51
|
Xia XD, Zhou Z, Yu XH, Zheng XL, Tang CK. Myocardin: A novel player in atherosclerosis. Atherosclerosis 2017; 257:266-278. [PMID: 28012646 DOI: 10.1016/j.atherosclerosis.2016.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
|
52
|
Gheinani AH, Kiss B, Moltzahn F, Keller I, Bruggmann R, Rehrauer H, Fournier CA, Burkhard FC, Monastyrskaya K. Characterization of miRNA-regulated networks, hubs of signaling, and biomarkers in obstruction-induced bladder dysfunction. JCI Insight 2017; 2:e89560. [PMID: 28138557 DOI: 10.1172/jci.insight.89560] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bladder outlet obstruction (BOO) induces significant organ remodeling, leading to lower urinary tract symptoms accompanied by urodynamic changes in bladder function. Here, we report mRNA and miRNA transcriptome sequencing of bladder samples from human patients with different urodynamically defined states of BOO. Patients' miRNA and mRNA expression profiles correlated with urodynamic findings. Validation of RNA sequencing results in an independent patient cohort identified combinations of 3 mRNAs (NRXN3, BMP7, UPK1A) and 3 miRNAs (miR-103a-3p, miR-10a-5p, miR-199a-3p) sufficient to discriminate between bladder functional states. All BOO patients shared cytokine and immune response pathways, TGF-β and NO signaling pathways, and hypertrophic PI3K/AKT signaling pathways. AP-1 and NFkB were dominant transcription factors, and TNF-α was the top upstream regulator. Integrated miRNA-mRNA expression analysis identified pathways and molecules targeted by differentially expressed miRNAs. Molecular changes in BOO suggest an increasing involvement of miRNAs in the control of bladder function from the overactive to underactive/acontractile states.
Collapse
Affiliation(s)
- Ali Hashemi Gheinani
- Urology Research Laboratory, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Bernhard Kiss
- Department of Urology, University Hospital, Bern, Switzerland
| | - Felix Moltzahn
- Department of Urology, University Hospital, Bern, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | | | | | | | - Katia Monastyrskaya
- Urology Research Laboratory, Department of Clinical Research, University of Bern, Bern, Switzerland.,Department of Urology, University Hospital, Bern, Switzerland
| |
Collapse
|
53
|
Huang CX, Chen N, Wu XJ, He Y, Huang CH, Liu H, Wang WM, Wang HL. Zebrafish let-7b acts downstream of hypoxia-inducible factor-1α to assist in hypoxia-mediated cell proliferation and cell cycle regulation. Life Sci 2017; 171:21-29. [PMID: 28077310 DOI: 10.1016/j.lfs.2017.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 01/13/2023]
Abstract
AIMS Hypoxia-inducible factor-1α (HIF-1α) is a transcriptional regulator of cellular responses to hypoxic stress. MicroRNAs (miRNAs) play an essential role in hypoxia-mediated cellular responses. Previous studies have identified some let-7 family members as hypoxia-regulated miRNAs (HRMs). In the present study, we aimed to investigate whether zebrafish let-7b/7f contribute cellular hypoxic response in a Hif-1α-dependent manner. MAIN METHODS Stable suppression of zebrafish hif-1α was achieved by microinjection of an optimized short-hairpin RNA (shRNA) expression vector. Next-generation sequencing was conducted to characterize miRNA and mRNA expression profiles. MiRNA promoter analysis and target detection was performed by dual-luciferase assay. Quantitative real-time PCR (qRT-PCR) and western blot were used to determine the expression of let-7b/7f, Hif-1α and Foxh1. Proliferation of ZF4 cells was examined using Cell Counting Kit-8 (CCK-8) and cell cycle progression was analyzed by flow cytometry assay. KEY FINDINGS Correlation between 7 miRNAs and 76 putative targets was identified based on integrated analysis of miRNA-mRNA profiles. Let-7b and let-7f were further considered as potential HRMs, with let-7b further validated as Hif-1α up-regulated. In addition, Forkhead-box H1 (Foxh1) was confirmed as a bona fide downstream target of let-7b. Furthermore, overexpression of both let-7b and let-7f repressed cell proliferation through blocking cell cycle progression of the G1-S transition. SIGNIFICANCE Our findings for the first time suggest zebrafish let-7b acts downstream of Hif-1α to assist in hypoxia-mediated cell proliferation and cell cycle regulation at least in part through the downregulation of foxh1. We also identified 4 novel potential HIF-1α-regulated miRNAs in zebrafish.
