51
|
He Q, Cheng J, Wang Y. Chronic CaMKII inhibition reverses cardiac function and cardiac reserve in HF mice. Life Sci 2019; 219:122-128. [PMID: 30639281 DOI: 10.1016/j.lfs.2019.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
AIMS The present study was to explore the impact of KN93 - a specific inhibitor of CaMKII - on cardiac function and cardiac reserve in HF mice. MAIN METHODS We have generated pressure-overload HF mice using modified transverse aortic constriction (TAC) method. For acute inhibition (AI) experiment, HF mice were randomly divided into HF group, HF + KN93 AI group and HF + KN92 AI group, using sham mice as control. Mice in HF + KN93 AI group and HF + KN92 AI group were injected with CaMKII inhibitor KN93 or its inactive analogue KN92 on post-TAC day 15, while mice in HF group and Sham group were treated with saline. For chronic inhibition (CI) experiment, mice were injected daily with KN93, KN92 or saline for one week. At baseline and after isoproterenol (Iso) injection, in vivo cardiac function was assessed by echocardiography and left ventricular pressure-volume catheter. KEY FINDINGS Acute inhibition of CaMKII leads to decreased -dP/dtmin, increased EF, FS, longitudinal strain, longitudinal strain rate, ESPVR, dP/dtmax-EDV, PRSW, Tau and EDPVR, and unaltered reactivity to Iso in HF mice. Chronic inhibition results in increased EF, FS, longitudinal strain, longitudinal strain rate, ESPVR, dP/dtmax-EDV and PRSW, without alteration in -dP/dtmin, Tau and EDPVR. In addition, chronic inhibition reverses the effect of Iso on HF mice. SIGNIFICANCE Although acute CaMKII inhibition can repair systolic function in HF mice, it also exacerbates the diastolic function, whereas chronic inhibition improves both systolic function and cardiac reserve to β-adrenergic stimulation without impairing diastolic function.
Collapse
Affiliation(s)
- Qianwen He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jun Cheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
52
|
Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 127:246-259. [PMID: 30633874 DOI: 10.1016/j.yjmcc.2019.01.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is upregulated in diabetes and significantly contributes to cardiac remodeling with increased risk of cardiac arrhythmias. Diabetes is frequently associated with atrial fibrillation, coronary artery disease, and heart failure, which may further enhance CaMKII. Activation of CaMKII occurs downstream of neurohormonal stimulation (e.g. via G-protein coupled receptors) and involve various posttranslational modifications including autophosphorylation, oxidation, S-nitrosylation and O-GlcNAcylation. CaMKII signaling regulates diverse cellular processes in a spatiotemporal manner including excitation-contraction and excitation-transcription coupling, mechanics and energetics in cardiac myocytes. Chronic activation of CaMKII results in cellular remodeling and ultimately arrhythmogenic alterations in Ca2+ handling, ion channels, cell-to-cell coupling and metabolism. This review addresses the detrimental effects of the upregulated CaMKII signaling to enhance the arrhythmogenic substrate and trigger mechanisms in the heart. We also briefly summarize preclinical studies using kinase inhibitors and genetically modified mice targeting CaMKII in diabetes. The mechanistic understanding of CaMKII signaling, cardiac remodeling and arrhythmia mechanisms may reveal new therapeutic targets and ultimately better treatment in diabetes and heart disease in general.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
53
|
Araki S, Takata T, Tsuchiya Y, Watanabe Y. Reactive sulfur species impair Ca2+/calmodulin-dependent protein kinase II via polysulfidation. Biochem Biophys Res Commun 2019; 508:550-555. [DOI: 10.1016/j.bbrc.2018.11.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022]
|
54
|
Wood BM, Simon M, Galice S, Alim CC, Ferrero M, Pinna NN, Bers DM, Bossuyt J. Cardiac CaMKII activation promotes rapid translocation to its extra-dyadic targets. J Mol Cell Cardiol 2018; 125:18-28. [PMID: 30321537 PMCID: PMC6279589 DOI: 10.1016/j.yjmcc.2018.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 10/03/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
Abstract
Calcium-calmodulin dependent protein kinase IIδ (CaMKIIδ) is an important regulator of cardiac electrophysiology, calcium (Ca) balance, contraction, transcription, arrhythmias and progression to heart failure. CaMKII is readily activated at mouths of dyadic cleft Ca channels, but because of its low Ca-calmodulin affinity and presumed immobility it is less clear how CaMKII gets activated near other known, extra-dyad targets. CaMKII is typically considered to be anchored in cardiomyocytes, but while untested, mobility of active CaMKII could provide a mechanism for broader target phosphorylation in cardiomyocytes. We therefore tested CaMKII mobility and how this is affected by kinase activation in adult rabbit cardiomyocytes. We measured translocation of both endogenous and fluorescence-tagged CaMKII using immunocytochemistry, fluorescence recovery after photobleach (FRAP) and photoactivation of fluorescence. In contrast to the prevailing view that CaMKII is anchored near its myocyte targets, we found CaMKII to be highly mobile in resting myocytes, which was slowed by Ca chelation and accelerated by pacing. At low [Ca], CaMKII was concentrated at Z-lines near the dyad but spread throughout the sarcomere upon pacing. Nuclear exchange of CaMKII was also enhanced upon pacing- and heart failure-induced chronic activation. This mobilization of active CaMKII and its intrinsic memory may allow CaMKII to be activated in high [Ca] regions and then move towards more distant myocyte target sites.
