51
|
Molecular genetic analysis of Suppressor 2 of zeste identifies key functional domains. Genetics 2009; 182:999-1013. [PMID: 19528329 DOI: 10.1534/genetics.108.097360] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Su(z)2 complex contains Posterior sex combs (Psc) and Suppressor 2 of zeste [Su(z)2], two paralogous genes that likely arose by gene duplication. Psc encodes a Polycomb group protein that functions as a central component of the PRC1 complex, which maintains transcriptional repression of a wide array of genes. Although much is known about Psc, very little is known about Su(z)2, the analysis of which has been hampered by a dearth of alleles. We have generated new alleles of Su(z)2 and analyzed them at the genetic and molecular levels. Some of these alleles display negative complementation in that they cause lethality when heterozygous with the gain-of-function Su(z)2(1) allele but are hemizygous and, in some cases, homozygous viable. Interestingly, alleles of this class identify protein domains within Su(z)2 that are highly conserved in Psc and the mammalian Bmi-1 and Mel-18 proteins. We also find several domains of intrinsic disorder in the C-terminal regions of both Psc and Su(z)2 and suggest that these domains may contribute to the essential functions of both proteins.
Collapse
|
52
|
Bartkuhn M, Straub T, Herold M, Herrmann M, Rathke C, Saumweber H, Gilfillan GD, Becker PB, Renkawitz R. Active promoters and insulators are marked by the centrosomal protein 190. EMBO J 2009; 28:877-88. [PMID: 19229299 PMCID: PMC2670862 DOI: 10.1038/emboj.2009.34] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 01/23/2009] [Indexed: 11/09/2022] Open
Abstract
For the compact Drosophila genome, several factors mediating insulator function, such as su(Hw) and dCTCF, have been identified. Recent analyses showed that both these insulator-binding factors are functionally dependent on the same cofactor, CP190. Here we analysed genome-wide binding of CP190 and dCTCF. CP190 binding was detected at CTCF, su(Hw) and GAF sites and unexpectedly at the transcriptional start sites of actively transcribed genes. Both insulator and transcription start site CP190-binding elements are strictly marked by a depletion of histone H3 and, therefore, a loss of nucleosome occupancy. In addition, CP190/dCTCF double occupancy was seen at the borders of many H3K27me3 'islands'. As before, these sites were also depleted of H3. Loss of either dCTCF or CP190 causes an increase of H3 and H3K27 trimethylation at these sites. Thus, for both types of cis-regulatory elements, domain borders and promoters, the chromatin structure is dependent on CP190.
Collapse
Affiliation(s)
- Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Schuettengruber B, Ganapathi M, Leblanc B, Portoso M, Jaschek R, Tolhuis B, van Lohuizen M, Tanay A, Cavalli G. Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLoS Biol 2009; 7:e13. [PMID: 19143474 PMCID: PMC2621266 DOI: 10.1371/journal.pbio.1000013] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 12/03/2008] [Indexed: 12/03/2022] Open
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N–bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation. Although all cells of a developing organism have the same DNA, they express different genes and transmit these gene expression patterns to daughter cells through multiple rounds of cell division. This cellular memory for gene expression states is maintained by two groups of proteins: Polycomb-group proteins (PcG), which establish and maintain stable gene silencing, and trithorax group proteins (trxG), which counteract silencing and enable gene activation. It is unknown how this balance works and how exactly these proteins are recruited to their target sequences. By mapping the genome-wide distribution of PcG and trxG factors and proteins known to recruit them to chromatin, we found that putative PcG recruiters are not only colocalized at PcG binding sites, but also bind to many other genomic regions that are actually the binding sites of the Trithorax complex. We identified new DNA sequences important for the recruitment of both PcG and trxG proteins and showed that the differential binding of the recruiters PHO and PHOL may discriminate between active and inactive regions. Finally, we found that the two fragments of the Trithorax protein have different chromosomal distributions, suggesting that they may have distinct nuclear functions. Comparison of the genome-wide distribution of PcG, trxG, and sequence-specific DNA binding proteins allowed the identification of key signals leading to Polycomb or Trithorax recruitment.
