51
|
Dutta S, Watson BG, Mattoo S, Rochet JC. Calcein Release Assay to Measure Membrane Permeabilization by Recombinant Alpha-Synuclein. Bio Protoc 2020; 10:e3690. [PMID: 32953942 DOI: 10.21769/bioprotoc.3690] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lipid membranes are involved in regulating biochemical and biological processes and in modulating the selective permeability of cells, organelles, and vesicles. Membrane composition, charge, curvature, and fluidity all have concerted effects on cellular signaling and homeostasis. The ability to prepare artificial lipid assemblies that mimic biological membranes has enabled investigators to obtain considerable insight into biomolecule-membrane interactions. Lipid nanoscale assemblies can vary greatly in size and composition and can consist of a single lipid monolayer, a bilayer, or other more complex assemblies. This structural diversity makes liposomes suitable for a wide variety of biochemical and clinical applications. Here, we describe a calcein dye leakage assay that we have developed to monitor phospholipid vesicle disruption by alpha-synuclein (αSyn), a presynaptic protein that plays a central role in Parkinson's disease (PD). We present data showing the effect of adenylylation of αSyn on αSyn-mediated vesicle disruption as an example. This assay can be used to study the effect of mutations or post-translational modifications on αSyn-membrane interactions, to identify protein binding partners or chemical entities that perturb these interactions, and to study the effects of different lipids on the permeabilization activity of αSyn or any other protein.
Collapse
Affiliation(s)
- Sayan Dutta
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Ben G Watson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
52
|
Perera LA, Rato C, Yan Y, Neidhardt L, McLaughlin SH, Read RJ, Preissler S, Ron D. An oligomeric state-dependent switch in the ER enzyme FICD regulates AMPylation and deAMPylation of BiP. EMBO J 2019; 38:e102177. [PMID: 31531998 PMCID: PMC6826200 DOI: 10.15252/embj.2019102177] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/23/2022] Open
Abstract
AMPylation is an inactivating modification that alters the activity of the major endoplasmic reticulum (ER) chaperone BiP to match the burden of unfolded proteins. A single ER-localised Fic protein, FICD (HYPE), catalyses both AMPylation and deAMPylation of BiP. However, the basis for the switch in FICD's activity is unknown. We report on the transition of FICD from a dimeric enzyme, that deAMPylates BiP, to a monomer with potent AMPylation activity. Mutations in the dimer interface, or of residues along an inhibitory pathway linking the dimer interface to the enzyme's active site, favour BiP AMPylation in vitro and in cells. Mechanistically, monomerisation relieves a repressive effect allosterically propagated from the dimer interface to the inhibitory Glu234, thereby permitting AMPylation-competent binding of MgATP. Moreover, a reciprocal signal, propagated from the nucleotide-binding site, provides a mechanism for coupling the oligomeric state and enzymatic activity of FICD to the energy status of the ER.
Collapse
Affiliation(s)
- Luke A Perera
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Claudia Rato
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Yahui Yan
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Lisa Neidhardt
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | | | - Randy J Read
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Steffen Preissler
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - David Ron
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| |
Collapse
|
53
|
Hall E, Jönsson J, Ofori JK, Volkov P, Perfilyev A, Dekker Nitert M, Eliasson L, Ling C, Bacos K. Glucolipotoxicity Alters Insulin Secretion via Epigenetic Changes in Human Islets. Diabetes 2019; 68:1965-1974. [PMID: 31420409 DOI: 10.2337/db18-0900] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 07/24/2019] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes (T2D) is characterized by insufficient insulin secretion and elevated glucose levels, often in combination with high levels of circulating fatty acids. Long-term exposure to high levels of glucose or fatty acids impair insulin secretion in pancreatic islets, which could partly be due to epigenetic alterations. We studied the effects of high concentrations of glucose and palmitate combined for 48 h (glucolipotoxicity) on the transcriptome, the epigenome, and cell function in human islets. Glucolipotoxicity impaired insulin secretion, increased apoptosis, and significantly (false discovery rate <5%) altered the expression of 1,855 genes, including 35 genes previously implicated in T2D by genome-wide association studies (e.g., TCF7L2 and CDKN2B). Additionally, metabolic pathways were enriched for downregulated genes. Of the differentially expressed genes, 1,469 also exhibited altered DNA methylation (e.g., CDK1, FICD, TPX2, and TYMS). A luciferase assay showed that increased methylation of CDK1 directly reduces its transcription in pancreatic β-cells, supporting the idea that DNA methylation underlies altered expression after glucolipotoxicity. Follow-up experiments in clonal β-cells showed that knockdown of FICD and TPX2 alters insulin secretion. Together, our novel data demonstrate that glucolipotoxicity changes the epigenome in human islets, thereby altering gene expression and possibly exacerbating the secretory defect in T2D.
Collapse
Affiliation(s)
- Elin Hall
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Josefine Jönsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Jones K Ofori
- Islet Cell Exocytosis Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Marloes Dekker Nitert
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
54
|
Abstract
The site of protein folding and maturation for the majority of proteins that are secreted, localized to the plasma membrane or targeted to endomembrane compartments is the endoplasmic reticulum (ER). It is essential that proteins targeted to the ER are properly folded in order to carry out their function, as well as maintain protein homeostasis, as accumulation of misfolded proteins could lead to the formation of cytotoxic aggregates. Because protein folding is an error-prone process, the ER contains protein quality control networks that act to optimize proper folding and trafficking of client proteins. If a protein is unable to reach its native state, it is targeted for ER retention and subsequent degradation. The protein quality control networks of the ER that oversee this evaluation or interrogation process that decides the fate of maturing nascent chains is comprised of three general types of families: the classical chaperones, the carbohydrate-dependent system, and the thiol-dependent system. The cooperative action of these families promotes protein quality control and protein homeostasis in the ER. This review will describe the families of the ER protein quality control network and discuss the functions of individual members.
Collapse
Affiliation(s)
- Benjamin M Adams
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Michela E Oster
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 240 Thatcher Road, Amherst, MA, 01003, USA.
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
55
|
Sanyal A, Dutta S, Camara A, Chandran A, Koller A, Watson BG, Sengupta R, Ysselstein D, Montenegro P, Cannon J, Rochet JC, Mattoo S. Alpha-Synuclein Is a Target of Fic-Mediated Adenylylation/AMPylation: Possible Implications for Parkinson's Disease. J Mol Biol 2019; 431:2266-2282. [PMID: 31034889 PMCID: PMC6554060 DOI: 10.1016/j.jmb.2019.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 01/17/2023]
Abstract
During disease, cells experience various stresses that manifest as an accumulation of misfolded proteins and eventually lead to cell death. To combat this stress, cells activate a pathway called unfolded protein response that functions to maintain endoplasmic reticulum (ER) homeostasis and determines cell fate. We recently reported a hitherto unknown mechanism of regulating ER stress via a novel post-translational modification called Fic-mediatedadenylylation/AMPylation. Specifically, we showed that the human Fic (filamentation induced by cAMP) protein, HYPE/FicD, catalyzes the addition of an adenosine monophosphate (AMP) to the ER chaperone, BiP, to alter the cell's unfolded protein response-mediated response to misfolded proteins. Here, we report that we have now identified a second target for HYPE-alpha-synuclein (αSyn), a presynaptic protein involved in Parkinson's disease. Aggregated αSyn has been shown to induce ER stress and elicit neurotoxicity in Parkinson's disease models. We show that HYPE adenylylates αSyn and reduces phenotypes associated with αSyn aggregation invitro, suggesting a possible mechanism by which cells cope with αSyn toxicity.