Collapse
Affiliation(s)
- Brent M Wood
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Mitchell Simon
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Samuel Galice
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Chidera C Alim
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Maura Ferrero
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Natalie N Pinna
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| |
Collapse
|
55
|
Hegyi B, Bányász T, Izu LT, Belardinelli L, Bers DM, Chen-Izu Y. β-adrenergic regulation of late Na + current during cardiac action potential is mediated by both PKA and CaMKII. J Mol Cell Cardiol 2018; 123:168-179. [PMID: 30240676 DOI: 10.1016/j.yjmcc.2018.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/16/2018] [Indexed: 12/12/2022]
Abstract
Late Na+ current (INaL) significantly contributes to shaping cardiac action potentials (APs) and increased INaL is associated with cardiac arrhythmias. β-adrenergic receptor (βAR) stimulation and its downstream signaling via protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathways are known to regulate INaL. However, it remains unclear how each of these pathways regulates INaL during the AP under physiological conditions. Here we performed AP-clamp experiments in rabbit ventricular myocytes to delineate the impact of each signaling pathway on INaL at different AP phases to understand the arrhythmogenic potential. During the physiological AP (2 Hz, 37 °C) we found that INaL had a basal level current independent of PKA, but partially dependent on CaMKII. βAR activation (10 nM isoproterenol, ISO) further enhanced INaL via both PKA and CaMKII pathways. However, PKA predominantly increased INaL early during the AP plateau, whereas CaMKII mainly increased INaL later in the plateau and during rapid repolarization. We also tested the role of key signaling pathways through exchange protein activated by cAMP (Epac), nitric oxide synthase (NOS) and reactive oxygen species (ROS). Direct Epac stimulation enhanced INaL similar to the βAR-induced CaMKII effect, while NOS inhibition prevented the βAR-induced CaMKII-dependent INaL enhancement. ROS generated by NADPH oxidase 2 (NOX2) also contributed to the ISO-induced INaL activation early in the AP. Taken together, our data reveal differential modulations of INaL by PKA and CaMKII signaling pathways at different AP phases. This nuanced and comprehensive view on the changes in INaL during AP deepens our understanding of the important role of INaL in reshaping the cardiac AP and arrhythmogenic potential under elevated sympathetic stimulation, which is relevant for designing therapeutic treatment of arrhythmias under pathological conditions.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis, CA, USA.
| | - Tamás Bányász
- Department of Pharmacology, University of California, Davis, CA, USA; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Leighton T Izu
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA, USA; Department of Biomedical Engineering, University of California, Davis, CA, USA; Department of Internal Medicine/Cardiology, University of California, Davis, CA, USA.
| |
Collapse
|
56
|
Morotti S, Grandi E. Quantitative systems models illuminate arrhythmia mechanisms in heart failure: Role of the Na + -Ca 2+ -Ca 2+ /calmodulin-dependent protein kinase II-reactive oxygen species feedback. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1434. [PMID: 30015404 DOI: 10.1002/wsbm.1434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/29/2018] [Accepted: 06/16/2018] [Indexed: 12/22/2022]
Abstract
Quantitative systems modeling aims to integrate knowledge in different research areas with models describing biological mechanisms and dynamics to gain a better understanding of complex clinical syndromes. Heart failure (HF) is a chronic complex cardiac disease that results from structural or functional disorders impairing the ability of the ventricle to fill with or eject blood. Highly interactive and dynamic changes in mechanical, structural, neurohumoral, metabolic, and electrophysiological properties collectively predispose the failing heart to cardiac arrhythmias, which are responsible for about a half of HF deaths. Multiscale cardiac modeling and simulation integrate structural and functional data from HF experimental models and patients to improve our mechanistic understanding of this complex arrhythmia syndrome. In particular, they allow investigating how disease-induced remodeling alters the coupling of electrophysiology, Ca2+ and Na+ handling, contraction, and energetics that lead to rhythm derangements. The Ca2+ /calmodulin-dependent protein kinase II, which expression and activity are enhanced in HF, emerges as a critical hub that modulates the feedbacks between these various subsystems and promotes arrhythmogenesis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Mechanistic Models Models of Systems Properties and Processes > Cellular Models Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
Affiliation(s)
- Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, California
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California
| |
Collapse
|
57
|
Beckendorf J, van den Hoogenhof MMG, Backs J. Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol 2018; 113:29. [PMID: 29905892 PMCID: PMC6003982 DOI: 10.1007/s00395-018-0688-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
In the cardiomyocyte, CaMKII has been identified as a nodal influencer of excitation-contraction and also excitation-transcription coupling. Its activity can be regulated in response to changes in intracellular calcium content as well as after several post-translational modifications. Some of the effects mediated by CaMKII may be considered adaptive, while effects of sustained CaMKII activity may turn into the opposite and are detrimental to cardiac integrity and function. As such, CaMKII has long been noted as a promising target for pharmacological inhibition, but the ubiquitous nature of CaMKII has made it difficult to target CaMKII specifically where it is detrimental. In this review, we provide a brief overview of the physiological and pathophysiological properties of CaMKII signaling, but we focus on the physiological and adaptive functions of CaMKII. Furthermore, special consideration is given to the emerging role of CaMKII as a mediator of inflammatory processes in the heart.
