51
|
Guan X, Hou Y, Sun F, Yang Z, Li C. Dysregulated Chemokine Signaling in Cystic Fibrosis Lung Disease: A Potential Therapeutic Target. Curr Drug Targets 2016; 17:1535-1544. [PMID: 26648071 PMCID: PMC6500735 DOI: 10.2174/1389450117666151209120516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/26/2022]
Abstract
CF lung disease is characterized by a chronic and non-resolving activation of the innate immune system with excessive release of chemokines/cytokines including IL-8 and persistent infiltration of immune cells, mainly neutrophils, into the airways. Chronic infection and impaired immune response eventually lead to pulmonary damage characterized by bronchiectasis, emphysema, and lung fibrosis. As a complete knowledge of the pathways responsible for the exaggerated inflammatory response in CF lung disease is lacking, understanding these pathways could reveal new therapeutic targets, and lead to novel treatments. Therefore, there is a strong rationale for the identification of mechanisms and pathways underlying the exaggerated inflammatory response in CF lung disease. This article reviews the role of inflammation in the pathogenesis of CF lung disease, with a focus on the dysregulated signaling involved in the overexpression of chemokine IL-8 and excessive recruitment of neutrophils in CF airways. The findings suggest that targeting the exaggerated IL-8/IL-8 receptor (mainly CXCR2) signaling pathway in immune cells (especially neutrophils) may represent a potential therapeutic strategy for CF lung disease.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuning Hou
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
52
|
Schögler A, Muster RJ, Kieninger E, Casaulta C, Tapparel C, Jung A, Moeller A, Geiser T, Regamey N, Alves MP. Vitamin D represses rhinovirus replication in cystic fibrosis cells by inducing LL-37. Eur Respir J 2015; 47:520-30. [PMID: 26585423 DOI: 10.1183/13993003.00665-2015] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022]
Abstract
Vitamin D has immunomodulatory properties in the defence against pathogens. Its insufficiency is a widespread feature of cystic fibrosis (CF) patients, which are repeatedly suffering from rhinovirus (RV)-induced pulmonary exacerbations.To investigate whether vitamin D has antiviral activity, primary bronchial epithelial cells from CF children were pre-treated with vitamin D and infected with RV16. Antiviral and anti-inflammatory activity of vitamin D was assessed. RV and LL-37 levels were measured in bronchoalveolar lavage (BAL) of CF children infected with RV.Vitamin D reduced RV16 load in a dose-dependent manner in CF cells (10(-7 )M, p<0.01). The antiviral response mediated by interferons remained unchanged by vitamin D in CF cells. Vitamin D did not exert anti-inflammatory properties in RV-infected CF cells. Vitamin D increased the expression of the antimicrobial peptide LL-37 up to 17.4-fold (p<0.05). Addition of exogenous LL-37 decreased viral replication by 4.4-fold in CF cells (p<0.05). An inverse correlation between viral load and LL-37 levels in CF BAL (r=-0.48, p<0.05) was observed.RV replication in primary CF bronchial cells was reduced by vitamin D through the induction of LL-37. Clinical studies are needed to determine the importance of an adequate control of vitamin D for prevention of virus-induced pulmonary CF exacerbations.
Collapse
Affiliation(s)
- Aline Schögler
- Division of Paediatric Respiratory Medicine, University Children's Hospital, Bern, Switzerland Dept of Clinical Research, University of Bern, Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ricardo J Muster
- Division of Paediatric Respiratory Medicine, University Children's Hospital, Bern, Switzerland Dept of Clinical Research, University of Bern, Bern, Switzerland
| | - Elisabeth Kieninger
- Division of Paediatric Respiratory Medicine, University Children's Hospital, Bern, Switzerland University Children`s Hospital Basel, UKBB, Basel, Switzerland
| | - Carmen Casaulta
- Division of Paediatric Respiratory Medicine, University Children's Hospital, Bern, Switzerland
| | - Caroline Tapparel
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andreas Jung
- Division of Respiratory Medicine, University Children's Hospital, Zürich, Switzerland
| | - Alexander Moeller
- Division of Respiratory Medicine, University Children's Hospital, Zürich, Switzerland
| | - Thomas Geiser
- Dept of Clinical Research, University of Bern, Bern, Switzerland Dept of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland
| | - Nicolas Regamey
- Dept of Clinical Research, University of Bern, Bern, Switzerland Division of Paediatric Respiratory Medicine, Lucerne Children's Hospital, Lucerne, Switzerland
| | - Marco P Alves
- Division of Paediatric Respiratory Medicine, University Children's Hospital, Bern, Switzerland Dept of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
53
|
van ‘t Wout EFA, van Schadewijk A, van Boxtel R, Dalton LE, Clarke HJ, Tommassen J, Marciniak SJ, Hiemstra PS. Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells. PLoS Pathog 2015; 11:e1004946. [PMID: 26083346 PMCID: PMC4471080 DOI: 10.1371/journal.ppat.1004946] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 05/11/2015] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa infection can be disastrous in chronic lung diseases such as cystic fibrosis and chronic obstructive pulmonary disease. Its toxic effects are largely mediated by secreted virulence factors including pyocyanin, elastase and alkaline protease (AprA). Efficient functioning of the endoplasmic reticulum (ER) is crucial for cell survival and appropriate immune responses, while an excess of unfolded proteins within the ER leads to “ER stress” and activation of the “unfolded protein response” (UPR). Bacterial infection and Toll-like receptor activation trigger the UPR most likely due to the increased demand for protein folding of inflammatory mediators. In this study, we show that cell-free conditioned medium of the PAO1 strain of P. aeruginosa, containing secreted virulence factors, induces ER stress in primary bronchial epithelial cells as evidenced by splicing of XBP1 mRNA and induction of CHOP, GRP78 and GADD34 expression. Most aspects of the ER stress response were dependent on TAK1 and p38 MAPK, except for the induction of GADD34 mRNA. Using various mutant strains and purified virulence factors, we identified pyocyanin and AprA as inducers of ER stress. However, the induction of GADD34 was mediated by an ER stress-independent integrated stress response (ISR) which was at least partly dependent on the iron-sensing eIF2α kinase HRI. Our data strongly suggest that this increased GADD34 expression served to protect against Pseudomonas-induced, iron-sensitive cell cytotoxicity. In summary, virulence factors from P. aeruginosa induce ER stress in airway epithelial cells and also trigger the ISR to improve cell survival of the host. Pseudomonas aeruginosa causes a devastating infection when it affects patients with cystic fibrosis or other chronic lung diseases. It often causes chronic infection due to its resistance to antibiotic treatment and its ability to form biofilms in these patients. The toxic effects of P. aeruginosa are largely mediated by secreted virulence factors. Efficient functioning of the endoplasmic reticulum is crucial for cell survival and appropriate immune responses, while its dysfunction causes stress and activation of the unfolded protein response. In this study, we found that virulence factors secreted by P. aeruginosa trigger the unfolded protein response in human cells by causing endoplasmic reticulum stress. In addition, secreted virulence factors activate the integrated stress response via a parallel independent pathway. Both stress pathways lead to the induction of the protein GADD34, which appears to provide protection against the toxic effects of the secreted virulence factors.
Collapse
Affiliation(s)
- Emily F. A. van ‘t Wout
- Department of Pulmonology, Leiden University Medical Centre, Leiden, the Netherlands
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | | | - Ria van Boxtel
- Department of Molecular Microbiology, Utrecht University, Utrecht, the Netherlands
| | - Lucy E. Dalton
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | - Hanna J. Clarke
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | - Jan Tommassen
- Department of Molecular Microbiology, Utrecht University, Utrecht, the Netherlands
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, United Kingdom
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
54
|
Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores. PLoS One 2015; 10:e0127267. [PMID: 26024524 PMCID: PMC4449158 DOI: 10.1371/journal.pone.0127267] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/13/2015] [Indexed: 12/22/2022] Open
Abstract
Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS). In human bronchial epithelial cell cultures (HBECCs), maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h), to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5–2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist-induced mucin secretion.
Collapse
|
55
|
Philippe R, Antigny F, Buscaglia P, Norez C, Becq F, Frieden M, Mignen O. SERCA and PMCA pumps contribute to the deregulation of Ca2+ homeostasis in human CF epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:892-903. [PMID: 25661196 DOI: 10.1016/j.bbamcr.2015.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 11/26/2022]
Abstract
Cystic Fibrosis (CF) disease is caused by mutations in the CFTR gene (CF transmembrane conductance regulator). F508 deletion is the most represented mutation, and F508del-CFTR is absent of plasma membrane and accumulates into the endoplasmic reticulum (ER) compartment. Using specific Ca2+ genetics cameleon probes, we showed in the human bronchial CF epithelial cell line CFBE that ER Ca2+ concentration was strongly increased compared to non-CF (16HBE) cells, and normalized by the F508del-CFTR corrector agent, VX-809. We also showed that ER F508del-CFTR retention increases SERCA (Sarcoplasmic/Reticulum Ca2+ ATPase) pump activity whereas PMCA (Plasma Membrane Ca2+ ATPase) activities were reduced in these CF cells compared to corrected CF cells (VX-809) and non-CF cells. We are showing for the first time CFTR/SERCA and CFTR/PMCA interactions that are modulated in CF cells and could explain part of Ca2+ homeostasis deregulation due to mislocalization of F508del-CFTR. Using ER or mitochondria genetics Ca2+ probes, we are showing that ER Ca2+ content, mitochondrial Ca2+ uptake, SERCA and PMCA pump, activities are strongly affected by the localization of F508del-CFTR protein.