Collapse
Affiliation(s)
- Anwesha Sanyal
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sayan Dutta
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ali Camara
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Aswathy Chandran
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Antonius Koller
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Ben G Watson
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ranjan Sengupta
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel Ysselstein
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Paola Montenegro
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jason Cannon
- School of Health Sciences, Purdue University, 915 W State St., LILYG-227, West Lafayette, IN 47907, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, 915 W State St., LILYG-227, West Lafayette, IN 47907, USA
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, 915 W State St., LILYG-227, West Lafayette, IN 47907, USA.
| |
Collapse
|
56
|
Ren Y, He Y, Brown S, Zbornik E, Mlodzianoski MJ, Ma D, Huang F, Mattoo S, Suter DM. A single tyrosine phosphorylation site in cortactin is important for filopodia formation in neuronal growth cones. Mol Biol Cell 2019; 30:1817-1833. [PMID: 31116646 PMCID: PMC6727743 DOI: 10.1091/mbc.e18-04-0202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cortactin is a Src tyrosine phosphorylation substrate that regulates multiple actin-related cellular processes. While frequently studied in nonneuronal cells, the functions of cortactin in neuronal growth cones are not well understood. We recently reported that cortactin mediates the effects of Src tyrosine kinase in regulating actin organization and dynamics in both lamellipodia and filopodia of Aplysia growth cones. Here, we identified a single cortactin tyrosine phosphorylation site (Y499) to be important for the formation of filopodia. Overexpression of a 499F phospho-deficient cortactin mutant decreased filopodia length and density, whereas overexpression of a 499E phospho-mimetic mutant increased filopodia length. Using an antibody against cortactin pY499, we showed that tyrosine-phosphorylated cortactin is enriched along the leading edge. The leading edge localization of phosphorylated cortactin is Src2-dependent, F-actin-independent, and important for filopodia formation. In vitro kinase assays revealed that Src2 phosphorylates cortactin at Y499, although Y505 is the preferred site in vitro. Finally, we provide evidence that Arp2/3 complex acts downstream of phosphorylated cortactin to regulate density but not length of filopodia. In conclusion, we have characterized a tyrosine phosphorylation site in Aplysia cortactin that plays a major role in the Src/cortactin/Arp2/3 signaling pathway controlling filopodia formation.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Yingpei He
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Sherlene Brown
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907
| | - Erica Zbornik
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Michael J Mlodzianoski
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Donghan Ma
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Fang Huang
- Department of Weldon School of Biomedical Engineering, Purdue Institutes of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907.,Department of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907.,Department of Integrative Neuroscience, Purdue University, West Lafayette, IN 47907
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.,Department of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907
| | - Daniel M Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.,Department of Integrative Neuroscience, Purdue University, West Lafayette, IN 47907.,Department of Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907.,Department of Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
57
|
Graham JB, Canniff NP, Hebert DN. TPR-containing proteins control protein organization and homeostasis for the endoplasmic reticulum. Crit Rev Biochem Mol Biol 2019; 54:103-118. [PMID: 31023093 DOI: 10.1080/10409238.2019.1590305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The endoplasmic reticulum (ER) is a complex, multifunctional organelle comprised of a continuous membrane and lumen that is organized into a number of functional regions. It plays various roles including protein translocation, folding, quality control, secretion, calcium signaling, and lipid biogenesis. Cellular protein homeostasis is maintained by a complicated chaperone network, and the largest functional family within this network consists of proteins containing tetratricopeptide repeats (TPRs). TPRs are well-studied structural motifs that mediate intermolecular protein-protein interactions, supporting interactions with a wide range of ligands or substrates. Seven TPR-containing proteins have thus far been shown to localize to the ER and control protein organization and homeostasis within this multifunctional organelle. Here, we discuss the roles of these proteins in controlling ER processes and organization. The crucial roles that TPR-containing proteins play in the ER are highlighted by diseases or defects associated with their mutation or disruption.
Collapse
Affiliation(s)
- Jill B Graham
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Nathan P Canniff
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| | - Daniel N Hebert
- a Molecular Cellular Biology Program , University of Massachusetts , Amherst , MA , USA.,b Biochemistry and Molecular Biology Department , University of Massachusetts , Amherst , MA , USA
| |
Collapse
|
58
|
Preissler S, Ron D. Early Events in the Endoplasmic Reticulum Unfolded Protein Response. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033894. [PMID: 30396883 PMCID: PMC6442202 DOI: 10.1101/cshperspect.a033894] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The physiological consequences of the unfolded protein response (UPR) are mediated by changes in gene expression. Underlying them are rapid processes involving preexisting components. We review recent insights gained into the regulation of the endoplasmic reticulum (ER) Hsp70 chaperone BiP, whose incorporation into inactive oligomers and reversible AMPylation and de-AMPylation present a first line of response to fluctuating levels of unfolded proteins. BiP activity is tied to the regulation of the UPR transducers by a recently discovered cycle of ER-localized, J protein-mediated formation of a repressive IRE1-BiP complex, whose working we contrast to an alternative model for UPR regulation that relies on direct recognition of unfolded proteins. We conclude with a discussion of mechanisms that repress messenger RNA (mRNA) translation to limit the flux of newly synthesized proteins into the ER, a rapid adaptation that does not rely on new macromolecule biosynthesis.
Collapse
|
59
|
Sengupta R, Poderycki MJ, Mattoo S. CryoAPEX - an electron tomography tool for subcellular localization of membrane proteins. J Cell Sci 2019; 132:132/6/jcs222315. [PMID: 30886003 DOI: 10.1242/jcs.222315] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022] Open
Abstract
We describe a method, termed cryoAPEX, which couples chemical fixation and high-pressure freezing of cells with peroxidase tagging (APEX) to allow precise localization of membrane proteins in the context of a well-preserved subcellular membrane architecture. Further, cryoAPEX is compatible with electron tomography. As an example, we apply cryoAPEX to obtain a high-resolution three-dimensional contextual map of the human FIC (filamentation induced by cAMP) protein, HYPE (also known as FICD). HYPE is a single-pass membrane protein that localizes to the endoplasmic reticulum (ER) lumen and regulates the unfolded protein response. Alternate cellular locations for HYPE have been suggested. CryoAPEX analysis shows that, under normal and/or resting conditions, HYPE localizes robustly within the subdomains of the ER and is not detected in the secretory pathway or other organelles. CryoAPEX is broadly applicable for assessing both lumenal and cytosol-facing membrane proteins.