Collapse
Affiliation(s)
- Jan Beckendorf
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,Department for Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johannes Backs
- Department for Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
58
|
Daniels LJ, Wallace RS, Nicholson OM, Wilson GA, McDonald FJ, Jones PP, Baldi JC, Lamberts RR, Erickson JR. Inhibition of calcium/calmodulin-dependent kinase II restores contraction and relaxation in isolated cardiac muscle from type 2 diabetic rats. Cardiovasc Diabetol 2018; 17:89. [PMID: 29903013 PMCID: PMC6001139 DOI: 10.1186/s12933-018-0732-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/06/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Calcium/calmodulin-dependent kinase II-delta (CaMKIIδ) activity is enhanced during hyperglycemia and has been shown to alter intracellular calcium handling in cardiomyocytes, ultimately leading to reduced cardiac performance. However, the effects of CaMKIIδ on cardiac contractility during type 2 diabetes are undefined. METHODS We examined the expression and activation of CaMKIIδ in right atrial appendages from non-diabetic and type 2 diabetic patients (n = 7 patients per group) with preserved ejection fraction, and also in right ventricular tissue from Zucker Diabetic Fatty rats (ZDF) (n = 5-10 animals per group) during early diabetic cardiac dysfunction, using immunoblot. We also measured whole heart function of ZDF and control rats using echocardiography. Then we measured contraction and relaxation parameters of isolated trabeculae from ZDF to control rats in the presence and absence of CaMKII inhibitors. RESULTS CaMKIIδ phosphorylation (at Thr287) was increased in both the diabetic human and animal tissue, indicating increased CaMKIIδ activation in the type 2 diabetic heart. Basal cardiac contractility and relaxation were impaired in the cardiac muscles from the diabetic rats, and CaMKII inhibition with KN93 partially restored contractility and relaxation. Autocamtide-2-related-inhibitor peptide (AIP), another CaMKII inhibitor that acts via a different mechanism than KN93, fully restored cardiac contractility and relaxation. CONCLUSIONS Our results indicate that CaMKIIδ plays a key role in modulating performance of the diabetic heart, and moreover, suggest a potential therapeutic role for CaMKII inhibitors in improving myocardial function during type 2 diabetes.
Collapse
Affiliation(s)
- Lorna J Daniels
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Rachel S Wallace
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Olivia M Nicholson
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Genevieve A Wilson
- Otago School of Medical Sciences, Department of Medicine and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Fiona J McDonald
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Peter P Jones
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - J Chris Baldi
- Otago School of Medical Sciences, Department of Medicine and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Regis R Lamberts
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Jeffrey R Erickson
- Otago School of Medical Sciences, Department of Physiology and HeartOtago, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand.
| |
Collapse
|
59
|
The novel CaMKII inhibitor GS-680 reduces diastolic SR Ca leak and prevents CaMKII-dependent pro-arrhythmic activity. J Mol Cell Cardiol 2018; 118:159-168. [DOI: 10.1016/j.yjmcc.2018.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 11/18/2022]
|
60
|
Bussey CT, Erickson JR. Physiology and pathology of cardiac CaMKII. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
61
|
Neef S, Steffens A, Pellicena P, Mustroph J, Lebek S, Ort KR, Schulman H, Maier LS. Improvement of cardiomyocyte function by a novel pyrimidine-based CaMKII-inhibitor. J Mol Cell Cardiol 2017; 115:73-81. [PMID: 29294328 DOI: 10.1016/j.yjmcc.2017.12.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 12/12/2017] [Accepted: 12/29/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Pathologically increased activity of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the associated Ca2+-leak from the sarcoplasmic reticulum are recognized to be important novel pharmacotherapeutic targets in heart failure and cardiac arrhythmias. However, CaMKII-inhibitory compounds for therapeutic use are still lacking. We now report on the cellular and molecular effects of a novel pyrimidine-based CaMKII inhibitor developed towards clinical use. METHODS AND RESULTS Our findings demonstrate that AS105 is a high-affinity ATP-competitive CaMKII-inhibitor that by its mode of action is also effective against autophosphorylated CaMKII (in contrast to the commonly used allosteric CaMKII-inhibitor KN-93). In isolated atrial cardiomyocytes from human donors and ventricular myocytes from CaMKIIδC-overexpressing mice with heart failure, AS105 effectively reduced diastolic SR Ca2+ leak by 38% to 65% as measured by Ca2+-sparks or tetracaine-sensitive shift in [Ca2+]i. Consistent with this, we found that AS105 suppressed arrhythmogenic spontaneous cardiomyocyte Ca2+-release (by 53%). Also, the ability of the SR to accumulate Ca2+ was enhanced by AS105, as indicated by improved post-rest potentiation of Ca2+-transient amplitudes and increased SR Ca2+-content in the murine cells. Accordingly, these cells had improved systolic Ca2+-transient amplitudes and contractility during basal stimulation. Importantly, CaMKII inhibition did not compromise systolic fractional Ca2+-release, diastolic SR Ca2+-reuptake via SERCA2a or Ca2+-extrusion via NCX. CONCLUSION AS105 is a novel, highly potent ATP-competitive CaMKII inhibitor. In vitro, it effectively reduced SR Ca2+-leak, thus improving SR Ca2+-accumulation and reducing cellular arrhythmogenic correlates, without negatively influencing excitation-contraction coupling. These findings further validate CaMKII as a key target in cardiovascular disease, implicated by genetic, allosteric inhibitors, and pseudo-substrate inhibitors.
