51
|
McKenna R, Lombana TN, Yamada M, Mukhyala K, Veeravalli K. Engineered sigma factors increase full-length antibody expression in Escherichia coli. Metab Eng 2019; 52:315-323. [DOI: 10.1016/j.ymben.2018.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022]
|
52
|
Unique Patterns and Biogeochemical Relevance of Two-Component Sensing in Marine Bacteria. mSystems 2019; 4:mSystems00317-18. [PMID: 30746496 PMCID: PMC6365647 DOI: 10.1128/msystems.00317-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
Marine microbes must manage variation in their chemical, physical, and biological surroundings. Because they directly link bacterial physiology to environmental changes, TCS systems are crucial to the bacterial cell. This study surveyed TCS systems in a large number of marine bacteria and identified key phylogenetic and lifestyle patterns in environmental sensing. We found evidence that, in comparison with bacteria as a whole, marine organisms have irregular TCS system constructs which might represent an adaptation specific to the marine environment. Additionally, we demonstrate the biogeochemical relevance of TCS systems by correlating the presence of the PMT9312_0717 response regulator protein to phosphate concentrations in the South Pacific. We highlight that despite their potential ecological and biogeochemical relevance, TCS systems have been understudied in the marine ecosystem. This report expands our understanding of the breadth of bacterial TCS systems and how marine bacteria have adapted to survive in their unique environment. Two-component sensory (TCS) systems link microbial physiology to the environment and thus may play key roles in biogeochemical cycles. In this study, we surveyed the TCS systems of 328 diverse marine bacterial species. We identified lifestyle traits such as copiotrophy and diazotrophy that are associated with larger numbers of TCS system genes within the genome. We compared marine bacterial species with 1,152 reference bacterial species from a variety of habitats and found evidence of extra response regulators in marine genomes. Examining the location of TCS genes along the circular bacterial genome, we also found that marine bacteria have a large number of “orphan” genes, as well as many hybrid histidine kinases. The prevalence of “extra” response regulators, orphan genes, and hybrid TCS systems suggests that marine bacteria break with traditional understanding of how TCS systems operate. These trends suggest prevalent regulatory networking, which may allow coordinated physiological responses to multiple environmental signals and may represent a specific adaptation to the marine environment. We examine phylogenetic and lifestyle traits that influence the number and structure of two-component systems in the genome, finding, for example, that a lack of two-component systems is a hallmark of oligotrophy. Finally, in an effort to demonstrate the importance of TCS systems to marine biogeochemistry, we examined the distribution of Prochlorococcus/Synechococcus response regulator PMT9312_0717 in metaproteomes of the tropical South Pacific. We found that this protein’s abundance is related to phosphate concentrations, consistent with a putative role in phosphate regulation. IMPORTANCE Marine microbes must manage variation in their chemical, physical, and biological surroundings. Because they directly link bacterial physiology to environmental changes, TCS systems are crucial to the bacterial cell. This study surveyed TCS systems in a large number of marine bacteria and identified key phylogenetic and lifestyle patterns in environmental sensing. We found evidence that, in comparison with bacteria as a whole, marine organisms have irregular TCS system constructs which might represent an adaptation specific to the marine environment. Additionally, we demonstrate the biogeochemical relevance of TCS systems by correlating the presence of the PMT9312_0717 response regulator protein to phosphate concentrations in the South Pacific. We highlight that despite their potential ecological and biogeochemical relevance, TCS systems have been understudied in the marine ecosystem. This report expands our understanding of the breadth of bacterial TCS systems and how marine bacteria have adapted to survive in their unique environment.
Collapse
|
53
|
Conley ZC, Carlson-Banning KM, Carter AG, de la Cova A, Song Y, Zechiedrich L. Sugar and iron: Toward understanding the antibacterial effect of ciclopirox in Escherichia coli. PLoS One 2019; 14:e0210547. [PMID: 30633761 PMCID: PMC6329577 DOI: 10.1371/journal.pone.0210547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022] Open
Abstract
New antibiotics are needed against antibiotic-resistant gram-negative bacteria. The repurposed antifungal drug, ciclopirox, equally blocks antibiotic-susceptible or multidrug-resistant Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates, indicating that it is not affected by existing resistance mechanisms. Toward understanding how ciclopirox blocks growth, we screened E. coli mutant strains and found that disruption of genes encoding products involved in galactose salvage, enterobacterial common antigen synthesis, and transport of the iron binding siderophore, enterobactin, lowered the minimum inhibitory concentration of ciclopirox needed to block growth of the mutant compared to the isogenic parent strain. We found that ciclopirox induced enterobactin production and that this effect is strongly affected by the deletion of the galactose salvage genes encoding UDP-galactose 4-epimerase, galE, or galactose-1-phosphate uridylyltransferase, galT. As disruption of ECA synthesis activates the regulation of capsular synthesis (Rcs) phosphorelay, which inhibits bacterial swarming and promotes biofilm development, we test whether ciclopirox prevents activation of the Rcs pathway. Sub-inhibitory concentrations of ciclopirox increased swarming of the E. coli laboratory K12 strain BW25113 but had widely varying effects on swarming or surface motility of clinical isolate E. coli, A. baumannii, and K. pneumoniae. There was no effect of ciclopirox on biofilm production, suggesting it does not target Rcs. Altogether, our data suggest ciclopirox-mediated alteration of lipopolysaccharides stimulates enterobactin production and affects bacterial swarming.
Collapse
Affiliation(s)
- Zachary C. Conley
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kimberly M. Carlson-Banning
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ashley G. Carter
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alejandro de la Cova
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Environmental and Human Toxicology, University of Florida College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lynn Zechiedrich
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
54
|
Du HH, Zhou HZ, Tang P, Huang HQ, Liu M, Hu YH. Global discovery of small RNAs in the fish pathogen Edwardsiella piscicida: key regulator of adversity and pathogenicity. Vet Res 2018; 49:120. [PMID: 30537995 PMCID: PMC6288947 DOI: 10.1186/s13567-018-0613-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/15/2018] [Indexed: 11/10/2022] Open
Abstract
Recently, bacterial small RNA (sRNA) has been shown to be involved as a key regulator in stress responses. sRNAs of Edwardsiella piscicida, an important aquatic pathogen, are not well characterized to date. In this study, using RNA-seq technology, we globally found and identified sRNA candidates expressed from E. piscicida grown in normal LB medium, acid pressure, iron deficiency stress, and oxidation pressure. A total of 148 sRNAs were found, including 19 previously annotated sRNAs and 129 novel sRNA candidates by searching against the Rfam database. Compared in normal condition, the expression of 103 sRNAs (DEsRNA, differentially expressed sRNA) and 1615 mRNAs (DEmRNAs, differentially expressed mRNA) showed significant differences in three stress sample. Based on the prediction by IntaRNA and relational analysis between DEsRNAs and DEmRNAs, 103 DEsRNAs were predicted to regulate 769 target mRNAs. Pleiotropic function of target DEmRNAs indicated that sRNAs extensively participated in a variety of physiological processes, including response to adversity and pathogenicity, the latter was further confirmed by infection experiment. A large number transcription factors appeared in target genes of sRNAs, which suggested that sRNAs likely deeply interlaced within complex gene regulatory networks of E. piscicida. Moreover, 49 Hfq-associated sRNAs were also identified in this study. In summary, we globally discovered sRNAs for the first time in pathogenic bacteria of fish, and our findings indicated that sRNAs in E. piscicida have important roles in adaptation to environmental stress and pathogenicity. These results also provide clues for deciphering regulation mechanism of gene expression related to physiological response and pathogenicity.
Collapse
Affiliation(s)
- He-He Du
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Hai-Zhen Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Tang
- Yunnan Agricultural University, Kunming, Yunnan, 650200, China
| | - Hui-Qin Huang
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Min Liu
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| | - Yong-Hua Hu
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. .,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
55
|
Evans MV, Panescu J, Hanson AJ, Welch SA, Sheets JM, Nastasi N, Daly RA, Cole DR, Darrah TH, Wilkins MJ, Wrighton KC, Mouser PJ. Members of Marinobacter and Arcobacter Influence System Biogeochemistry During Early Production of Hydraulically Fractured Natural Gas Wells in the Appalachian Basin. Front Microbiol 2018; 9:2646. [PMID: 30498478 PMCID: PMC6249378 DOI: 10.3389/fmicb.2018.02646] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022] Open
Abstract
Hydraulic fracturing is the prevailing method for enhancing recovery of hydrocarbon resources from unconventional shale formations, yet little is understood regarding the microbial impact on biogeochemical cycling in natural-gas wells. Although the metabolisms of certain fermentative bacteria and methanogenic archaea that dominate in later produced fluids have been well studied, few details have been reported on microorganisms prevelant during the early flowback period, when oxygen and other surface-derived oxyanions and nutrients become depleted. Here, we report the isolation, genomic and phenotypic characterization of Marinobacter and Arcobacter bacterial species from natural-gas wells in the Utica-Point Pleasant and Marcellus Formations coupled to supporting geochemical and metagenomic analyses of produced fluid samples. These unconventional hydrocarbon system-derived Marinobacter sp. are capable of utilizing a diversity of organic carbon sources including aliphatic and aromatic hydrocarbons, amino acids, and carboxylic acids. Marinobacter and Arcobacter can metabolize organic nitrogen sources and have the capacity for denitrification and dissimilatory nitrate reduction to ammonia (DNRA) respectively; with DNRA and ammonification processes partially explaining high concentrations of ammonia measured in produced fluids. Arcobacter is capable of chemosynthetic sulfur oxidation, which could fuel metabolic processes for other heterotrophic, fermentative, or sulfate-reducing community members. Our analysis revealed mechanisms for growth of these taxa across a broad range of salinities (up to 15% salt), which explains their enrichment during early natural-gas production. These results demonstrate the prevalence of Marinobacter and Arcobacter during a key maturation phase of hydraulically fractured natural-gas wells, and highlight the significant role these genera play in biogeochemical cycling for this economically important energy system.
