51
|
González-Mariscal I, Martín-Montalvo A, Ojeda-González C, Rodríguez-Eguren A, Gutiérrez-Ríos P, Navas P, Santos-Ocaña C. Balanced CoQ 6 biosynthesis is required for lifespan and mitophagy in yeast. MICROBIAL CELL 2017; 4:38-51. [PMID: 28357388 PMCID: PMC5349121 DOI: 10.15698/mic2017.02.556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coenzyme Q is an essential lipid with redox capacity that is present in all
organisms. In yeast its biosynthesis depends on a multiprotein complex in which
Coq7 protein has both catalytic and regulatory functions. Coq7 modulates
CoQ6 levels through a phosphorylation cycle, where
dephosphorylation of three amino acids (Ser/Thr) by the mitochondrial
phosphatase Ptc7 increases the levels of CoQ6. Here we analyzed the
role of Ptc7 and the phosphorylation state of Coq7 in yeast mitochondrial
function. The conversion of the three Ser/Thr to alanine led to a permanently
active form of Coq7 that caused a 2.5-fold increase of CoQ6 levels,
albeit decreased mitochondrial respiratory chain activity and oxidative stress
resistance capacity. This resulted in an increase in endogenous ROS production
and shortened the chronological life span (CLS) compared to wild type. The null
PTC7 mutant (ptc7∆) strain showed a lower
biosynthesis rate of CoQ6 and a significant shortening of the CLS.
The reduced CLS observed in ptc7Δ was restored by the
overexpression of PTC7 but not by the addition of exogenous
CoQ6. Overexpression of PTC7 increased mitophagy
in a wild type strain. This finding suggests an additional Ptc7 function beyond
the regulation of CoQ biosynthesis. Genetic disruption of PTC7
prevented mitophagy activation in conditions of nitrogen deprivation. In brief,
we show that, in yeast, Ptc7 modulates the adaptation to respiratory metabolism
by dephosphorylating Coq7 to supply newly synthesized CoQ6, and by
activating mitophagy to remove defective mitochondria at stationary phase,
guaranteeing a proper CLS in yeast.
Collapse
Affiliation(s)
- Isabel González-Mariscal
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Aléjandro Martín-Montalvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Cristina Ojeda-González
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Adolfo Rodríguez-Eguren
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Purificación Gutiérrez-Ríos
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| | - Carlos Santos-Ocaña
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER Instituto de Salud Carlos III, Sevilla, 41013, Spain
| |
Collapse
|
52
|
Ortiz T, Villanueva-Paz M, Díaz-Parrado E, Illanes M, Fernández-Rodríguez A, Sánchez-Alcázar JA, de Miguel M. Amitriptyline down-regulates coenzyme Q10 biosynthesis in lung cancer cells. Eur J Pharmacol 2017; 797:75-82. [DOI: 10.1016/j.ejphar.2017.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/14/2022]
|
53
|
Moriyama D, Kaino T, Yajima K, Yanai R, Ikenaka Y, Hasegawa J, Washida M, Nanba H, Kawamukai M. Cloning and characterization of decaprenyl diphosphate synthase from three different fungi. Appl Microbiol Biotechnol 2016; 101:1559-1571. [PMID: 27837315 DOI: 10.1007/s00253-016-7963-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/10/2016] [Accepted: 10/20/2016] [Indexed: 12/29/2022]
Abstract
Coenzyme Q (CoQ) is composed of a benzoquinone moiety and an isoprenoid side chain of varying lengths. The length of the side chain is controlled by polyprenyl diphosphate synthase. In this study, dps1 genes encoding decaprenyl diphosphate synthase were cloned from three fungi: Bulleromyces albus, Saitoella complicata, and Rhodotorula minuta. The predicted Dps1 proteins contained seven conserved domains found in typical polyprenyl diphosphate synthases and were 528, 440, and 537 amino acids in length in B. albus, S. complicata, and R. minuta, respectively. Escherichia coli expressing the fungal dps1 genes produced CoQ10 in addition to endogenous CoQ8. Two of the three fungal dps1 genes (from S. complicata and R. minuta) were able to replace the function of ispB in an E. coli mutant strain. In vitro enzymatic activities were also detected in recombinant strains. The three dps1 genes were able to complement a Schizosaccharomyces pombe dps1, dlp1 double mutant. Recombinant S. pombe produced mainly CoQ10, indicating that the introduced genes were independently functional and did not require dlp1. The cloning of dps1 genes from various fungi has the potential to enhance production of CoQ10 in other organisms.