Collapse
Affiliation(s)
- Stefan Neef
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Alexander Steffens
- Dept. of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Julian Mustroph
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Simon Lebek
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Katharina R Ort
- Dept. of Thoracic, Cardiac and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
| | | | - Lars S Maier
- Dept. of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany.
| |
Collapse
|
62
|
Ebenebe OV, Heather A, Erickson JR. CaMKII in Vascular Signalling: "Friend or Foe"? Heart Lung Circ 2017; 27:560-567. [PMID: 29409723 DOI: 10.1016/j.hlc.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
Signalling mechanisms within and between cells of the vasculature enable function and maintain homeostasis. However, a number of these mechanisms also contribute to the pathophysiology of vascular disease states. The multifunctional signalling molecule calcium/calmodulin-dependent kinase II (CaMKII) has been shown to have critical functional effects in many tissue types. For example, CaMKII is known to have a dual role in cardiac physiology and pathology. The function of CaMKII within the vasculature is incompletely understood, but emerging evidence points to potential physiological and pathological roles. This review discusses the evidence for CaMKII signalling within the vasculature, with the aim to better understand both positive and potentially deleterious effects of CaMKII activation in vascular tissue.
Collapse
Affiliation(s)
- Obialunanma V Ebenebe
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Alison Heather
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology, School of Medical Sciences and HeartOtago, University of Otago, Dunedin, Otago, New Zealand.
| |
Collapse
|
63
|
Burgos JI, Yeves AM, Barrena JP, Portiansky EL, Vila-Petroff MG, Ennis IL. Nitric oxide and CaMKII: Critical steps in the cardiac contractile response To IGF-1 and swim training. J Mol Cell Cardiol 2017; 112:16-26. [DOI: 10.1016/j.yjmcc.2017.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
|
64
|
Grandi E, Dobrev D. Non-ion channel therapeutics for heart failure and atrial fibrillation: Are CaMKII inhibitors ready for clinical use? J Mol Cell Cardiol 2017; 121:300-303. [PMID: 29079077 DOI: 10.1016/j.yjmcc.2017.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/22/2017] [Indexed: 01/17/2023]
Abstract
The Ca2+-calmodulin dependent protein kinase II (CaMKII) is an established central mediator of electrophysiological and contractile responses to cardiac stress, and its hyper-activation in cardiac diseases has been linked to heart failure (HF) and arrhythmia. Here we summarize the evidence supporting the role of CaMKII as a critical nodal point for therapeutic intervention against HF and atrial and ventricular tachyarrhythmias. Targeting of CaMKII in heart with inhibitors possessing appropriate selectivity might represent a novel therapeutic approach for HF and arrhythmias.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
65
|
Furuta S. Basal S-Nitrosylation Is the Guardian of Tissue Homeostasis. Trends Cancer 2017; 3:744-748. [PMID: 29120749 DOI: 10.1016/j.trecan.2017.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/30/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
Recent studies have uncovered that nitric oxide (NO) signaling is largely conducted by S-nitrosylation, involving >3000 proteins. The nitrosyl group could then travel further by transnitrosylation or be secreted, enabling regulation of the whole tissue. A subset of proteins are constitutively S-nitrosylated, playing roles in the regulation of tissue homeostasis.
