51
|
Varas-Godoy M, Lladser A, Farfan N, Villota C, Villegas J, Tapia JC, Burzio LO, Burzio VA, Valenzuela PDT. In vivo knockdown of antisense non-coding mitochondrial RNAs by a lentiviral-encoded shRNA inhibits melanoma tumor growth and lung colonization. Pigment Cell Melanoma Res 2017; 31:64-72. [DOI: 10.1111/pcmr.12615] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/07/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Manuel Varas-Godoy
- Fundación Ciencia & Vida; Santiago Chile
- Center for Biomedical Research; Faculty of Medicine; Universidad de los Andes; Santiago Chile
| | | | - Nicole Farfan
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| | - Claudio Villota
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Chemical and Biological Sciences; Faculty of Health; Universidad Bernardo O Higgins; Santiago Chile
| | - Jaime Villegas
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| | - Julio C. Tapia
- Cell Transformation Laboratory; Department of Basic and Clinical Oncology; Faculty of Medicine; Universidad de Chile; Santiago Chile
| | - Luis O. Burzio
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| | - Veronica A. Burzio
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| | - Pablo D. T. Valenzuela
- Fundación Ciencia & Vida; Santiago Chile
- Andes Biotechnologies SpA; Santiago Chile
- Department of Biological Sciences; Universidad Andrés Bello; Santiago Chile
| |
Collapse
|
52
|
De Paepe B, Lefever S, Mestdagh P. How long noncoding RNAs enforce their will on mitochondrial activity: regulation of mitochondrial respiration, reactive oxygen species production, apoptosis, and metabolic reprogramming in cancer. Curr Genet 2017; 64:163-172. [PMID: 28879612 DOI: 10.1007/s00294-017-0744-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/17/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
|
53
|
Zhang X, He X, Liu Y, Zhang H, Chen H, Guo S, Liang Y. MiR-101-3p inhibits the growth and metastasis of non-small cell lung cancer through blocking PI3K/AKT signal pathway by targeting MALAT-1. Biomed Pharmacother 2017; 93:1065-1073. [DOI: 10.1016/j.biopha.2017.07.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/08/2017] [Accepted: 07/03/2017] [Indexed: 12/22/2022] Open
|
54
|
Dong Y, Yoshitomi T, Hu JF, Cui J. Long noncoding RNAs coordinate functions between mitochondria and the nucleus. Epigenetics Chromatin 2017; 10:41. [PMID: 28835257 PMCID: PMC5569521 DOI: 10.1186/s13072-017-0149-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 08/17/2017] [Indexed: 11/23/2022] Open
Abstract
In animal cells, mitochondria are the primary powerhouses and metabolic factories. They also contain genomes and can produce mitochondrial-specific nucleic acids and proteins. To maintain homeostasis of the entire cell, an intense cross-talk between mitochondria and the nucleus, mediated by encoded noncoding RNAs (ncRNAs), as well as proteins, is required. Long ncRNAs (lncRNAs) contain characteristic structures, and they are involved in the regulation of almost every stage of gene expression, as well as being implicated in a variety of disease states, such as cancer. In the coordinated signaling system, several lncRNAs, transcribed in the nucleus but residing in mitochondria, play a key role in regulating mitochondrial functions or dynamics. For example, RMRP, a component of the mitochondrial RNase MRP, is important for mitochondrial DNA replication and RNA processing, and the steroid receptor RNA activator, SRA, is a key modulator of hormone signaling and is present in both the nucleus and mitochondria. Some RNA-binding proteins maybe play a role in the lncRNAs transport system, such as HuR, GRSF1, SHARP, SLIRP, PPR, and PNPASE. Furthermore, a series of nuclear DNA-encoded lncRNAs were implicated in mitochondria-mediated apoptosis, mitochondrial bioenergetics and biosynthesis, and glutamine metabolism. The mitochondrial genome can also encode a set of lncRNAs, and they are divided into three categories: (1) lncND5, lncND6, and lncCyt b RNA; (2) chimeric mitochondrial DNA-encoded lncRNAs; and (3) putative mitochondrial DNA-encoded lncRNAs. It has been reported that the mitochondrial DNA-encoded lncRNAs appear to operate in the nucleus. The molecular mechanisms underlying trafficking of the mitochondrial DNA-encoded lncRNAs to the nucleus in mammals are only now beginning to emerge. In conclusion, both nuclear- and mitochondrial DNA-encoded lncRNAs mediate an intense intercompartmental cross-talk, which opens a rich field for investigation of the mechanism underlying the intercompartmental coordination and the maintenance of whole cell homeostasis.