Collapse
Affiliation(s)
- Morgan V Evans
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, United States
| | - Jenny Panescu
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, United States
| | - Andrea J Hanson
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, United States
| | - Susan A Welch
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States
| | - Julia M Sheets
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States
| | - Nicholas Nastasi
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, United States
| | - Rebecca A Daly
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - David R Cole
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States
| | - Thomas H Darrah
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States
| | - Michael J Wilkins
- School of Earth Sciences, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Kelly C Wrighton
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Paula J Mouser
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, United States.,Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
56
|
Buján N, Toranzo AE, Magariños B. Edwardsiella piscicida: a significant bacterial pathogen of cultured fish. DISEASES OF AQUATIC ORGANISMS 2018; 131:59-71. [PMID: 30324915 DOI: 10.3354/dao03281] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Edwardsiella piscicida, a Gram-negative, facultative aerobic pathogen belonging to the Enterobacteriaceae family, is the etiological agent of edwardsiellosis in fish and a significant problem in global aquaculture. E. piscicida has been reported from a broad geographical range and has been isolated from more than 20 fish host species to date, but this is likely to be an underestimation, because misidentification of E. piscicida as other species within the genus remains to be resolved. Common clinical signs associated with edwardsiellosis include, but are not limited to, exophthalmia, haemorrhages of the skin and in several internal organs, mild to moderate dermal ulcerations, abdominal distension, discoloration in the fish surface, and erratic swimming. Many antibiotics are currently effective against E. piscicida, although legal restrictions and the cost of medicated feeds have encouraged significant research investment in vaccination for the management of edwardsiellosis in commercial aquaculture. Here we summarise the current understanding of E. piscicida and highlight the difficulties with species assignment and the need for further research on epidemiology and strain variability.
Collapse
Affiliation(s)
- N Buján
- Departamento de Microbioloxía y Parasitoloxía, Facultade de Bioloxía-Edif, CIBUS, and Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | | | | |
Collapse
|
57
|
PhoPR Contributes to Staphylococcus aureus Growth during Phosphate Starvation and Pathogenesis in an Environment-Specific Manner. Infect Immun 2018; 86:IAI.00371-18. [PMID: 30061377 DOI: 10.1128/iai.00371-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/21/2018] [Indexed: 12/31/2022] Open
Abstract
Microbial pathogens must obtain all essential nutrients, including phosphate, from the host. To optimize phosphate acquisition in diverse and dynamic environments, such as mammalian tissues, many bacteria use the PhoPR two-component system. Despite the necessity of this system for virulence in several species, PhoPR has not been studied in the major human pathogen Staphylococcus aureus To illuminate its role in staphylococcal physiology, we initially assessed whether PhoPR controls the expression of the three inorganic phosphate (Pi) importers (PstSCAB, NptA, and PitA) in S. aureus This analysis revealed that PhoPR is required for the expression of pstSCAB and nptA and can modulate pitA expression. Consistent with a role in phosphate homeostasis, PhoPR-mediated regulation of the transporters is influenced by phosphate availability. Further investigations revealed that PhoPR is necessary for growth under Pi-limiting conditions, and in some environments, its primary role is to induce the expression of pstSCAB or nptA Interestingly, in other environments, PhoPR is necessary for growth independent of Pi transporter expression, indicating that additional PhoPR-regulated factors promote S. aureus adaptation to low-Pi conditions. Together, these data suggest that PhoPR differentially contributes to growth in an environment-specific manner. In a systemic infection model, a mutant of S. aureus lacking PhoPR is highly attenuated. Further investigation revealed that PhoPR-regulated factors, in addition to Pi transporters, are critical for staphylococcal pathogenesis. Cumulatively, these findings point to an important role for PhoPR in orchestrating Pi acquisition as well as transporter-independent mechanisms that contribute to S. aureus virulence.
Collapse
|
58
|
Yin K, Guan Y, Ma R, Wei L, Liu B, Liu X, Zhou X, Ma Y, Zhang Y, Waldor MK, Wang Q. Critical role for a promoter discriminator in RpoS control of virulence in Edwardsiella piscicida. PLoS Pathog 2018; 14:e1007272. [PMID: 30169545 PMCID: PMC6136808 DOI: 10.1371/journal.ppat.1007272] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/13/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Edwardsiella piscicida is a leading fish pathogen that causes significant economic loses in the aquaculture industry. The pathogen depends on type III and type VI secretion systems (T3/T6SS) for growth and virulence in fish and the expression of both systems is controlled by the EsrB transcription activator. Here, we performed a Tn-seq-based screen to uncover factors that govern esrB expression. Unexpectedly, we discovered that RpoS antagonizes esrB expression and thereby inhibits production of E. piscicida’s T3/T6SS. Using in vitro transcription assays, we showed that RpoS can block RpoD-mediated transcription of esrB. ChIP-seq- and RNA-seq-based profiling, as well as mutational and biochemical analyses revealed that RpoS-repressed promoters contain a -6G in their respective discriminator sequences; moreover, this -6G proved critical for RpoS to inhibit esrB expression. Mutation of the RpoS R99 residue, an amino acid that molecular modeling predicts interacts with -6G in the esrB discriminator, abolished RpoS’ capacity for repression. In a turbot model, an rpoS deletion mutant was attenuated early but not late in infection, whereas a mutant expressing RpoSR99A exhibited elevated fitness throughout the infection period. Collectively, these findings deepen our understanding of how RpoS can inhibit gene expression and demonstrate the temporal variation in the requirement for this sigma factor during infection. Edwardsiella piscicida, a major fish pathogen, relies on T3/T6SSs for virulence and the EsrB transcription activator promotes the expression of these secretion systems and many other genes that enable growth in fish. Here, we found that the alternative sigma factor RpoS inhibits expression of esrB thereby diminishing expression of virulence-associated genes. Transcriptome profiling revealed that, as in many other organisms, RpoS enables expression of hundreds of genes, many of which are linked to stress responses, suggesting that RpoS may mediate a trade-off between stress adaptation and virulence. Consistent with this idea, we found that an rpoS mutant was attenuated early, but not late in infection of turbot, whereas an esrB mutant was attenuated late and not early in infection. Molecular analyses demonstrated that RpoS inhibition of esrB expression involves a direct interaction between RpoS and the esrB promoter; in particular, interactions between RpoS residue R99 and the -6G nucleotide in the esrB promoter discriminator appear to be critical for repression of esrB expression. These findings provide new insight into how a sigma factor can impede transcription and demonstrate the temporal dynamics of the requirement for a sigma factor during the course of infection.
Collapse
Affiliation(s)
- Kaiyu Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, East China University of Science and Technology, Shanghai, China
| | - Yunpeng Guan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruiqing Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lifan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bing Liu
- Institut de Biotecnologia i Biomedicina, Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, East China University of Science and Technology, Shanghai, China
| | - Matthew K. Waldor
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, East China University of Science and Technology, Shanghai, China
- * E-mail:
| |
Collapse
|
59
|
Zhang Y, Zhang Y, Li P, Wang Y, Wang J, Shao Z, Zhao G. GlnR positive transcriptional regulation of the phosphate-specific transport system pstSCAB in Amycolatopsis mediterranei U32. Acta Biochim Biophys Sin (Shanghai) 2018; 50:757-765. [PMID: 30007316 DOI: 10.1093/abbs/gmy073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Indexed: 11/14/2022] Open
Abstract
Amycolatopsis mediterranei U32 is an important industrial strain for the production of rifamycin SV. Rifampicin, a derivative of rifamycin SV, is commonly used to treat mycobacterial infections. Although phosphate has long been known to affect rifamycin biosynthesis, phosphate transport, metabolism, and regulation are poorly understood in A. mediterranei. In this study, the functional phosphate transport system pstSCAB was isolated by RNA sequencing and inactivated by insertion mutation in A. mediterranei U32. The mycelium morphology changed from a filamentous shape in the wild-type and pstS1+ strains to irregular swollen shape at the end of filamentous in the ΔpstS1 strain. RT-PCR assay revealed that pstSCAB genes are co-transcribed as a polycistronic messenger. The pstSCAB transcription was significantly activated by nitrate supplementation and positively regulated by GlnR which is a global regulator of nitrogen metabolism in actinomycetes. At the same time, the yield of rifamycin SV decreased after mutation (ΔpstS1) compared with wild-type U32, which indicated a strong connection among phosphate metabolism, nitrogen metabolism, and rifamycin production in actinomycetes.
Collapse
Affiliation(s)
- Yuhui Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Department of Life Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Yixuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Peng Li
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jin Wang
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhihui Shao
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
60
|
Yang X, Pan J, Wang Y, Shen X. Type VI Secretion Systems Present New Insights on Pathogenic Yersinia. Front Cell Infect Microbiol 2018; 8:260. [PMID: 30109217 PMCID: PMC6079546 DOI: 10.3389/fcimb.2018.00260] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022] Open
Abstract
The type VI secretion system (T6SS) is a versatile secretion system widely distributed in Gram-negative bacteria that delivers multiple effector proteins into either prokaryotic or eukaryotic cells, or into the extracellular milieu. T6SS participates in various physiological processes including bacterial competition, host infection, and stress response. Three pathogenic Yersinia species, namely Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica, possess different copies of T6SSs with distinct biological functions. This review summarizes the pathogenic, antibacterial, and stress-resistant roles of T6SS in Yersinia and the ion-transporting ability in Y. pseudotuberculosis. In addition, the T6SS-related effectors and regulators identified in Yersinia are discussed.
Collapse
Affiliation(s)
- Xiaobing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Junfeng Pan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yao Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
61
|
Crystal structures of the kinase domain of PpkA, a key regulatory component of T6SS, reveal a general inhibitory mechanism. Biochem J 2018; 475:2209-2224. [DOI: 10.1042/bcj20180077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 11/17/2022]
Abstract
The type VI secretion system (T6SS) is a versatile and widespread export system found in many Gram-negative bacteria that delivers effector proteins into target cells. The functions of T6SSs are tightly regulated by diverse mechanisms at multiple levels, including post-translational modification through threonine phosphorylation via the Ser/Thr protein kinase (STPK) PpkA. Here, we identified that PpkA is essential for T6SS secretion in Serratia marcescens since its deletion eliminated the secretion of haemolysin co-regulated protein, while the periplasmic and transmembrane portion of PpkA was found to be disposable for T6SS secretion. We further determined the crystal structure of the kinase domain of PpkA (PpkA-294). The structure of PpkA-294 was determined in its apo form to a 1.6 Å resolution as well as in complex with ATP to a 1.41 Å resolution and with an ATP analogue AMP-PCP to a 1.45 Å resolution. The residues in the activation loop of PpkA-294 were fully determined, and the N-terminus of the loop was folded into an unprecedented inhibitory helix, revealing that the PpkA kinase domain was in an auto-inhibitory state. The ternary MgATP–PpkA-294 complex was also inactive with nucleotide ribose and phosphates in unexpected and unproductive conformations. The αC-helix in the inactive PpkA-294 adopted a conformation towards the active site but with the conserved glutamate in the helix rotated away, which we suggest to be a general conformation for all STPK kinases in the inactive form. Structural comparison of PpkA with its eukaryotic homologues reinforced the universal regulation mechanism of protein kinases.