Collapse
Affiliation(s)
- Saori Furuta
- Department of Cancer Biology, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| |
Collapse
|
66
|
Schönleitner P, Schotten U, Antoons G. Mechanosensitivity of microdomain calcium signalling in the heart. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017. [PMID: 28648626 DOI: 10.1016/j.pbiomolbio.2017.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In cardiac myocytes, calcium (Ca2+) signalling is tightly controlled in dedicated microdomains. At the dyad, i.e. the narrow cleft between t-tubules and junctional sarcoplasmic reticulum (SR), many signalling pathways combine to control Ca2+-induced Ca2+ release during contraction. Local Ca2+ gradients also exist in regions where SR and mitochondria are in close contact to regulate energetic demands. Loss of microdomain structures, or dysregulation of local Ca2+ fluxes in cardiac disease, is often associated with oxidative stress, contractile dysfunction and arrhythmias. Ca2+ signalling at these microdomains is highly mechanosensitive. Recent work has demonstrated that increasing mechanical load triggers rapid local Ca2+ releases that are not reflected by changes in global Ca2+. Key mechanisms involve rapid mechanotransduction with reactive oxygen species or nitric oxide as primary signalling molecules targeting SR or mitochondria microdomains depending on the nature of the mechanical stimulus. This review summarizes the most recent insights in rapid Ca2+ microdomain mechanosensitivity and re-evaluates its (patho)physiological significance in the context of historical data on the macroscopic role of Ca2+ in acute force adaptation and mechanically-induced arrhythmias. We distinguish between preload and afterload mediated effects on local Ca2+ release, and highlight differences between atrial and ventricular myocytes. Finally, we provide an outlook for further investigation in chronic models of abnormal mechanics (eg post-myocardial infarction, atrial fibrillation), to identify the clinical significance of disturbed Ca2+ mechanosensitivity for arrhythmogenesis.
Collapse
Affiliation(s)
- Patrick Schönleitner
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Uli Schotten
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | - Gudrun Antoons
- Dept of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands.
| |
Collapse
|
67
|
Pereira L, Bare DJ, Galice S, Shannon TR, Bers DM. β-Adrenergic induced SR Ca 2+ leak is mediated by an Epac-NOS pathway. J Mol Cell Cardiol 2017; 108:8-16. [PMID: 28476660 DOI: 10.1016/j.yjmcc.2017.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 02/08/2023]
Abstract
Cardiac β-adrenergic receptors (β-AR) and Ca2+-Calmodulin dependent protein kinase (CaMKII) regulate both physiological and pathophysiological Ca2+ signaling. Elevated diastolic Ca2+ leak from the sarcoplasmic reticulum (SR) contributes to contractile dysfunction in heart failure and to arrhythmogenesis. β-AR activation is known to increase SR Ca2+ leak via CaMKII-dependent phosphorylation of the ryanodine receptor. Two independent and reportedly parallel pathways have been implicated in this β-AR-CaMKII cascade, one involving exchange protein directly activated by cAMP (Epac2) and another involving nitric oxide synthase 1 (NOS1). Here we tested whether Epac and NOS function in a single series pathway to increase β-AR induced and CaMKII-dependent SR Ca2+ leak. Leak was measured as both Ca2+ spark frequency and tetracaine-induced shifts in SR Ca2+, in mouse and rabbit ventricular myocytes. Direct Epac activation by 8-CPT (8-(4-chlorophenylthio)-2'-O-methyl-cAMP) mimicked β-AR-induced SR Ca2+ leak, and both were blocked by NOS inhibition. The same was true for myocyte CaMKII activation (assessed via a FRET-based reporter) and ryanodine receptor phosphorylation. Inhibitor and phosphorylation studies also implicated phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) downstream of Epac and above NOS activation in this pathway. We conclude that these two independently characterized parallel pathways function mainly via a single series arrangement (β-AR-cAMP-Epac-PI3K-Akt-NOS1-CaMKII) to mediate increased SR Ca2+ leak. Thus, for β-AR activation the cAMP-PKA branch effects inotropy and lusitropy (by effects on Ca2+ current and SR Ca2+-ATPase), this cAMP-Epac-NOS pathway increases pathological diastolic SR Ca2+leak. This pathway distinction may allow novel SR Ca2+ leak therapeutic targeting in treatment of arrhythmias in heart failure that spare the inotropic and lusitropic effects of the PKA branch.
Collapse
Affiliation(s)
- Laëtitia Pereira
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, United States
| | - Dan J Bare
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, United States
| | - Samuel Galice
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, United States
| | - Thomas R Shannon
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, United States.
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, United States.
| |
Collapse
|
68
|
Feng N, Anderson ME. CaMKII is a nodal signal for multiple programmed cell death pathways in heart. J Mol Cell Cardiol 2017; 103:102-109. [PMID: 28025046 PMCID: PMC5404235 DOI: 10.1016/j.yjmcc.2016.12.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/08/2016] [Accepted: 12/18/2016] [Indexed: 01/01/2023]
Abstract
Sustained Ca2+/calmodulin-dependent kinase II (CaMKII) activation plays a central role in the pathogenesis of a variety of cardiac diseases. Emerging evidence suggests CaMKII evoked programmed cell death, including apoptosis and necroptosis, is one of the key underlying mechanisms for the detrimental effect of sustained CaMKII activation. CaMKII integrates β-adrenergic, Gq coupled receptor, reactive oxygen species (ROS), hyperglycemia, and pro-death cytokine signaling to elicit myocardial apoptosis by intrinsic and extrinsic pathways. New evidence demonstrates CaMKII is also a key mediator of receptor interacting serine/threonine kinase 3 (RIP3)-induced myocardial necroptosis. The role of CaMKII in cell death is dependent upon subcellular localization and varies across isoforms and splice variants. While CaMKII is now an extensively validated nodal signal for promoting cardiac myocyte death, the upstream and downstream pathways and targets remain incompletely understood, demanding further investigation.