Collapse
Affiliation(s)
- Yaru Dong
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, Jilin, China.,Stanford University Medical School, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Takeshi Yoshitomi
- Department of Ophthalmology, Akita University School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Ji-Fan Hu
- Stanford University Medical School, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA. .,Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, 130061, Jilin, China.
| | - Jizhe Cui
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, Jilin, China.
| |
Collapse
|
55
|
Villegas J, Borgna V, Burzio VA. Different cancers, same target? Aging (Albany NY) 2017; 9:1853-1854. [PMID: 28800297 PMCID: PMC5611975 DOI: 10.18632/aging.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022]
MESH Headings
- Animals
- Cell Line, Tumor
- Clinical Trials, Phase I as Topic
- Gene Knockdown Techniques
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasms/classification
- Neoplasms/pathology
- Neoplasms/therapy
- Oligoribonucleotides, Antisense/administration & dosage
- Oligoribonucleotides, Antisense/therapeutic use
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Mitochondrial/genetics
- RNA, Mitochondrial/metabolism
- Transcriptome
Collapse
Affiliation(s)
- Jaime Villegas
- Andes Biotechnologies SpA - Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Vincenzo Borgna
- Andes Biotechnologies SpA - Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina, Universidad de Santiago, Santiago, Chile
| | - Veronica A Burzio
- Andes Biotechnologies SpA - Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
56
|
It Is Imperative to Establish a Pellucid Definition of Chimeric RNA and to Clear Up a Lot of Confusion in the Relevant Research. Int J Mol Sci 2017; 18:ijms18040714. [PMID: 28350330 PMCID: PMC5412300 DOI: 10.3390/ijms18040714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/27/2022] Open
Abstract
There have been tens of thousands of RNAs deposited in different databases that contain sequences of two genes and are coined chimeric RNAs, or chimeras. However, "chimeric RNA" has never been lucidly defined, partly because "gene" itself is still ill-defined and because the means of production for many RNAs is unclear. Since the number of putative chimeras is soaring, it is imperative to establish a pellucid definition for it, in order to differentiate chimeras from regular RNAs. Otherwise, not only will chimeric RNA studies be misled but also characterization of fusion genes and unannotated genes will be hindered. We propose that only those RNAs that are formed by joining two RNA transcripts together without a fusion gene as a genomic basis should be regarded as authentic chimeras, whereas those RNAs transcribed as, and cis-spliced from, single transcripts should not be deemed as chimeras. Many RNAs containing sequences of two neighboring genes may be transcribed via a readthrough mechanism, and thus are actually RNAs of unannotated genes or RNA variants of known genes, but not chimeras. In today's chimeric RNA research, there are still several key flaws, technical constraints and understudied tasks, which are also described in this perspective essay.