Collapse
Affiliation(s)
- Ranjan Sengupta
- Department of Biological Sciences, Purdue University, 915 W. State St., LILY G-227, West Lafayette, IN 47907, USA
| | - Michael J Poderycki
- Department of Biological Sciences, Purdue University, 915 W. State St., LILY G-227, West Lafayette, IN 47907, USA
| | - Seema Mattoo
- Department of Biological Sciences, Purdue University, 915 W. State St., LILY G-227, West Lafayette, IN 47907, USA
| |
Collapse
|
60
|
Veyron S, Oliva G, Rolando M, Buchrieser C, Peyroche G, Cherfils J. A Ca 2+-regulated deAMPylation switch in human and bacterial FIC proteins. Nat Commun 2019; 10:1142. [PMID: 30850593 PMCID: PMC6408439 DOI: 10.1038/s41467-019-09023-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
FIC proteins regulate molecular processes from bacteria to humans by catalyzing post-translational modifications (PTM), the most frequent being the addition of AMP or AMPylation. In many AMPylating FIC proteins, a structurally conserved glutamate represses AMPylation and, in mammalian FICD, also supports deAMPylation of BiP/GRP78, a key chaperone of the unfolded protein response. Currently, a direct signal regulating these FIC proteins has not been identified. Here, we use X-ray crystallography and in vitro PTM assays to address this question. We discover that Enterococcus faecalis FIC (EfFIC) catalyzes both AMPylation and deAMPylation and that the glutamate implements a multi-position metal switch whereby Mg2+ and Ca2+ control AMPylation and deAMPylation differentially without a conformational change. Remarkably, Ca2+ concentration also tunes deAMPylation of BiP by human FICD. Our results suggest that the conserved glutamate is a signature of AMPylation/deAMPylation FIC bifunctionality and identify metal ions as diffusible signals that regulate such FIC proteins directly. In many AMPylating FIC proteins a structurally conserved glutamate represses AMPylation. Here, the authors show that this glutamate supports deAMPylation in Enterococcus faecalis FIC (EfFIC), and that EfFIC switches from AMPylation to deAMPylation by binding Ca2+ at distinct sites.
Collapse
Affiliation(s)
- Simon Veyron
- CNRS and Ecole normale supérieure Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée, 61 Avenue du Président Wilson, 94235, Cachan CEDEX, France
| | - Giulia Oliva
- Institut Pasteur and CNRS UMR 3525, Biologie des Bactéries Intracellulaires, 25-28 Rue du Dr Roux, 75015, Paris, France.,Sorbonne Université, Collège doctoral, 75005, Paris, France
| | - Monica Rolando
- Institut Pasteur and CNRS UMR 3525, Biologie des Bactéries Intracellulaires, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur and CNRS UMR 3525, Biologie des Bactéries Intracellulaires, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Gérald Peyroche
- CNRS and Ecole normale supérieure Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée, 61 Avenue du Président Wilson, 94235, Cachan CEDEX, France
| | - Jacqueline Cherfils
- CNRS and Ecole normale supérieure Paris-Saclay, Laboratoire de Biologie et Pharmacologie Appliquée, 61 Avenue du Président Wilson, 94235, Cachan CEDEX, France.
| |
Collapse
|
61
|
Moss SM, Taylor IR, Ruggero D, Gestwicki JE, Shokat KM, Mukherjee S. A Legionella pneumophila Kinase Phosphorylates the Hsp70 Chaperone Family to Inhibit Eukaryotic Protein Synthesis. Cell Host Microbe 2019; 25:454-462.e6. [PMID: 30827827 DOI: 10.1016/j.chom.2019.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/10/2018] [Accepted: 12/27/2018] [Indexed: 11/25/2022]
Abstract
Legionella pneumophila (L.p.), the microbe responsible for Legionnaires' disease, secretes ∼300 bacterial proteins into the host cell cytosol. A subset of these proteins affects a wide range of post-translational modifications (PTMs) to disrupt host cellular pathways. L.p. has 5 conserved eukaryotic-like Ser/Thr effector kinases, LegK1-4 and LegK7, which are translocated during infection. Using a chemical genetic screen, we identified the Hsp70 chaperone family as a direct host target of LegK4. Phosphorylation of Hsp70s at T495 in the substrate-binding domain disrupted Hsp70's ATPase activity and greatly inhibited its protein folding capacity. Phosphorylation of cytosolic Hsp70 by LegK4 resulted in global translation inhibition and an increase in the amount of Hsp70 on highly translating polysomes. LegK4's ability to inhibit host translation via a single PTM uncovers a role for Hsp70 in protein synthesis and directly links it to the cellular translational machinery.
Collapse
Affiliation(s)
- Steven M Moss
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Isabelle R Taylor
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; George Williams Hooper Foundation, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
62
|
Pobre KFR, Poet GJ, Hendershot LM. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends. J Biol Chem 2018; 294:2098-2108. [PMID: 30563838 DOI: 10.1074/jbc.rev118.002804] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) represents the entry point into the secretory pathway where nascent proteins encounter a specialized environment for their folding and maturation. Inherent to these processes is a dedicated quality-control system that detects proteins that fail to mature properly and targets them for cytosolic degradation. An imbalance in protein folding and degradation can result in the accumulation of unfolded proteins in the ER, resulting in the activation of a signaling cascade that restores proper homeostasis in this organelle. The ER heat shock protein 70 (Hsp70) family member BiP is an ATP-dependent chaperone that plays a critical role in these processes. BiP interacts with specific ER-localized DnaJ family members (ERdjs), which stimulate BiP's ATP-dependent substrate interactions, with several ERdjs also binding directly to unfolded protein clients. Recent structural and biochemical studies have provided detailed insights into the allosteric regulation of client binding by BiP and have enhanced our understanding of how specific ERdjs enable BiP to perform its many functions in the ER. In this review, we discuss how BiP's functional cycle and interactions with ERdjs enable it to regulate protein homeostasis in the ER and ensure protein quality control.
Collapse
Affiliation(s)
- Kristine Faye R Pobre
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Greg J Poet
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Linda M Hendershot
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
63
|
Veyron S, Peyroche G, Cherfils J. FIC proteins: from bacteria to humans and back again. Pathog Dis 2018; 76:4898014. [PMID: 29617857 DOI: 10.1093/femspd/fty012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/21/2018] [Indexed: 01/18/2023] Open
Abstract
During the last decade, FIC proteins have emerged as a large family comprised of a variety of bacterial enzymes and a single member in animals. The air de famille of FIC proteins stems from a domain of conserved structure, which catalyzes the post-translational modification of proteins (PTM) by a phosphate-containing compound. In bacteria, examples of FIC proteins include the toxin component of toxin/antitoxin modules, such as Doc-Phd and VbhT-VbhA, toxins secreted by pathogenic bacteria to divert host cell processes, such as VopS, IbpA and AnkX, and a vast majority of proteins of unknown functions. FIC proteins catalyze primarily the transfer of AMP (AMPylation), but they are not restricted to this PTM and also carry out other modifications, for example by phosphocholine or phosphate. In a recent twist, animal FICD/HYPE was shown to catalyze both AMPylation and de-AMPylation of the endoplasmic reticulum BIP chaperone to regulate the unfolded protein response. FICD shares structural features with some bacterial FIC proteins, raising the possibility that bacteria also encode such dual activities. In this review, we discuss how structural, biochemical and cellular approaches have fertilized each other to understand the mechanism, regulation and function of FIC proteins from bacterial pathogens to humans.
