recherche en Cancérologie de Montpellier, Inserm, U1194, 34298 Montpellier, France
| | - Eric Fabbrizio
- Equipe labellisée Ligue Contre le Cancer, Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 34293 Montpellier, France Université Montpellier I and II, 34000 Montpellier, France Institut de Recherche en Cancérologie de Montpellier, Inserm, U1194, 34298 Montpellier, France
| |
Collapse
|
59
|
Chen XS, Huang N, Michael N, Xiao L. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells. Front Cell Neurosci 2015; 9:451. [PMID: 26696822 PMCID: PMC4667081 DOI: 10.3389/fncel.2015.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/02/2015] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells.
Collapse
Affiliation(s)
- Xing-Shu Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Nanxin Huang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
| | - Namaka Michael
- College of Pharmacy and Medicine, Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and the College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical UniversityChongqing, China
- *Correspondence: Lan Xiao
| |
Collapse
|
60
|
Spatiotemporal expression analysis of Prdm1 and Prdm1 binding partners in early chick embryo. Gene Expr Patterns 2015; 17:56-68. [DOI: 10.1016/j.gep.2014.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 01/17/2023]
|
61
|
Patel D, Morton DJ, Carey J, Havrda MC, Chaudhary J. Inhibitor of differentiation 4 (ID4): From development to cancer. Biochim Biophys Acta Rev Cancer 2014; 1855:92-103. [PMID: 25512197 DOI: 10.1016/j.bbcan.2014.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/25/2014] [Accepted: 12/06/2014] [Indexed: 01/25/2023]
Abstract
Highly conserved Inhibitors of DNA-Binding (ID1-ID4) genes encode multi-functional proteins whose transcriptional activity is based on dominant negative inhibition of basic helix-loop-helix (bHLH) transcription factors. Initial animal models indicated a degree of compensatory overlap between ID genes such that deletion of multiple ID genes was required to generate easily recognizable phenotypes. More recently, new model systems have revealed alterations in mice harboring deletions in single ID genes suggesting complex gene and tissue specific functions for members of the ID gene family. Because ID genes are highly expressed during development and their function is associated with a primitive, proliferative cellular phenotype there has been significant interest in understanding their potential roles in neoplasia. Indeed, numerous studies indicate an oncogenic function for ID1, ID2 and ID3. In contrast, the inhibitor of differentiation 4 (ID4) presents a paradigm shift in context of well-established role of ID1, ID2 and ID3 in development and cancer. Apart from some degree of functional redundancy such as HLH dependent interactions with bHLH protein E2A, many of the functions of ID4 are distinct from ID1, ID2 and ID3: ID4 proteins a) regulate distinct developmental processes and tissue expression in the adult, b) promote stem cell survival, differentiation and/or timing of differentiation, c) epigenetic inactivation/loss of expression in several advanced stage cancers and d) increased expression in some cancers such as those arising in the breast and ovary. Thus, in spite of sharing the conserved HLH domain, ID4 defies the established model of ID protein function and expression. The underlying molecular mechanism responsible for the unique role of ID4 as compared to other ID proteins still remains largely un-explored. This review will focus on the current understanding of ID4 in context of development and cancer.
Collapse
Affiliation(s)
- Divya Patel
- Department of Biological Sciences, Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Derrick J Morton
- Department of Biological Sciences, Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Jason Carey
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mathew C Havrda
- Norris Cotton Cancer Center and Geisel Medical School at Dartmouth, Lebanon, NH, USA
| | - Jaideep Chaudhary
- Department of Biological Sciences, Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, USA.
| |
Collapse
|
62
|
Han X, Li R, Zhang W, Yang X, Wheeler CG, Friedman GK, Province P, Ding Q, You Z, Fathallah-Shaykh HM, Gillespie GY, Zhao X, King PH, Nabors LB. Expression of PRMT5 correlates with malignant grade in gliomas and plays a pivotal role in tumor growth in vitro. J Neurooncol 2014; 118:61-72. [PMID: 24664369 DOI: 10.1007/s11060-014-1419-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/28/2014] [Indexed: 01/02/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of ω-NG,N'G-symmetric dimethylarginine residues on histones as well as other proteins. These modifications play an important role in cell differentiation and tumor cell growth. However, the role of PRMT5 in human glioma cells has not been characterized. In this study, we assessed protein expression profiles of PRMT5 in control brain, WHO grade II astrocytomas, anaplastic astrocytomas, and glioblastoma multiforme (GBM) by immunohistochemistry. PRMT5 was low in glial cells in control brain tissues and low grade astrocytomas. Its expression increased in parallel with malignant progression, and was highly expressed in GBM. Knockdown of PRMT5 by small hairpin RNA caused alterations of p-ERK1/2 and significantly repressed the clonogenic potential and viability of glioma cells. These findings indicate that PRMT5 is a marker of malignant progression in glioma tumors and plays a pivotal role in tumor growth.