Collapse
Affiliation(s)
- Ning Feng
- Department of Medicine/Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Mark E Anderson
- Department of Medicine/Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Physiology and the Program in Cellular and Molecular Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
69
|
Saddouk FZ, Ginnan R, Singer HA. Ca 2+/Calmodulin-Dependent Protein Kinase II in Vascular Smooth Muscle. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:171-202. [PMID: 28212797 DOI: 10.1016/bs.apha.2016.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ca2+-dependent signaling pathways are central regulators of differentiated vascular smooth muscle (VSM) contractile function. In addition, Ca2+ signals regulate VSM gene transcription, proliferation, and migration of dedifferentiated or "synthetic" phenotype VSM cells. Synthetic phenotype VSM growth and hyperplasia are hallmarks of pervasive vascular diseases including hypertension, atherosclerosis, postangioplasty/in-stent restenosis, and vein graft failure. The serine/threonine protein kinase Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous mediator of intracellular Ca2+ signals. Its multifunctional nature, structural complexity, diversity of isoforms, and splice variants all characterize this protein kinase and make study of its activity and function challenging. The kinase has unique autoregulatory mechanisms, and emerging studies suggest that it can function to integrate Ca2+ and reactive oxygen/nitrogen species signaling. Differentiated VSM expresses primarily CaMKIIγ and -δ isoforms. CaMKIIγ isoform expression correlates closely with the differentiated phenotype, and some studies link its function to regulation of contractile activity and Ca2+ homeostasis. Conversely, synthetic phenotype VSM cells primarily express CaMKIIδ and substantial evidence links it to regulation of gene transcription, proliferation, and migration of VSM in vitro, and vascular hypertrophic and hyperplastic remodeling in vivo. CaMKIIδ and -γ isoforms have opposing functions at the level of cell cycle regulation, proliferation, and VSM hyperplasia in vivo. Isoform switching following vascular injury is a key step in promoting vascular remodeling. Recent availability of genetically engineered mice with smooth muscle deletion of specific isoforms and transgenics expressing an endogenous inhibitor protein (CAMK2N) has enabled a better understanding of CaMKII function in VSM and should facilitate future studies.
Collapse
Affiliation(s)
- F Z Saddouk
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - R Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - H A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States.
| |
Collapse
|
70
|
Inhibition of cardiac CaMKII to cure heart failure: step by step towards translation? Basic Res Cardiol 2016; 111:66. [PMID: 27683175 PMCID: PMC5040741 DOI: 10.1007/s00395-016-0582-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/25/2022]
|
71
|
Kreusser MM, Lehmann LH, Wolf N, Keranov S, Jungmann A, Gröne HJ, Müller OJ, Katus HA, Backs J. Inducible cardiomyocyte-specific deletion of CaM kinase II protects from pressure overload-induced heart failure. Basic Res Cardiol 2016; 111:65. [PMID: 27683174 DOI: 10.1007/s00395-016-0581-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/12/2016] [Indexed: 11/29/2022]
Abstract
CaM kinase II (CaMKII) has been suggested to drive pathological cardiac remodeling and heart failure. However, the evidence provided so far is based on inhibitory strategies using chemical compounds and peptides that also exert off-target effects and followed exclusively preventive strategies. Therefore, the aim of this study was to investigate whether specific CaMKII inhibition after the onset of cardiac stress delays or reverses maladaptive cardiac remodeling and dysfunction. Combined genetic deletion of the two redundant CaMKII genes δ and γ was induced after the onset of overt heart failure as the result of pathological pressure overload induced by transverse aortic constriction (TAC). We used two different strategies to engineer an inducible cardiomyocyte-specific CaMKIIδ/CaMKIIγ double knockout mouse model (DKO): one model bases on tamoxifen-inducible mER/Cre/mER expression under control of the cardiac-specific αMHC promoter; the other strategy bases on overexpression of Cre recombinase via cardiac-specific gene transfer through adeno-associated virus (AAV9) under control of the cardiac-specific myosin light chain promoter. Both models led to a substantial deletion of CaMKII in failing hearts. To approximate the clinical situation, CaMKII deletion was induced 3 weeks after TAC surgery. In both models of DKO, the progression of cardiac dysfunction and interstitial fibrosis could be slowed down as compared to control animals. Taken together, we show for the first time that "therapeutic" CaMKII deletion after cardiac damage is sufficient to attenuate maladaptive cardiac remodeling and to reverse signs of heart failure. These data suggest that CaMKII inhibition is a promising therapeutic approach to combat heart failure.
Collapse
Affiliation(s)
- Michael M Kreusser
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Lorenz H Lehmann
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.,Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Nora Wolf
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Stanislav Keranov
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Andreas Jungmann
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Oliver J Müller
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany
| | - Johannes Backs
- Department of Molecular Cardiology and Epigenetics, University of Heidelberg, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany. .,Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site, Heidelberg/Mannheim, Germany.
| |
Collapse
|
72
|
Abstract
The aim of this review is to provide the reader with a synopsis of some of the emerging ideas and experimental findings in cardiac physiology and pathophysiology that were published in 2015. To provide context for the non-specialist, a brief summary of cardiac contraction and calcium (Ca) regulation in the heart in health and disease is provided. Thereafter, some recently published articles are introduced that indicate the current thinking on (1) the Ca regulatory pathways modulated by Ca/calmodulin-dependent protein kinase II, (2) the potential influences of nitrosylation by nitric oxide or S-nitrosated proteins, (3) newly observed effects of reactive oxygen species (ROS) on contraction and Ca regulation following myocardial infarction and a possible link with changes in mitochondrial Ca, and (4) the effects of some of these signaling pathways on late Na current and pro-arrhythmic afterdepolarizations as well as the effects of transverse tubule disturbances.