Collapse
Affiliation(s)
- Simon Veyron
- CNRS and Ecole normale supérieure Paris-Saclay, 94235 Cachan, France
| | - Gérald Peyroche
- CNRS and Ecole normale supérieure Paris-Saclay, 94235 Cachan, France
| | | |
Collapse
|
64
|
Chaperone AMPylation modulates aggregation and toxicity of neurodegenerative disease-associated polypeptides. Proc Natl Acad Sci U S A 2018; 115:E5008-E5017. [PMID: 29760078 PMCID: PMC5984528 DOI: 10.1073/pnas.1801989115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Protein AMPylation in eukaryotes is a comparatively understudied posttranslational modification. With the exception of yeast, all eukaryotes have the enzymatic machinery required to execute this modification. Members of the heat shock protein family in different cellular compartments appear to be preferred targets for AMPylation, but it has proven challenging to adduce its biological function. We show that genetic modifications that affect AMPylation status, through generation of null alleles and a constitutively active version of the AMPylase FIC-1, can have a major impact on the susceptibility of Caenorhabditis elegans to neurodegenerative conditions linked to protein aggregation. Proteostasis is critical to maintain organismal viability, a process counteracted by aging-dependent protein aggregation. Chaperones of the heat shock protein (HSP) family help control proteostasis by reducing the burden of unfolded proteins. They also oversee the formation of protein aggregates. Here, we explore how AMPylation, a posttranslational protein modification that has emerged as a powerful modulator of HSP70 activity, influences the dynamics of protein aggregation. We find that adjustments of cellular AMPylation levels in Caenorhabditis elegans directly affect aggregation properties and associated toxicity of amyloid-β (Aβ), of a polyglutamine (polyQ)-extended polypeptide, and of α-synuclein (α-syn). Expression of a constitutively active C. elegans AMPylase FIC-1(E274G) under its own promoter expedites aggregation of Aβ and α-syn, and drastically reduces their toxicity. A deficiency in AMPylation decreases the cellular tolerance for aggregation-prone polyQ proteins and alters their aggregation behavior. Overexpression of FIC-1(E274G) interferes with cell survival and larval development, underscoring the need for tight control of AMPylase activity in vivo. We thus define a link between HSP70 AMPylation and the dynamics of protein aggregation in neurodegenerative disease models. Our results are consistent with a cytoprotective, rather than a cytotoxic, role for such protein aggregates.
Collapse
|
65
|
Abstract
Posttranslational modifications are covalent changes made to proteins that typically alter the function or location of the protein. AMPylation is an emerging posttranslational modification that involves the addition of adenosine monophosphate (AMP) to a protein. Like other, more well-studied posttranslational modifications, AMPylation is predicted to regulate the activity of the modified target proteins. However, the scope of this modification both in bacteria and in eukaryotes remains to be fully determined. In this review, we provide an up to date overview of the known AMPylating enzymes, the regulation of these enzymes, and the effect of this modification on target proteins.
Collapse
Affiliation(s)
- Amanda K. Casey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard NA5.120F, Dallas, Texas 75390-9148, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard NA5.120F, Dallas, Texas 75390-9148, United States
- Howard Hughes Medical Institute, 6000 Harry Hines Boulevard NA5.120F, Dallas, Texas 75390-9148, United States
| |
Collapse
|
66
|
Abstract
INTRODUCTION Cell-free protein microarrays represent a special form of protein microarray which display proteins made fresh at the time of the experiment, avoiding storage and denaturation. They have been used increasingly in basic and translational research over the past decade to study protein-protein interactions, the pathogen-host relationship, post-translational modifications, and antibody biomarkers of different human diseases. Their role in the first blood-based diagnostic test for early stage breast cancer highlights their value in managing human health. Cell-free protein microarrays will continue to evolve to become widespread tools for research and clinical management. Areas covered: We review the advantages and disadvantages of different cell-free protein arrays, with an emphasis on the methods that have been studied in the last five years. We also discuss the applications of each microarray method. Expert commentary: Given the growing roles and impact of cell-free protein microarrays in research and medicine, we discuss: 1) the current technical and practical limitations of cell-free protein microarrays; 2) the biomarker discovery and verification pipeline using protein microarrays; and 3) how cell-free protein microarrays will advance over the next five years, both in their technology and applications.
Collapse
Affiliation(s)
- Xiaobo Yu
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences , Beijing Institute of Lifeomics , Beijing , China
| | - Brianne Petritis
- b The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA
| | - Hu Duan
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences , Beijing Institute of Lifeomics , Beijing , China
| | - Danke Xu
- c State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , China
| | - Joshua LaBaer
- b The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA
| |
Collapse
|
67
|
Casey AK, Moehlman AT, Zhang J, Servage KA, Krämer H, Orth K. Fic-mediated deAMPylation is not dependent on homodimerization and rescues toxic AMPylation in flies. J Biol Chem 2017; 292:21193-21204. [PMID: 29089387 DOI: 10.1074/jbc.m117.799296] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/17/2017] [Indexed: 01/30/2023] Open
Abstract
Protein chaperones play a critical role in proteostasis. The activity of the major endoplasmic reticulum chaperone BiP (GRP78) is regulated by Fic-mediated AMPylation during resting states. By contrast, during times of stress, BiP is deAMPylated. Here, we show that excessive AMPylation by a constitutively active FicE247G mutant is lethal in Drosophila This lethality is cell-autonomous, as directed expression of the mutant FicE247G to the fly eye does not kill the fly but rather results in a rough and reduced eye. Lethality and eye phenotypes are rescued by the deAMPylation activity of wild-type Fic. Consistent with Fic acting as a deAMPylation enzyme, its activity was both time- and concentration-dependent. Furthermore, Fic deAMPylation activity was sufficient to suppress the AMPylation activity mediated by the constitutively active FicE247G mutant in Drosophila S2 lysates. Further, we show that the dual enzymatic activity of Fic is, in part, regulated by Fic dimerization, as loss of this dimerization increases AMPylation and reduces deAMPylation of BiP.
Collapse
Affiliation(s)
| | | | - Junmei Zhang
- From the Department of Molecular Biology.,the Howard Hughes Medical Institute, and
| | - Kelly A Servage
- From the Department of Molecular Biology.,the Howard Hughes Medical Institute, and
| | | | - Kim Orth
- From the Department of Molecular Biology, .,the Howard Hughes Medical Institute, and.,the Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148
| |
Collapse
|
68
|
Preissler S, Rohland L, Yan Y, Chen R, Read RJ, Ron D. AMPylation targets the rate-limiting step of BiP's ATPase cycle for its functional inactivation. eLife 2017; 6:29428. [PMID: 29064368 PMCID: PMC5667935 DOI: 10.7554/elife.29428] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/22/2017] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER)-localized Hsp70 chaperone BiP contributes to protein folding homeostasis by engaging unfolded client proteins in a process that is tightly coupled to ATP binding and hydrolysis. The inverse correlation between BiP AMPylation and the burden of unfolded ER proteins suggests a post-translational mechanism for adjusting BiP's activity to changing levels of ER stress, but the underlying molecular details are unexplored. We present biochemical and crystallographic studies indicating that irrespective of the identity of the bound nucleotide AMPylation biases BiP towards a conformation normally attained by the ATP-bound chaperone. AMPylation does not affect the interaction between BiP and J-protein co-factors but appears to allosterically impair J protein-stimulated ATP-hydrolysis, resulting in the inability of modified BiP to attain high affinity for its substrates. These findings suggest a molecular mechanism by which AMPylation serves as a switch to inactivate BiP, limiting its interactions with substrates whilst conserving ATP.
Collapse
Affiliation(s)
- Steffen Preissler
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Lukas Rohland
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Yahui Yan
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Ruming Chen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Randy J Read
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
69
|
|
70
|
The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J 2017; 474:445-469. [PMID: 28159894 DOI: 10.1042/bcj20160582] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) serves as a warehouse for factors that augment and control the biogenesis of nascent proteins entering the secretory pathway. In turn, this compartment also harbors the machinery that responds to the presence of misfolded proteins by targeting them for proteolysis via a process known as ER-associated degradation (ERAD). During ERAD, substrates are selected, modified with ubiquitin, removed from the ER, and then degraded by the cytoplasmic 26S proteasome. While integral membrane proteins can directly access the ubiquitination machinery that resides in the cytoplasm or on the cytoplasmic face of the ER membrane, soluble ERAD substrates within the lumen must be retrotranslocated from this compartment. In either case, nearly all ERAD substrates are tagged with a polyubiquitin chain, a modification that represents a commitment step to degrade aberrant proteins. However, increasing evidence indicates that the polyubiquitin chain on ERAD substrates can be further modified, serves to recruit ERAD-requiring factors, and may regulate the ERAD machinery. Amino acid side chains other than lysine on ERAD substrates can also be modified with ubiquitin, and post-translational modifications that affect substrate ubiquitination have been observed. Here, we summarize these data and provide an overview of questions driving this field of research.