Collapse
Affiliation(s)
- Chun-Xiao Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Nan Chen
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Xin-Jie Wu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Yan He
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Cui-Hong Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, China
| | - Wei-Min Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural University, Wuhan, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, China.
| |
Collapse
|
54
|
Krawczyk KK, Ekman M, Rippe C, Grossi M, Nilsson BO, Albinsson S, Uvelius B, Swärd K. Assessing the contribution of thrombospondin-4 induction and ATF6α activation to endoplasmic reticulum expansion and phenotypic modulation in bladder outlet obstruction. Sci Rep 2016; 6:32449. [PMID: 27581066 PMCID: PMC5007532 DOI: 10.1038/srep32449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022] Open
Abstract
Phenotypic modulation of smooth muscle cells is a hallmark of disease. The associated expansion of endoplasmic reticulum (ER) volume remains unexplained. Thrombospondin-4 was recently found to promote ATF6α activation leading to ER expansion. Using bladder outlet obstruction as a paradigm for phenotypic modulation, we tested if thrombospondin-4 is induced in association with ATF6α activation and ER expansion. Thrombospondin-4 was induced and ATF6α was activated after outlet obstruction in rodents. Increased abundance of spliced of Xbp1, another ER-stress sensor, and induction of Atf4 and Creb3l2 was also seen. Downstream of ATF6α, Calr, Manf, Sdf2l1 and Pdi increased as did ER size, whereas contractile markers were reduced. Overexpression of ATF6α, but not of thrombospondin-4, increased Calr, Manf, Sdf2l1 and Pdi and caused ER expansion, but the contractile markers were inert. Knockout of thrombospondin-4 neither affected bladder growth nor expression of ATF6α target genes, and repression of contractile markers was the same, even if ATF6α activation was curtailed. Increases of Xbp1s, Atf4 and Creb3l2 were similar. Our findings demonstrate reciprocal regulation of the unfolded protein response, including ATF6α activation and ER expansion, and reduced contractile differentiation in bladder outlet obstruction occurring independently of thrombospondin-4, which however is a sensitive indicator of obstruction.
Collapse
Affiliation(s)
| | - Mari Ekman
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Catarina Rippe
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mario Grossi
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Bengt Uvelius
- Department of Urology, Clinical Sciences, Lund University, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
55
|
Yu M, Lin Y, Zhou Y, Jin H, Hou B, Wu Z, Li Z, Jian Z, Sun J. MiR-144 suppresses cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting SMAD4. Onco Targets Ther 2016; 9:4705-14. [PMID: 27536132 PMCID: PMC4973778 DOI: 10.2147/ott.s88233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background/aim Increasing evidence show microRNAs (miRNAs) are engaged in hepatocellular carcinoma (HCC). The aim of this study was to investigate the role of miR-144 in HCC, as well as to identify its underlying mechanism. Methods The expression levels of miR-144 were assessed in multiple HCC cell lines, as well as in liver tissues from patients with HCC. We further examined the effects of miR-144 on HCC. The molecular target of miR-144 was identified using a computer algorithm and confirmed experimentally. Results We found that the levels of miR-144 were frequently downregulated in human HCC tissues and cell lines, and overexpression of miR-144 dramatically inhibited HCC metastasis, invasion, cell cycle, epithelial–mesenchymal transition, and chemoresistance. We further verified the SMAD4 as a novel and direct target of miR-144 in HCCs. Conclusion Taken together, overexpression of miR-144 or downregulation of SMAD4 may prove beneficial as therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- Min Yu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Ye Lin
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Yu Zhou
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Haosheng Jin
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Baohua Hou
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zhongshi Wu
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zhide Li