Collapse
Affiliation(s)
- Ken T MacLeod
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
73
|
Dries E, Santiago DJ, Johnson DM, Gilbert G, Holemans P, Korte SM, Roderick HL, Sipido KR. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft. J Physiol 2016; 594:5923-5939. [PMID: 27121757 PMCID: PMC5063942 DOI: 10.1113/jp271965] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/17/2016] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS The dyadic cleft, where coupled ryanodine receptors (RyRs) reside, is thought to serve as a microdomain for local signalling, as supported by distinct modulation of coupled RyRs dependent on Ca2+ /calmodulin-dependent kinase II (CaMKII) activation during high-frequency stimulation. Sympathetic stimulation through β-adrenergic receptors activates an integrated signalling cascade, enhancing Ca2+ cycling and is at least partially mediated through CaMKII. Here we report that CaMKII activation during β-adrenergic signalling is restricted to the dyadic cleft, where it enhances activity of coupled RyRs thereby contributing to the increase in diastolic events. Nitric oxide synthase 1 equally participates in the local modulation of coupled RyRs. In contrast, the increase in the Ca2+ content of the sarcoplasmic reticulum and related increase in the amplitude of the Ca2+ transient are primarily protein kinase A-dependent. The present data extend the concept of microdomain signalling in the dyadic cleft and give perspectives for selective modulation of RyR subpopulations and diastolic events. ABSTRACT In cardiac myocytes, β-adrenergic stimulation enhances Ca2+ cycling through an integrated signalling cascade modulating L-type Ca2+ channels (LTCCs), phospholamban and ryanodine receptors (RyRs). Ca2+ /calmodulin-dependent kinase II (CaMKII) and nitric oxide synthase 1 (NOS1) are proposed as prime mediators for increasing RyR open probability. We investigate whether this pathway is confined to the high Ca2+ microdomain of the dyadic cleft and thus to coupled RyRs. Pig ventricular myocytes are studied under whole-cell voltage-clamp and confocal line-scan imaging with Fluo-4 as a [Ca2+ ]i indicator. Following conditioning depolarizing pulses, spontaneous RyR activity is recorded as Ca2+ sparks, which are assigned to coupled and non-coupled RyR clusters. Isoproterenol (ISO) (10 nm) increases Ca2+ spark frequency in both populations of RyRs. However, CaMKII inhibition reduces spark frequency in coupled RyRs only; NOS1 inhibition mimics the effect of CaMKII inhibition. Moreover, ISO induces the repetitive activation of coupled RyR clusters through CaMKII activation. Immunostaining shows high levels of CaMKII phosphorylation at the dyadic cleft. CaMKII inhibition reduces ICaL and local Ca2+ transients during depolarizing steps but has only modest effects on amplitude or relaxation of the global Ca2+ transient. In contrast, protein kinase A (PKA) inhibition reduces spark frequency in all RyRs concurrently with a reduction of sarcoplasmic reticulum Ca2+ content, Ca2+ transient amplitude and relaxation. In conclusion, CaMKII activation during β-adrenergic stimulation is restricted to the dyadic cleft microdomain, enhancing LTCC-triggered local Ca2+ release as well as spontaneous diastolic Ca2+ release whilst PKA is the major pathway increasing global Ca2+ cycling. Selective CaMKII inhibition may reduce potentially arrhythmogenic release without negative inotropy.
Collapse
Affiliation(s)
- Eef Dries
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Demetrio J Santiago
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Daniel M Johnson
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Guillaume Gilbert
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Patricia Holemans
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Sanne M Korte
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - H Llewelyn Roderick
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Karin R Sipido
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium.
| |
Collapse
|
74
|
Habecker BA, Anderson ME, Birren SJ, Fukuda K, Herring N, Hoover DB, Kanazawa H, Paterson DJ, Ripplinger CM. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease. J Physiol 2016; 594:3853-75. [PMID: 27060296 DOI: 10.1113/jp271840] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/15/2016] [Indexed: 12/12/2022] Open
Abstract
The nervous system and cardiovascular system develop in concert and are functionally interconnected in both health and disease. This white paper focuses on the cellular and molecular mechanisms that underlie neural-cardiac interactions during development, during normal physiological function in the mature system, and during pathological remodelling in cardiovascular disease. The content on each subject was contributed by experts, and we hope that this will provide a useful resource for newcomers to neurocardiology as well as aficionados.