Collapse
|
57
|
Geiger J, Dalgaard LT. Interplay of mitochondrial metabolism and microRNAs. Cell Mol Life Sci 2017; 74:631-646. [PMID: 27563705 PMCID: PMC11107739 DOI: 10.1007/s00018-016-2342-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/07/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022]
Abstract
Mitochondria are important organelles in cellular metabolism. Several crucial metabolic pathways such as the energy producing electron transport chain or the tricarboxylic acid cycle are hosted inside the mitochondria. The proper function of mitochondria depends on the import of proteins, which are encoded in the nucleus and synthesized in the cytosol. Micro-ribonucleic acids (miRNAs) are short non-coding ribonucleic acid (RNA) molecules with the ability to prevent messenger RNA (mRNA)-translation or to induce the degradation of mRNA-transcripts. Although miRNAs are mainly located in the cytosol or the nucleus, a subset of ~150 different miRNAs, called mitomiRs, has also been found localized to mitochondrial fractions of cells and tissues together with the subunits of the RNA-induced silencing complex (RISC); the protein complex through which miRNAs normally act to prevent translation of their mRNA-targets. The focus of this review is on miRNAs and mitomiRs with influence on mitochondrial metabolism and their possible pathophysiological impact.
Collapse
Affiliation(s)
- Julian Geiger
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Bldg. 28A1, 4000, Roskilde, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Bldg. 28A1, 4000, Roskilde, Denmark.
| |
Collapse
|
58
|
Jarroux J, Morillon A, Pinskaya M. History, Discovery, and Classification of lncRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1008:1-46. [PMID: 28815535 DOI: 10.1007/978-981-10-5203-3_1] [Citation(s) in RCA: 604] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RNA World Hypothesis suggests that prebiotic life revolved around RNA instead of DNA and proteins. Although modern cells have changed significantly in 4 billion years, RNA has maintained its central role in cell biology. Since the discovery of DNA at the end of the nineteenth century, RNA has been extensively studied. Many discoveries such as housekeeping RNAs (rRNA, tRNA, etc.) supported the messenger RNA model that is the pillar of the central dogma of molecular biology, which was first devised in the late 1950s. Thirty years later, the first regulatory non-coding RNAs (ncRNAs) were initially identified in bacteria and then in most eukaryotic organisms. A few long ncRNAs (lncRNAs) such as H19 and Xist were characterized in the pre-genomic era but remained exceptions until the early 2000s. Indeed, when the sequence of the human genome was published in 2001, studies showed that only about 1.2% encodes proteins, the rest being deemed "non-coding." It was later shown that the genome is pervasively transcribed into many ncRNAs, but their functionality remained controversial. Since then, regulatory lncRNAs have been characterized in many species and were shown to be involved in processes such as development and pathologies, revealing a new layer of regulation in eukaryotic cells. This newly found focus on lncRNAs, together with the advent of high-throughput sequencing, was accompanied by the rapid discovery of many novel transcripts which were further characterized and classified according to specific transcript traits.In this review, we will discuss the many discoveries that led to the study of lncRNAs, from Friedrich Miescher's "nuclein" in 1869 to the elucidation of the human genome and transcriptome in the early 2000s. We will then focus on the biological relevance during lncRNA evolution and describe their basic features as genes and transcripts. Finally, we will present a non-exhaustive catalogue of lncRNA classes, thus illustrating the vast complexity of eukaryotic transcriptomes.
Collapse
Affiliation(s)
- Julien Jarroux
- ncRNA, epigenetic and genome fluidity, Institut Curie, Centre de Recherche, CNRS UMR 3244, PSL Research University and Université Pierre et Marie Curie, Paris, France
| | - Antonin Morillon
- ncRNA, epigenetic and genome fluidity, Institut Curie, Centre de Recherche, CNRS UMR 3244, PSL Research University and Université Pierre et Marie Curie, Paris, France.
| | - Marina Pinskaya
- ncRNA, epigenetic and genome fluidity, Institut Curie, Centre de Recherche, CNRS UMR 3244, PSL Research University and Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
59
|
Márquez-Miranda V, Peñaloza JP, Araya-Durán I, Reyes R, Vidaurre S, Romero V, Fuentes J, Céric F, Velásquez L, González-Nilo FD, Otero C. Effect of Terminal Groups of Dendrimers in the Complexation with Antisense Oligonucleotides and Cell Uptake. NANOSCALE RESEARCH LETTERS 2016; 11:66. [PMID: 26847692 PMCID: PMC4742457 DOI: 10.1186/s11671-016-1260-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.