Collapse
Affiliation(s)
- Réginald Philippe
- NSERM U1078, Université Bretagne Occidentale, 22 Avenue Camille Desmoulins, 29200 Brest, France
| | - Fabrice Antigny
- Department of Basic Neurosciences, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Paul Buscaglia
- NSERM U1078, Université Bretagne Occidentale, 22 Avenue Camille Desmoulins, 29200 Brest, France
| | - Caroline Norez
- Laboratoire Signalisation et Transport Ioniques Membranaires, Université Poitiers-CNRS Pole Biologie Santé, 1 rue George Bonnet, 86073 Poitiers Cedex, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transport Ioniques Membranaires, Université Poitiers-CNRS Pole Biologie Santé, 1 rue George Bonnet, 86073 Poitiers Cedex, France
| | - Maud Frieden
- Cell Physiology and Metabolism University of Geneva Medical School, 1, Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Olivier Mignen
- NSERM U1078, Université Bretagne Occidentale, 22 Avenue Camille Desmoulins, 29200 Brest, France.
| |
Collapse
|
56
|
Oglesby IK, Agrawal R, Mall MA, McElvaney NG, Greene CM. miRNA-221 is elevated in cystic fibrosis airway epithelial cells and regulates expression of ATF6. Mol Cell Pediatr 2015; 2:1. [PMID: 26542291 PMCID: PMC5407678 DOI: 10.1186/s40348-014-0012-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 11/28/2014] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNA (miRNA) and messenger RNA (mRNA) expression differs in
cystic fibrosis (CF) versus non-CF bronchial epithelium. Here, the role of miRNA
in basal regulation of the transcription factor ATF6 was investigated in bronchial
epithelial cells in vitro and in vivo. Methods Using in silico analysis, miRNAs
predicted to target the 3′untranslated region (3′UTR) of the human ATF6 mRNA were
identified. Results Three of these miRNAs, miR-145, miR-221 and miR-494, were upregulated in
F508del-CFTR homozygous CFBE41o- versus non-CF 16HBE14o- bronchial epithelial
cells and also in F508del-CFTR homozygous or heterozygous CF (n = 8) versus non-CF (n = 9) bronchial brushings. ATF6 was experimentally validated as a
molecular target of these miRNAs through the use of a luciferase reporter vector
containing the full-length 3′UTR of ATF6. Expression of ATF6 was observed to be
decreased in CF both in vivo and in vitro. miR-221 was also predicted to regulate murine
ATF6, and its expression was significantly increased in native airway tissues of
6-week-old βENaC-overexpressing transgenic mice with CF-like lung disease versus
wild-type littermates. Conclusions These results implicate miR-145, miR-221 and miR-494 in the
regulation of ATF6 in CF bronchial epithelium, with miR-221 demonstrating
structural and functional conservation between humans and mice. The altered miRNA
expression evident in CF bronchial epithelial cells can affect expression of
transcriptional regulators such as ATF6.
Collapse
Affiliation(s)
- Irene K Oglesby
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, 9, Ireland.
| | - Raman Agrawal
- Department of Translational Pulmonology, Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center, Member of the German Center for Lung Research, University of Heidelberg, 69120, Heidelberg, Germany. .,Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Noel G McElvaney
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, 9, Ireland.
| | - Catherine M Greene
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, 9, Ireland.
| |
Collapse
|
57
|
Adam D, Roux-Delrieu J, Luczka E, Bonnomet A, Lesage J, Mérol JC, Polette M, Abély M, Coraux C. Cystic fibrosis airway epithelium remodelling: involvement of inflammation. J Pathol 2014; 235:408-19. [DOI: 10.1002/path.4471] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/02/2014] [Accepted: 10/21/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Damien Adam
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Jacqueline Roux-Delrieu
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Emilie Luczka
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Arnaud Bonnomet
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | - Julien Lesage
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| | | | - Myriam Polette
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
- Laboratory of Histology; University Hospital Centre; Reims France
| | - Michel Abély
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
- Pediatric Unit A, American Memorial Hospital; University Hospital Centre; Reims France
| | - Christelle Coraux
- INSERM UMR-S 903, SFR CAP-SANTE (FED 4231); University of Reims Champagne-Ardenne; Reims France
| |
Collapse
|
58
|
Vachel L, Norez C, Jayle C, Becq F, Vandebrouck C. The low PLC-δ1 expression in cystic fibrosis bronchial epithelial cells induces upregulation of TRPV6 channel activity. Cell Calcium 2014; 57:38-48. [PMID: 25477137 DOI: 10.1016/j.ceca.2014.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/20/2014] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
Abstract
Increase of Ca(2+) influx in Cystic Fibrosis (CF) cells has been reported to be related to Transient Receptor Potential Canonical (TRPC6) channel, which is implicated in a functional coupling with Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Several members of the Transient Receptor Potential Vanilloid (TRPV) channels family have already been described as emerging target for respiratory diseases. Two specific isoforms, TRPV5 and TRPV6 are of particular interest in the context of CF Ca(2+) homeostasis as they are highly selective toward Ca(2+) and constitutively activated. Thus, we investigated the involvement of these channels in Ca(2+) influx in CF and non-CF human bronchial epithelial cell lines. 16HBE14o-, CFBE41o- cell lines, primary human airway epithelial cells (hAEC) and freshly isolated human airway epithelial cells from CF and non-CF individuals were used. We showed that both channels are expressed in CF and non-CF cells and constitutive Ca(2+) influx was significantly higher (85%) in cells from CF individuals compared to cells from non-CF ones. Using the selective inhibitor of TRPV6 channel SOR-C27 and a siRNA strategy, our results revealed that TRPV6 was mostly involved in the increase of Ca(2+) influx. TRPV6 channel is negatively regulated by the PLC-PIP2 pathway. We measured the Ca(2+) influx in the presence of the non-specific PLC inhibitor, U73122, in non-CF human bronchial epithelial cells. Ca(2+) influx was increased by 33% with U73122 and this increase was largely reduced in the presence of SOR-C27. PLC inhibition in CF cells by U73122 had no effect on Ca(2+) influx. These results showed that PLC-PIP2 pathway is dysregulated in CF cells and leads to the increase of TRPV6 activity. The regulation of TRPV6 by PLC-PIP2 pathway implicates the specific PLC isoform, PLC-δ1. Immunoblot experiments revealed that expression of PLC-δ1 was decreased by 70% in CF cells. TRPV6 activity was normalized but not the level of expression of PLC-δ1 protein after F508del-CFTR rescue by low temperature for 48 h or treated for 24 h by 10 μM VX-809 in CF cells. This study revealed TRPV6 and PLC-δ1 as critical actor of Ca(2+) homeostasis in CF human bronchial epithelial cells.
Collapse
Affiliation(s)
- Laura Vachel
- Laboratoire Signalisation et Transports Ioniques Membranaires ERL 7368 CNRS, Université de Poitiers, 86073 Poitiers, France
| | - Caroline Norez
- Laboratoire Signalisation et Transports Ioniques Membranaires ERL 7368 CNRS, Université de Poitiers, 86073 Poitiers, France
| | - Christophe Jayle
- Service de Chirurgie Cardiothoracique, CHU Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires ERL 7368 CNRS, Université de Poitiers, 86073 Poitiers, France
| | - Clarisse Vandebrouck
- Laboratoire Signalisation et Transports Ioniques Membranaires ERL 7368 CNRS, Université de Poitiers, 86073 Poitiers, France.
| |
Collapse
|
59
|
Pfister S, Weber T, Härtig W, Schwerdel C, Elsaesser R, Knuesel I, Fritschy JM. Novel role of cystic fibrosis transmembrane conductance regulator in maintaining adult mouse olfactory neuronal homeostasis. J Comp Neurol 2014; 523:406-30. [PMID: 25271146 DOI: 10.1002/cne.23686] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 02/03/2023]
Abstract
The olfactory epithelium (OE) of mice deficient in cystic fibrosis transmembrane conductance regulator (CFTR) exhibits ion transport deficiencies reported in human CF airways, as well as progressive neuronal loss, suggesting defects in olfactory neuron homeostasis. Microvillar cells, a specialized OE cell-subtype, have been implicated in maintaining tissue homeostasis. These cells are endowed with a PLCβ2/IP3 R3/TRPC6 signal transduction pathway modulating release of neuropeptide Y (NPY), which stimulates OE stem cell activity. It is unknown, however, whether microvillar cells also mediate the deficits observed in CFTR-null mice. Here we show that Cftr mRNA in mouse OE is exclusively localized in microvillar cells and CFTR immunofluorescence is coassociated with the scaffolding protein NHERF-1 and PLCβ2 in microvilli. In CFTR-null mice, PLCβ2 was undetectable, NHERF-1 mislocalized, and IP3 R3 more intensely stained, along with increased levels of NPY, suggesting profound alteration of the PLCβ2/IP3 R3 signaling pathway. In addition, basal olfactory neuron homeostasis was altered, shown by increased progenitor cell proliferation, differentiation, and apoptosis and by reduced regenerative capacity following methimazole-induced neurodegeneration. The importance of CFTR in microvillar cells was further underscored by decreased thickness of the OE mucus layer and increased numbers of immune cells within this tissue in CFTR-KO mice. Finally, we observed enhanced immune responses to an acute viral-like infection, as well as hyper-responsiveness to chemical and physical stimuli applied intranasally. Taken together, these data strengthen the notion that microvillar cells in the OE play a key role in maintaining tissue homeostasis and identify several mechanisms underlying this regulation through the multiple functions of CFTR.
Collapse
Affiliation(s)
- Sandra Pfister
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
60
|
Localization of Burkholderia cepacia complex bacteria in cystic fibrosis lungs and interactions with Pseudomonas aeruginosa in hypoxic mucus. Infect Immun 2014; 82:4729-45. [PMID: 25156735 DOI: 10.1128/iai.01876-14] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The localization of Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) lungs, alone or during coinfection with Pseudomonas aeruginosa, is poorly understood. We performed immunohistochemistry for Bcc and P. aeruginosa bacteria on 21 coinfected or singly infected CF lungs obtained at transplantation or autopsy. Parallel in vitro experiments examined the growth of two Bcc species, Burkholderia cenocepacia and Burkholderia multivorans, in environments similar to those occupied by P. aeruginosa in the CF lung. Bcc bacteria were predominantly identified in the CF lung as single cells or small clusters within phagocytes and mucus but not as "biofilm-like structures." In contrast, P. aeruginosa was identified in biofilm-like masses, but densities appeared to be reduced during coinfection with Bcc bacteria. Based on chemical analyses of CF and non-CF respiratory secretions, a test medium was defined to study Bcc growth and interactions with P. aeruginosa in an environment mimicking the CF lung. When test medium was supplemented with alternative electron acceptors under anaerobic conditions, B. cenocepacia and B. multivorans used fermentation rather than anaerobic respiration to gain energy, consistent with the identification of fermentation products by high-performance liquid chromatography (HPLC). Both Bcc species also expressed mucinases that produced carbon sources from mucins for growth. In the presence of P. aeruginosa in vitro, both Bcc species grew anaerobically but not aerobically. We propose that Bcc bacteria (i) invade a P. aeruginosa-infected CF lung when the airway lumen is anaerobic, (ii) inhibit P. aeruginosa biofilm-like growth, and (iii) expand the host bacterial niche from mucus to also include macrophages.