Collapse
|
71
|
Truttmann MC, Ploegh HL. rAMPing Up Stress Signaling: Protein AMPylation in Metazoans. Trends Cell Biol 2017; 27:608-620. [PMID: 28433487 DOI: 10.1016/j.tcb.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Protein AMPylation - the covalent attachment of an AMP residue to amino acid side chains using ATP as the donor - is a post-translational modification (PTM) increasingly appreciated as relevant for both normal and pathological cell signaling. In metazoans single copies of filamentation induced by cAMP (fic)-domain-containing AMPylases - the enzymes responsible for AMPylation - preferentially modify a set of dedicated targets and contribute to the perception of cellular stress and its regulation. Pathogenic bacteria can exploit AMPylation of eukaryotic target proteins to rewire host cell signaling machinery in support of their propagation and survival. We review endogenous as well as parasitic protein AMPylation in metazoans and summarize current views of how fic-domain-containing AMPylases contribute to cellular proteostasis.
Collapse
Affiliation(s)
| | - Hidde L Ploegh
- Boston Children's Hospital, Boston, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
72
|
The NF-κB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathog 2017; 13:e1006286. [PMID: 28355270 PMCID: PMC5386326 DOI: 10.1371/journal.ppat.1006286] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/10/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022] Open
Abstract
Coronavirus replication takes place in the host cell cytoplasm and triggers inflammatory gene expression by poorly characterized mechanisms. To obtain more insight into the signals and molecular events that coordinate global host responses in the nucleus of coronavirus-infected cells, first, transcriptome dynamics was studied in human coronavirus 229E (HCoV-229E)-infected A549 and HuH7 cells, respectively, revealing a core signature of upregulated genes in these cells. Compared to treatment with the prototypical inflammatory cytokine interleukin(IL)-1, HCoV-229E replication was found to attenuate the inducible activity of the transcription factor (TF) NF-κB and to restrict the nuclear concentration of NF-κB subunits by (i) an unusual mechanism involving partial degradation of IKKβ, NEMO and IκBα and (ii) upregulation of TNFAIP3 (A20), although constitutive IKK activity and basal TNFAIP3 expression levels were shown to be required for efficient virus replication. Second, we characterized actively transcribed genomic regions and enhancers in HCoV-229E-infected cells and systematically correlated the genome-wide gene expression changes with the recruitment of Ser5-phosphorylated RNA polymerase II and prototypical histone modifications (H3K9ac, H3K36ac, H4K5ac, H3K27ac, H3K4me1). The data revealed that, in HCoV-infected (but not IL-1-treated) cells, an extensive set of genes was activated without inducible p65 NF-κB being recruited. Furthermore, both HCoV-229E replication and IL-1 were shown to upregulate a small set of genes encoding immunomodulatory factors that bind p65 at promoters and require IKKβ activity and p65 for expression. Also, HCoV-229E and IL-1 activated a common set of 440 p65-bound enhancers that differed from another 992 HCoV-229E-specific enhancer regions by distinct TF-binding motif combinations. Taken together, the study shows that cytoplasmic RNA viruses fine-tune NF-κB signaling at multiple levels and profoundly reprogram the host cellular chromatin landscape, thereby orchestrating the timely coordinated expression of genes involved in multiple signaling, immunoregulatory and metabolic processes. Coronaviruses are major human and animal pathogens. They belong to a family of plus-strand RNA viruses that have extremely large genomes and encode a variety of proteins involved in virus-host interactions. The four common coronaviruses (HCoV-229E, NL63, OC43, HKU1) cause mainly upper respiratory tract infections, while zoonotic coronaviruses (SARS-CoV and MERS-CoV) cause severe lung disease, including acute respiratory distress syndrome (ARDS). The molecular basis for this fundamentally different pathology is incompletely understood. Our study provides a genome-wide investigation of epigenetic changes occurring in response to HCoV-229E. We identify at high resolution a large number of regulatory regions in the genome of infected cells that coordinate de novo gene transcription. Many of these genes have immunomodulatory functions and, most likely, contribute to limiting viral replication, while other factors may promote viral replication. The study provides an intriguing example of a virus that completes its entire life cycle in the cytoplasm while sending multiple signals to the nuclear chromatin compartment to adjust the host cell repertoire of transcribed genes. The approach taken in this study is expected to provide a suitable framework for future studies aimed at dissecting and comparing host responses to representative coronaviruses with different pathogenic potential in humans.
Collapse
|
73
|
HSPA5 Gene encoding Hsp70 chaperone BiP in the endoplasmic reticulum. Gene 2017; 618:14-23. [PMID: 28286085 DOI: 10.1016/j.gene.2017.03.005] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 01/07/2023]
Abstract
The HSPA5 gene encodes the binding immunoglobulin protein (BiP), an Hsp70 family chaperone localized in the ER lumen. As a highly conserved molecular chaperone, BiP assists in a wide range of folding processes via its two structural domains, a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). BiP is also an essential component of the translocation machinery for protein import into the ER, a regulator for Ca2+ homeostasis in the ER, as well as a facilitator of ER-associated protein degradation (ERAD) via retrograde transportation of aberrant proteins across the ER membrane. When unfolded/misfolded proteins in the ER overwhelm the capacity of protein folding machinery, BiP can initiate the unfolded protein response (UPR), decrease unfolded/misfolded protein load, induce autophagy, and crosstalk with apoptosis machinery to assist in the cell survival decision. Post-translational modifications (PTMs) of BiP have been shown to regulate BiP's activity, turnover, and availability upon different extrinsic or intrinsic stimuli. As a master regulator of ER function, BiP is associated with cancer, cardiovascular disease, neurodegenerative disease, and immunological diseases. BiP has been targeted in cancer therapies and shows promise for application in other relevant diseases.
Collapse
|
74
|
Abstract
Post-translational protein modifications (PTMs) orchestrate the activity of individual proteins and ensure their proper function. While modifications such as phosphorylation or glycosylation are well understood, more unusual modifications, including nitrosylation or AMPylation remain comparatively poorly characterized. Research on protein AMPylation-which refers to the covalent addition of an AMP moiety to the side chains of serine, threonine or tyrosine-has undergone a renaissance (Yarbrough et al., 2009; Engel et al., 2012; Ham et al., 2014; Woolery et al., 2014; Preissler et al., 2015; Sanyal et al., 2015; Truttmann et al., 2016; Truttmann et al., 2017). The identification and characterization of filamentation (fic) domain-containing AMPylases sparked new interest in this PTM (Kinch et al., 2009; Yarbrough et al., 2009). Based on recent in vivo and in vitro studies, we now know that secreted bacterial AMPylases covalently attach AMP to members of the Rho family of GTPases, while metazoan AMPylases modify HSP70 family proteins in the cytoplasm and the endoplasmic reticulum (ER) (Itzen et al., 2011; Hedberg and Itzen, 2015; Truttmann and Ploegh, 2017). AMPylation is thought to trap HSP70 in a primed yet transiently disabled state that cannot participate in protein refolding reactions (Preissler et al., 2015). In vitro AMPylation experiments are key to assess the activity, kinetics and specificity of protein AMPylation catalyzed by pro- and eukaryotic enzymes. These simple assays require recombinant AMPylases, target proteins (Rho GTPases, HSP70s), as well as ATP as a nucleotide source. Here, we describe strategies to qualitatively and quantitatively study protein AMPylation in vitro.