Collapse
Affiliation(s)
- Valeria Márquez-Miranda
- Facultad de Biología, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Republica 239, Santiago, Chile
- Fundación Fraunhofer Chile Research, M. Sánchez Fontecilla 310 piso 14, Las Condes, Chile
| | - Juan Pablo Peñaloza
- Facultad de Medicina, Center for Integrative Medicine and Innovative Science, Universidad Andres Bello, Santiago, Chile
| | - Ingrid Araya-Durán
- Facultad de Biología, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Republica 239, Santiago, Chile
- Fundación Fraunhofer Chile Research, M. Sánchez Fontecilla 310 piso 14, Las Condes, Chile
| | - Rodrigo Reyes
- Facultad de Medicina, Center for Integrative Medicine and Innovative Science, Universidad Andres Bello, Santiago, Chile
| | - Soledad Vidaurre
- Departamento Ciencias Químicas y Biológicas, Laboratorio de Bionanotecnología, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Valentina Romero
- Departamento Ciencias Químicas y Biológicas, Laboratorio de Bionanotecnología, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Juan Fuentes
- Facultad de Biología, Laboratorio de Microbiología, Universidad Andres Bello, Republica 217, Santiago, Chile
| | - Francisco Céric
- Laboratorio de Neurociencias Cognitivas, Facultad de Psicología, Universidad del Desarrollo, Santiago, Chile
| | - Luis Velásquez
- Fundación Fraunhofer Chile Research, M. Sánchez Fontecilla 310 piso 14, Las Condes, Chile
- Facultad de Medicina, Center for Integrative Medicine and Innovative Science, Universidad Andres Bello, Santiago, Chile
| | - Fernando D González-Nilo
- Facultad de Biología, Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andres Bello, Republica 239, Santiago, Chile.
- Fundación Fraunhofer Chile Research, M. Sánchez Fontecilla 310 piso 14, Las Condes, Chile.
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| | - Carolina Otero
- Fundación Fraunhofer Chile Research, M. Sánchez Fontecilla 310 piso 14, Las Condes, Chile.
- Facultad de Medicina, Center for Integrative Medicine and Innovative Science, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
60
|
Beltrán-Anaya FO, Cedro-Tanda A, Hidalgo-Miranda A, Romero-Cordoba SL. Insights into the Regulatory Role of Non-coding RNAs in Cancer Metabolism. Front Physiol 2016; 7:342. [PMID: 27551267 PMCID: PMC4976125 DOI: 10.3389/fphys.2016.00342] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer represents a complex disease originated from alterations in several genes leading to disturbances in important signaling pathways in tumor biology, favoring heterogeneity that promotes adaptability and pharmacological resistance of tumor cells. Metabolic reprogramming has emerged as an important hallmark of cancer characterized by the presence of aerobic glycolysis, increased glutaminolysis and fatty acid biosynthesis, as well as an altered mitochondrial energy production. The metabolic switches that support energetic requirements of cancer cells are closely related to either activation of oncogenes or down-modulation of tumor-suppressor genes, finally leading to dysregulation of cell proliferation, metastasis and drug resistance signals. Non-coding RNAs (ncRNAs) have emerged as one important kind of molecules that can regulate altered genes contributing, to the establishment of metabolic reprogramming. Moreover, diverse metabolic signals can regulate ncRNA expression and activity at genetic, transcriptional, or epigenetic levels. The regulatory landscape of ncRNAs may provide a new approach for understanding and treatment of different types of malignancies. In this review we discuss the regulatory role exerted by ncRNAs on metabolic enzymes and pathways involved in glucose, lipid, and amino acid metabolism. We also review how metabolic stress conditions and tumoral microenvironment influence ncRNA expression and activity. Furthermore, we comment on the therapeutic potential of metabolism-related ncRNAs in cancer.