Collapse
|
61
|
van 't Wout EFA, Hiemstra PS, Marciniak SJ. The integrated stress response in lung disease. Am J Respir Cell Mol Biol 2014; 50:1005-9. [PMID: 24605820 DOI: 10.1165/rcmb.2014-0019tr] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lungs are repeatedly exposed to inhaled toxic insults, such as smoke, diesel exhaust, and microbes, which elicit cellular stress responses. The phosphorylation of eukaryotic translation initiation factor 2α by one of four stress-sensing kinases triggers a pathway called the integrated stress response that helps protect cellular reserves of nutrients and prevents the accumulation of toxic proteins. In this review, we discuss how activation of the integrated stress response has been shown to play an important role in pulmonary pathology, and how its study may help in the development of novel therapies for diverse conditions, from hypoxia to cancer.
Collapse
Affiliation(s)
- Emily F A van 't Wout
- 1 Department of Pulmonology, Leiden University Medical Centre, Leiden, the Netherlands; and
| | | | | |
Collapse
|
62
|
Pranke IM, Sermet-Gaudelus I. Biosynthesis of cystic fibrosis transmembrane conductance regulator. Int J Biochem Cell Biol 2014; 52:26-38. [DOI: 10.1016/j.biocel.2014.03.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 01/19/2023]
|
63
|
Henderson AG, Ehre C, Button B, Abdullah LH, Cai LH, Leigh MW, DeMaria GC, Matsui H, Donaldson SH, Davis CW, Sheehan JK, Boucher RC, Kesimer M. Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure. J Clin Invest 2014; 124:3047-60. [PMID: 24892808 DOI: 10.1172/jci73469] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The pathogenesis of mucoinfective lung disease in cystic fibrosis (CF) patients likely involves poor mucus clearance. A recent model of mucus clearance predicts that mucus flow depends on the relative mucin concentration of the mucus layer compared with that of the periciliary layer; however, mucin concentrations have been difficult to measure in CF secretions. Here, we have shown that the concentration of mucin in CF sputum is low when measured by immunologically based techniques, and mass spectrometric analyses of CF mucins revealed mucin cleavage at antibody recognition sites. Using physical size exclusion chromatography/differential refractometry (SEC/dRI) techniques, we determined that mucin concentrations in CF secretions were higher than those in normal secretions. Measurements of partial osmotic pressures revealed that the partial osmotic pressure of CF sputum and the retained mucus in excised CF lungs were substantially greater than the partial osmotic pressure of normal secretions. Our data reveal that mucin concentration cannot be accurately measured immunologically in proteolytically active CF secretions; mucins are hyperconcentrated in CF secretions; and CF secretion osmotic pressures predict mucus layer-dependent osmotic compression of the periciliary liquid layer in CF lungs. Consequently, mucin hypersecretion likely produces mucus stasis, which contributes to key infectious and inflammatory components of CF lung disease.
Collapse
|
64
|
Umunakwe OC, Seegmiller AC. Abnormal n-6 fatty acid metabolism in cystic fibrosis is caused by activation of AMP-activated protein kinase. J Lipid Res 2014; 55:1489-97. [PMID: 24859760 DOI: 10.1194/jlr.m050369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) patients and model systems exhibit consistent abnormalities in PUFA metabolism, including increased metabolism of linoleate to arachidonate. Recent studies have connected these abnormalities to increased expression and activity of the Δ6- and Δ5-desaturase enzymes. However, the mechanism connecting these changes to the CF transmembrane conductance regulator (CFTR) mutations responsible for CF is unknown. This study tests the hypothesis that increased activity of AMP-activated protein kinase (AMPK), previously described in CF bronchial epithelial cells, causes these changes in fatty acid metabolism by driving desaturase expression. Using CF bronchial epithelial cell culture models, we confirm elevated activity of AMPK in CF cells and show that it is due to increased phosphorylation of AMPK by Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ). We also show that inhibition of AMPK or CaMKKβ reduces desaturase expression and reverses the metabolic alterations seen in CF cells. These results signify a novel AMPK-dependent mechanism linking the genetic defect in CF to alterations in PUFA metabolism.
Collapse
Affiliation(s)
- Obi C Umunakwe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| | - Adam C Seegmiller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
65
|
Stober VP, Szczesniak C, Childress Q, Heise RL, Bortner C, Hollingsworth JW, Neuringer IP, Palmer SM, Garantziotis S. Bronchial epithelial injury in the context of alloimmunity promotes lymphocytic bronchiolitis through hyaluronan expression. Am J Physiol Lung Cell Mol Physiol 2014; 306:L1045-55. [PMID: 24748604 DOI: 10.1152/ajplung.00353.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epithelial injury is often detected in lung allografts, however, its relation to rejection pathogenesis is unknown. We hypothesized that sterile epithelial injury can lead to alloimmune activation in the lung. We performed adoptive transfer of mismatched splenocytes into recombinant activating gene 1 (Rag1)-deficient mice to induce an alloimmune status and then exposed these mice to naphthalene to induce sterile epithelial injury. We evaluated lungs for presence of alloimmune lung injury, endoplasmic reticulum (ER) stress, and hyaluronan expression, examined the effect of ER stress induction on hyaluronan expression and lymphocyte trapping by bronchial epithelia in vitro, and examined airways from patients with bronchiolitis obliterans syndrome and normal controls histologically. We found that Rag1-deficient mice that received mismatched splenocytes and naphthalene injection displayed bronchial epithelial ER stress, peribronchial hyaluronan expression, and lymphocytic bronchitis. Bronchial epithelial ER stress led to the expression of lymphocyte-trapping hyaluronan cables in vitro. Blockade of hyaluronan binding ameliorated naphthalene-induced lymphocytic bronchitis. ER stress was present histologically in >40% of bronchial epithelia of BOS patients and associated with subepithelial hyaluronan deposition. We conclude that sterile bronchial epithelial injury in the context of alloimmunity can lead to sustained ER stress and promote allograft rejection through hyaluronan expression.
Collapse
Affiliation(s)
- Vandy P Stober
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Christopher Szczesniak
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Quiana Childress
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Rebecca L Heise
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Carl Bortner
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | - Scott M Palmer
- Duke University Medical Center, Durham, North Carolina; and
| | - Stavros Garantziotis
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina;
| |
Collapse
|
66
|
Payet LA, Kadri L, Giraud S, Norez C, Berjeaud JM, Jayle C, Mirval S, Becq F, Vandebrouck C, Ferreira T. Cystic fibrosis bronchial epithelial cells are lipointoxicated by membrane palmitate accumulation. PLoS One 2014; 9:e89044. [PMID: 24586495 PMCID: PMC3929646 DOI: 10.1371/journal.pone.0089044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/14/2014] [Indexed: 12/11/2022] Open
Abstract
The F508del-CFTR mutation, responsible for Cystic Fibrosis (CF), leads to the retention of the protein in the endoplasmic reticulum (ER). The mistrafficking of this mutant form can be corrected by pharmacological chaperones, but these molecules showed limitations in clinical trials. We therefore hypothesized that important factors in CF patients may have not been considered in the in vitro assays. CF has also been associated with an altered lipid homeostasis, i. e. a decrease in polyunsaturated fatty acid levels in plasma and tissues. However, the precise fatty acyl content of membrane phospholipids from human CF bronchial epithelial cells had not been studied to date. Since the saturation level of phospholipids can modulate crucial membrane properties, with potential impacts on membrane protein folding/trafficking, we analyzed this parameter for freshly isolated bronchial epithelial cells from CF patients. Interestingly, we could show that Palmitate, a saturated fatty acid, accumulates within Phosphatidylcholine (PC) in CF freshly isolated cells, in a process that could result from hypoxia. The observed PC pattern can be recapitulated in the CFBE41o(-) cell line by incubation with 100 µM Palmitate. At this concentration, Palmitate induces an ER stress, impacts calcium homeostasis and leads to a decrease in the activity of the corrected F508del-CFTR. Overall, these data suggest that bronchial epithelial cells are lipointoxicated by hypoxia-related Palmitate accumulation in CF patients. We propose that this phenomenon could be an important bottleneck for F508del-CFTR trafficking correction by pharmacological agents in clinical trials.
Collapse
Affiliation(s)
- Laurie-Anne Payet
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Linette Kadri
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Sébastien Giraud
- Service de Biochimie, CHU Poitiers, Poitiers, France
- Inserm U1082, Poitiers, France
- Faculté de Médecine et de Pharmacie Université de Poitiers, Poitiers, France
| | - Caroline Norez
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Jean Marc Berjeaud
- Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Christophe Jayle
- Service de Chirurgie Cardiothoracique, CHU Poitiers, Poitiers, France
| | - Sandra Mirval
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Clarisse Vandebrouck
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
| | - Thierry Ferreira
- Signalisation et Transports Ioniques Membranaires, ERL CNRS 7368, Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
67
|
Esther CR, Alexis NE, Picher M. Regulation of airway nucleotides in chronic lung diseases. Subcell Biochem 2014; 55:75-93. [PMID: 21560045 DOI: 10.1007/978-94-007-1217-1_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physiological relevance of the purinergic signaling network for airway defenses is emerging through cumulating reports of abnormal ATP and adenosine (ADO) levels in the airway secretions of patients with asthma, chronic pulmonary obstructive diseases, cystic fibrosis and idiopathic pulmonary fibrosis. The consequences for airway defenses range from abnormal clearance responses to the destruction of lung tissue by excessive inflammation. This chapter reviews the challenges of assessing airway purines in human subjects, and identifies the general trend in aberrant airway composition. Most diseases are associated with an accumulation of ATP and/or ADO in bronchoalveolar lavage, sputum or exhaled breadth condensate. Intriguing is the case of cystic fibrosis patients, which do not accumulate airway ADO, but its precursor, AMP. This observation launched the investigation of ectonucleotidases as target proteins for the correction of airway purine levels in chronic respiratory diseases. This chapter exposes the extensive rearrangement of the enzymatic network taking place in diseased airways, and identifies signaling pathways likely involved in the aberrant regulation of the airway purines.