Collapse
Affiliation(s)
- Daisuke Moriyama
- Kaneka Corporation, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo, 676-8688, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Tomohiro Kaino
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Kazuyoshi Yajima
- Kaneka Corporation, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo, 676-8688, Japan
| | - Ryota Yanai
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yasuhiro Ikenaka
- Kaneka Corporation, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo, 676-8688, Japan
| | - Junzo Hasegawa
- Kaneka Corporation, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo, 676-8688, Japan
| | - Motohisa Washida
- Kaneka Corporation, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo, 676-8688, Japan
| | - Hirokazu Nanba
- Kaneka Corporation, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo, 676-8688, Japan
| | - Makoto Kawamukai
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan.
| |
Collapse
|
54
|
Kroll K, Shekhova E, Mattern DJ, Thywissen A, Jacobsen ID, Strassburger M, Heinekamp T, Shelest E, Brakhage AA, Kniemeyer O. The hypoxia-induced dehydrogenase HorA is required for coenzyme Q10 biosynthesis, azole sensitivity and virulence ofAspergillus fumigatus. Mol Microbiol 2016; 101:92-108. [DOI: 10.1111/mmi.13377] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Kristin Kroll
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
| | - Elena Shekhova
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
| | - Derek J. Mattern
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
| | - Andreas Thywissen
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, and Friedrich Schiller University Jena; Jena Germany
| | - Maria Strassburger
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
- Transfer Group Anti-Infectives, Leibniz Institute for Natural Product Research and Infection Biology (HKI); Jena Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
- Department of Microbiology and Molecular Biology; Institute of Microbiology, Friedrich Schiller University; Jena Germany
| | - Ekaterina Shelest
- Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, and Friedrich Schiller University Jena; Jena Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
- Department of Microbiology and Molecular Biology; Institute of Microbiology, Friedrich Schiller University; Jena Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology; Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI); Jena Germany
- Department of Microbiology and Molecular Biology; Institute of Microbiology, Friedrich Schiller University; Jena Germany
| |
Collapse
|
55
|
Acosta MJ, Vazquez Fonseca L, Desbats MA, Cerqua C, Zordan R, Trevisson E, Salviati L. Coenzyme Q biosynthesis in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1079-1085. [PMID: 27060254 DOI: 10.1016/j.bbabio.2016.03.036] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 01/11/2023]
Abstract
Coenzyme Q (CoQ, or ubiquinone) is a remarkable lipid that plays an essential role in mitochondria as an electron shuttle between complexes I and II of the respiratory chain, and complex III. It is also a cofactor of other dehydrogenases, a modulator of the permeability transition pore and an essential antioxidant. CoQ is synthesized in mitochondria by a set of at least 12 proteins that form a multiprotein complex. The exact composition of this complex is still unclear. Most of the genes involved in CoQ biosynthesis (COQ genes) have been studied in yeast and have mammalian orthologues. Some of them encode enzymes involved in the modification of the quinone ring of CoQ, but for others the precise function is unknown. Two genes appear to have a regulatory role: COQ8 (and its human counterparts ADCK3 and ADCK4) encodes a putative kinase, while PTC7 encodes a phosphatase required for the activation of Coq7. Mutations in human COQ genes cause primary CoQ(10) deficiency, a clinically heterogeneous mitochondrial disorder with onset from birth to the seventh decade, and with clinical manifestation ranging from fatal multisystem disorders, to isolated encephalopathy or nephropathy. The pathogenesis of CoQ(10) deficiency involves deficient ATP production and excessive ROS formation, but possibly other aspects of CoQ(10) function are implicated. CoQ(10) deficiency is unique among mitochondrial disorders since an effective treatment is available. Many patients respond to oral CoQ(10) supplementation. Nevertheless, treatment is still problematic because of the low bioavailability of the compound, and novel pharmacological approaches are currently being investigated. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Manuel Jesús Acosta
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Luis Vazquez Fonseca
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Cristina Cerqua
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Roberta Zordan
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy.