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Zhixiang Jian
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Jian Sun
- Department of General Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
56
|
Rathan S, Ankeny CJ, Arjunon S, Ferdous Z, Kumar S, Fernandez Esmerats J, Heath JM, Nerem RM, Yoganathan AP, Jo H. Identification of side- and shear-dependent microRNAs regulating porcine aortic valve pathogenesis. Sci Rep 2016; 6:25397. [PMID: 27151744 PMCID: PMC4858741 DOI: 10.1038/srep25397] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/05/2016] [Indexed: 02/06/2023] Open
Abstract
Aortic valve (AV) calcification is an inflammation driven process that occurs preferentially in the fibrosa. To explore the underlying mechanisms, we investigated if key microRNAs (miRNA) in the AV are differentially expressed due to disturbed blood flow (oscillatory shear (OS)) experienced by the fibrosa compared to the ventricularis. To identify the miRNAs involved, endothelial-enriched RNA was isolated from either side of healthy porcine AVs for microarray analysis. Validation using qPCR confirmed significantly higher expression of 7 miRNAs (miR-100, -130a, -181a/b, -199a-3p, -199a-5p, and -214) in the fibrosa versus the ventricularis. Upon bioinformatics analysis, miR-214 was selected for further investigation using porcine AV leaflets in an ex vivo shear system. Fibrosa and ventricularis sides were exposed to either oscillatory or unidirectional pulsatile shear for 2 days and 3 & 7 days in regular and osteogenic media, respectively. Higher expression of miR-214, increased thickness of the fibrosa, and calcification was observed when the fibrosa was exposed to OS compared to the ventricularis. Silencing of miR-214 by anti-miR-214 in whole AV leaflets with the fibrosa exposed to OS significantly increased the protein expression of TGFβ1 and moderately increased collagen content but did not affect AV calcification. Thus, miR-214 is identified as a side- and shear-dependent miRNA that regulates key mechanosensitive gene in AV such as TGFβ1.
Collapse
Affiliation(s)
- Swetha Rathan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Casey J Ankeny
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Sivakkumar Arjunon
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zannatul Ferdous
- Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Knoxville, TN, USA
| | - Sandeep Kumar
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Joan Fernandez Esmerats
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jack M Heath
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Robert M Nerem
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ajit P Yoganathan
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hanjoong Jo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
57
|
Koeck I, Burkhard FC, Monastyrskaya K. Activation of common signaling pathways during remodeling of the heart and the bladder. Biochem Pharmacol 2015; 102:7-19. [PMID: 26390804 DOI: 10.1016/j.bcp.2015.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
The heart and the urinary bladder are hollow muscular organs, which can be afflicted by pressure overload injury due to pathological conditions such as hypertension and bladder outlet obstruction. This increased outflow resistance induces hypertrophy, marked by dramatic changes in the organs' phenotype and function. The end result in both the heart and the bladder can be acute organ failure due to advanced fibrosis and the subsequent loss of contractility. There is emerging evidence that microRNAs (miRNAs) play an important role in the pathogenesis of heart failure and bladder dysfunction. MiRNAs are endogenous non-coding single-stranded RNAs, which regulate gene expression and control adaptive and maladaptive organ remodeling processes. This Review summarizes the current knowledge of molecular alterations in the heart and the bladder and highlights common signaling pathways and regulatory events. The miRNA expression analysis and experimental target validation done in the heart provide a valuable source of information for investigators working on the bladder and other organs undergoing the process of fibrotic remodeling. Aberrantly expressed miRNA are amendable to pharmacological manipulation, offering an opportunity for development of new therapies for cardiac and bladder hypertrophy and failure.