Collapse
Affiliation(s)
- Fredy O Beltrán-Anaya
- Cancer Genomics Laboratory, National Institute of Genomic Medicine Mexico City, Mexico
| | - Alberto Cedro-Tanda
- Cancer Genomics Laboratory, National Institute of Genomic Medicine Mexico City, Mexico
| | | | | |
Collapse
|
61
|
Xie B, Yang W, Ouyang Y, Chen L, Jiang H, Liao Y, Liao DJ. Two RNAs or DNAs May Artificially Fuse Together at a Short Homologous Sequence (SHS) during Reverse Transcription or Polymerase Chain Reactions, and Thus Reporting an SHS-Containing Chimeric RNA Requires Extra Caution. PLoS One 2016; 11:e0154855. [PMID: 27148738 PMCID: PMC4858267 DOI: 10.1371/journal.pone.0154855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/20/2016] [Indexed: 11/18/2022] Open
Abstract
Tens of thousands of chimeric RNAs have been reported. Most of them contain a short homologous sequence (SHS) at the joining site of the two partner genes but are not associated with a fusion gene. We hypothesize that many of these chimeras may be technical artifacts derived from SHS-caused mis-priming in reverse transcription (RT) or polymerase chain reactions (PCR). We cloned six chimeric complementary DNAs (cDNAs) formed by human mitochondrial (mt) 16S rRNA sequences at an SHS, which were similar to several expression sequence tags (ESTs).These chimeras, which could not be detected with cDNA protection assay, were likely formed because some regions of the 16S rRNA are reversely complementary to another region to form an SHS, which allows the downstream sequence to loop back and anneal at the SHS to prime the synthesis of its complementary strand, yielding a palindromic sequence that can form a hairpin-like structure.We identified a 16S rRNA that ended at the 4th nucleotide(nt) of the mt-tRNA-leu was dominant and thus should be the wild type. We also cloned a mouse Bcl2-Nek9 chimeric cDNA that contained a 5-nt unmatchable sequence between the two partners, contained two copies of the reverse primer in the same direction but did not contain the forward primer, making it unclear how this Bcl2-Nek9 was formed and amplified. Moreover, a cDNA was amplified because one primer has 4 nts matched to the template, suggesting that there may be many more artificial cDNAs than we have realized, because the nuclear and mt genomes have many more 4-nt than 5-nt or longer homologues. Altogether, the chimeric cDNAs we cloned are good examples suggesting that many cDNAs may be artifacts due to SHS-caused mis-priming and thus greater caution should be taken when new sequence is obtained from a technique involving DNA polymerization.