Collapse
Affiliation(s)
- Charles R Esther
- Pediatric Pulmonology, University of North Carolina, Chapel Hill, NC, 27599, USA,
| | | | | |
Collapse
|
68
|
Okada SF, Ribeiro CMP, Sesma JI, Seminario-Vidal L, Abdullah LH, van Heusden C, Lazarowski ER, Boucher RC. Inflammation promotes airway epithelial ATP release via calcium-dependent vesicular pathways. Am J Respir Cell Mol Biol 2013; 49:814-20. [PMID: 23763446 DOI: 10.1165/rcmb.2012-0493oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)-associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling-promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca(2+) chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca(2+)-dependent vesicular mechanisms not associated with mucin granule secretion.
Collapse
Affiliation(s)
- Seiko F Okada
- 1 Cystic Fibrosis/Pulmonary Research and Treatment Center, Department of Medicine, and
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Normal CFTR inhibits epidermal growth factor receptor-dependent pro-inflammatory chemokine production in human airway epithelial cells. PLoS One 2013; 8:e72981. [PMID: 23977375 PMCID: PMC3745379 DOI: 10.1371/journal.pone.0072981] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/18/2013] [Indexed: 01/14/2023] Open
Abstract
Mutations in cystic fibrosis transmembrane conductance regulator (CFTR) protein cause cystic fibrosis, a disease characterized by exaggerated airway epithelial production of the neutrophil chemokine interleukin (IL)-8, which results in exuberant neutrophilic inflammation. Because activation of an epidermal growth factor receptor (EGFR) signaling cascade induces airway epithelial IL-8 production, we hypothesized that normal CFTR suppresses EGFR-dependent IL-8 production and that loss of CFTR at the surface exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade. We examined this hypothesis in human airway epithelial (NCI-H292) cells and in normal human bronchial epithelial (NHBE) cells containing normal CFTR treated with a CFTR-selective inhibitor (CFTR-172), and in human airway epithelial (IB3) cells containing mutant CFTR versus isogenic (C38) cells containing wild-type CFTR. In NCI-H292 cells, CFTR-172 induced IL-8 production EGFR-dependently. Pretreatment with an EGFR neutralizing antibody or the metalloprotease TACE inhibitor TAPI-1, or TACE siRNA knockdown prevented CFTR-172-induced EGFR phosphorylation (EGFR-P) and IL-8 production, implicating TACE-dependent EGFR pro-ligand cleavage in these responses. Pretreatment with neutralizing antibodies to IL-1R or to IL-1alpha, but not to IL-1beta, markedly suppressed CFTR-172-induced EGFR-P and IL-8 production, suggesting that binding of IL-1alpha to IL-1R stimulates a TACE-EGFR-IL-8 cascade. Similarly, in NHBE cells, CFTR-172 increased IL-8 production EGFR-, TACE-, and IL-1alpha/IL-1R-dependently. In IB3 cells, constitutive IL-8 production was markedly increased compared to C38 cells. EGFR-P was increased in IB3 cells compared to C38 cells, and exaggerated IL-8 production in the IB3 cells was EGFR-dependent. Activation of TACE and binding of IL-1alpha to IL-1R contributed to EGFR-P and IL-8 production in IB3 cells but not in C38 cells. Thus, we conclude that normal CFTR suppresses airway epithelial IL-8 production that occurs via a stimulatory EGFR cascade, and that loss of normal CFTR activity exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade.
Collapse
|
70
|
Abstract
Inflammation of human bronchial epithelia (HBE) activates the endoplasmic reticulum (ER) stress transducer inositol-requiring enzyme 1 (IRE1)α, resulting in IRE1α-mediated cytokine production. Previous studies demonstrated ubiquitous expression of IRE1α and gut-restricted expression of IRE1β. We found that IRE1β is also expressed in HBE, is absent in human alveolar cells, and is upregulated in cystic fibrosis and asthmatic HBE. Studies with Ire1β(-/-) mice and Calu-3 airway epithelia exhibiting IRE1β knockdown or overexpression revealed that IRE1β is expressed in airway mucous cells, is functionally required for airway mucin production, and this function is specific for IRE1β vs. IRE1α. IRE1β-dependent mucin production is mediated, at least in part, by activation of the transcription factor X-box binding protein-1 (XBP-1) and the resulting XBP-1-dependent transcription of anterior gradient homolog 2, a gene implicated in airway and intestinal epithelial mucin production. These novel findings suggest that IRE1β is a potential mucous cell-specific therapeutic target for airway diseases characterized by mucin overproduction.
Collapse
|
71
|
Abstract
The respiratory tract has a surface area of approximately 70 m(2) that is in direct contact with the external environment. Approximately 12,000 l of air are inhaled daily, exposing the airway epithelium to up to 25 million particles an hour. Several inhaled environmental triggers, like cigarette smoke, diesel exhaust, or allergens, are known inducers of endoplasmatic reticulum (ER) stress and cause a dysregulation in ER homeostasis. Furthermore, some epithelial cell types along the respiratory tract have a secretory function, producing large amounts of mucus or pulmonary surfactant, as well as innate host defense molecules like defensins. To keep up with their secretory demands, these cells must rely on the appropriate functioning and folding capacity of the ER, and they are particularly more vulnerable to conditions of unresolved ER stress. In the lung interstitium, triggering of ER stress pathways has a major impact on the functioning of vascular smooth muscle cells and fibroblasts, causing aberrant dedifferentiation and proliferation. Given the large amounts of foreign material inhaled, the lung is densely populated by various types of immune cells specialized in engulfing and killing pathogens and in secreting cytokines/chemokines for efficient microbial clearance. Unfolded protein response signaling cascades have been shown to intersect with the functioning of immune cells at all levels. The current review aims to highlight the role of ER stress in health and disease in the lung, focusing on its impact on different structural and inflammatory cell types.
Collapse
|
72
|
Tsuchiya M, Kumar P, Bhattacharyya S, Chattoraj S, Srivastava M, Pollard HB, Biswas R. Differential Regulation of Inflammation by Inflammatory Mediators in Cystic Fibrosis Lung Epithelial Cells. J Interferon Cytokine Res 2013; 33:121-9. [DOI: 10.1089/jir.2012.0074] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Motohiro Tsuchiya
- Molecular and Cell Biology Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Parameet Kumar
- Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sharmistha Bhattacharyya
- Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sangbrita Chattoraj
- Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Harvey B. Pollard
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Roopa Biswas
- Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
73
|
Villella VR, Esposito S, Bruscia EM, Maiuri MC, Raia V, Kroemer G, Maiuri L. Targeting the Intracellular Environment in Cystic Fibrosis: Restoring Autophagy as a Novel Strategy to Circumvent the CFTR Defect. Front Pharmacol 2013; 4:1. [PMID: 23346057 PMCID: PMC3549520 DOI: 10.3389/fphar.2013.00001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/01/2013] [Indexed: 12/18/2022] Open
Abstract
Cystic fibrosis (CF) patients harboring the most common deletion mutation of the CF transmembrane conductance regulator (CFTR), F508del, are poor responders to potentiators of CFTR channel activity which can be used to treat a small subset of CF patients who genetically carry plasma membrane (PM)-resident CFTR mutants. The misfolded F508del-CFTR protein is unstable in the PM even if rescued by pharmacological agents that prevent its intracellular retention and degradation. CF is a conformational disease in which defective CFTR induces an impressive derangement of general proteostasis resulting from disabled autophagy. In this review, we discuss how rescuing Beclin 1 (BECN1), a major player of autophagosome formation, either by means of direct gene transfer or indirectly by administration of proteostasis regulators, could stabilize F508del-CFTR at the PM. We focus on the relationship between the improvement of peripheral proteostasis and CFTR PM stability in F508del-CFTR homozygous bronchial epithelia or mouse lungs. Moreover, this article reviews recent pre-clinical evidence indicating that targeting the intracellular environment surrounding the misfolded mutant CFTR instead of protein itself could constitute an attractive therapeutic option to sensitize patients carrying the F508del-CFTR mutation to the beneficial action of CFTR potentiators on lung inflammation.
Collapse
Affiliation(s)
- Valeria Rachela Villella
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
74
|
Schwingshackl A, Teng B, Ghosh M, Lim KG, Tigyi G, Narayanan D, Jaggar JH, Waters CM. Regulation of interleukin-6 secretion by the two-pore-domain potassium channel Trek-1 in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2012; 304:L276-86. [PMID: 23275623 DOI: 10.1152/ajplung.00299.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We recently proposed a role for the two-pore-domain K(+) (K2P) channel Trek-1 in the regulation of cytokine release from mouse alveolar epithelial cells (AECs) by demonstrating decreased interleukin-6 (IL-6) secretion from Trek-1-deficient cells, but the underlying mechanisms remained unknown. This study was designed to investigate the mechanisms by which Trek-1 decreases IL-6 secretion. We hypothesized that Trek-1 regulates tumor necrosis factor-α (TNF-α)-induced IL-6 release via NF-κB-, p38-, and PKC-dependent pathways. We found that Trek-1 deficiency decreased IL-6 secretion from mouse and human AECs at both transcriptional and translational levels. While NF-κB/p65 phosphorylation was unchanged, p38 phosphorylation was decreased in Trek-1-deficient cells, and pharmacological inhibition of p38 decreased IL-6 secretion in control but not Trek-1-deficient cells. Similarly, pharmacological inhibition of PKC also decreased IL-6 release, and we found decreased phosphorylation of the isoforms PKC/PKDμ (Ser(744/748)), PKCθ, PKCδ, PKCα/βII, and PKCζ/λ, but not PKC/PKDμ (Ser(916)) in Trek-1-deficient AECs. Phosphorylation of PKCθ, a Ca(2+)-independent isoform, was intact in control cells but impaired in Trek-1-deficient cells. Furthermore, TNF-α did not elevate the intracellular Ca(2+) concentration in control or Trek-1-deficient cells, and removal of extracellular Ca(2+) did not impair IL-6 release. In summary, we report the expression of Trek-1 in human AECs and propose that Trek-1 deficiency may alter both IL-6 translation and transcription in AECs without affecting Ca(2+) signaling. The results of this study identify Trek-1 as a new potential target for the development of novel treatment strategies against acute lung injury.