Collapse
Affiliation(s)
- Beth A Habecker
- Department of Physiology and Pharmacology, Department of Medicine Division of Cardiovascular Medicine and Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Mark E Anderson
- Johns Hopkins Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Susan J Birren
- Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, MA, 02453, USA
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Donald B Hoover
- Department of Biomedical Sciences, Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, 35-Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | | |
Collapse
|
75
|
Bhattacharyya M, Stratton MM, Going CC, McSpadden ED, Huang Y, Susa AC, Elleman A, Cao YM, Pappireddi N, Burkhardt P, Gee CL, Barros T, Schulman H, Williams ER, Kuriyan J. Molecular mechanism of activation-triggered subunit exchange in Ca(2+)/calmodulin-dependent protein kinase II. eLife 2016; 5. [PMID: 26949248 PMCID: PMC4859805 DOI: 10.7554/elife.13405] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/03/2016] [Indexed: 12/04/2022] Open
Abstract
Activation triggers the exchange of subunits in Ca2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones. DOI:http://dx.doi.org/10.7554/eLife.13405.001 How does memory outlast the lifetime of the molecules that encode it? One enzyme that is found in neurons and has been suggested to help long-term memories to form is called CaMKII. Each CaMKII assembly is typically composed of 12 to 14 protein subunits associated in a ring and can exist in either an “unactivated” or “activated” state. In 2014, researchers showed that CaMKII assemblies can exchange subunits with each other. Importantly, an active CaMKII can mix with an unactivated CaMKII and share its activation state. CaMKII may use this mechanism to spread information to the next generation of proteins – thereby allowing activation to outlast the lifespan of the initially activated proteins. However the molecular mechanism that underlies this process was not clear. Now, Bhattacharyya et al. – including some of the researchers involved in the 2014 work – address two questions about this mechanism. How do subunits exchange between CaMKII assemblies? And how does the activation of CaMKII initiate subunit exchange? A closed-ring hub ties the subunits of CaMKII together, similar to the organization of the segments in an orange. To undergo subunit exchange, the hub must open up to release and accept subunits. Bhattacharyya et al. have now uncovered an intrinsic flexibility in the hub that is triggered by a short peptide segment in CaMKII. This segment, which is exposed in activated CaMKII but not in the unactivated form, can crack open the hub ring by binding between the hub subunits, like a finger separating the segments of an orange. This allows the hub to flex and expand, and once open, the hub’s flexibility allows room for subunits to be released or accepted. Although this subunit exchange mechanism could be a powerful means for spreading the activated state throughout signaling pathways, the biological relevance of this phenomenon has not been clarified. However, the mechanistic framework provided by Bhattacharyya et al. may allow new experiments to be performed that test the consequences of subunit exchange in live cells and organisms. It could also enable investigations into the importance of subunit exchange in long-term memory. DOI:http://dx.doi.org/10.7554/eLife.13405.002
Collapse
Affiliation(s)
- Moitrayee Bhattacharyya
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Margaret M Stratton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Catherine C Going
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Ethan D McSpadden
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Yongjian Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Anna C Susa
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Anna Elleman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Yumeng Melody Cao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Nishant Pappireddi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Pawel Burkhardt
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Tiago Barros
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | | | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
76
|
Mesubi OO, Anderson ME. Atrial remodelling in atrial fibrillation: CaMKII as a nodal proarrhythmic signal. Cardiovasc Res 2016; 109:542-57. [PMID: 26762270 DOI: 10.1093/cvr/cvw002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
CaMKII is a serine-threonine protein kinase that is abundant in myocardium. Emergent evidence suggests that CaMKII may play an important role in promoting atrial fibrillation (AF) by targeting a diverse array of proteins involved in membrane excitability, cell survival, calcium homeostasis, matrix remodelling, inflammation, and metabolism. Furthermore, CaMKII inhibition appears to protect against AF in animal models and correct proarrhythmic, defective intracellular Ca(2+) homeostasis in fibrillating human atrial cells. This review considers current concepts and evidence from animal and human studies on the role of CaMKII in AF.
Collapse
Affiliation(s)
- Olurotimi O Mesubi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Medicine, The Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 9026, Baltimore, MD 21287, USA
| | - Mark E Anderson
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Medicine, The Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 9026, Baltimore, MD 21287, USA Department of Physiology and the Program in Cellular and Molecular Medicine, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
77
|
Anderson ME. Oxidant stress promotes disease by activating CaMKII. J Mol Cell Cardiol 2015; 89:160-7. [PMID: 26475411 PMCID: PMC5075238 DOI: 10.1016/j.yjmcc.2015.10.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/31/2022]
Abstract
CaMKII is activated by oxidation of methionine residues residing in the regulatory domain. Oxidized CaMKII (ox-CaMKII) is now thought to participate in cardiovascular and pulmonary diseases and cancer. This invited review summarizes current evidence for the role of ox-CaMKII in disease, considers critical knowledge gaps and suggests new areas for inquiry.
Collapse
Affiliation(s)
- Mark E Anderson
- Johns Hopkins Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, United States.
| |
Collapse
|
78
|
Affiliation(s)
- Donald M Bers
- From the Department of Pharmacology, University of California, Davis.
| |
Collapse
|