Collapse
|
62
|
Yuan B, Economou A, Karamanou S. Optimization of type 3 protein secretion in enteropathogenic Escherichia coli. FEMS Microbiol Lett 2018; 365:5003382. [PMID: 29800479 DOI: 10.1093/femsle/fny122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
The type 3 secretion system (T3SS) is a protein export pathway common to Gram-negative pathogens. It comprises a trans-envelope syringe, the injectisome, with a cytoplasm-facing translocase channel. In enteropathogenic Escherichia coli, exported substrates are chaperone-delivered to the major translocase component, EscV, and cross the membrane in strict hierarchical manner, e.g. first 'translocators', then 'effectors'. The in vitro dissection of the T3SS and the determination of its structure are hampered by the low numbers of the injectisomes per cell. We have now defined an optimal M9 minimal medium and established that the per transcriptional regulator enhances the number of filamented cells, the number of injectisomes per cell and the secretion of T3S substrates. Our findings provide a valuable tool for further biochemical and biophysical analysis of the T3SS and suggest that additional improvement to maximize injectisome production is possible in future efforts.
Collapse
Affiliation(s)
- Biao Yuan
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| |
Collapse
|
63
|
Pan J, Zhao M, Huang Y, Li J, Liu X, Ren Z, Kan B, Liang W. Integration Host Factor Modulates the Expression and Function of T6SS2 in Vibrio fluvialis. Front Microbiol 2018; 9:962. [PMID: 29867866 PMCID: PMC5963220 DOI: 10.3389/fmicb.2018.00962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/24/2018] [Indexed: 01/26/2023] Open
Abstract
Vibrio fluvialis, an emerging foodborne pathogen of increasing public health concern, contains two distinct gene clusters encoding type VI secretion system (T6SS), the most newly discovered secretion pathway in Gram-negative bacteria. Previously we have shown that one of the two T6SS clusters, namely VflT6SS2, is active and associates with anti-bacterial activity. However, how its activity is regulated is not completely understood. Here, we report that the global regulator integration host factor (IHF) positively modulates the expression and thus the function of VflT6SS2 through co-regulating its major cluster and tssD2-tssI2 (also known as hcp-vgrG) orphan clusters. Specifically, reporter gene activity assay showed that IHF transactivates the major and orphan clusters of VflT6SS2, while deletion of either ihfA or ihfB, the genes encoding the IHF subunits, decreased their promoter activities and mRNA levels of tssB2, vasH, and tssM2 for the selected major cluster genes and tssD2 and tssI2 for the selected orphan cluster genes. Subsequently, the direct bindings of IHF to the promoter regions of the major and orphan clusters were confirmed by electrophoretic mobility shift assay (EMSA). Site-directed mutagenesis combined with reporter gene activity assay or EMSA pinpointed the exact binding sites of IHF in the major and orphan cluster promoters, with two sites in the major cluster promoter, consisting with its two observed shifted bands in EMSA. Functional studies showed that the expression and secretion of hemolysin-coregulated protein (Hcp) and the VflT6SS2-mediated antibacterial virulence were severely abrogated in the deletion mutants of ΔihfA and ΔihfB, but restored when their trans-complemented plasmids were introduced, suggesting that IHF mostly contributes to environmental survival of V. fluvialis by directly binding and modulating the transactivity and function of VflT6SS2.
Collapse
Affiliation(s)
- Jingjing Pan
- State Key Laboratory of Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanming Huang
- State Key Laboratory of Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Li
- State Key Laboratory of Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoshu Liu
- State Key Laboratory of Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhihong Ren
- State Key Laboratory of Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Weili Liang
- State Key Laboratory of Infectious Disease Prevention and Control, and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
64
|
Ohneck EJ, Arivett BA, Fiester SE, Wood CR, Metz ML, Simeone GM, Actis LA. Mucin acts as a nutrient source and a signal for the differential expression of genes coding for cellular processes and virulence factors in Acinetobacter baumannii. PLoS One 2018; 13:e0190599. [PMID: 29309434 PMCID: PMC5757984 DOI: 10.1371/journal.pone.0190599] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/18/2017] [Indexed: 12/27/2022] Open
Abstract
The capacity of Acinetobacter baumannii to persist and cause infections depends on its interaction with abiotic and biotic surfaces, including those found on medical devices and host mucosal surfaces. However, the extracellular stimuli affecting these interactions are poorly understood. Based on our previous observations, we hypothesized that mucin, a glycoprotein secreted by lung epithelial cells, particularly during respiratory infections, significantly alters A. baumannii's physiology and its interaction with the surrounding environment. Biofilm, virulence and growth assays showed that mucin enhances the interaction of A. baumannii ATCC 19606T with abiotic and biotic surfaces and its cytolytic activity against epithelial cells while serving as a nutrient source. The global effect of mucin on the physiology and virulence of this pathogen is supported by RNA-Seq data showing that its presence in a low nutrient medium results in the differential transcription of 427 predicted protein-coding genes. The reduced expression of ion acquisition genes and the increased transcription of genes coding for energy production together with the detection of mucin degradation indicate that this host glycoprotein is a nutrient source. The increased expression of genes coding for adherence and biofilm biogenesis on abiotic and biotic surfaces, the degradation of phenylacetic acid and the production of an active type VI secretion system further supports the role mucin plays in virulence. Taken together, our observations indicate that A. baumannii recognizes mucin as an environmental signal, which triggers a response cascade that allows this pathogen to acquire critical nutrients and promotes host-pathogen interactions that play a role in the pathogenesis of bacterial infections.
Collapse
Affiliation(s)
- Emily J. Ohneck
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Brock A. Arivett
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Steven E. Fiester
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Cecily R. Wood
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Maeva L. Metz
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Gabriella M. Simeone
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, OH, United States of America
| |
Collapse
|
65
|
Liu L, Ye M, Li X, Li J, Deng Z, Yao YF, Ou HY. Identification and Characterization of an Antibacterial Type VI Secretion System in the Carbapenem-Resistant Strain Klebsiella pneumoniae HS11286. Front Cell Infect Microbiol 2017; 7:442. [PMID: 29085808 PMCID: PMC5649205 DOI: 10.3389/fcimb.2017.00442] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/28/2017] [Indexed: 11/25/2022] Open
Abstract
The type VI secretion system (T6SS) is a class of sophisticated cell contact-dependent apparatus with anti-eukaryotic or anti-bacterial function. Klebsiella pneumoniae is one of the most common bacterial pathogens with resistance to the carbapenem antibiotics. However, little is known about the antibacterial T6SS in K. pneumoniae. Using core-component protein searches, we identified a putative T6SS gene cluster on the chromosome of the carbapenemase-producing K. pneumoniae (CRKP) strain HS11286. Intraspecies and interspecies competition assays revealed an antibacterial function of the HS11286 T6SS. The phospholipase Tle1KP was found to be an effector protein that is transferred by T6SS. The overexpression of this effector gene in the periplasm caused severe growth inhibition of Escherichia coli. A sub-inhibitory concentration of β-lactam antibiotics stimulated the expression and secretion of the HS11286 T6SS and enhanced T6SS-dependent killing. It suggested that the antibiotics might be an impact factor for the T6SS secretion and antibacterial activity.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Meiping Ye
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaobin Li
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
66
|
Hosseinkhan N, Mousavian Z, Masoudi-Nejad A. Comparison of gene co-expression networks in Pseudomonas aeruginosa and Staphylococcus aureus reveals conservation in some aspects of virulence. Gene 2017; 639:1-10. [PMID: 28987343 DOI: 10.1016/j.gene.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 09/23/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are two evolutionary distant bacterial species that are frequently isolated from persistent infections such as chronic infectious wounds and severe lung infections in cystic fibrosis patients. To the best of our knowledge no comprehensive genome scale co-expression study has been already conducted on these two species and in most cases only the expression of very few genes has been the subject of investigation. In this study, in order to investigate the level of expressional conservation between these two species, using heterogeneous gene expression datasets the weighted gene co-expression network analysis (WGCNA) approach was applied to study both single and cross species genome scale co-expression patterns of these two species. Single species co-expression network analysis revealed that in P. aeruginosa, genes involved in quorum sensing (QS), iron uptake, nitrate respiration and type III secretion systems and in S. aureus, genes associated with the regulation of carbon metabolism, fatty acid-phospholipids metabolism and proteolysis represent considerable co-expression across a variety of experimental conditions. Moreover, the comparison of gene co-expression networks between P. aeruginosa and S. aureus was led to the identification of four co-expressed gene modules in both species totally consisting of 318 genes. Several genes related to two component signal transduction systems, small colony variants (SCVs) morphotype and protein complexes were found in the detected modules. We believe that targeting the key players among the identified co-expressed orthologous genes will be a potential intervention strategy to control refractory co-infections caused by these two bacterial species.
Collapse
Affiliation(s)
- Nazanin Hosseinkhan
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Zaynab Mousavian
- Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
67
|
Wang Y, Li Y, Wang J, Wang X. FleQ regulates both the type VI secretion system and flagella inPseudomonas putida. Biotechnol Appl Biochem 2017; 65:419-427. [DOI: 10.1002/bab.1611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Yuzhou Wang
- School of BiotechnologyJiangnan University Wuxi People's Republic of China
| | - Ye Li
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi People's Republic of China
| | - Jianli Wang
- School of BiotechnologyJiangnan University Wuxi People's Republic of China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and TechnologyJiangnan University Wuxi People's Republic of China
- School of BiotechnologyJiangnan University Wuxi People's Republic of China
| |
Collapse
|
68
|
Abstract
Bacterial type VI secretion systems (T6SSs) function as contractile nanomachines to puncture target cells and deliver lethal effectors. In the 10 years since the discovery of the T6SS, much has been learned about the structure and function of this versatile protein secretion apparatus. Most of the conserved protein components that comprise the T6SS apparatus itself have been identified and ascribed specific functions. In addition, numerous effector proteins that are translocated by the T6SS have been identified and characterized. These protein effectors usually represent toxic cargoes that are delivered by the attacker cell to a target cell. Researchers in the field are beginning to better understand the lifestyle or physiology that dictates when bacteria normally express their T6SS. In this article, we consider what is known about the structure and regulation of the T6SS, the numerous classes of antibacterial effector T6SS substrates, and how the action of the T6SS relates to a given lifestyle or behavior in certain bacteria.