Collapse
Affiliation(s)
| | - Hidde L Ploegh
- Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
75
|
Unrestrained AMPylation targets cytosolic chaperones and activates the heat shock response. Proc Natl Acad Sci U S A 2016; 114:E152-E160. [PMID: 28031489 DOI: 10.1073/pnas.1619234114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein AMPylation is a conserved posttranslational modification with emerging roles in endoplasmic reticulum homeostasis. However, the range of substrates and cell biological consequences of AMPylation remain poorly defined. We expressed human and Caenorhabditis elegans AMPylation enzymes-huntingtin yeast-interacting protein E (HYPE) and filamentation-induced by cyclic AMP (FIC)-1, respectively-in Saccharomyces cerevisiae, a eukaryote that lacks endogenous protein AMPylation. Expression of HYPE and FIC-1 in yeast induced a strong cytoplasmic Hsf1-mediated heat shock response, accompanied by attenuation of protein translation, massive protein aggregation, growth arrest, and lethality. Overexpression of Ssa2, a cytosolic heat shock protein (Hsp)70, was sufficient to partially rescue growth. In human cell lines, overexpression of active HYPE similarly induced protein aggregation and the HSF1-dependent heat shock response. Excessive AMPylation also abolished HSP70-dependent influenza virus replication. Our findings suggest a mode of Hsp70 inactivation by AMPylation and point toward a role for protein AMPylation in the regulation of cellular protein homeostasis beyond the endoplasmic reticulum.
Collapse
|
76
|
FICD acts bifunctionally to AMPylate and de-AMPylate the endoplasmic reticulum chaperone BiP. Nat Struct Mol Biol 2016; 24:23-29. [PMID: 27918543 PMCID: PMC5221731 DOI: 10.1038/nsmb.3337] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023]
Abstract
Protein folding homeostasis in the endoplasmic reticulum (ER) is defended by an unfolded protein response (UPR) that matches ER chaperone capacity to the burden of unfolded proteins. As levels of unfolded proteins decline, a metazoan-specific FIC-domain containing ER-localized enzyme, FICD (HYPE), rapidly inactivates the major ER chaperone BiP by AMPylating T518. Here we show that the single catalytic domain of FICD can also release the attached AMP, restoring functionality to BiP. Consistent with a role for endogenous FICD in de-AMPylating BiP, FICD-/- hamster cells are hypersensitive to introduction of a constitutively AMPylating, de-AMPylation defective mutant FICD. These opposing activities hinge on a regulatory residue, E234, whose default state renders FICD a constitutive de-AMPylase in vitro. The location of E234 on a conserved regulatory helix and the mutually antagonistic activities of FICD in vivo, suggest a mechanism whereby fluctuating unfolded protein load actively switches FICD from a de-AMPylase to an AMPylase.
Collapse
|
77
|
A Conserved Cysteine within the ATPase Domain of the Endoplasmic Reticulum Chaperone BiP is Necessary for a Complete Complement of BiP Activities. J Mol Biol 2016; 428:4168-4184. [PMID: 27543005 DOI: 10.1016/j.jmb.2016.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/04/2016] [Accepted: 08/06/2016] [Indexed: 01/25/2023]
Abstract
Among the amino acids, cysteine stands apart based on its highly reactive sulfur group. In general, cysteine is underrepresented in proteins. Yet, when present, the features of cysteine often afford unique function. We have shown previously that a cysteine within the ATPase domain of yeast BiP (Kar2) serves as a sensor of the endoplasmic reticulum (ER) redox environment [1, 2]. Under conditions of increased oxidant (oxidative stress), this cysteine becomes oxidized, changing Kar2 from an ATP-dependent foldase to an ATP-independent holdase. We were struck by the high degree of conservation for this cysteine between BiP orthologs, and we sought to determine how cysteine substitution impacts Kar2 function. We observed that no single amino acid replacement is capable of recreating the range of functions that can be achieved by wild-type Kar2 with its cysteine in either unmodified or oxidized states. However, we were able to generate mutants that could selectively replicate the distinct activities exhibited by either unmodified or oxidized Kar2. We found that the ATPase activity displayed by unmodified Kar2 is fully maintained when Cys63 is replaced with Ala or Val. Conversely, we demonstrate that several amino acid substitutions (including His, Phe, Pro, Trp, and Tyr) support an enhanced viability during oxidative stress associated with oxidized Kar2, although these alleles are compromised as an ATPase. We reveal that the range of activity demonstrated by wild-type Kar2 can be replicated by co-expression of Kar2 mutants that mimic either the unmodified or oxidized Kar2 state, allowing for growth during standard and oxidative stress conditions.
Collapse
|
78
|
Harms A, Stanger FV, Dehio C. Biological Diversity and Molecular Plasticity of FIC Domain Proteins. Annu Rev Microbiol 2016; 70:341-60. [PMID: 27482742 DOI: 10.1146/annurev-micro-102215-095245] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ubiquitous proteins with FIC (filamentation induced by cyclic AMP) domains use a conserved enzymatic machinery to modulate the activity of various target proteins by posttranslational modification, typically AMPylation. Following intensive study of the general properties of FIC domain catalysis, diverse molecular activities and biological functions of these remarkably versatile proteins are now being revealed. Here, we review the biological diversity of FIC domain proteins and summarize the underlying structure-function relationships. The original and most abundant genuine bacterial FIC domain proteins are toxins that use diverse molecular activities to interfere with bacterial physiology in various, yet ill-defined, biological contexts. Host-targeted virulence factors have evolved repeatedly out of this pool by exaptation of the enzymatic FIC domain machinery for the manipulation of host cell signaling in favor of bacterial pathogens. The single human FIC domain protein HypE (FICD) has a specific function in the regulation of protein stress responses.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland; , ,
| | - Frédéric V Stanger
- Focal Area Infection Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland; , , .,Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, CH-4056 Basel, Switzerland.,*Current address: Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland; , ,
| |
Collapse
|
79
|
The Caenorhabditis elegans Protein FIC-1 Is an AMPylase That Covalently Modifies Heat-Shock 70 Family Proteins, Translation Elongation Factors and Histones. PLoS Genet 2016; 12:e1006023. [PMID: 27138431 PMCID: PMC4854385 DOI: 10.1371/journal.pgen.1006023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 04/11/2016] [Indexed: 01/20/2023] Open
Abstract
Protein AMPylation by Fic domain-containing proteins (Fic proteins) is an ancient and conserved post-translational modification of mostly unexplored significance. Here we characterize the Caenorhabditis elegans Fic protein FIC-1 in vitro and in vivo. FIC-1 is an AMPylase that localizes to the nuclear surface and modifies core histones H2 and H3 as well as heat shock protein 70 family members and translation elongation factors. The three-dimensional structure of FIC-1 is similar to that of its human ortholog, HYPE, with 38% sequence identity. We identify a link between FIC-1-mediated AMPylation and susceptibility to the pathogen Pseudomonas aeruginosa, establishing a connection between AMPylation and innate immunity in C. elegans. Eukaryotic Fic domain containing proteins (Fic proteins) AMPylate target proteins at the expense of a single ATP molecule. Previous studies have established a first link between target protein AMPylation and the unfolded protein response (UPR) in the endoplasmic reticulum. Yet, the consequences of target AMPylation remain poorly understood. Here, we take a multi-faceted approach to investigate the role of the C. elegans Fic protein FIC-1 on a biochemical, structural and functional level in vitro as well as in vivo. We solve the 3-dimensional structure of FIC-1 and identify novel FIC-1 substrates belonging to the translation elongation as well as heat-shock protein families. Investigating the consequence of diminished (fic-1(n5823)) or increased (FIC-1[E274G](nIs733)) AMPylation levels in vivo, we find a link between AMPylation and the innate immune response to the bacterial pathogen P. aeruginosa, describing a novel in vivo phenotype associated with Fic protein mediated target AMPylation.