Collapse
Affiliation(s)
- Andreas Schwingshackl
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Mayer ML, Blohmke CJ, Falsafi R, Fjell CD, Madera L, Turvey SE, Hancock REW. Rescue of Dysfunctional Autophagy Attenuates Hyperinflammatory Responses from Cystic Fibrosis Cells. THE JOURNAL OF IMMUNOLOGY 2012; 190:1227-38. [DOI: 10.4049/jimmunol.1201404] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
76
|
Blohmke CJ, Mayer ML, Tang AC, Hirschfeld AF, Fjell CD, Sze MA, Falsafi R, Wang S, Hsu K, Chilvers MA, Hogg JC, Hancock REW, Turvey SE. Atypical activation of the unfolded protein response in cystic fibrosis airway cells contributes to p38 MAPK-mediated innate immune responses. THE JOURNAL OF IMMUNOLOGY 2012; 189:5467-75. [PMID: 23105139 DOI: 10.4049/jimmunol.1103661] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammatory lung disease is the major cause of morbidity and mortality in cystic fibrosis (CF); understanding what produces dysregulated innate immune responses in CF cells will be pivotal in guiding the development of novel anti-inflammatory therapies. To elucidate the molecular mechanisms that mediate exaggerated inflammation in CF following TLR signaling, we profiled global gene expression in immortalized human CF and non-CF airway cells at baseline and after microbial stimulation. Using complementary analysis methods, we observed a signature of increased stress levels in CF cells, specifically characterized by endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and MAPK signaling. Analysis of ER stress responses revealed an atypical induction of the UPR, characterized by the lack of induction of the PERK-eIF2α pathway in three complementary model systems: immortalized CF airway cells, fresh CF blood cells, and CF lung tissue. This atypical pattern of UPR activation was associated with the hyperinflammatory phenotype in CF cells, as deliberate induction of the PERK-eIF2α pathway with salubrinal attenuated the inflammatory response to both flagellin and Pseudomonas aeruginosa. IL-6 production triggered by ER stress and microbial stimulation were both dependent on p38 MAPK activity, suggesting a molecular link between both signaling events. These data indicate that atypical UPR activation fails to resolve the ER stress in CF and sensitizes the innate immune system to respond more vigorously to microbial challenge. Strategies to restore ER homeostasis and normalize the UPR activation profile may represent a novel therapeutic approach to minimize lung-damaging inflammation in CF.
Collapse
Affiliation(s)
- Christoph J Blohmke
- Department of Paediatrics, BC Children's Hospital and Child & Family Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Veit G, Bossard F, Goepp J, Verkman AS, Galietta LJV, Hanrahan JW, Lukacs GL. Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia. Mol Biol Cell 2012; 23:4188-202. [PMID: 22973054 PMCID: PMC3484098 DOI: 10.1091/mbc.e12-06-0424] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Functional expression of either CFTR or the calcium-activated chloride channel TMEM16A attenuates expression and secretion of the proinflammatory cytokines IL-6, IL-8, and CXCL1/2 in respiratory epithelia. Thus augmented proinflammatory cytokine secretion caused by defective anion transport may contribute to lung inflammation in cystic fibrosis. Cystic fibrosis (CF) is caused by the functional expression defect of the CF transmembrane conductance regulator (CFTR) chloride channel at the apical plasma membrane. Impaired bacterial clearance and hyperactive innate immune response are hallmarks of the CF lung disease, yet the existence of and mechanism accounting for the innate immune defect that occurs before infection remain controversial. Inducible expression of either CFTR or the calcium-activated chloride channel TMEM16A attenuated the proinflammatory cytokines interleukin-6 (IL-6), IL-8, and CXCL1/2 in two human respiratory epithelial models under air–liquid but not liquid–liquid interface culture. Expression of wild-type but not the inactive G551D-CFTR indicates that secretion of the chemoattractant IL-8 is inversely proportional to CFTR channel activity in cftr∆F508/∆F508 immortalized and primary human bronchial epithelia. Similarly, direct but not P2Y receptor–mediated activation of TMEM16A attenuates IL-8 secretion in respiratory epithelia. Thus augmented proinflammatory cytokine secretion caused by defective anion transport at the apical membrane may contribute to the excessive and persistent lung inflammation in CF and perhaps in other respiratory diseases associated with documented down-regulation of CFTR (e.g., chronic obstructive pulmonary disease). Direct pharmacological activation of TMEM16A offers a potential therapeutic strategy to reduce the inflammation of CF airway epithelia.
Collapse
Affiliation(s)
- Guido Veit
- Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
78
|
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) functions as a channel that regulates the transport of ions and the movement of water across the epithelial barrier. Mutations in CFTR, which form the basis for the clinical manifestations of cystic fibrosis, affect the epithelial innate immune function in the lung, resulting in exaggerated and ineffective airway inflammation that fails to eradicate pulmonary pathogens. Compounding the effects of excessive neutrophil recruitment, the mutant CFTR channel does not transport antioxidants to counteract neutrophil-associated oxidative stress. Whereas mutant CFTR expression in leukocytes outside of the lung does not markedly impair their function, the expected regulation of inflammation in the airways is clearly deficient in cystic fibrosis. The resulting bacterial infections, which are caused by organisms that have substantial genetic and metabolic flexibility, can resist multiple classes of antibiotics and evade phagocytic clearance. The development of animal models that approximate the human pulmonary phenotypes-airway inflammation and spontaneous infection-may provide the much-needed tools to establish how CFTR regulates mucosal immunity and to test directly the effect of pharmacologic potentiation and correction of mutant CFTR function on bacterial clearance.
Collapse
|
79
|
Kieninger E, Vareille M, Kopf BS, Blank F, Alves MP, Gisler FM, Latzin P, Casaulta C, Geiser T, Johnston SL, Edwards MR, Regamey N. Lack of an exaggerated inflammatory response on virus infection in cystic fibrosis. Eur Respir J 2012; 39:297-304. [PMID: 21719483 DOI: 10.1183/09031936.00054511] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Respiratory virus infections play an important role in cystic fibrosis (CF) exacerbations, but underlying pathophysiological mechanisms are poorly understood. We aimed to assess whether an exaggerated inflammatory response of the airway epithelium on virus infection could explain the increased susceptibility of CF patients towards respiratory viruses. We used primary bronchial and nasal epithelial cells obtained from 24 healthy control subjects and 18 CF patients. IL-6, IL-8/CXCL8, IP-10/CXCL10, MCP-1/CCL2, RANTES/CCL5 and GRO-α/CXCL1 levels in supernatants and mRNA expression in cell lysates were measured before and after infection with rhinoviruses (RV-16 and RV-1B) and RSV. Cytotoxicity was assessed by lactate dehydrogenate assay and flow cytometry. All viruses induced strong cytokine release in both control and CF cells. The inflammatory response on virus infection was heterogeneous and depended on cell type and virus used, but was not increased in CF compared with control cells. On the contrary, there was a marked trend towards lower cytokine production associated with increased cell death in CF cells. An exaggerated inflammatory response to virus infection in bronchial epithelial cells does not explain the increased respiratory morbidity after virus infection in CF patients.
Collapse
Affiliation(s)
- E Kieninger
- Division of Respiratory Medicine, Dept of Paediatrics, University Children's Hospital of Bern, Inselspital, 3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Looi K, Sutanto EN, Banerjee B, Garratt L, Ling KM, Foo CJ, Stick SM, Kicic A. Bronchial brushings for investigating airway inflammation and remodelling. Respirology 2011; 16:725-37. [PMID: 21624002 DOI: 10.1111/j.1440-1843.2011.02001.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Asthma is the commonest medical cause for hospital admission for children in Australia, affects more than 300 million people worldwide, and is incurable, severe in large number and refractory to treatment in many. However, there have been no new significant treatments despite intense research and billions of dollars. The advancement in our understanding in this disease has been limited due to its heterogeneity, genetic complexity and has severely been hampered particularly in children by the difficulty in obtaining relevant target organ tissue. This review attempts to provide an overview of the currently used and recently developed/adapted techniques used to obtain lung tissue with specific reference to the airway epithelium.
Collapse
Affiliation(s)
- Kevin Looi
- School of Paediatrics and Child Health, Centre for Health Research, The University of Western Australia, Nedlands, Australia
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Jones LC, Moussa L, Fulcher ML, Zhu Y, Hudson EJ, O'Neal WK, Randell SH, Lazarowski ER, Boucher RC, Kreda SM. VAMP8 is a vesicle SNARE that regulates mucin secretion in airway goblet cells. J Physiol 2011; 590:545-62. [PMID: 22144578 DOI: 10.1113/jphysiol.2011.222091] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mucin secretion is an innate defence mechanism, which is noxiously upregulated in obstructive lung diseases (e.g. chronic obstructive pulmonary disease (COPD), cystic fibrosis and asthma). Mucin granule exocytosis is regulated by specific protein complexes, but the SNARE exocytotic core has not been defined in airway goblet cells. In this study, we identify VAMP8 as one of the SNAREs regulating mucin granule exocytosis. VAMP8 mRNA was present in human airway and lung epithelial cells, and deep-sequencing and expression analyses of airway epithelial cells revealed that VAMP8 transcripts were expressed at 10 times higher levels than other VAMP mRNAs. In human airway epithelial cell cultures and freshly excised tissues, VAMP8 immunolocalised mainly to goblet cell mucin granules. The function of VAMP8 in airway mucin secretion was tested by RNA interference techniques. Both VAMP8 short interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) reduced mucin secretion induced by PAR agonists, neutrophil elastase and ATP in two airway epithelial cell culture models. Notably, basal (non-agonist elicited) mucin secretion was also reduced in these experiments. VAMP8 knockdown was also effective in decreasing mucin secretion in airway epithelial cell cultures with induced mucous metaplasia/mucin hypersecretion. Unlike VAMP8 silencing, knockdown of VAMP2 or VAMP3 did not affect mucin secretion. Importantly, in VAMP8 knock-out (KO) mice with IL-13-induced mucous metaplasia, mucin content in the bronchoalveolar lavage (BAL) and ATP-stimulated mucin secretion in the trachea were reduced compared to WT-matched littermates. Our data indicate that VAMP8 is an essential SNARE in airway mucin granule exocytosis. Reduction of VAMP8 activity/expression may provide a novel therapeutic target to ameliorate airway mucus obstruction in lung diseases.