Collapse
|
69
|
Liu Y, Gao Y, Liu X, Liu Q, Zhang Y, Wang Q, Xiao J. Transposon insertion sequencing reveals T4SS as the major genetic trait for conjugation transfer of multi-drug resistance pEIB202 from Edwardsiella. BMC Microbiol 2017; 17:112. [PMID: 28499353 PMCID: PMC5427535 DOI: 10.1186/s12866-017-1013-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/26/2017] [Indexed: 01/12/2023] Open
Abstract
Background Conjugation is a major type of horizontal transmission of genes that involves transfer of a plasmid into a recipient using specific conjugation machinery, which results in an extended spectrum of bacterial antibiotics resistance. However, there is inadequate knowledge about the regulator and mechanisms that control the conjugation processes, especially in an aquaculture environment where a cocktail of antibiotics may be present. Here, we investigated these with pEIB202, a typical multi-drug resistant IncP plasmid encoding tetracycline, streptomycin, sulfonamide and chloramphenicol resistance in fish pathogen Edwardsiella piscicida strain EIB202. Results We used transposon insertion sequencing (TIS) to identify genes that are responsible for conjugation transfer of pEIB202. All ten of the plasmid-borne type IV secretion system (T4SS) genes and a putative lipoprotein p007 were identified to play an important role in pEIB202 horizontal transfer. Antibiotics appear to modulate conjugation frequencies by repressing T4SS gene expression. In addition, we identified topA gene, which encodes topoisomerase I, as an inhibitor of pEIB202 transfer. Furthermore, the RNA-seq analysis of the response regulator EsrB encoded on the chromosome also revealed its essential role in facilitating the conjugation by upregulating the T4SS genes. Conclusions Collectively, our screens unraveled the genetic basis of the conjugation transfer of pEIB202 and the influence of horizontally acquired EsrB on this process. Our results will improve the understanding of the mechanism of plasmid conjugation processes that facilitate dissemination of antibiotic resistance especially in aquaculture industries.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanan Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China. .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
70
|
Liu Y, Zhao L, Yang M, Yin K, Zhou X, Leung KY, Liu Q, Zhang Y, Wang Q. Transcriptomic dissection of the horizontally acquired response regulator EsrB reveals its global regulatory roles in the physiological adaptation and activation of T3SS and the cognate effector repertoire in Edwardsiella piscicida during infection toward turbot. Virulence 2017; 8:1355-1377. [PMID: 28441105 DOI: 10.1080/21505594.2017.1323157] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Edwardsiella piscicida is the leading pathogen threatening worldwide aquaculture industries. The 2-component system (TCS) EsrA-EsrB is essential for the pathogenesis of this bacterium. However, little is known about the regulon and regulatory mechanism of EsrA-EsrB or about the factors that mediate the interaction of TCS with bacterial hosts. Here, our RNA-seq analysis indicated that EsrB strongly induces type III and type VI secretion systems (T3/T6SS) expression and that it modulates the expression of both physiology- and virulence-associated genes in E. piscicida grown in DMEM. EsrB binds directly to a highly conserved 18-bp DNA motif to regulate the expression of T3SS and other genes. EsrB/DMEM-activated genes include 3 known and 6 novel T3SS-dependent effectors. All these effector genes are highly induced by EsrB during the late stage of in vivo infection in fish. Furthermore, although in vivo colonization by the bacterium relies on EsrB and T3/T6SS expression, it does not require the expression of individual effectors other than EseJ. The mutant lacking these 9 effectors showed significant defects in in vivo colonization and virulence toward turbot, and, more importantly, a high level of protection against challenges by wild-type E. piscicida, suggesting that it may represent a promising live attenuated vaccine. Taken together, our data demonstrate that EsrB plays a global regulatory role in controlling physiologic responses and the expression of T3SS and its cognate effector genes. Our findings will facilitate further work on the mechanism of molecular pathogenesis of this bacterium during infection.
Collapse
Affiliation(s)
- Yang Liu
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China
| | - Luyao Zhao
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China
| | - Minjun Yang
- b Shanghai-MOST Key Laboratory of Health and Disease Genomics , Chinese National Human Genome Center at Shanghai , Shanghai , China
| | - Kaiyu Yin
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China
| | - Xiaohui Zhou
- c Department of Pathobiology and Veterinary Science , University of Connecticut , Storrs , CT , USA
| | - Ka Yin Leung
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China.,d Department of Biology , Faculty of Natural and Applied Sciences, Trinity Western University , Langley , BC , Canada
| | - Qin Liu
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China.,e Shanghai Engineering Research Center of Maricultured Animal Vaccines , Shanghai , China.,f Shanghai Collaborative Innovation Center for Biomanufacturing Technology , Shanghai , China
| | - Yuanxing Zhang
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China.,e Shanghai Engineering Research Center of Maricultured Animal Vaccines , Shanghai , China.,f Shanghai Collaborative Innovation Center for Biomanufacturing Technology , Shanghai , China
| | - Qiyao Wang
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , China.,e Shanghai Engineering Research Center of Maricultured Animal Vaccines , Shanghai , China.,f Shanghai Collaborative Innovation Center for Biomanufacturing Technology , Shanghai , China
| |
Collapse
|
71
|
Cai X, Wang B, Peng Y, Li Y, Lu Y, Huang Y, Jian J, Wu Z. Construction of a Streptococcus agalactiae phoB mutant and evaluation of its potential as an attenuated modified live vaccine in golden pompano, Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2017; 63:405-416. [PMID: 27884809 DOI: 10.1016/j.fsi.2016.11.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Streptococcus agalactiae is a Gram-positive pathogen that can survive inside professional phagocytes and nonphagocytic cells to cause septicemia and meningoencephalitis in freshwater and marine fish. However, vaccines based on extracellular products (ECP) and formalin-killed whole S. agalactiae cells, as well as subunit vaccine are unable to protect fish from infection by variant serotypes S. agalactiae. The search for live attenuated vaccine with highly conserved and virulent-related genes is essential for producing a vaccine to help understand and control streptococcosis In this study, the phoB gene was cloned from pathogenic S. agalactiae TOS01 strain and the mutant strain SAΔphoB was constructed via allelic exchange mutagenesis. The results showed that the deduced amino acid of S. agalactiae TOS01 shares high similarities with other Streptococcus spp. and has high conserved response regulator receiver domain (REC) and DNA-binding effector domain of two-component system response regulators (Trans_reg_C). Cell adherence and invasion assays, challenge experiments and histopathological changes post-vaccination were performed and observed, the results showed that the mutant strain SAΔphoB has a lower adherence and invasion rate and less virulent than the wild type strain in golden pompano, and it doesn't induce clinical symptoms and obvious pathological changes in golden pompano, thereby indicating that the deletion of phoB affects the virulence and infectious capacity of S. agalactiae. Golden pompano vaccinated via intraperitoneal injection SAΔphoB had the relative percent survival value of 93.1% after challenge with TOS01, demonstrating its high potential as an effective attenuated live vaccine candidate. Real-time PCR assays showed that the SAΔphoB was able to enhance the expression of immune-related genes, including MHC-I, MyD88, IL-22 and IL-10 after vaccination, indicating that the SAΔphoB is able to induce humoral and cell-mediated immune response in golden pompano over a long period of time.
Collapse
Affiliation(s)
- Xiaohui Cai
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Yinhui Peng
- Guangxi Key Laboratory of Marine Biotechnology, Guangxi Institute of Oceanology, Beihai, 536000, China
| | - Yuan Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Yucong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China.
| | - Zaohe Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China.
| |
Collapse
|
72
|
A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun 2017; 8:14888. [PMID: 28348410 PMCID: PMC5379069 DOI: 10.1038/ncomms14888] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/09/2017] [Indexed: 01/20/2023] Open
Abstract
Iron sequestration by host proteins contributes to the defence against bacterial pathogens, which need iron for their metabolism and virulence. A Pseudomonas aeruginosa mutant lacking all three known iron acquisition systems retains the ability to grow in media containing iron chelators, suggesting the presence of additional pathways involved in iron uptake. Here we screen P. aeruginosa mutants defective in growth in iron-depleted media and find that gene PA2374, proximal to the type VI secretion system H3 (H3-T6SS), functions synergistically with known iron acquisition systems. PA2374 (which we have renamed TseF) appears to be secreted by H3-T6SS and is incorporated into outer membrane vesicles (OMVs) by directly interacting with the iron-binding Pseudomonas quinolone signal (PQS), a cell–cell signalling compound. TseF facilitates the delivery of OMV-associated iron to bacterial cells by engaging the Fe(III)-pyochelin receptor FptA and the porin OprF. Our results reveal links between type VI secretion, cell–cell signalling and classic siderophore receptors for iron acquisition in P. aeruginosa. Pathogens require iron for their metabolism and virulence. Here the authors identify an iron acquisition system in Pseudomonas aeruginosa involving a protein secreted by a type VI secretion system, the PQS signalling compound and siderophore receptors.
Collapse
|
73
|
Peng B, Wang C, Li H, Su YB, Ye JZ, Yang MJ, Jiang M, Peng XX. Outer Membrane Proteins form Specific Patterns in Antibiotic-Resistant Edwardsiella tarda. Front Microbiol 2017; 8:69. [PMID: 28210241 PMCID: PMC5288343 DOI: 10.3389/fmicb.2017.00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022] Open
Abstract
Outer membrane proteins of Gram-negative bacteria play key roles in antibiotic resistance. However, it is unknown whether outer membrane proteins that respond to antibiotics behave in a specific manner. The present study specifically investigated the differentially expressed outer membrane proteins of an antibiotic-resistant bacterium, Edwardsiella tarda, a Gram-negative pathogen that can lead to unnecessary mass medication of antimicrobials and consequently resistance development in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. The comparison of a clinically isolated strain to the laboratory derived kanamycin-, tetracycline-, or chloramphenicol-resistant strains identified their respective outer membrane proteins expression patterns, which are distinct to each other. Similarly, the same approach was utilized to profile the patterns in double antibiotic-resistant bacteria. Surprisingly, one pattern is always dominant over the other as to these three antibiotics; the pattern of chloramphenicol is over tetracycline, which is over kanamycin. This type of pattern was also confirmed in clinically relevant multidrug-resistant bacteria. In addition, the presence of plasmid encoding antibiotic-resistant genes also alters the outer membrane protein profile in a similar manner. Our results demonstrate that bacteria adapt the antibiotic stress through the regulation of outer membrane proteins expression. And more importantly, different outer membrane protein profiles were required to cope with different antibiotics. This type of specific pattern provides the rationale for the development of novel strategy to design outer membrane protein arrays to identify diverse multidrug resistance profiles as biomarkers for clinical medication.