Collapse
Affiliation(s)
- Ivonne Koeck
- Urology Research Laboratory, Department Clinical Research, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | | | - Katia Monastyrskaya
- Urology Research Laboratory, Department Clinical Research, University of Bern, Switzerland; Department of Urology, University Hospital, Bern, Switzerland.
| |
Collapse
|
58
|
Song JL, Nigam P, Tektas SS, Selva E. microRNA regulation of Wnt signaling pathways in development and disease. Cell Signal 2015; 27:1380-91. [PMID: 25843779 PMCID: PMC4437805 DOI: 10.1016/j.cellsig.2015.03.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 12/19/2022]
Abstract
Wnt signaling pathways and microRNAs (miRNAs) are critical regulators of development. Aberrant Wnt signaling pathways and miRNA levels lead to developmental defects and diverse human pathologies including but not limited to cancer. Wnt signaling pathways regulate a plethora of cellular processes during embryonic development and maintain homeostasis of adult tissues. A majority of Wnt signaling components are regulated by miRNAs which are small noncoding RNAs that are expressed in both animals and plants. In animal cells, miRNAs fine tune gene expression by pairing primarily to the 3'untranslated region of protein coding mRNAs to repress target mRNA translation and/or induce target degradation. miRNA-mediated regulation of signaling transduction pathways is important in modulating dose-sensitive response of cells to signaling molecules. This review discusses components of the Wnt signaling pathways that are regulated by miRNAs in the context of development and diseases. A fundamental understanding of miRNA functions in Wnt signaling transduction pathways may yield new insight into crosstalks of regulatory mechanisms essential for development and disease pathophysiology leading to novel therapeutics.
Collapse
Affiliation(s)
- Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Priya Nigam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Senel S Tektas
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erica Selva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
59
|
Shi C, Huang P, Kang H, Hu B, Qi J, Jiang M, Zhou H, Guo L, Deng L. Glucocorticoid inhibits cell proliferation in differentiating osteoblasts by microRNA-199a targeting of WNT signaling. J Mol Endocrinol 2015; 54:325-37. [PMID: 25878056 DOI: 10.1530/jme-14-0314] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 11/08/2022]
Abstract
The inhibition of osteoblast proliferation by glucocorticoids (GCs) is very important in the etiology of GC-induced osteoporosis. The mechanisms of this process are still not fully understood. The results of recent studies have indicated an important role for microRNAs in GC-mediated responses in various cellular processes, including cell proliferation and apoptosis. Therefore, we developed the hypothesis that these regulatory molecules might be involved in GC-decreased osteoblast proliferation. Western blotting, quantitative real-time PCR, cell proliferation assays, and luciferase assays were employed to investigate the role of miRNAs in GC-inhibited osteoblast proliferation. microRNA-199a-5p was significantly increased in osteoblasts treated with dexamethasone (Dex). To delineate the role of microRNA-199a-5p, we silenced and overexpressed microRNA-199a-5p in osteoblasts. We found that overexpressing microRNA-199a-5p remarkably increased the inhibition effect of Dex on osteoblast proliferation, and depleting microRNA-199a-5p significantly attenuated Dex-inhibited osteoblast proliferation. Results of mechanistic studies indicated that microRNA-199a-5p inhibited FZD4 and WNT2 expression through a microRNA-199a-5p binding site within the 3'-UTR of FZD4 and WNT2. The post-transcriptional repression of FZD4 and WNT2 were further confirmed by luciferase reporter assay. These results indicated that microRNA-199a-5p may play a significant role in GC-inhibited osteoblast proliferation by regulating the WNT signaling pathway.
Collapse
Affiliation(s)
- Changgui Shi
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Hui Kang
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Bo Hu
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Jin Qi
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Min Jiang
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Hanbing Zhou
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint DiseasesShanghai Institute of Orthopaedics and Traumatology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197, The Second Ruijin Road, Luwan District, Shanghai 200025, People's Republic of ChinaDepartment of OrthopedicsChangzheng Hospital, The Second Military Medical University of China, Shanghai, People's Republic of China
| |
Collapse
|