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, and IRP Città della Speranza, Padova, Italy.
| |
Collapse
|
56
|
Ismail A, Leroux V, Smadja M, Gonzalez L, Lombard M, Pierrel F, Mellot-Draznieks C, Fontecave M. Coenzyme Q Biosynthesis: Evidence for a Substrate Access Channel in the FAD-Dependent Monooxygenase Coq6. PLoS Comput Biol 2016; 12:e1004690. [PMID: 26808124 PMCID: PMC4726752 DOI: 10.1371/journal.pcbi.1004690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023] Open
Abstract
Coq6 is an enzyme involved in the biosynthesis of coenzyme Q, a polyisoprenylated benzoquinone lipid essential to the function of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, this putative flavin-dependent monooxygenase is proposed to hydroxylate the benzene ring of coenzyme Q (ubiquinone) precursor at position C5. We show here through biochemical studies that Coq6 is a flavoprotein using FAD as a cofactor. Homology models of the Coq6-FAD complex are constructed and studied through molecular dynamics and substrate docking calculations of 3-hexaprenyl-4-hydroxyphenol (4-HP6), a bulky hydrophobic model substrate. We identify a putative access channel for Coq6 in a wild type model and propose in silico mutations positioned at its entrance capable of partially (G248R and L382E single mutations) or completely (a G248R-L382E double-mutation) blocking access to the channel for the substrate. Further in vivo assays support the computational predictions, thus explaining the decreased activities or inactivation of the mutated enzymes. This work provides the first detailed structural information of an important and highly conserved enzyme of ubiquinone biosynthesis.
Collapse
Affiliation(s)
- Alexandre Ismail
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC Univ Paris 06, Collège de France, Paris, France
- Sup’Biotech, IONIS Education Group, Villejuif, France
| | - Vincent Leroux
- Paris Sciences et Lettres (PSL*), Collège de France, Center for Interdisciplinary Research in Biology (CIRB), INSERM U1050, Paris, France
| | - Myriam Smadja
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC Univ Paris 06, Collège de France, Paris, France
| | - Lucie Gonzalez
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC Univ Paris 06, Collège de France, Paris, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC Univ Paris 06, Collège de France, Paris, France
| | - Fabien Pierrel
- Université Grenoble Alpes, Laboratoire Adaptation et Pathogénie des Microorganismes, Grenoble, France
- CNRS, Laboratoire Adaptation et Pathogénie des Microorganismes, Grenoble, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC Univ Paris 06, Collège de France, Paris, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC Univ Paris 06, Collège de France, Paris, France
| |
Collapse
|
57
|
Cascajo MV, Abdelmohsen K, Noh JH, Fernández-Ayala DJM, Willers IM, Brea G, López-Lluch G, Valenzuela-Villatoro M, Cuezva JM, Gorospe M, Siendones E, Navas P. RNA-binding proteins regulate cell respiration and coenzyme Q biosynthesis by post-transcriptional regulation of COQ7. RNA Biol 2015; 13:622-34. [PMID: 26690054 PMCID: PMC7609068 DOI: 10.1080/15476286.2015.1119366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3′-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.