Collapse
Affiliation(s)
- Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| | - Chao Wang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| | - Yu-Bin Su
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| | - Jin-Zhou Ye
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| | - Man-Jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| | - Ming Jiang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University Guangzhou, China
| |
Collapse
|
74
|
Bosak T, Schubotz F, de Santiago-Torio A, Kuehl JV, Carlson HK, Watson N, Daye M, Summons RE, Arkin AP, Deutschbauer AM. System-Wide Adaptations of Desulfovibrio alaskensis G20 to Phosphate-Limited Conditions. PLoS One 2016; 11:e0168719. [PMID: 28030630 PMCID: PMC5193443 DOI: 10.1371/journal.pone.0168719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/04/2016] [Indexed: 12/13/2022] Open
Abstract
The prevalence of lipids devoid of phosphorus suggests that the availability of phosphorus limits microbial growth and activity in many anoxic, stratified environments. To better understand the response of anaerobic bacteria to phosphate limitation and starvation, this study combines microscopic and lipid analyses with the measurements of fitness of pooled barcoded transposon mutants of the model sulfate reducing bacterium Desulfovibrio alaskensis G20. Phosphate-limited G20 has lower growth rates and replaces more than 90% of its membrane phospholipids by a mixture of monoglycosyl diacylglycerol (MGDG), glycuronic acid diacylglycerol (GADG) and ornithine lipids, lacks polyphosphate granules, and synthesizes other cellular inclusions. Analyses of pooled and individual mutants reveal the importance of the high-affinity phosphate transport system (the Pst system), PhoR, and glycolipid and ornithine lipid synthases during phosphate limitation. The phosphate-dependent synthesis of MGDG in G20 and the widespread occurrence of the MGDG/GADG synthase among sulfate reducing ∂-Proteobacteria implicate these microbes in the production of abundant MGDG in anaerobic environments where the concentrations of phosphate are lower than 10 μM. Numerous predicted changes in the composition of the cell envelope and systems involved in transport, maintenance of cytoplasmic redox potential, central metabolism and regulatory pathways also suggest an impact of phosphate limitation on the susceptibility of sulfate reducing bacteria to other anthropogenic or environmental stresses.
Collapse
Affiliation(s)
- Tanja Bosak
- Department of Earth and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | - Ana de Santiago-Torio
- Department of Earth and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jennifer V Kuehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Nicki Watson
- W.M. Keck Microscopy Facility, The Whitehead Institute, Cambridge, Massachusetts, United States of America
| | - Mirna Daye
- Department of Earth and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Roger E Summons
- Department of Earth and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.,Department of Bioengineering, University of California, Berkeley, Berkeley, California, United States of America
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
75
|
Zhang W, Sun J, Cao H, Tian R, Cai L, Ding W, Qian PY. Post-translational modifications are enriched within protein functional groups important to bacterial adaptation within a deep-sea hydrothermal vent environment. MICROBIOME 2016; 4:49. [PMID: 27600525 PMCID: PMC5012046 DOI: 10.1186/s40168-016-0194-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Post-translational modification (PTM) of proteins is one important strategy employed by bacteria for environmental adaptation. However, PTM profiles in deep-sea microbes remain largely unexplored. RESULTS We provide here insight into PTMs in a hydrothermal vent microbial community through integration of metagenomics and metaproteomics. In total, 2919 unique proteins and 1306 unique PTMs were identified, whereas the latter included acetylation, deamination, hydroxylation, methylation, nitrosylation, oxidation, and phosphorylation. These modifications were unevenly distributed among microbial taxonomic and functional categories. A connection between modification types and particular functions was demonstrated. Interestingly, PTMs differed among the orthologous proteins derived from different bacterial groups. Furthermore, proteomic mapping to the draft genome of a Nitrospirae bacterium revealed novel modifications for proteins that participate in energy metabolism, signal transduction, and inorganic ion transport. CONCLUSIONS Our results suggest that PTMs are enriched in specific functions, which would be important for microbial adaptation to extreme conditions of the hydrothermal vent. PTMs in deep-sea are highly diverse and divergent, and much broader investigations are needed to obtain a better understanding of their functional roles.
Collapse
Affiliation(s)
- Weipeng Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Jin Sun
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Huiluo Cao
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Renmao Tian
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Lin Cai
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Wei Ding
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
76
|
EseE of Edwardsiella tarda Augments Secretion of Translocon Protein EseC and Expression of the escC-eseE Operon. Infect Immun 2016; 84:2336-2344. [PMID: 27271743 DOI: 10.1128/iai.00106-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023] Open
Abstract
Edwardsiella tarda is an important Gram-negative pathogen that employs a type III secretion system (T3SS) to deliver effectors into host cells to facilitate bacterial survival and replication. These effectors are translocated into host cells through a translocon complex composed of three secreted proteins, namely, EseB, EseC, and EseD. The secretion of EseB and EseD requires a chaperone protein called EscC, whereas the secretion of EseC requires the chaperone EscA. In this study, we identified a novel protein (EseE) that also regulates the secretion of EseC. An eseE deletion mutant secreted much less EseC into supernatants, accompanied by increased EseC levels within bacterial cells. We also demonstrated that EseE interacted directly with EseC in a pulldown assay. Interestingly, EseC, EseE, and EscA were able to form a ternary complex, as revealed by pulldown and gel filtration assays. Of particular importance, the deletion of eseE resulted in decreased levels of EseB and EseD proteins in both the bacterial pellet and supernatant fraction. Furthermore, real-time PCR assays showed that EseE positively regulated the transcription of the translocon operon escC-eseE, comprising escC, eseB, escA, eseC, eseD, and eseE These effects of EseE on the translocon components/operon appeared to have a functional consequence, since the ΔeseE strain was outcompeted by wild-type E. tarda in a mixed infection in blue gourami fish. Collectively, our results demonstrate that EseE not only functions as a chaperone for EseC but also acts as a positive regulator controlling the expression of the translocon operon escC-eseE, thus contributing to the pathogenesis of E. tarda in fish.
Collapse
|
77
|
Miller HK, Schwiesow L, Au-Yeung W, Auerbuch V. Hereditary Hemochromatosis Predisposes Mice to Yersinia pseudotuberculosis Infection Even in the Absence of the Type III Secretion System. Front Cell Infect Microbiol 2016; 6:69. [PMID: 27446816 PMCID: PMC4919332 DOI: 10.3389/fcimb.2016.00069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022] Open
Abstract
The iron overload disorder hereditary hemochromatosis (HH) predisposes humans to serious disseminated infection with pathogenic Yersinia as well as several other pathogens. Recently, we showed that the iron-sulfur cluster coordinating transcription factor IscR is required for type III secretion in Y. pseudotuberculosis by direct control of the T3SS master regulator LcrF. In E. coli and Yersinia, IscR levels are predicted to be regulated by iron bioavailability, oxygen tension, and oxidative stress, such that iron depletion should lead to increased IscR levels. To investigate how host iron overload influences Y. pseudotuberculosis virulence and the requirement for the Ysc type III secretion system (T3SS), we utilized two distinct murine models of HH: hemojuvelin knockout mice that mimic severe, early-onset HH as well as mice with the HfeC282Y∕C282Y mutation carried by 10% of people of Northern European descent, associated with adult-onset HH. Hjv−∕− and HfeC282Y∕C282Y transgenic mice displayed enhanced colonization of deep tissues by Y. pseudotuberculosis following oral inoculation, recapitulating enhanced susceptibility of humans with HH to disseminated infection with enteropathogenic Yersinia. Importantly, HH mice orally infected with Y. pseudotuberculosis lacking the T3SS-encoding virulence plasmid, pYV, displayed increased deep tissue colonization relative to wildtype mice. Consistent with previous reports using monocytes from HH vs. healthy donors, macrophages isolated from HfeC282Y∕C282Y mice were defective in Yersinia uptake compared to wildtype macrophages, indicating that the anti-phagocytic property of the Yersinia T3SS plays a less important role in HH animals. These data suggest that Yersinia may rely on distinct virulence factors to cause disease in healthy vs. HH hosts.
Collapse
Affiliation(s)
- Halie K Miller
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz Santa Cruz, CA, USA
| | - Leah Schwiesow
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz Santa Cruz, CA, USA
| | - Winnie Au-Yeung
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz Santa Cruz, CA, USA
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz Santa Cruz, CA, USA
| |
Collapse
|
78
|
Gao D, Li Y, Xu Z, Sheng A, Zheng E, Shao Z, Liu N, Lu C. The role of regulator Eha in Edwardsiella tarda pathogenesis and virulence gene transcription. Microb Pathog 2016; 95:216-223. [DOI: 10.1016/j.micpath.2016.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022]
|
79
|
Ali M, Sun Y, Xie L, Yu H, Bashir A, Li L. The Pathogenicity of Pseudomonas syringae MB03 against Caenorhabditis elegans and the Transcriptional Response of Nematicidal Genes upon Different Nutritional Conditions. Front Microbiol 2016; 7:805. [PMID: 27303387 PMCID: PMC4884745 DOI: 10.3389/fmicb.2016.00805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Different species of the Pseudomonas genus have been reported for their pathogenic potential against animal cells. However, the pathogenicity of Pseudomonas syringae against Caenorhabditis elegans has never been reported. In this study, the interaction of P. syringae MB03 with C. elegans was studied. Different bioassays such as killing assay, lawn leaving assay, food preference assay, L4 growth assay and newly developed “secretion assay” were performed to evaluate the pathogenic potential of P. syringae on different growth media. The results of the killing assay showed that P. syringae MB03 was able to kill C. elegans under specific conditions, as the interaction between the host and the pathogen varied from non-pathogenic (assay on NGM medium) to pathogenic (assay on PG medium). The lawn leaving assay and the food preference assay illustrated that C. elegans identified P. syringae MB03 as a pathogen when assays were performed on PG medium. Green fluorescent protein was used as the reporter protein to study gut colonization by P. syringae MB03. Our results suggested that MB03 has the ability to colonize the gut of C. elegans. Furthermore, to probe the role of selected virulence determinants, qRT-PCR was used. The genes for pyoverdine, phoQ/phoP, phoR/phoB, and flagella were up regulated during the interaction of P. syringae MB03 and C. elegans on PG medium. Other than these, the genes for some proteases, such as pepP, clpA, and clpS, were also up regulated. On the other hand, kdpD and kdpB were down regulated more than threefold in the NGM – C. elegans interaction model. The deletion of the kdpD and kdpE genes altered the pathogenicity of the bacterial strain against C. elegans. Overall, our results suggested that the killing of C. elegans by P. syringae requires a prolonged interaction between the host and pathogen in an agar-based assay. Moreover, it seemed that some toxic metabolites were secreted by the bacterial strain that were sensed by C. elegans. Previously, it was believed that P. syringae could not damage animal cells. However, this study provides evidence of the pathogenic behavior of P. syringae against C. elegans.