Collapse
Affiliation(s)
- Lisa C Jones
- Cystic Fibrosis/Pulmonary Research and Treatment Centre, The University of North Carolina at Chapel Hill, 4029A Thurston Bowles Building, Chapel Hill, NC 27599-7248, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Martins JR, Kongsuphol P, Sammels E, Dahimène S, AlDehni F, Clarke LA, Schreiber R, de Smedt H, Amaral MD, Kunzelmann K. F508del-CFTR increases intracellular Ca2+ signaling that causes enhanced calcium-dependent Cl− conductance in cystic fibrosis. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1385-92. [DOI: 10.1016/j.bbadis.2011.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
|
83
|
Shenoy A, Kopic S, Murek M, Caputo C, Geibel JP, Egan ME. Calcium-modulated chloride pathways contribute to chloride flux in murine cystic fibrosis-affected macrophages. Pediatr Res 2011; 70:447-52. [PMID: 21796019 PMCID: PMC3189336 DOI: 10.1203/pdr.0b013e31822f2448] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cystic fibrosis (CF), a common lethal inherited disorder defined by ion transport abnormalities, chronic infection, and robust inflammation, is the result of mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a cAMP-activated chloride (Cl-) channel. Macrophages are reported to have impaired activity in CF. Previous studies suggest that Cl- transport is important for macrophage function; therefore, impaired Cl- secretion may underlie CF macrophage dysfunction. To determine whether alterations in Cl- transport exist in CF macrophages, Cl- efflux was measured using N-[ethoxycarbonylmethyl]- 6-methoxy-quinolinium bromide (MQAE), a fluorescent indicator dye. The contribution of CFTR was assessed by calculating Cl- flux in the presence and absence of cftr(inh)-172. The contribution of calcium (Ca(2+))-modulated Cl- pathways was assessed by examining Cl- flux with varied extracellular Ca(2+) concentrations or after treatment with carbachol or thapsigargin, agents that increase intracellular Ca(2+) levels. Our data demonstrate that CFTR contributed to Cl- efflux only in WT macrophages, while Ca(2+)-mediated pathways contributed to Cl- transport in CF and WT macrophages. Furthermore, CF macrophages demonstrated augmented Cl- efflux with increases in extracellular Ca(2+). Taken together, this suggests that Ca(2+)-mediated Cl- pathways are enhanced in CF macrophages compared with WT macrophages.
Collapse
Affiliation(s)
- Ambika Shenoy
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
84
|
Antigny F, Norez C, Becq F, Vandebrouck C. CFTR and Ca Signaling in Cystic Fibrosis. Front Pharmacol 2011; 2:67. [PMID: 22046162 PMCID: PMC3200540 DOI: 10.3389/fphar.2011.00067] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/11/2011] [Indexed: 11/13/2022] Open
Abstract
Among the diverse physiological functions exerted by calcium signaling in living cells, its role in the regulation of protein biogenesis and trafficking remains incompletely understood. In cystic fibrosis (CF) disease the most common CF transmembrane conductance regulator (CFTR) mutation, F508del-CFTR generates a misprocessed protein that is abnormally retained in the endoplasmic reticulum (ER) compartment, rapidly degraded by the ubiquitin/proteasome pathway and hence absent at the plasma membrane of CF epithelial cells. Recent studies have demonstrated that intracellular calcium signals consequent to activation of apical G-protein-coupled receptors by different agonists are increased in CF airway epithelia. Moreover, the regulation of various intracellular calcium storage compartments, such as ER is also abnormal in CF cells. Although the molecular mechanism at the origin of this increase remains puzzling in epithelial cells, the F508del-CFTR mutation is proposed to be the onset of abnormal Ca2+ influx linking the calcium signaling to CFTR pathobiology. This article reviews the relationships between CFTR and calcium signaling in the context of the genetic disease CF.
Collapse
Affiliation(s)
- Fabrice Antigny
- Institut de Physiologie et de Biologie Cellulaires, Université de Poitiers, CNRS Poitiers, France
| | | | | | | |
Collapse
|
85
|
Ribeiro CMP. Measurements of intracellular calcium signals in polarized primary cultures of normal and cystic fibrosis human airway epithelia. Methods Mol Biol 2011; 742:113-26. [PMID: 21547729 DOI: 10.1007/978-1-61779-120-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The airways are continuously challenged by a variety of stimuli including bacteria, viruses, allergens, and inflammatory factors that act as agonists for G protein-coupled receptors (GPCR). Intracellular calcium (Ca(2+) (i)) mobilization in airway epithelia in response to extracellular stimuli regulates key airway innate defense functions, e.g., Ca(2+)-activated Cl(-) secretion, ciliary beating, mucin secretion, and inflammatory responses. Because Ca(2+) (i) mobilization in response to luminal stimuli is larger in CF vs. normal human airway epithelia, alterations in Ca(2+) (i) signals have been associated with the pathogenesis of CF airway disease. Hence, assessment of Ca(2+) (i) signaling has become an important area of CF research. This chapter will focus on measurements of cytoplasmic and mitochondrial Ca(2+) signals resulting from GPCR activation in polarized primary cultures of normal and CF human bronchial epithelia (HBE).
Collapse
Affiliation(s)
- Carla M P Ribeiro
- Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina, Chapel Hill, NC 27599-7248, USA.
| |
Collapse
|
86
|
Abstract
This chapter introduces the various techniques to asses the function of CFTR. The numerous functional interactions of CFTR and cellular properties affected by CFTR will be described initially. This will be followed by sections explaining the importance of patch clamping and double electrode voltage clamp experiments in Xenopus oocytes for expression analysis of CFTR, and the Ussing chamber technique to analyze CFTR in polarized epithelia. It is concluded that examining CFTR function should occur at different levels, starting with the intact epithelium and ending with isolated CFTR proteins.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Department of Physiology, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
87
|
Okada SF, Zhang L, Kreda SM, Abdullah LH, Davis CW, Pickles RJ, Lazarowski ER, Boucher RC. Coupled nucleotide and mucin hypersecretion from goblet-cell metaplastic human airway epithelium. Am J Respir Cell Mol Biol 2011; 45:253-60. [PMID: 20935191 PMCID: PMC3175555 DOI: 10.1165/rcmb.2010-0253oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/10/2010] [Indexed: 01/12/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolite adenosine regulate airway mucociliary clearance via activation of purinoceptors. In this study, we investigated the contribution of goblet cells to airway epithelial ATP release. Primary human bronchial epithelial (HBE) cultures, typically dominated by ciliated cells, were induced to develop goblet cell metaplasia by infection with respiratory syncytial virus (RSV) or treatment with IL-13. Under resting conditions, goblet-cell metaplastic cultures displayed enhanced mucin secretion accompanied by increased rates of ATP release and mucosal surface adenosine accumulation as compared with nonmetaplastic control HBE cultures. Intracellular calcium chelation [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester] or disruption of the secretory pathways (nocodazole, brefeldin A, and N-ethylmaleimide) decreased mucin secretion and ATP release in goblet-cell metaplastic HBE cultures. Conversely, stimuli that triggered calcium-regulated mucin secretion (e.g., ionomycin or UTP) increased luminal ATP release and adenyl purine accumulation in control and goblet-cell metaplastic HBE cultures. Goblet cell-associated ATP release was not blocked by the connexin/pannexin hemichannel inhibitor carbenoxolone, suggesting direct nucleotide release from goblet cell vesicles rather than the hemichannel insertion. Collectively, our data demonstrate that nucleotide release is increased by goblet cell metaplasia, reflecting, at least in part, a mechanism tightly associated with goblet cell mucin secretion. Increased goblet cell nucleotide release and resultant adenosine accumulation provide compensatory mechanisms to hydrate mucins by paracrine stimulation of ciliated cell ion and water secretion and maintain mucociliary clearance, and to modulate inflammatory responses.
Collapse
Affiliation(s)
- Seiko F Okada
- Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, 27599, USA.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Sutanto EN, Kicic A, Foo CJ, Stevens PT, Mullane D, Knight DA, Stick SM. Innate Inflammatory Responses of Pediatric Cystic Fibrosis Airway Epithelial Cells. Am J Respir Cell Mol Biol 2011; 44:761-7. [DOI: 10.1165/rcmb.2010-0368oc] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
89
|
Johnson JS, Gentzsch M, Zhang L, Ribeiro CMP, Kantor B, Kafri T, Pickles RJ, Samulski RJ. AAV exploits subcellular stress associated with inflammation, endoplasmic reticulum expansion, and misfolded proteins in models of cystic fibrosis. PLoS Pathog 2011; 7:e1002053. [PMID: 21625534 PMCID: PMC3098238 DOI: 10.1371/journal.ppat.1002053] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022] Open
Abstract
Barriers to infection act at multiple levels to prevent viruses, bacteria, and parasites from commandeering host cells for their own purposes. An intriguing hypothesis is that if a cell experiences stress, such as that elicited by inflammation, endoplasmic reticulum (ER) expansion, or misfolded proteins, then subcellular barriers will be less effective at preventing viral infection. Here we have used models of cystic fibrosis (CF) to test whether subcellular stress increases susceptibility to adeno-associated virus (AAV) infection. In human airway epithelium cultured at an air/liquid interface, physiological conditions of subcellular stress and ER expansion were mimicked using supernatant from mucopurulent material derived from CF lungs. Using this inflammatory stimulus to recapitulate stress found in diseased airways, we demonstrated that AAV infection was significantly enhanced. Since over 90% of CF cases are associated with a misfolded variant of Cystic Fibrosis Transmembrane Conductance Regulator (ΔF508-CFTR), we then explored whether the presence of misfolded proteins could independently increase susceptibility to AAV infection. In these models, AAV was an order of magnitude more efficient at transducing cells expressing ΔF508-CFTR than in cells expressing wild-type CFTR. Rescue of misfolded ΔF508-CFTR under low temperature conditions restored viral transduction efficiency to that demonstrated in controls, suggesting effects related to protein misfolding were responsible for increasing susceptibility to infection. By testing other CFTR mutants, G551D, D572N, and 1410X, we have shown this phenomenon is common to other misfolded proteins and not related to loss of CFTR activity. The presence of misfolded proteins did not affect cell surface attachment of virus or influence expression levels from promoter transgene cassettes in plasmid transfection studies, indicating exploitation occurs at the level of virion trafficking or processing. Thus, we surmised that factors enlisted to process misfolded proteins such as ΔF508-CFTR in the secretory pathway also act to restrict viral infection. In line with this hypothesis, we found that AAV trafficked to the microtubule organizing center and localized near Golgi/ER transport proteins. Moreover, AAV infection efficiency could be modulated with siRNA-mediated knockdown of proteins involved in processing ΔF508-CFTR or sorting retrograde cargo from the Golgi and ER (calnexin, KDEL-R, β-COP, and PSMB3). In summary, our data support a model where AAV exploits a compromised secretory system and, importantly, underscore the gravity with which a stressed subcellular environment, under internal or external insults, can impact infection efficiency. Misfolded proteins have been associated with a variety of disorders such as cystic fibrosis, diabetes insipidus, alpha-antitrypsin deficiency, Parkinson's disease, and cancer. In this study, by using cellular models of events in cystic fibrosis lung disease we have revealed an effect of misfolded proteins on increasing susceptibility to infection with a parvovirus. Infection efficiency was an order of magnitude higher in cells expressing misfolded Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) mutant proteins than in cells expressing the correctly folded protein. During infection, virus capsids accumulated near cellular factors that normally process misfolded proteins and are involved in retrograde trafficking from the Golgi to endoplasmic reticulum. Furthermore, we have demonstrated that infection efficiency can be attenuated by restoring correct protein folding or augmented by siRNA-mediated knockdown of secretory pathway components. Taken together our results indicate that converging cellular systems operate to clear misfolded proteins and virus capsids from an infected cell. We raise the possibility that parvoviruses and perhaps other viruses exploit congested cellular secretory pathways during entry, and that viral infection could be a contributing factor in the progression of diseases associated with misfolded proteins.