Collapse
|
80
|
Dedic E, Alsarraf H, Welner DH, Østergaard O, Klychnikov OI, Hensbergen PJ, Corver J, van Leeuwen HC, Jørgensen R. A Novel Fic (Filamentation Induced by cAMP) Protein from Clostridium difficile Reveals an Inhibitory Motif-independent Adenylylation/AMPylation Mechanism. J Biol Chem 2016; 291:13286-300. [PMID: 27076635 DOI: 10.1074/jbc.m115.705491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 02/04/2023] Open
Abstract
Filamentation induced by cAMP (Fic) domain proteins have been shown to catalyze the transfer of the AMP moiety from ATP onto a protein target. This type of post-translational modification was recently shown to play a crucial role in pathogenicity mediated by two bacterial virulence factors. Herein we characterize a novel Fic domain protein that we identified from the human pathogen Clostridium difficile The crystal structure shows that the protein adopts a classical all-helical Fic fold, which belongs to class II of Fic domain proteins characterized by an intrinsic N-terminal autoinhibitory α-helix. A conserved glutamate residue in the inhibitory helix motif was previously shown in other Fic domain proteins to prevent proper binding of the ATP γ-phosphate. However, here we demonstrate that both ATP binding and autoadenylylation activity of the C. difficile Fic domain protein are independent of the inhibitory motif. In support of this, the crystal structure of a mutant of this Fic protein in complex with ATP reveals that the γ-phosphate adopts a conformation unique among Fic domains that seems to override the effect of the inhibitory helix. These results provide important structural insight into the adenylylation reaction mechanism catalyzed by Fic domains. Our findings reveal the presence of a class II Fic domain protein in the human pathogen C. difficile that is not regulated by autoinhibition and challenge the current dogma that all class I-III Fic domain proteins are inhibited by the inhibitory α-helix.
Collapse
Affiliation(s)
- Emil Dedic
- From the Departments of Microbiology and Infection Control and
| | - Husam Alsarraf
- From the Departments of Microbiology and Infection Control and
| | | | - Ole Østergaard
- Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen S, Denmark and
| | | | | | - Jeroen Corver
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Hans C van Leeuwen
- Department of Medical Microbiology, Section Experimental Bacteriology, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - René Jørgensen
- From the Departments of Microbiology and Infection Control and
| |
Collapse
|
81
|
Wang J, Sevier CS. Formation and Reversibility of BiP Protein Cysteine Oxidation Facilitate Cell Survival during and post Oxidative Stress. J Biol Chem 2016; 291:7541-57. [PMID: 26865632 DOI: 10.1074/jbc.m115.694810] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/06/2022] Open
Abstract
Redox fluctuations within cells can be detrimental to cell function. To gain insight into how cells normally buffer against redox changes to maintain cell function, we have focused on elucidating the signaling pathways that serve to sense and respond to oxidative redox stress within the endoplasmic reticulum (ER) using yeast as a model system. Previously, we have shown that a cysteine in the molecular chaperone BiP, a Hsp70 molecular chaperone within the ER, is susceptible to oxidation by peroxide during ER-derived oxidative stress, forming a sulfenic acid (-SOH) moiety. Here, we demonstrate that this same conserved BiP cysteine is susceptible also to glutathione modification (-SSG). Glutathionylated BiP is detected both as a consequence of enhanced levels of cellular peroxide and also as a by-product of increased levels of oxidized glutathione (GSSG). Similar to sulfenylation, we observe glutathionylation decouples BiP ATPase and peptide binding activities, turning BiP from an ATP-dependent foldase into an ATP-independent holdase. We show glutathionylation enhances cell proliferation during oxidative stress, which we suggest relates to modified BiP's increased ability to limit polypeptide aggregation. We propose the susceptibility of BiP to modification with glutathione may serve also to prevent irreversible oxidation of BiP by peroxide.
Collapse
Affiliation(s)
- Jie Wang
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Carolyn S Sevier
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
82
|
Lu C, Nakayasu ES, Zhang LQ, Luo ZQ. Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation. Sci Signal 2016; 9:ra11. [PMID: 26814232 DOI: 10.1126/scisignal.aad0446] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The morphology of bacterial cells is important for virulence, evasion of the host immune system, and coping with environmental stresses. The widely distributed Fic proteins (filamentation induced by cAMP) are annotated as proteins involved in cell division because of the presence of the HPFx[D/E]GN[G/K]R motif. We showed that the presence of Fic-1 from Pseudomonas fluorescens significantly reduced the yield of plasmid DNA when expressed in Escherichia coli or P. fluorescens. Fic-1 interacted with GyrB, a subunit of DNA gyrase, which is essential for bacterial DNA replication. Fic-1 catalyzed the AMPylation of GyrB at Tyr(109), a residue critical for binding ATP, and exhibited auto-AMPylation activity. Mutation of the Fic-1 auto-AMPylated site greatly reduced AMPylation activity toward itself and toward GyrB. Fic-1-dependent AMPylation of GyrB triggered the SOS response, indicative of DNA replication stress or DNA damage. Fic-1 also promoted the formation of elongated cells when the SOS response was blocked. We identified an α-inhibitor protein that we named anti-Fic-1 (AntF), encoded by a gene immediately upstream of Fic-1. AntF interacted with Fic-1, inhibited the AMPylation activity of Fic-1 for GyrB in vitro, and blocked Fic-1-mediated inhibition of DNA replication in bacteria, suggesting that Fic-1 and AntF comprise a toxin-antitoxin module. Our work establishes Fic-1 as an AMPylating enzyme that targets GyrB to inhibit DNA replication and may target other proteins to regulate bacterial morphology.
Collapse
Affiliation(s)
- Canhua Lu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China. Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ernesto S Nakayasu
- The Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| | - Li-Qun Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
83
|
Preissler S, Rato C, Chen R, Antrobus R, Ding S, Fearnley IM, Ron D. AMPylation matches BiP activity to client protein load in the endoplasmic reticulum. eLife 2015; 4:e12621. [PMID: 26673894 PMCID: PMC4739761 DOI: 10.7554/elife.12621] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/14/2015] [Indexed: 01/11/2023] Open
Abstract
The endoplasmic reticulum (ER)-localized Hsp70 chaperone BiP affects protein folding homeostasis and the response to ER stress. Reversible inactivating covalent modification of BiP is believed to contribute to the balance between chaperones and unfolded ER proteins, but the nature of this modification has so far been hinted at indirectly. We report that deletion of FICD, a gene encoding an ER-localized AMPylating enzyme, abolished detectable modification of endogenous BiP enhancing ER buffering of unfolded protein stress in mammalian cells, whilst deregulated FICD activity had the opposite effect. In vitro, FICD AMPylated BiP to completion on a single residue, Thr(518). AMPylation increased, in a strictly FICD-dependent manner, as the flux of proteins entering the ER was attenuated in vivo. In vitro, Thr(518) AMPylation enhanced peptide dissociation from BiP 6-fold and abolished stimulation of ATP hydrolysis by J-domain cofactor. These findings expose the molecular basis for covalent inactivation of BiP.