Collapse
Affiliation(s)
- Muhammad Ali
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information TechnologyAbbottabad, Pakistan
| | - Yu Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Li Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Huafu Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Anum Bashir
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
80
|
Time-resolved pathogenic gene expression analysis of the plant pathogen Xanthomonas oryzae pv. oryzae. BMC Genomics 2016; 17:345. [PMID: 27165035 PMCID: PMC4862043 DOI: 10.1186/s12864-016-2657-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Background Plant-pathogen interactions at early stages of infection are important to the fate of interaction. Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight, which is a devastating disease in rice. Although in vivo and in vitro systems have been developed to study rice-Xoo interactions, both systems have limitations. The resistance mechanisms in rice can be better studied by the in vivo approach, whereas the in vitro systems are suitable for pathogenicity studies on Xoo. The current in vitro system uses minimal medium to activate the pathogenic signal (expression of pathogenicity-related genes) of Xoo, but lacks rice-derived factors needed for Xoo activation. This fact emphasizes the need of developing a new in vitro system that allow for an easy control of both pathogenic activation and for the experiment itself. Results We employed an in vitro system that can activate pathogenicity-related genes in Xoo using rice leaf extract (RLX) and combined the in vitro assay with RNA-Seq to analyze the time-resolved genome-wide gene expression of Xoo. RNA-Seq was performed with samples from seven different time points within 1 h post-RLX treatment and the expression of up- or downregulated genes in RNA-Seq was validated by qRT-PCR. Global analysis of gene expression and regulation revealed the most dramatic changes in functional categories of genes related to inorganic ion transport and metabolism, and cell motility. Expression of many pathogenicity-related genes was induced within 15 min upon contact with RLX. hrpG and hrpX expression reached the maximum level within 10 and 15 min, respectively. Chemotaxis and flagella biosynthesis-related genes and cyclic-di-GMP controlling genes were downregulated for 10 min and were then upregulated. Genes related to inorganic ion uptake were upregulated within 5 min. We introduced a non-linear regression fit to generate continuous time-resolved gene expression levels and tested the essentiality of the transcriptionally upregulated genes by a pathogenicity assay of lesion length using single-gene knock-out Xoo strains. Conclusions The in vitro system combined with RNA-Seq generated a genome-wide time-resolved pathogenic gene expression profile within 1 h of initial rice-Xoo interactions, demonstrating the expression order and interaction dependency of pathogenic genes. This combined system can be used as a novel tool to study the initial interactions between rice and Xoo during bacterial blight progression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2657-7) contains supplementary material, which is available to authorized users.
Collapse
|
81
|
Edwardsiella tarda EscE (Orf13 Protein) Is a Type III Secretion System-Secreted Protein That Is Required for the Injection of Effectors, Secretion of Translocators, and Pathogenesis in Fish. Infect Immun 2015; 84:2-10. [PMID: 26459509 DOI: 10.1128/iai.00986-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/03/2015] [Indexed: 11/20/2022] Open
Abstract
The type III secretion system (T3SS) of Edwardsiella tarda is crucial for its intracellular survival and pathogenesis in fish. The orf13 gene (escE) of E. tarda is located 84 nucleotides (nt) upstream of esrC in the T3SS gene cluster. We found that EscE is secreted and translocated in a T3SS-dependent manner and that amino acids 2 to 15 in the N terminus were required for a completely functional T3SS in E. tarda. Deletion of escE abolished the secretion of T3SS translocators, as well as the secretion and translocation of T3SS effectors, but did not influence their intracellular protein levels in E. tarda. Complementation of the escE mutant with a secretion-incompetent EscE derivative restored the secretion of translocators and effectors. Interestingly, the effectors that were secreted and translocated were positively correlated with the EscE protein level in E. tarda. The escE mutant was attenuated in the blue gourami fish infection model, as its 50% lethal dose (LD50) increased to 4 times that of the wild type. The survival rate of the escE mutant-strain-infected fish was 69%, which was much higher than that of the fish infected with the wild-type bacteria (6%). Overall, EscE represents a secreted T3SS regulator that controls effector injection and translocator secretion, thus contributing to E. tarda pathogenesis in fish. The homology of EscE within the T3SSs of other bacterial species suggests that the mechanism of secretion and translocation control used by E. tarda may be commonly used by other bacterial pathogens.
Collapse
|
82
|
Liu L, Chi H, Sun L. Pseudomonas fluorescens: identification of Fur-regulated proteins and evaluation of their contribution to pathogenesis. DISEASES OF AQUATIC ORGANISMS 2015; 115:67-80. [PMID: 26119301 DOI: 10.3354/dao02874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pseudomonas fluorescens is a Gram-negative bacterium and a common pathogen to a wide range of farmed fish. In a previous study, we found that the ferric uptake regulator gene (fur) is essential to the infectivity of a pathogenic fish isolate of P. fluorescens (wild-type strain TSS). In the present work, we conducted comparative proteomic analysis to examine the global protein profiles of TSS and the P. fluorescens fur knockout mutant TFM. Twenty-eight differentially produced proteins were identified, which belong to different functional categories. Four of these proteins, viz. TssP (a type VI secretion protein), PspA (a serine protease), OprF (an outer membrane porin), and ClpP (the proteolytic subunit of an ATP-dependent Clp protease), were assessed for virulence participation in a model of turbot Scophthalmus maximus. The results showed that the oprF and clpP knockouts exhibited significantly reduced capacities in (1) resistance against the bactericidal effect of host serum, (2) dissemination into and colonization of host tissues, and (3) inducing host mortality. In contrast, mutation of tssP and pspA had no apparent effect on the pathogenicity of TSS. Purified recombinant OprF, when used as a subunit vaccine, induced production of specific serum antibodies in immunized fish and elicited significant protection against lethal TSS challenge. Antibody blocking of the OprF in TSS significantly impaired the ability of the bacteria to invade host tissues. Taken together, these results indicate for the first time that in pathogenic P. fluorescens, Fur regulates the expression of diverse proteins, some of which are required for optimal infection.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | |
Collapse
|
83
|
Type III Secretion System Translocon Component EseB Forms Filaments on and Mediates Autoaggregation of and Biofilm Formation by Edwardsiella tarda. Appl Environ Microbiol 2015; 81:6078-87. [PMID: 26116669 DOI: 10.1128/aem.01254-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/23/2015] [Indexed: 01/09/2023] Open
Abstract
The type III secretion system (T3SS) of Edwardsiella tarda plays an important role in infection by translocating effector proteins into host cells. EseB, a component required for effector translocation, is reported to mediate autoaggregation of E. tarda. In this study, we demonstrate that EseB forms filamentous appendages on the surface of E. tarda and is required for biofilm formation by E. tarda in Dulbecco's modified Eagle's medium (DMEM). Biofilm formation by E. tarda in DMEM does not require FlhB, an essential component for assembling flagella. Dynamic analysis of EseB filament formation, autoaggregation, and biofilm formation shows that the formation of EseB filaments occurs prior to autoaggregation and biofilm formation. The addition of an EseB antibody to E. tarda cultures before bacterial autoaggregation prevents autoaggregation and biofilm formation in a dose-dependent manner, whereas the addition of the EseB antibody to E. tarda cultures in which biofilm is already formed does not destroy the biofilm. Therefore, EseB filament-mediated bacterial cell-cell interaction is a prerequisite for autoaggregation and biofilm formation.
Collapse
|
84
|
Wong J, Chen Y, Gan YH. Host Cytosolic Glutathione Sensing by a Membrane Histidine Kinase Activates the Type VI Secretion System in an Intracellular Bacterium. Cell Host Microbe 2015; 18:38-48. [PMID: 26094804 DOI: 10.1016/j.chom.2015.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/26/2015] [Accepted: 06/02/2015] [Indexed: 12/17/2022]
Abstract
Type VI secretion systems (T6SSs) are major virulence mechanisms in many Gram-negative bacteria, but the physiological signals that activate them are not well understood. The T6SS1 of Burkholderia pseudomallei is essential for pathogenesis in mammalian hosts and is only expressed when the bacterium is intracellular. We found that signals for T6SS1 activation reside in the host cytosol. Through site-directed mutagenesis and biochemical studies, we identified low molecular weight thiols, particularly glutathione, as the signal sensed by a periplasmic cysteine residue (C62) on the histidine kinase sensor VirA. Upon glutathione exposure, dimeric VirA is converted to monomers via reduction at C62. When glutathione in the host was depleted, T6SS1 expression was abrogated, and bacteria could no longer induce multinucleate giant cell formation, the hallmark of T6SS1 function. Therefore, intracellular bacteria exploit the abundance of glutathione in host cytosol as a signal for expression of virulence at the appropriate time and place.
Collapse
Affiliation(s)
- Jocelyn Wong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore. MD7, 8 Medical Drive, Singapore 117597, Singapore
| | - Yahua Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore. MD7, 8 Medical Drive, Singapore 117597, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore. MD7, 8 Medical Drive, Singapore 117597, Singapore.
| |
Collapse
|
85
|
Santos-Beneit F. The Pho regulon: a huge regulatory network in bacteria. Front Microbiol 2015; 6:402. [PMID: 25983732 PMCID: PMC4415409 DOI: 10.3389/fmicb.2015.00402] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/17/2015] [Indexed: 12/15/2022] Open
Abstract
One of the most important achievements of bacteria is its capability to adapt to the changing conditions of the environment. The competition for nutrients with other microorganisms, especially in the soil, where nutritional conditions are more variable, has led bacteria to evolve a plethora of mechanisms to rapidly fine-tune the requirements of the cell. One of the essential nutrients that are normally found in low concentrations in nature is inorganic phosphate (Pi). Bacteria, as well as other organisms, have developed several systems to cope for the scarcity of this nutrient. To date, the unique mechanism responding to Pi starvation known in detail is the Pho regulon, which is normally controlled by a two component system and constitutes one of the most sensible and efficient regulatory mechanisms in bacteria. Many new members of the Pho regulon have emerged in the last years in several bacteria; however, there are still many unknown questions regarding the activation and function of the whole system. This review describes the most important findings of the last three decades in relation to Pi regulation in bacteria, including: the PHO box, the Pi signaling pathway and the Pi starvation response. The role of the Pho regulon in nutritional regulation cross-talk, secondary metabolite production, and pathogenesis is discussed in detail.