Collapse
Affiliation(s)
- Xiaosi Han
- Department of Neurology, The University of Alabama at Birmingham, FOT 1020, 1530 3rd Ave S, Birmingham, AL, 35294-3410, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
The QKI-5 and QKI-6 RNA binding proteins regulate the expression of microRNA 7 in glial cells. Mol Cell Biol 2013; 33:1233-43. [PMID: 23319046 DOI: 10.1128/mcb.01604-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The quaking (qkI) gene encodes 3 major alternatively spliced isoforms that contain unique sequences at their C termini dictating their cellular localization. QKI-5 is predominantly nuclear, whereas QKI-6 is distributed throughout the cell and QKI-7 is cytoplasmic. The QKI isoforms are sequence-specific RNA binding proteins expressed mainly in glial cells modulating RNA splicing, export, and stability. Herein, we identify a new role for the QKI proteins in the regulation of microRNA (miRNA) processing. We observed that small interfering RNA (siRNA)-mediated QKI depletion of U343 glioblastoma cells leads to a robust increase in miR-7 expression. The processing from primary to mature miR-7 was inhibited in the presence QKI-5 and QKI-6 but not QKI-7, suggesting that the nuclear localization plays an important role in the regulation of miR-7 expression. The primary miR-7-1 was bound by the QKI isoforms in a QKI response element (QRE)-specific manner. We observed that the pri-miR-7-1 RNA was tightly bound to Drosha in the presence of the QKI isoforms, and this association was not observed in siRNA-mediated QKI or Drosha-depleted U343 glioblastoma cells. Moreover, the presence of the QKI isoforms led to an increase presence of pri-miR-7 in nuclear foci, suggesting that pri-miR-7-1 is retained in the nucleus by the QKI isoforms. miR-7 is known to target the epidermal growth factor (EGF) receptor (EGFR) 3' untranslated region (3'-UTR), and indeed, QKI-deficient U343 cells had reduced EGFR expression and decreased ERK activation in response to EGF. Elevated levels of miR-7 are associated with cell cycle arrest, and it was observed that QKI-deficient U343 that harbor elevated levels of miR-7 exhibited defects in cell proliferation that were partially rescued by the addition of a miR-7 inhibitor. These findings suggest that the QKI isoforms regulate glial cell function and proliferation by regulating the processing of certain miRNAs.
Collapse
|
64
|
Chittka A, Nitarska J, Grazini U, Richardson WD. Transcription factor positive regulatory domain 4 (PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to mediate histone arginine methylation and control neural stem cell proliferation and differentiation. J Biol Chem 2012; 287:42995-3006. [PMID: 23048031 PMCID: PMC3522294 DOI: 10.1074/jbc.m112.392746] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During development of the cerebral cortex, neural stem cells (NSCs) undergo a temporal switch from proliferative (symmetric) to neuron-generating (asymmetric) divisions. We investigated the role of Schwann cell factor 1 (SC1/PRDM4), a member of the PRDM family of transcription factors, in this critical transition. We discovered that SC1 recruits the chromatin modifier PRMT5, an arginine methyltransferase that catalyzes symmetric dimethylation of histone H4 arginine 3 (H4R3me2s) and that this modification is preferentially associated with undifferentiated cortical NSCs. Overexpressing SC1 in embryonic NSCs led to an increase in the number of Nestin-expressing precursors; mutational analysis of SC1 showed that this was dependent on recruitment of PRMT5. We found that SC1 protein levels are down-regulated at the onset of neurogenesis and that experimental knockdown of SC1 in primary NSCs triggers precocious neuronal differentiation. We propose that SC1 and PRMT5 are components of an epigenetic regulatory complex that maintains the “stem-like” cellular state of the NSC by preserving their proliferative capacity and modulating their cell cycle progression. Our findings provide evidence that histone arginine methylation regulates NSC differentiation.
Collapse
Affiliation(s)
- Alexandra Chittka
- Wolfson Institute for Biomedical Research and Research Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom.
| | | | | | | |
Collapse
|
65
|
LeBlanc SE, Konda S, Wu Q, Hu YJ, Oslowski CM, Sif S, Imbalzano AN. Protein arginine methyltransferase 5 (Prmt5) promotes gene expression of peroxisome proliferator-activated receptor γ2 (PPARγ2) and its target genes during adipogenesis. Mol Endocrinol 2012; 26:583-97. [PMID: 22361822 DOI: 10.1210/me.2011-1162] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Regulation of adipose tissue formation by adipogenic-regulatory proteins has long been a topic of interest given the ever-increasing health concerns of obesity and type 2 diabetes in the general population. Differentiation of precursor cells into adipocytes involves a complex network of cofactors that facilitate the functions of transcriptional regulators from the CCATT/enhancer binding protein, and the peroxisome proliferator-activated receptor (PPAR) families. Many of these cofactors are enzymes that modulate the structure of chromatin by altering histone-DNA contacts in an ATP-dependent manner or by posttranslationally modifying the histone proteins. Here we report that inhibition of protein arginine methyltransferase 5 (Prmt5) expression in multiple cell culture models for adipogenesis prevented the activation of adipogenic genes. In contrast, overexpression of Prmt5 enhanced adipogenic gene expression and differentiation. Chromatin immunoprecipitation experiments indicated that Prmt5 binds to and dimethylates histones at adipogenic promoters. Furthermore, the presence of Prmt5 promoted the binding of ATP-dependent chromatin-remodeling enzymes and was required for the binding of PPARγ2 at PPARγ2-regulated promoters. The data indicate that Prmt5 acts as a coactivator for the activation of adipogenic gene expression and promotes adipogenic differentiation.
Collapse
Affiliation(s)
- Scott E LeBlanc
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | |
Collapse
|