Collapse
Affiliation(s)
- Bingkun Xie
- Guangxi Institute of Animal Sciences, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, Guangxi, 530001, P.R. China
- * E-mail: (BKX); (HSJ); (DJL)
| | - Wei Yang
- Guangxi Veterinary Research Institute, Nanning, Guangxi, P.R. China
| | - Yongchang Ouyang
- Hormel Institute, University of Minnesota, Austin, Minnesota, 55912, United States of America
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, Minnesota, 55912, United States of America
| | - Hesheng Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, P.R. China
- * E-mail: (BKX); (HSJ); (DJL)
| | - Yuying Liao
- Guangxi Institute of Animal Sciences, Guangxi Key Laboratory of Livestock Genetic Improvement, Nanning, Guangxi, 530001, P.R. China
| | - D. Joshua Liao
- Department of Pathology, Guizhou Medical University Hospital, Guizhou, Guiyang, 550004, P.R. China
- * E-mail: (BKX); (HSJ); (DJL)
| |
Collapse
|
62
|
Dietrich A, Wallet C, Iqbal RK, Gualberto JM, Lotfi F. Organellar non-coding RNAs: Emerging regulation mechanisms. Biochimie 2015; 117:48-62. [DOI: 10.1016/j.biochi.2015.06.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023]
|
63
|
Bertoli G, Cava C, Castiglioni I. MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. Theranostics 2015; 5:1122-43. [PMID: 26199650 PMCID: PMC4508501 DOI: 10.7150/thno.11543] [Citation(s) in RCA: 598] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) is involved in the initiation and progression of several human cancers, including breast cancer (BC), as strong evidence has been found that miRNAs can act as oncogenes or tumor suppressor genes. This review presents the state of the art on the role of miRNAs in the diagnosis, prognosis, and therapy of BC. Based on the results obtained in the last decade, some miRNAs are emerging as biomarkers of BC for diagnosis (i.e., miR-9, miR-10b, and miR-17-5p), prognosis (i.e., miR-148a and miR-335), and prediction of therapeutic outcomes (i.e., miR-30c, miR-187, and miR-339-5p) and have important roles in the control of BC hallmark functions such as invasion, metastasis, proliferation, resting death, apoptosis, and genomic instability. Other miRNAs are of interest as new, easily accessible, affordable, non-invasive tools for the personalized management of patients with BC because they are circulating in body fluids (e.g., miR-155 and miR-210). In particular, circulating multiple miRNA profiles are showing better diagnostic and prognostic performance as well as better sensitivity than individual miRNAs in BC. New miRNA-based drugs are also promising therapy for BC (e.g., miR-9, miR-21, miR34a, miR145, and miR150), and other miRNAs are showing a fundamental role in modulation of the response to other non-miRNA treatments, being able to increase their efficacy (e.g., miR-21, miR34a, miR195, miR200c, and miR203 in combination with chemotherapy).
Collapse
Affiliation(s)
| | | | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
64
|
Long J, Ou C, Xia H, Zhu Y, Liu D. MiR-503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression. Tumour Biol 2015; 36:8697-702. [PMID: 26047605 DOI: 10.1007/s13277-015-3623-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/27/2015] [Indexed: 01/04/2023] Open
Abstract
Breast cancer is one of the most common malignancies and a major cause of cancer-related mortality all over the world. A growing body of reports revealed that microRNAs play essential roles in the progression of cancers. Aberrant expression of miR-503 has been reported in several kinds of cancer. The aim of the current study was to elucidate the role of miR-503 in the pathogenesis of breast cancer. In the present study, our results suggested that miR-503 expression was markedly downregulated in breast cancer tissues and cells. Overexpression of miR-503 in breast cancer cell lines reduced cell proliferation through inducing G0/G1 cell cycle arrest by targeting CCND1. Together, our findings provide new knowledge regarding the role of miR-503 in the progression of breast cancer and indicate the role of miR-503 as a tumor suppressor microRNA (miRNA) in breast cancer.