Collapse
Affiliation(s)
- Fernando Santos-Beneit
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne UK
| |
Collapse
|
86
|
Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. Vet Microbiol 2015; 179:2-14. [PMID: 25888312 DOI: 10.1016/j.vetmic.2015.03.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/21/2022]
Abstract
In bacteria-host interactions, competition for iron is critical for the outcome of the infection. As a result of its redox properties, this metal is essential for the growth and proliferation of most living organisms, including pathogenic bacteria. This metal is also potentially toxic, making the precise maintenance of iron homeostasis necessary for survival. Iron acquisition and storage control is mediated in most bacteria by the global ferric uptake regulator (Fur) and iron-responsive small regulatory non-coding RNAs (RyhB in the model organism Escherichia coli). While the role of these regulators in iron homeostasis is well documented in both pathogenic and non-pathogenic bacteria, many recent studies also demonstrate that these regulators are involved in the virulence of pathogenic bacteria. By sensing iron availability in the environment, Fur and RyhB are able to regulate, either directly or indirectly via other transcriptional regulators or modulation of intracellular iron concentration, many virulence determinants of pathogenic bacteria. Iron is thus both a nutritional and regulatory element, allowing bacteria to adapt to various host environments by adjusting expression of virulence factors. In this review, we present evidences that Fur and RyhB are the major regulators of this adaptation, as they are involved in diverse functions ranging from iron homeostasis to regulation of virulence by mediating key pathogen responses such as invasion of eukaryotic cells, toxin production, motility, quorum sensing, stress resistance or biofilm formation. Therefore, Fur and RyhB play a major role in regulating an adaptative response during bacterial infections, making them important targets in the fight against pathogenic bacteria.
Collapse
|
87
|
Abstract
UNLABELLED The type VI secretion system (T6SS) is a dynamic macromolecular organelle that many Gram-negative bacteria use to inhibit or kill other prokaryotic or eukaryotic cells. The toxic effectors of T6SS are delivered to the prey cells in a contact-dependent manner. In Vibrio cholerae, the etiologic agent of cholera, T6SS is active during intestinal infection. Here, we describe the use of comparative proteomics coupled with bioinformatics to identify a new T6SS effector-immunity pair. This analysis was able to identify all previously identified secreted substrates of T6SS except PAAR (proline, alanine, alanine, arginine) motif-containing proteins. Additionally, this approach led to the identification of a new secreted protein encoded by VCA0285 (TseH) that carries a predicted hydrolase domain. We confirmed that TseH is toxic when expressed in the periplasm of Escherichia coli and V. cholerae cells. The toxicity observed in V. cholerae was suppressed by coexpression of the protein encoded by VCA0286 (TsiH), indicating that this protein is the cognate immunity protein of TseH. Furthermore, exogenous addition of purified recombinant TseH to permeabilized E. coli cells caused cell lysis. Bioinformatics analysis of the TseH protein sequence suggest that it is a member of a new family of cell wall-degrading enzymes that include proteins belonging to the YD repeat and Rhs superfamilies and that orthologs of TseH are likely expressed by species belonging to phyla as diverse as Bacteroidetes and Proteobacteria. IMPORTANCE The Gram-negative bacterium Vibrio cholerae causes cholera, a severe and often lethal diarrheal disease. The 2010-2012 epidemic in Haiti and new explosive epidemics in Africa show that cholera remains a significant global public health problem. The type VI secretion system (T6SS) is a dynamic organelle expressed by many Gram-negative bacteria, which use it to inject toxic effector proteins into eukaryotic and bacterial prey cells. In this study, we applied a comparative proteomics approach to the V. cholerae T6SS secretome to identify new substrates of this secretion apparatus. We show that the product of the gene VCA0285 is likely a new peptidoglycan hydrolase that is secreted by T6SS and that its cognate immunity protein is encoded by the gene that is immediately downstream (VCA0286). Bioinformatics analysis shows that VCA0285 carries four conserved motifs that likely define a large family of hydrolases with antibacterial activity. The identification of new antibacterial T6SS effectors provides useful information for the development of novel antibiotics and therapeutic agents.
Collapse
|
88
|
Identification and functional characterization of the novel Edwardsiella tarda effector EseJ. Infect Immun 2015; 83:1650-60. [PMID: 25667268 DOI: 10.1128/iai.02566-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Edwardsiella tarda is a Gram-negative enteric pathogen that causes hemorrhagic septicemia in fish and gastro- and extraintestinal infections in humans. The type III secretion system (T3SS) of E. tarda has been identified as a key virulence factor that contributes to pathogenesis in fish. However, little is known about the associated effectors translocated by this T3SS. In this study, by comparing the profile of secreted proteins of the wild-type PPD130/91 and its T3SS ATPase ΔesaN mutant, we identified a new effector by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. This effector consists of 1,359 amino acids, sharing high sequence similarity with Orf29/30 of E. tarda strain EIB202, and is renamed EseJ. The secretion and translocation of EseJ depend on the T3SS. A ΔeseJ mutant strain adheres to epithelioma papillosum of carp (EPC) cells 3 to 5 times more extensively than the wild-type strain does. EseJ inhibits bacterial adhesion to EPC cells from within bacterial cells. Importantly, the ΔeseJ mutant strain does not replicate efficiently in EPC cells and fails to replicate in J774A.1 macrophages. In infected J774A.1 macrophages, the ΔeseJ mutant elicits higher production of reactive oxygen species than wild-type E. tarda. The replication defect is consistent with the attenuation of the ΔeseJ mutant in the blue gourami fish model: the 50% lethal dose (LD50) of the ΔeseJ mutant is 2.34 times greater than that of the wild type, and the ΔeseJ mutant is less competitive than the wild type in mixed infection. Thus, EseJ represents a novel effector that contributes to virulence by reducing bacterial adhesion to EPC cells and facilitating intracellular bacterial replication.
Collapse
|
89
|
A disordered region in the EvpP protein from the type VI secretion system of Edwardsiella tarda is essential for EvpC binding. PLoS One 2014; 9:e110810. [PMID: 25401506 PMCID: PMC4234509 DOI: 10.1371/journal.pone.0110810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/21/2014] [Indexed: 11/19/2022] Open
Abstract
The type VI secretion system (T6SS) of pathogenic bacteria plays important roles in both virulence and inter-bacterial competitions. The effectors of T6SS are presumed to be transported either by attaching to the tip protein or by interacting with HcpI (haemolysin corregulated protein 1). In Edwardsiella tarda PPD130/91, the T6SS secreted protein EvpP (E. tardavirulent protein P) is found to be essential for virulence and directly interacts with EvpC (Hcp-like), suggesting that it could be a potential effector. Using limited protease digestion, nuclear magnetic resonance heteronuclear Nuclear Overhauser Effects, and hydrogen-deuterium exchange mass spectrometry, we confirmed that the dimeric EvpP (40 kDa) contains a substantial proportion (40%) of disordered regions but still maintains an ordered and folded core domain. We show that an N-terminal, 10-kDa, protease-resistant fragment in EvpP connects to a shorter, 4-kDa protease-resistant fragment through a highly flexible region, which is followed by another disordered region at the C-terminus. Within this C-terminal disordered region, residues Pro143 to Ile168 are essential for its interaction with EvpC. Unlike the highly unfolded T3SS effector, which has a lower molecular weight and is maintained in an unfolded conformation with a dedicated chaperone, the T6SS effector seems to be relatively larger, folded but partially disordered and uses HcpI as a chaperone.
Collapse
|
90
|
Chekabab SM, Harel J, Dozois CM. Interplay between genetic regulation of phosphate homeostasis and bacterial virulence. Virulence 2014; 5:786-93. [PMID: 25483775 DOI: 10.4161/viru.29307] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial pathogens, including those of humans, animals, and plants, encounter phosphate (Pi)-limiting or Pi-rich environments in the host, depending on the site of infection. The environmental Pi-concentration results in modulation of expression of the Pho regulon that allows bacteria to regulate phosphate assimilation pathways accordingly. In many cases, modulation of Pho regulon expression also results in concomitant changes in virulence phenotypes. Under Pi-limiting conditions, bacteria use the transcriptional-response regulator PhoB to translate the Pi starvation signal sensed by the bacterium into gene activation or repression. This regulator is employed not only for the maintenance of bacterial Pi homeostasis but also to differentially regulate virulence. The Pho regulon is therefore not only a regulatory circuit of phosphate homeostasis but also plays an important adaptive role in stress response and bacterial virulence. Here we focus on recent findings regarding the mechanisms of gene regulation that underlie the virulence responses to Pi stress in Vibrio cholerae, Pseudomonas spp., and pathogenic E. coli.
Collapse
Affiliation(s)
- Samuel Mohammed Chekabab
- a Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA); Université de Montréal; Faculté de Médecine Vétérinaire ; Saint-Hyacinthe , QC Canada
| | | | | |
Collapse
|
91
|
Defects in phosphate acquisition and storage influence virulence of Cryptococcus neoformans. Infect Immun 2014; 82:2697-712. [PMID: 24711572 DOI: 10.1128/iai.01607-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nutrient acquisition and sensing are critical aspects of microbial pathogenesis. Previous transcriptional profiling indicated that the fungal pathogen Cryptococcus neoformans, which causes meningoencephalitis in immunocompromised individuals, encounters phosphate limitation during proliferation in phagocytic cells. We therefore tested the hypothesis that phosphate acquisition and polyphosphate metabolism are important for cryptococcal virulence. Deletion of the high-affinity uptake system interfered with growth on low-phosphate medium, perturbed the formation of virulence factors (capsule and melanin), reduced survival in macrophages, and attenuated virulence in a mouse model of cryptococcosis. Additionally, analysis of nutrient sensing functions for C. neoformans revealed regulatory connections between phosphate acquisition and storage and the iron regulator Cir1, cyclic AMP (cAMP)-dependent protein kinase A (PKA), and the calcium-calmodulin-activated protein phosphatase calcineurin. Deletion of the VTC4 gene encoding a polyphosphate polymerase blocked the ability of C. neoformans to produce polyphosphate. The vtc4 mutant behaved like the wild-type strain in interactions with macrophages and in the mouse infection model. However, the fungal load in the lungs was significantly increased in mice infected with vtc4 deletion mutants. In addition, the mutant was impaired in the ability to trigger blood coagulation in vitro, a trait associated with polyphosphate. Overall, this study reveals that phosphate uptake in C. neoformans is critical for virulence and that its regulation is integrated with key signaling pathways for nutrient sensing.