Collapse
Affiliation(s)
- María V Cascajo
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Kotb Abdelmohsen
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Ji Heon Noh
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Daniel J M Fernández-Ayala
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Imke M Willers
- c Departamento de Biología Molecular , Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Madrid , Spain
| | - Gloria Brea
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Guillermo López-Lluch
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Marina Valenzuela-Villatoro
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - José M Cuezva
- c Departamento de Biología Molecular , Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Madrid , Spain
| | - Myriam Gorospe
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Emilio Siendones
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Plácido Navas
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| |
Collapse
|
58
|
Busso C, Ferreira-Júnior JR, Paulela JA, Bleicher L, Demasi M, Barros MH. Coq7p relevant residues for protein activity and stability. Biochimie 2015; 119:92-102. [DOI: 10.1016/j.biochi.2015.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 10/19/2015] [Indexed: 11/27/2022]
|
59
|
Ozeir M, Pelosi L, Ismail A, Mellot-Draznieks C, Fontecave M, Pierrel F. Coq6 is responsible for the C4-deamination reaction in coenzyme Q biosynthesis in Saccharomyces cerevisiae. J Biol Chem 2015; 290:24140-51. [PMID: 26260787 DOI: 10.1074/jbc.m115.675744] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 11/06/2022] Open
Abstract
The yeast Saccharomyces cerevisiae is able to use para-aminobenzoic acid (pABA) in addition to 4-hydroxybenzoic acid as a precursor of coenzyme Q, a redox lipid essential to the function of the mitochondrial respiratory chain. The biosynthesis of coenzyme Q from pABA requires a deamination reaction at position C4 of the benzene ring to substitute the amino group with an hydroxyl group. We show here that the FAD-dependent monooxygenase Coq6, which is known to hydroxylate position C5, also deaminates position C4 in a reaction implicating molecular oxygen, as demonstrated with labeling experiments. We identify mutations in Coq6 that abrogate the C4-deamination activity, whereas preserving the C5-hydroxylation activity. Several results support that the deletion of Coq9 impacts Coq6, thus explaining the C4-deamination defect observed in Δcoq9 cells. The vast majority of flavin monooxygenases catalyze hydroxylation reactions on a single position of their substrate. Coq6 is thus a rare example of a flavin monooxygenase that is able to act on two different carbon atoms of its C4-aminated substrate, allowing its deamination and ultimately its conversion into coenzyme Q by the other proteins constituting the coenzyme Q biosynthetic pathway.
Collapse
Affiliation(s)
- Mohammad Ozeir
- From the University of Grenoble Alpes, LCBM, UMR5249, F-38000 Grenoble, France
| | - Ludovic Pelosi
- the University of Grenoble Alpes, LAPM, F-38000 Grenoble, France, the CNRS, LAPM, F-38000 Grenoble, France
| | - Alexandre Ismail
- the Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France, and the Sup'Biotech, IONIS Education Group, 66 rue Guy-Moquet, F-94800 Villejuif, France
| | - Caroline Mellot-Draznieks
- the Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France, and
| | - Marc Fontecave
- the Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France, and
| | - Fabien Pierrel
- the University of Grenoble Alpes, LAPM, F-38000 Grenoble, France, the CNRS, LAPM, F-38000 Grenoble, France,
| |
Collapse
|
60
|
Ayer A, Macdonald P, Stocker R. CoQ10Function and Role in Heart Failure and Ischemic Heart Disease. Annu Rev Nutr 2015; 35:175-213. [DOI: 10.1146/annurev-nutr-071714-034258] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Peter Macdonald
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia;
| | - Roland Stocker
- Vascular Biology and
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
61
|
Abstract
Coenzyme Q (CoQ) is a component of the electron transport chain that participates in aerobic cellular respiration to produce ATP. In addition, CoQ acts as an electron acceptor in several enzymatic reactions involving oxidation-reduction. Biosynthesis of CoQ has been investigated mainly in Escherichia coli and Saccharomyces cerevisiae, and the findings have been extended to various higher organisms, including plants and humans. Analyses in yeast have contributed greatly to current understanding of human diseases related to CoQ biosynthesis. To date, human genetic disorders related to mutations in eight COQ biosynthetic genes have been reported. In addition, the crystal structures of a number of proteins involved in CoQ synthesis have been solved, including those of IspB, UbiA, UbiD, UbiX, UbiI, Alr8543 (Coq4 homolog), Coq5, ADCK3, and COQ9. Over the last decade, knowledge of CoQ biosynthesis has accumulated, and striking advances in related human genetic disorders and the crystal structure of proteins required for CoQ synthesis have been made. This review focuses on the biosynthesis of CoQ in eukaryotes, with some comparisons to the process in prokaryotes.