Collapse
Affiliation(s)
- Jianting Long
- Department of Medicinal Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Caiwen Ou
- Key Laboratory of Construction and Detection of Guangdong Province, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Haoming Xia
- Breast Disease Center, Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yifan Zhu
- Breast Disease Center, Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Dayue Liu
- Breast Disease Center, Department of Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
65
|
Mitochondria in health, aging and diseases: the epigenetic perspective. Biogerontology 2015; 16:569-85. [DOI: 10.1007/s10522-015-9562-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/19/2015] [Indexed: 01/15/2023]
|
66
|
Bianchessi V, Badi I, Bertolotti M, Nigro P, D'Alessandra Y, Capogrossi MC, Zanobini M, Pompilio G, Raucci A, Lauri A. The mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in Endothelial Cells. J Mol Cell Cardiol 2015; 81:62-70. [PMID: 25640160 DOI: 10.1016/j.yjmcc.2015.01.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/12/2014] [Accepted: 01/04/2015] [Indexed: 01/23/2023]
Abstract
Age-associated cardiovascular diseases are at least partially ascribable to vascular cell senescence. Replicative senescence (RS) and stress-induced premature senescence (SIPS) are provoked respectively by endogenous (telomere erosion) and exogenous (H2O2, UV) stimuli resulting in cell cycle arrest in G1 and G2 phases. In both scenarios, mitochondria-derived ROS are important players in senescence initiation. We aimed to define whether a mtDNA-transcribed long-non-coding-RNA (lncRNA), ASncmtRNA-2, has a role in vascular aging and senescence. Aortas of old mice, characterized by increased senescence, showed an increment in ASncmtRNA-2 expression. In vitro analysis of Endothelial Cells (EC) and Vascular Smooth Muscle Cells (VSMC) established that ASncmtRNA-2 is induced in EC, but not in VSMC, during RS. Surprisingly, ASncmtRNA-2 is not upregulated in two different EC SIPS scenarios, treated with H2O2 and UV. The p16 gene displayed similar ASncmtRNA-2 expression patterns, suggesting a possible co-regulation of the two genes. Interestingly, the expression of two miRNAs, hsa-miR-4485 and hsa-miR-1973, with perfect homology to the double strand region of ASncmtRNA-2 and originating at least in part from a mitochondrial transcript, was induced in RS, opening to the possibility that this lncRNA functions as a non-canonical precursor of these miRNAs. Cell cycle analysis of EC transiently over-expressing ASncmtRNA-2 revealed an accumulation of EC in the G2/M phase, but not in the G1 phase. We propose that ASncmtRNA-2 in EC might be involved in the RS establishment by participating in the cell cycle arrest in G2/M phase, possibly through the production of hsa-miR-4485 and hsa-miR-1973. This article is part of a Special Issue entitled: Mitochondria.
Collapse
Affiliation(s)
- Valentina Bianchessi
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Ileana Badi
- Unità di Cardio-Oncologia Sperimentale e Invecchiamento Cardiovascolare, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Matteo Bertolotti
- Unità di Cardio-Oncologia Sperimentale e Invecchiamento Cardiovascolare, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Patrizia Nigro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Yuri D'Alessandra
- Unità di Immunologia e Genomica Funzionale, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Maurizio C Capogrossi
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata (IDI), IRCCS, Roma, Italy
| | - Marco Zanobini
- Dipartimento di Chirurgia Vascolare, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Angela Raucci
- Unità di Cardio-Oncologia Sperimentale e Invecchiamento Cardiovascolare, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Andrea Lauri
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy.
| |
Collapse
|
67
|
Borralho PM, Rodrigues CMP, Steer CJ. microRNAs in Mitochondria: An Unexplored Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:31-51. [PMID: 26662985 DOI: 10.1007/978-3-319-22380-3_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are pivotal organelles involved in the regulation of a myriad of crucial biological processes, including cell survival and cell death, rendering mitochondrial dysfunction a relevant step in numerous pathophysiological processes. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that add a new layer of complexity to the control of gene expression. miRNAs function as master regulators and fine-tuners of gene expression, primarily via posttranscriptional mechanisms, and are increasingly demonstrated as a paramount class of endogenous molecules with relevant diagnostic, prognostic, and therapeutic applications. miRNAs and other RNA interference have recently been reported to be present in mitochondria from several species, and we are now beginning to unveil mitochondrial miRNA transport mechanisms, biological function and targets to ascertain their role in this unexplored niche. Here, we describe miRNA biogenesis and present key findings regarding miRNA localization to mitochondria, origin, putative biological function, and implications for human disease.
Collapse
Affiliation(s)
- Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Clifford J Steer
- Departments of Medicine, and Genetics, Cell Biology and Development, University of Minnesota Medical School, VFW Cancer Research Center, 406 Harvard Street S.E., Minneapolis, MN, 55455, USA.
| |
Collapse
|