Collapse
|
92
|
The PhoU protein from Escherichia coli interacts with PhoR, PstB, and metals to form a phosphate-signaling complex at the membrane. J Bacteriol 2014; 196:1741-52. [PMID: 24563032 DOI: 10.1128/jb.00029-14] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Robust growth in many bacteria is dependent upon proper regulation of the adaptive response to phosphate (Pi) limitation. This response enables cells to acquire Pi with high affinity and utilize alternate phosphorous sources. The molecular mechanisms of Pi signal transduction are not completely understood. PhoU, along with the high-affinity, Pi-specific ATP-binding cassette transporter PstSCAB and the two-component proteins PhoR and PhoB, is absolutely required for Pi signaling in Escherichia coli. Little is known about the role of PhoU and its function in regulation. We have demonstrated using bacterial two-hybrid analysis and confirmatory coelution experiments that PhoU interacts with PhoR through its PAS (Per-ARNT-Sim) domain and that it also interacts with PstB, the cytoplasmic component of the transporter. We have also shown that the soluble form of PhoU is a dimer that binds manganese and magnesium. Alteration of highly conserved residues in PhoU by site-directed mutagenesis shows that these sites play a role in binding metals. Analysis of these phoU mutants suggests that metal binding may be important for PhoU membrane interactions. Taken together, these results support the hypothesis that PhoU is involved in the formation of a signaling complex at the cytoplasmic membrane that responds to environmental Pi levels.
Collapse
|
93
|
Fillat MF. The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 2014; 546:41-52. [PMID: 24513162 DOI: 10.1016/j.abb.2014.01.029] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 11/17/2022]
Abstract
Control of metal homeostasis is essential for life in all kingdoms. In most prokaryotic organisms the FUR (ferric uptake regulator) family of transcriptional regulators is involved in the regulation of iron and zinc metabolism through control by Fur and Zur proteins. A third member of this family, the peroxide-stress response PerR, is present in most Gram-positives, establishing a tight functional interaction with the global regulator Fur. These proteins play a pivotal role for microbial survival under adverse conditions and in the expression of virulence in most pathogens. In this paper we present the current state of the art in the knowledge of the FUR family, including those members only present in more reduced numbers of bacteria, namely Mur, Nur and Irr. The huge amount of work done in the two last decades shows that FUR proteins present considerable diversity in their regulatory mechanisms and interesting structural differences. However, much work needs to be done to obtain a more complete picture of this family, especially in connection with the roles of some members as gas and redox sensors as well as to fully characterize their participation in bacterial adaptative responses.
Collapse
Affiliation(s)
- María F Fillat
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain.
| |
Collapse
|
94
|
Abstract
The bacterial type VI secretion system (T6SS) is an organelle that is structurally and mechanistically analogous to an intracellular membrane-attached contractile phage tail. Recent studies determined that a rapid conformational change in the structure of a sheath protein complex propels T6SS spike and tube components along with antibacterial and antieukaryotic effectors out of predatory T6SS(+) cells and into prey cells. The contracted organelle is then recycled in an ATP-dependent process. T6SS is regulated at transcriptional and posttranslational levels, the latter involving detection of membrane perturbation in some species. In addition to directly targeting eukaryotic cells, the T6SS can also target other bacteria coinfecting a mammalian host, highlighting the importance of the T6SS not only for bacterial survival in environmental ecosystems, but also in the context of infection and disease. This review highlights these and other advances in our understanding of the structure, mechanical function, assembly, and regulation of the T6SS.
Collapse
Affiliation(s)
- Brian T Ho
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Tao G Dong
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
95
|
Burkholderia mallei and Burkholderia pseudomallei cluster 1 type VI secretion system gene expression is negatively regulated by iron and zinc. PLoS One 2013; 8:e76767. [PMID: 24146925 PMCID: PMC3795662 DOI: 10.1371/journal.pone.0076767] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 09/03/2013] [Indexed: 02/02/2023] Open
Abstract
Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc.
Collapse
|
96
|
Coulthurst SJ. The Type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol 2013; 164:640-54. [PMID: 23542428 DOI: 10.1016/j.resmic.2013.03.017] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/05/2013] [Indexed: 12/31/2022]
Abstract
The Type VI secretion system (T6SS) is the most recently described of the Gram-negative bacterial secretion systems and is widely distributed amongst diverse species. T6SSs are currently believed to be complex molecular machines which inject effector proteins into target cells and which incorporate a bacteriophage-like cell-puncturing device. T6SSs have been implicated in eukaryotic cell targeting and virulence in a range of important pathogens. More recently, 'antibacterial' T6SSs have been reported, which are used to efficiently target competitor bacterial cells by the injection of antibacterial toxins. Although it is clear that T6SSs can be deployed as versatile weapons to compete with other bacteria or attack simple or higher eukaryotes, much remains to be determined about this intriguing system.
Collapse
Affiliation(s)
- Sarah J Coulthurst
- Department of Molecular Microbiology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
97
|
Miyata ST, Bachmann V, Pukatzki S. Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol 2013; 62:663-676. [PMID: 23429693 DOI: 10.1099/jmm.0.053983-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The type VI secretion system (T6SS) is a mechanism evolved by Gram-negative bacteria to negotiate interactions with eukaryotic and prokaryotic competitors. T6SSs are encoded by a diverse array of bacteria and include plant, animal, human and fish pathogens, as well as environmental isolates. As such, the regulatory mechanisms governing T6SS gene expression vary widely from species to species, and even from strain to strain within a given species. This review concentrates on the four bacterial genera that the majority of recent T6SS regulatory studies have been focused on: Vibrio, Pseudomonas, Burkholderia and Edwardsiella.
Collapse
Affiliation(s)
- Sarah T Miyata
- Department of Medical Microbiology and Immunology, 6-22 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Verena Bachmann
- Department of Medical Microbiology and Immunology, 6-22 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Stefan Pukatzki
- Department of Medical Microbiology and Immunology, 6-22 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
98
|
Silverman JM, Brunet YR, Cascales E, Mougous JD. Structure and regulation of the type VI secretion system. Annu Rev Microbiol 2012; 66:453-72. [PMID: 22746332 DOI: 10.1146/annurev-micro-121809-151619] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The type VI secretion system (T6SS) is a complex and widespread gram-negative bacterial export pathway with the capacity to translocate protein effectors into a diversity of target cell types. Current structural models of the T6SS indicate that the apparatus is composed of at least two complexes, a dynamic bacteriophage-like structure and a cell-envelope-spanning membrane-associated assembly. How these complexes interact to promote effector secretion and cell targeting remains a major question in the field. As a contact-dependent pathway with specific cellular targets, the T6SS is subject to tight regulation. Thus, the identification of regulatory elements that control T6S expression continues to shape our understanding of the environmental circumstances relevant to its function. This review discusses recent progress toward characterizing T6S structure and regulation.
Collapse
Affiliation(s)
- Julie M Silverman
- Department of Microbiology, University of Washington, Seattle, 98195, USA
| | | | | | | |
Collapse
|
99
|
Xiao J, Chen T, Yang M, Zhang Y, Wang Q. Identification of qseEGF genetic locus and its roles in controlling hemolytic activity and invasion in fish pathogen Edwardsiella tarda. Lett Appl Microbiol 2012; 55:91-8. [PMID: 22694092 DOI: 10.1111/j.1472-765x.2012.03260.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS The aims of this study were to reveal the roles of the gene locus qseEGF in the pathogenesis of Edwardsiella tarda. METHODS AND RESULTS Genome sequencing of fish pathogen E. tarda EIB202 reveals that the gene locus qseEGF, which encodes a novel two-component system QseEF, were located in E. tarda. The transcription of qseE, qseF and qseG was firstly characterized to be cotranscribed by reverse-transcribed PCR (RT-PCR). The mutant strains ΔqseE, ΔqseF and ΔqseG were constructed with in-frame deletion strategy. Compared with the wild type, all of the mutants showed attenuated virulence and impaired intracellular survival capabilities. Deletion in qseE, qseF and qseG resulted in different effects on hemolysin production in E. tarda. qRT-PCR results indicated that QseEF played a role in regulation of secretion systems, which in turn affected the virulence of E. tarda. CONCLUSIONS The results manifested that QseEF system affected the virulence in E. tarda EIB202 by controlling the secretion system and hemolysin production. QseE, QseG and QseF in E. tarda serve for the physiological fitness and pathogenesis related to the bacterial survival in macrophage and in vivo of fish. SIGNIFICANCE AND IMPACT The present results suggested that the important role of two-component system QseEF in regulation of E. tarda pathogenesis and its potential for attenuated live vaccine construction.
Collapse
Affiliation(s)
- Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | | | | | | | | |
Collapse
|
100
|
Sana TG, Hachani A, Bucior I, Soscia C, Garvis S, Termine E, Engel J, Filloux A, Bleves S. The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. J Biol Chem 2012; 287:27095-105. [PMID: 22665491 PMCID: PMC3411052 DOI: 10.1074/jbc.m112.376368] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The genome of Pseudomonas aeruginosa PAO1 contains three type VI secretion systems (T6SSs) called H1-, H2-, and H3-T6SS. The H1-T6SS secretes three identified toxins that target other bacteria, providing a fitness advantage for P. aeruginosa, and likely contributes to bacterial pathogenesis in chronic infections. However, no specific substrates or defined roles have been described for the two other systems. Here, we demonstrate that the expression of H2-T6SS genes of strain PAO1 is up-regulated during the transition from exponential to stationary phase growth and regulated by the Las and Rhl quorum sensing systems. In addition, we identify two putative Fur boxes in the promoter region and find that H2-T6SS transcription is negatively regulated by iron. We also show that the H2-T6SS system enhances bacterial uptake into HeLa cells (75% decrease in internalization with a H2-T6SS mutant) and into lung epithelial cells through a phosphatidylinositol 3-kinase-dependent pathway that induces Akt activation in the host cell (50% decrease in Akt phosphorylation). Finally, we show that H2-T6SS plays a role in P. aeruginosa virulence in the worm model. Thus, in contrast to H1-T6SS, H2-T6SS modulates interaction with eukaryotic host cells. Together, T6SS can carry out different functions that may be important in establishing chronic P. aeruginosa infections in the human host.
Collapse
Affiliation(s)
- Thibault G Sana
- Aix-Marseille Université et CNRS, Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, 13402 Marseille cedex 20, France
| | | | | | | | | | | | | | | | | |
Collapse
|