Collapse
Affiliation(s)
- Steffen Preissler
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Cláudia Rato
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Ruming Chen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Shujing Ding
- MRC Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Ian M Fearnley
- MRC Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
84
|
Broncel M, Serwa RA, Bunney TD, Katan M, Tate EW. Global Profiling of Huntingtin-associated protein E (HYPE)-Mediated AMPylation through a Chemical Proteomic Approach. Mol Cell Proteomics 2015; 15:715-25. [PMID: 26604261 DOI: 10.1074/mcp.o115.054429] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 01/31/2023] Open
Abstract
AMPylation of mammalian small GTPases by bacterial virulence factors can be a key step in bacterial infection of host cells, and constitutes a potential drug target. This posttranslational modification also exists in eukaryotes, and AMP transferase activity was recently assigned to HYPE Filamentation induced by cyclic AMP domain containing protein (FICD) protein, which is conserved from Caenorhabditis elegans to humans. In contrast to bacterial AMP transferases, only a small number of HYPE substrates have been identified by immunoprecipitation and mass spectrometry approaches, and the full range of targets is yet to be determined in mammalian cells. We describe here the first example of global chemoproteomic screening and substrate validation for HYPE-mediated AMPylation in mammalian cell lysate. Through quantitative mass-spectrometry-based proteomics coupled with novel chemoproteomic tools providing MS/MS evidence of AMP modification, we identified a total of 25 AMPylated proteins, including the previously validated substrate endoplasmic reticulum (ER) chaperone BiP (HSPA5), and also novel substrates involved in pathways of gene expression, ATP biosynthesis, and maintenance of the cytoskeleton. This dataset represents the largest library of AMPylated human proteins reported to date and a foundation for substrate-specific investigations that can ultimately decipher the complex biological networks involved in eukaryotic AMPylation.
Collapse
Affiliation(s)
- Malgorzata Broncel
- From the ‡Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK; ¶Current address: The Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK
| | - Remigiusz A Serwa
- From the ‡Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Tom D Bunney
- §Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Matilda Katan
- §Division of Biosciences, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Edward W Tate
- From the ‡Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK;
| |
Collapse
|
85
|
Preissler S, Chambers JE, Crespillo-Casado A, Avezov E, Miranda E, Perez J, Hendershot LM, Harding HP, Ron D. Physiological modulation of BiP activity by trans-protomer engagement of the interdomain linker. eLife 2015; 4:e08961. [PMID: 26473973 PMCID: PMC4608358 DOI: 10.7554/elife.08961] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022] Open
Abstract
DnaK/Hsp70 chaperones form oligomers of poorly understood structure and functional significance. Site-specific proteolysis and crosslinking were used to probe the architecture of oligomers formed by the endoplasmic reticulum (ER) Hsp70, BiP. These were found to consist of adjacent protomers engaging the interdomain linker of one molecule in the substrate binding site of another, attenuating the chaperone function of oligomeric BiP. Native gel electrophoresis revealed a rapidly-modulated reciprocal relationship between the burden of unfolded proteins and BiP oligomers and slower equilibration between oligomers and inactive, covalently-modified BiP. Lumenal ER calcium depletion caused rapid oligomerization of mammalian BiP and a coincidental diminution in substrate binding, pointing to the relative inertness of the oligomers. Thus, equilibration between inactive oligomers and active monomeric BiP is poised to buffer fluctuations in ER unfolded protein load on a rapid timescale attainable neither by inter-conversion of active and covalently-modified BiP nor by the conventional unfolded protein response.
Collapse
Affiliation(s)
- Steffen Preissler
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Joseph E Chambers
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Ana Crespillo-Casado
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Edward Avezov
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Elena Miranda
- Department of Biology and Biotechnology, Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Juan Perez
- Laboratorio de Fisiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Heather P Harding
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-MRC Institute of Metabolic Science, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
86
|
Abstract
Fic proteins are a family of proteins characterized by the presence of a conserved FIC domain that is involved in the modification of protein substrates by the addition of phosphate-containing compounds, including AMP and other nucleoside monophosphates, phosphocholine and phosphate. Fic proteins are widespread in bacteria, and various pathogenic species secrete Fic proteins as toxins that mediate post-translational modifications of host cell proteins, to interfere with cytoskeletal, trafficking, signalling or translation pathways in the host cell. In this Review, we discuss the current knowledge of the structure, function and regulation of Fic proteins and consider important areas for future research.
Collapse
Affiliation(s)
- Craig R Roy
- Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique-Ecole Normale Supérieure Cachan, 61 Avenue du Président Wilson, 94235 Cachan, France
| |
Collapse
|
87
|
Behnke J, Feige MJ, Hendershot LM. BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol 2015; 427:1589-608. [PMID: 25698114 DOI: 10.1016/j.jmb.2015.02.011] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/26/2022]
Abstract
BiP (immunoglobulin heavy-chain binding protein) is the endoplasmic reticulum (ER) orthologue of the Hsp70 family of molecular chaperones and is intricately involved in most functions of this organelle through its interactions with a variety of substrates and regulatory proteins. Like all Hsp70 family members, the ability of BiP to bind and release unfolded proteins is tightly regulated by a cycle of ATP binding, hydrolysis, and nucleotide exchange. As a characteristic of the Hsp70 family, multiple DnaJ-like co-factors can target substrates to BiP and stimulate its ATPase activity to stabilize the binding of BiP to substrates. However, only in the past decade have nucleotide exchange factors for BiP been identified, which has shed light not only on the mechanism of BiP-assisted folding in the ER but also on Hsp70 family members that reside throughout the cell. We will review the current understanding of the ATPase cycle of BiP in the unique environment of the ER and how it is regulated by the nucleotide exchange factors, Grp170 (glucose-regulated protein of 170kDa) and Sil1, both of which perform unanticipated roles in various biological functions and disease states.
Collapse
Affiliation(s)
- Julia Behnke
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthias J Feige
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
88
|
Truttmann MC, Wu Q, Stiegeler S, Duarte JN, Ingram J, Ploegh HL. HypE-specific nanobodies as tools to modulate HypE-mediated target AMPylation. J Biol Chem 2015; 290:9087-100. [PMID: 25678711 DOI: 10.1074/jbc.m114.634287] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Indexed: 11/06/2022] Open
Abstract
The covalent addition of mono-AMP to target proteins (AMPylation) by Fic domain-containing proteins is a poorly understood, yet highly conserved post-translational modification. Here, we describe the generation, evaluation, and application of four HypE-specific nanobodies: three that inhibit HypE-mediated target AMPylation in vitro and one that acts as an activator. All heavy chain-only antibody variable domains bind HypE when expressed as GFP fusions in intact cells. We observed localization of HypE at the nuclear envelope and further identified histones H2-H4, but not H1, as novel in vitro targets of the human Fic protein. Its role in histone modification provides a possible link between AMPylation and regulation of gene expression.
Collapse
Affiliation(s)
- Matthias C Truttmann
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 and
| | - Qin Wu
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 and
| | - Sarah Stiegeler
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 and
| | - Joao N Duarte
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 and
| | - Jessica Ingram
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 and
| | - Hidde L Ploegh
- From the Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 and the Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|