Collapse
Affiliation(s)
- Makoto Kawamukai
- a Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| |
Collapse
|
62
|
Yeast Coq9 controls deamination of coenzyme Q intermediates that derive from para-aminobenzoic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1227-39. [PMID: 26008578 DOI: 10.1016/j.bbalip.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/20/2015] [Accepted: 05/14/2015] [Indexed: 11/20/2022]
Abstract
Coq9 is a polypeptide subunit in a mitochondrial multi-subunit complex, termed the CoQ-synthome, required for biosynthesis of coenzyme Q (ubiquinone or Q). Deletion of COQ9 results in dissociation of the CoQ-synthome, but over-expression of Coq8 putative kinase stabilizes the CoQ-synthome in the coq9 null mutant and leads to the accumulation of two nitrogen-containing Q intermediates, imino-demethoxy-Q6 (IDMQ6) and 3-hexaprenyl-4-aminophenol (4-AP) when para-aminobenzoic acid (pABA) is provided as a ring precursor. To investigate whether Coq9 is responsible for deamination steps in Q biosynthesis, we utilized the yeast coq5-5 point mutant. The yeast coq5-5 point mutant is defective in the C-methyltransferase step of Q biosynthesis but retains normal steady-state levels of the Coq5 polypeptide. Here, we show that when high amounts of 13C6-pABA are provided, the coq5-5 mutant accumulates both 13C6-imino-demethyl-demethoxy-Q6 (13C6-IDDMQ6) and 13C6-demethyl-demethoxy-Q6 (13C6-DDMQ6). Deletion of COQ9 in the yeast coq5-5 mutant along with Coq8 over-expression and 13C6- pABA labeling leads to the absence of 13C6-DDMQ6, and the nitrogen-containing intermediates 13C6-4-AP and 13C6-IDDMQ6 persist. We describe a coq9 temperature-sensitive mutant and show that at the non-permissive temperature, steady-state polypeptide levels of Coq9-ts19 increased, while Coq4, Coq5, Coq6, and Coq7 decreased. The coq9-ts19 mutant had decreased Q6 content and increased levels of nitrogen-containing intermediates. These findings identify Coq9 as a multi-functional protein that is required for the function of Coq6 and Coq7 hydroxylases, for removal of the nitrogen substituent from pABA-derived Q intermediates, and is an essential component of the CoQ synthome.
Collapse
|
63
|
Xie LX, Williams KJ, He CH, Weng E, Khong S, Rose TE, Kwon O, Bensinger SJ, Marbois BN, Clarke CF. Resveratrol and para-coumarate serve as ring precursors for coenzyme Q biosynthesis. J Lipid Res 2015; 56:909-19. [PMID: 25681964 DOI: 10.1194/jlr.m057919] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coenzyme Q (Q or ubiquinone) is a redox-active polyisoprenylated benzoquinone lipid essential for electron and proton transport in the mitochondrial respiratory chain. The aromatic ring 4-hydroxybenzoic acid (4HB) is commonly depicted as the sole aromatic ring precursor in Q biosynthesis despite the recent finding that para-aminobenzoic acid (pABA) also serves as a ring precursor in Saccharomyces cerevisiae Q biosynthesis. In this study, we employed aromatic (13)C6-ring-labeled compounds including (13)C6-4HB, (13)C6-pABA, (13)C6-resveratrol, and (13)C6-coumarate to investigate the role of these small molecules as aromatic ring precursors in Q biosynthesis in Escherichia coli, S. cerevisiae, and human and mouse cells. In contrast to S. cerevisiae, neither E. coli nor the mammalian cells tested were able to form (13)C6-Q when cultured in the presence of (13)C6-pABA. However, E. coli cells treated with (13)C6-pABA generated (13)C6-ring-labeled forms of 3-octaprenyl-4-aminobenzoic acid, 2-octaprenyl-aniline, and 3-octaprenyl-2-aminophenol, suggesting UbiA, UbiD, UbiX, and UbiI are capable of using pABA or pABA-derived intermediates as substrates. E. coli, S. cerevisiae, and human and mouse cells cultured in the presence of (13)C6-resveratrol or (13)C6-coumarate were able to synthesize (13)C6-Q. Future evaluation of the physiological and pharmacological responses to dietary polyphenols should consider their metabolism to Q.
Collapse
Affiliation(s)
- Letian X Xie
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Kevin J Williams
- Departments of Microbiology, Immunology, and Molecular Genetics University of California, Los Angeles, CA 90095-1569
| | - Cuiwen H He
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Emily Weng
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - San Khong
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Tristan E Rose
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Steven J Bensinger
- Departments of Microbiology, Immunology, and Molecular Genetics University of California, Los Angeles, CA 90095-1569 Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095-1569
| | - Beth N Marbois
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| |
Collapse
|