Collapse
Affiliation(s)
- Jarrod S Johnson
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Bezzerri V, d’Adamo P, Rimessi A, Lanzara C, Crovella S, Nicolis E, Tamanini A, Athanasakis E, Tebon M, Bisoffi G, Drumm ML, Knowles MR, Pinton P, Gasparini P, Berton G, Cabrini G. Phospholipase C-β3 is a key modulator of IL-8 expression in cystic fibrosis bronchial epithelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4946-58. [PMID: 21411730 PMCID: PMC4166552 DOI: 10.4049/jimmunol.1003535] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Respiratory insufficiency is the major cause of morbidity and mortality in patients affected by cystic fibrosis (CF). An excessive neutrophilic inflammation, mainly orchestrated by the release of IL-8 from bronchial epithelial cells and amplified by chronic bacterial infection with Pseudomonas aeruginosa, leads to progressive tissue destruction. The anti-inflammatory drugs presently used in CF patients have several limitations, indicating the need for identifying novel molecular targets. To address this issue, we preliminarily studied the association of 721 single nucleotide polymorphisms from 135 genes potentially involved in signal transduction implicated in neutrophil recruitment in a cohort of F508del homozygous CF patients with either severe or mild progression of lung disease. The top ranking association was found for a nonsynonymous polymorphism of the phospholipase C-β3 (PLCB3) gene. Studies in bronchial epithelial cells exposed to P. aeruginosa revealed that PLCB3 is implicated in extracellular nucleotide-dependent intracellular calcium signaling, leading to activation of the protein kinase Cα and Cβ and of the nuclear transcription factor NF-κB p65. The proinflammatory pathway regulated by PLCB3 acts by potentiating the Toll-like Receptors' signaling cascade and represents an interesting molecular target to attenuate the excessive recruitment of neutrophils without completely abolishing the inflammatory response.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Laboratory of Molecular Pathology and Biostatistics Unit, University Hospital of Verona, Italy
| | - Pio d’Adamo
- Laboratory of Medical Genetics, Department of Reproductive and Developmental Sciences, University of Trieste, Italy
| | - Alessandro Rimessi
- Signal Transduction Lab, Department of Experimental and Diagnostic Medicine, University of Ferrara, Italy
| | - Carmen Lanzara
- Laboratory of Medical Genetics, Department of Reproductive and Developmental Sciences, University of Trieste, Italy
| | - Sergio Crovella
- Laboratory of Medical Genetics, Department of Reproductive and Developmental Sciences, University of Trieste, Italy
| | - Elena Nicolis
- Laboratory of Molecular Pathology and Biostatistics Unit, University Hospital of Verona, Italy
| | - Anna Tamanini
- Laboratory of Medical Genetics, Department of Reproductive and Developmental Sciences, University of Trieste, Italy
| | - Emmanouil Athanasakis
- Laboratory of Molecular Pathology and Biostatistics Unit, University Hospital of Verona, Italy
| | - Maela Tebon
- Laboratory of Molecular Pathology and Biostatistics Unit, University Hospital of Verona, Italy
| | - Giulia Bisoffi
- Laboratory of Molecular Pathology and Biostatistics Unit, University Hospital of Verona, Italy
| | - Mitchell L. Drumm
- Department of Genetics, Case Western Reserve University, Cleveland, OH, U.S.A
| | - Michael R. Knowles
- The Cystic Fibrosis – Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, NC, U.S.A
| | - Paolo Pinton
- Signal Transduction Lab, Department of Experimental and Diagnostic Medicine, University of Ferrara, Italy
| | - Paolo Gasparini
- Laboratory of Medical Genetics, Department of Reproductive and Developmental Sciences, University of Trieste, Italy
| | - Giorgio Berton
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, Italy
| | - Giulio Cabrini
- Laboratory of Molecular Pathology and Biostatistics Unit, University Hospital of Verona, Italy
| |
Collapse
|
91
|
Role of endoplasmic reticulum stress in cystic fibrosis-related airway inflammatory responses. Ann Am Thorac Soc 2011; 7:387-94. [PMID: 21030518 DOI: 10.1513/pats.201001-017aw] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic airway infection and inflammation are hallmarks of cystic fibrosis (CF) pulmonary disease. The altered airway environment resulting from infection and inflammation can affect the innate defense of the airway epithelia. Luminal bacterial and inflammatory stimuli trigger an adaptation in human airway epithelia, characterized by a hyperinflammatory response to inflammatory mediators, which is mediated by an expansion of the endoplasmic reticulum (ER) and its Ca(2+) stores. Recent studies demonstrated that a form of ER stress, the unfolded protein response (UPR), is activated in airway epithelia by bacterial infection-induced airway inflammation. UPR-dependent signaling is responsible for the ER Ca(2+) store expansion-mediated amplification of airway inflammatory responses. These studies highlight the functional importance of the UPR in airway inflammation and suggest that targeting the UPR may be a therapeutic strategy for airway diseases typified by chronic inflammation. This article reviews the contribution of airway epithelia to airway inflammatory responses, discusses how expansion of the ER Ca(2+) stores in inflamed airway epithelia contributes to airway inflammation, describes the functional role of the UPR in these processes, and discusses how UPR activation might be relevant for CF airways inflammatory disease.
Collapse
|
92
|
Mayer ML, Sheridan JA, Blohmke CJ, Turvey SE, Hancock REW. The Pseudomonas aeruginosa autoinducer 3O-C12 homoserine lactone provokes hyperinflammatory responses from cystic fibrosis airway epithelial cells. PLoS One 2011; 6:e16246. [PMID: 21305014 PMCID: PMC3031552 DOI: 10.1371/journal.pone.0016246] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/07/2010] [Indexed: 12/02/2022] Open
Abstract
The discovery of novel antiinflammatory targets to treat inflammation in the cystic fibrosis (CF) lung stands to benefit patient populations suffering with this disease. The Pseudomonas aeruginosa quorum sensing autoinducer N-3-oxododecanoyl homoserine lactone (3O-C12) is an important bacterial virulence factor that has been reported to induce proinflammatory cytokine production from a variety of cell types. The goal of this study was to examine the ability of 3O-C12 to induce proinflammatory cytokine production in normal and CF bronchial epithelial cells, and better understand the cellular mechanisms by which this cytokine induction occurs. 3O-C12 was found to induce higher levels of IL-6 production in the CF cell lines IB3-1 and CuFi, compared to their corresponding control cell lines C38 and NuLi. Systems biology and network analysis revealed a high predominance of over-represented innate immune pathways bridged together by calcium-dependant transcription factors governing the transcriptional responses of A549 airway cells to stimulation with 3O-C12. Using calcium-flux assays, 3O-C12 was found to induce larger and more sustained increases in intracellular calcium in IB3-1 cells compared to C38, and blocking this calcium flux with BAPTA-AM reduced the production of IL-6 by IB3-1 to the levels produced by C38. These data suggest that 3O-C12 induces proinflammatory cytokine production in airway epithelial cells in a calcium-dependent manner, and that dysregulated calcium storage or signalling in CF cells results in an increased production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Matthew L. Mayer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Jared A. Sheridan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Christoph J. Blohmke
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Child and Family Research Institute, BC Children's Hospital, Vancouver, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Child and Family Research Institute, BC Children's Hospital, Vancouver, Canada
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
93
|
Abstract
The immune and inflammatory responses initiated by the interaction of a pathogen with airway surfaces constitute vital mechanisms to eradicate an infection. Sentinel dendritic cells embedded in the mucosa migrate to the lymph nodes to induce immune responses, whereas epithelial cells release chemokines to recruit inflammatory cells engaged in the active destruction of the intruder. All immune and inflammatory cells are regulated by customized purinergic networks of receptors and ectonucleotidases. The general concept is that bacterial products induce ATP release, which activates P2 receptors to initiate an inflammatory response, and is terminated by the conversion of ATP into adenosine (ADO) to initiate P1 receptor-mediated negative feedback responses. However, this chapter exposes a far more complex purinergic regulation of critical functions, such as the differentiation of naive lymphocytes and the complex maturation and secretion of pro-cytokines (i.e. IL-1β) by the "inflammasome". This material also reconciles decades of research by exposing the specificity and plasticity of the signaling network expressed by each immune and inflammatory cell, which changes through cell differentiation and in response to infectious or inflammatory mediators. By the end of this chapter, the reader will have a new appreciation for this aspect of airway defenses, and several leads in terms of therapeutic applications for the treatment of chronic respiratory diseases.
Collapse
|
94
|
Bove PF, Grubb BR, Okada SF, Ribeiro CMP, Rogers TD, Randell SH, O'Neal WK, Boucher RC. Human alveolar type II cells secrete and absorb liquid in response to local nucleotide signaling. J Biol Chem 2010; 285:34939-49. [PMID: 20801871 PMCID: PMC2966108 DOI: 10.1074/jbc.m110.162933] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/23/2010] [Indexed: 12/21/2022] Open
Abstract
A balance sheet describing the integrated homeostasis of secretion, absorption, and surface movement of liquids on pulmonary surfaces has remained elusive. It remains unclear whether the alveolus exhibits an intra-alveolar ion/liquid transport physiology or whether it secretes ions/liquid that may communicate with airway surfaces. Studies employing isolated human alveolar type II (AT2) cells were utilized to investigate this question. Human AT2 cells exhibited both epithelial Na(+) channel-mediated Na(+) absorption and cystic fibrosis transmembrane conductance regulator-mediated Cl(-) secretion, both significantly regulated by extracellular nucleotides. In addition, we observed in normal AT2 cells an absence of cystic fibrosis transmembrane conductance regulator regulation of epithelial Na(+) channel activity and an absence of expression/activity of reported calcium-activated chloride channels (TMEM16A, Bestrophin-1, ClC2, and SLC26A9), both features strikingly different from normal airway epithelial cells. Measurements of alveolar surface liquid volume revealed that normal AT2 cells: 1) achieved an extracellular nucleotide concentration-dependent steady state alveolar surface liquid height of ∼4 μm in vitro; 2) absorbed liquid when the lumen was flooded; and 3) secreted liquid when treated with UTP or forskolin or subjected to cyclic compressive stresses mimicking tidal breathing. Collectively, our studies suggest that human AT2 cells in vitro have the capacity to absorb or secrete liquid in response to local alveolar conditions.
Collapse
Affiliation(s)
- Peter F. Bove
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Barbara R. Grubb
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Seiko F. Okada
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Carla M. P. Ribeiro
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Troy D. Rogers
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Scott H. Randell
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Wanda K. O'Neal
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Richard C. Boucher
- From the Department of Medicine, Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
95
|
Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev 2010; 23:590-615. [PMID: 20610825 DOI: 10.1128/cmr.00078-09] [Citation(s) in RCA: 469] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Macrolides have diverse biological activities and an ability to modulate inflammation and immunity in eukaryotes without affecting homeostatic immunity. These properties have led to their long-term use in treating neutrophil-dominated inflammation in diffuse panbronchiolitis, bronchiectasis, rhinosinusitis, and cystic fibrosis. These immunomodulatory activities appear to be polymodal, but evidence suggests that many of these effects are due to inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and nuclear factor kappa B (NF-kappaB) activation. Macrolides accumulate within cells, suggesting that they may associate with receptors or carriers responsible for the regulation of cell cycle and immunity. A concern is that long-term use of macrolides increases the emergence of antimicrobial resistance. Nonantimicrobial macrolides are now in development as potential immunomodulatory therapies.
Collapse
|
96
|
Taylor-Cousar JL, Von Kessel KA, Young R, Nichols DP. Potential of anti-inflammatory treatment for cystic fibrosis lung disease. J Inflamm Res 2010; 3:61-74. [PMID: 22096358 PMCID: PMC3218732 DOI: 10.2147/jir.s8875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common life-shortening genetic disorder in Caucasians. With improved diagnosis and treatment, survival has steadily increased. Unfortunately, the overwhelming majority of patients still die from respiratory failure caused by structural damage resulting from airway obstruction, recurrent infection, and inflammation. Here, we discuss the role of inflammation and the development of anti-inflammatory therapies to treat CF lung disease. The inflammatory host response is the least addressed component of CF airway disease at this time. Current challenges in both preclinical and clinical investigation make the identification of suitable anti-inflammatory drugs more difficult. Despite this, many researchers are making significant progress toward this goal and the CF research community has reason to believe that new therapies will emerge from these efforts.
Collapse
|
97
|
Rollins BM, Garcia-Caballero A, Stutts MJ, Tarran R. SPLUNC1 expression reduces surface levels of the epithelial sodium channel (ENaC) in Xenopus laevis oocytes. Channels (Austin) 2010; 4:255-9. [PMID: 20519934 PMCID: PMC2975823 DOI: 10.4161/chan.4.4.12255] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 11/19/2022] Open
Abstract
Throughout the body, the epithelial Na(+) channel (ENaC) plays a critical role in salt and liquid homeostasis. In cystic fibrosis airways, for instance, improper regulation of ENaC results in hyperabsorption of sodium that causes dehydration of airway surface liquid. This dysregulation then contributes to mucus stasis and chronic lung infections. ENaC is known to undergo proteolytic cleavage, which is required for its ability to conduct Na(+) ions. We have previously shown that the short, palate lung and nasal epithelial clone (SPLUNC1) binds to and inhibits ENaC in both airway epithelia and in Xenopus laevis oocytes. In this study, we found that SPLUNC1 was more potent at inhibiting ENaC than either SPLUNC2 or long PLUNC1 (LPLUNC1), two other PLUNC family proteins that are also expressed in airway epithelia. Furthermore, we were able to shed light on the potential mechanism of SPLUNC1's inhibition of ENaC. While SPLUNC1 did not inhibit proteolytic activity of trypsin, it significantly reduced ENaC currents by reducing the number of ENaCs in the plasma membrane. A better understanding of ENaC's regulation by endogenous inhibitors may aid in the development of novel therapies designed to inhibit hyperactive ENaC in cystic fibrosis epithelia.
Collapse
Affiliation(s)
- Brett M Rollins
- Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
98
|
Fausther M, Pelletier J, Ribeiro CM, Sévigny J, Picher M. Cystic fibrosis remodels the regulation of purinergic signaling by NTPDase1 (CD39) and NTPDase3. Am J Physiol Lung Cell Mol Physiol 2010; 298:L804-18. [PMID: 20190036 PMCID: PMC2886614 DOI: 10.1152/ajplung.00019.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/25/2010] [Indexed: 12/20/2022] Open
Abstract
Airway defenses are regulated by a complex purinergic signaling network located on the epithelial surfaces, where ATP stimulates the clearance of mucin and pathogens. The present study shows that the obstructive disease cystic fibrosis (CF) affects the activity, expression, and tissue distribution of two ectonucleotidases found critical for the regulation of ATP on airway surfaces: NTPDase1 and NTPDase3. Functional polarities and mRNA expression levels were determined on primary cultures of human bronchial epithelial (HBE) cells from healthy donors and CF patients. The in vitro model of the disease was completed by exposing CF HBE cultures for 4 days to supernatant of the mucopurulent material (SMM) collected from the airways of CF patients. We report that NTPDase1 and NTPDase3 are coexpressed on HBE cultures, where they regulate physiological and excess nucleotide concentrations, respectively. In aseptic conditions, CF epithelia exhibit >50% lower NTPDase1 activity, protein, and mRNA levels than normal epithelia, whereas these parameters are threefold higher for NTPDase3. Exposure to SMM induced opposite polarity shifts of the two NTPDases on both normal and CF epithelia, apical NTPDase1 being mobilized to basolateral surfaces and bilateral NTPDase3 to the apical surface. Their immunolocalization in human tissue revealed that NTPDase1 is expressed in epithelial, inflammatory, and endothelial cells, whereas NTPDase3 is restricted to epithelial cells. Furthermore, the SMM-exposed CF HBE cultures reproduced the impact of the disease on their in vivo distribution. This study provides evidence that an extensive remodeling of the enzymatic network regulating clearance occurs in the airways of CF patients.
Collapse
Affiliation(s)
- Michel Fausther
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Ste-Foy, Quebec City, Canada
| | | | | | | | | |
Collapse
|
99
|
Intracellular Ca2+ storage in health and disease: a dynamic equilibrium. Cell Calcium 2010; 47:297-314. [PMID: 20189643 DOI: 10.1016/j.ceca.2010.02.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/17/2022]
Abstract
Homeostatic control of the endoplasmic reticulum (ER) both as the site for protein handling (synthesis, folding, trafficking, disaggregation and degradation) and as a Ca2+ store is of crucial importance for correct functioning of the cell. Disturbance of the homeostatic control mechanisms leads to a vast array of severe pathologies. The Ca2+ content of the ER is a dynamic equilibrium between active uptake via Ca2+ pumps and Ca2+ release by a number of highly regulated Ca2+-release channels. Regulation of the Ca2+-release channels is very complex and several mechanisms are still poorly understood or controversial. There is increasing evidence that a number of unrelated proteins, either by themselves or in association with other Ca2+ channels, can provide additional Ca2+-leak pathways. The ER is a dynamic organelle and changes in its size and components have been described, either as a result of (de)differentiation processes affecting the secretory capacity of cells, or as a result of adaptation mechanisms to diverse stress conditions such as the unfolded protein response and autophagy. In this review we want to give an overview of the current knowledge of the (short-term) regulatory mechanisms that affect Ca2+-release and Ca2+-leak pathways and of the (long-term) adaptations in ER size and capacity. Understanding of the consequences of these mechanisms for cellular Ca2+ signaling could provide a huge therapeutic potential.
Collapse
|
100
|
Newport S, Amin N, Dozor AJ. Exhaled breath condensate pH and ammonia in cystic fibrosis and response to treatment of acute pulmonary exacerbations. Pediatr Pulmonol 2009; 44:866-72. [PMID: 19670404 DOI: 10.1002/ppul.21078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Exhaled breath condensate (EBC) pH reflects the acid-base homeostasis of the airway lining fluid and is up to 3 log order lower in various inflammatory lung diseases including asthma, COPD, bronchiectasis, and cystic fibrosis (CF) than in normal controls. The aim of this study was to confirm this finding in CF and determine if there was a significant change in EBC pH after treatment of an acute pulmonary exacerbation. Ten subjects with CF and a pulmonary exacerbation, and 10 healthy age-matched control subjects were studied. EBC was collected at the onset of an acute pulmonary exacerbation and after treatment with intravenous antibiotics (median duration: 14 days (interquartile range, IQR): 12-14) when the exacerbation was considered resolved. The median age for CF patients was 15.9 years (IQR: 13-18.8), compared to 18 years (IQR: 15-24.8) for the control group, P = 0.242. All CF subjects had severe lung disease, median FEV(1) = 41.5% of predicted (IQR: 30.8-46.5%). Median EBC pH in CF subjects at the onset of a pulmonary exacerbation was 6.61 (IQR: 6.17-7.91) compared to median EBC pH of 8.14 (IQR: 7.45-9.08) in the control group, P < 0.02. Median EBC pH after resolution of an exacerbation was 7.02 (IQR: 5.8-8.64), not significantly different (P = 0.667) than during the acute exacerbation. EBC pH decreased in five subjects, increased in three subjects and there was no change in two subjects. There was no correlation between EBC pH and FEV(1) either before or after intravenous antibiotics. EBC ammonia, an important buffer of ASL, was also measured and similarly found to be lower than in normal controls. EBC pH is lower in CF than age-matched controls, and did not change consistently in response to treatment of an acute pulmonary exacerbation.
Collapse
Affiliation(s)
- Sharon Newport
- Division of Pediatric Pulmonology, Maria Fareri Children's Hospital at Westchester Medical Center and New York Medical College, Valhalla, New York, USA.
| | | | | |
Collapse
|