Collapse
|
54
|
Tiwari VK, McGarvey KM, Licchesi JD, Ohm JE, Herman JG, Schübeler D, Baylin SB. PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol 2009; 6:2911-27. [PMID: 19053175 PMCID: PMC2592355 DOI: 10.1371/journal.pbio.0060306] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/28/2008] [Indexed: 11/19/2022] Open
Abstract
Many DNA hypermethylated and epigenetically silenced genes in adult cancers are Polycomb group (PcG) marked in embryonic stem (ES) cells. We show that a large region upstream (∼30 kb) of and extending ∼60 kb around one such gene, GATA-4, is organized—in Tera-2 undifferentiated embryonic carcinoma (EC) cells—in a topologically complex multi-loop conformation that is formed by multiple internal long-range contact regions near areas enriched for EZH2, other PcG proteins, and the signature PcG histone mark, H3K27me3. Small interfering RNA (siRNA)–mediated depletion of EZH2 in undifferentiated Tera-2 cells leads to a significant reduction in the frequency of long-range associations at the GATA-4 locus, seemingly dependent on affecting the H3K27me3 enrichments around those chromatin regions, accompanied by a modest increase in GATA-4 transcription. The chromatin loops completely dissolve, accompanied by loss of PcG proteins and H3K27me3 marks, when Tera-2 cells receive differentiation signals which induce a ∼60-fold increase in GATA-4 expression. In colon cancer cells, however, the frequency of the long-range interactions are increased in a setting where GATA-4 has no basal transcription and the loops encompass multiple, abnormally DNA hypermethylated CpG islands, and the methyl-cytosine binding protein MBD2 is localized to these CpG islands, including ones near the gene promoter. Removing DNA methylation through genetic disruption of DNA methyltransferases (DKO cells) leads to loss of MBD2 occupancy and to a decrease in the frequency of long-range contacts, such that these now more resemble those in undifferentiated Tera-2 cells. Our findings reveal unexpected similarities in higher order chromatin conformation between stem/precursor cells and adult cancers. We also provide novel insight that PcG-occupied and H3K27me3-enriched regions can form chromatin loops and physically interact in cis around a single gene in mammalian cells. The loops associate with a poised, low transcription state in EC cells and, with the addition of DNA methylation, completely repressed transcription in adult cancer cells. Polycomb group (PcG) proteins and DNA methylation are fundamental epigenetic regulators of gene expression. The mechanisms underlying such regulation, the crosstalk between these mechanisms, and the role of higher order chromatin folding in mediating transcriptional control of involved genes remains unclear. Abnormal DNA methylation at gene promoters in cancer has been linked to PcG promoter occupancy and PcG-mediated maintenance of genes in a poised, low expression state in embryonic cells. We now strengthen these links and show that PcG occupancy around an entire gene, GATA-4, represses transcription by maintaining a series of long-range chromatin interactions. In embryonic cells, where DNA methylation is largely absent, GATA-4 is in a low, poised transcription state, and the loops can be virtually eliminated by retinoid-induced cellular differentiation, with attendant robust transcriptional up-regulation. When GATA-4 is DNA hypermethylated in colon cancer cells, the intensity of the long-range interactions is increased and associates with complete lack of transcription. Removal of DNA methylation in the cancer cells only slightly loosens the loops and restores expression to a low, poised state. Together, these findings suggest that both repressive pathways operate in part by the formation of chromatin higher order structures and provide important translational ramifications for targeting re-expression of epigenetically silenced genes for cancer therapy. Chromatin regions enriched for Polycomb group proteins physically interact in a series of loops around a single gene in mammalian cells. This higher order structure maintains a poised, low transcription state in embryonic cancer cells and, with addition of DNA methylation, a completely repressed transcription in adult cancer cells.
Collapse
Affiliation(s)
- Vijay K Tiwari
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Kelly M McGarvey
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- Program in Cellular and Molecular Medicine, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
| | - Julien D.F Licchesi
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
| | - Joyce E Ohm
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
| | - James G Herman
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- Program in Cellular and Molecular Medicine, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Stephen B Baylin
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- Program in Cellular and Molecular Medicine, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
55
|
Abstract
The cohesin complex, discovered through its role in sister chromatid cohesion, also plays roles in gene expression and development in organisms from yeast to human. This review highlights what has been learned about the gene control and developmental functions of cohesin and the Nipped-B (NIPBL/Scc2) cohesin loading factor in Drosophila. The Drosophila studies have provided unique insights into the aetiology of Cornelia de Lange syndrome (CdLS), which is caused by mutations affecting sister chromatid cohesion proteins in humans. In vivo experiments with Drosophila show that cohesin and Nipped-B have dosage-sensitive effects on the functions of many evolutionarily conserved genes and developmental pathways. Genome-wide studies with Drosophila cultured cells show that Nipped-B and cohesin co-localize on chromosomes, and bind preferentially, but not exclusively, to many actively transcribed genes and their regulatory sequences, including many of the proposed in vivo target genes. In contrast, the cohesion factors are largely excluded from genes silenced by Polycomb group (PcG) proteins. Combined, the in vivo genetic data and the binding patterns of cohesin and Nipped-B in cultured cells are consistent with the hypothesis that they control the action of gene regulatory sequences, including transcriptional enhancers and insulators, and suggest that they might also help define active chromatin domains and influence transcriptional elongation.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, Saint Louis, MO 63104, USA.
| |
Collapse
|
56
|
Schwartz YB, Pirrotta V. Polycomb Complexes and the Role of Epigenetic Memory in Development. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
57
|
Pérez-Lluch S, Cuartero S, Azorín F, Espinàs ML. Characterization of new regulatory elements within the Drosophila bithorax complex. Nucleic Acids Res 2008; 36:6926-33. [PMID: 18978017 PMCID: PMC2588531 DOI: 10.1093/nar/gkn818] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The homeotic Abdominal-B (Abd-B) gene expression depends on a modular cis-regulatory region divided into discrete functional domains (iab) that control the expression of the gene in a particular segment of the fly. These domains contain regulatory elements implicated in both initiation and maintenance of homeotic gene expression and elements that separate the different domains. In this paper we have performed an extensive analysis of the iab-6 regulatory region, which regulates Abd-B expression at abdominal segment A6 (PS11), and we have characterized two new polycomb response elements (PREs) within this domain. We report that PREs at Abd-B cis-regulatory domains present a particular chromatin structure which is nuclease accessible all along Drosophila development and both in active and repressed states. We also show that one of these regions contains a dCTCF and CP190 dependent activity in transgenic enhancer-blocking assays, suggesting that it corresponds to the Fab-6 boundary element of the Drosophila bithorax complex.
Collapse
Affiliation(s)
- Sílvia Pérez-Lluch
- Institut de Biologia Molecular de Barcelona, CSIC, Institut de Recerca Biomedica de Barcelona, IRBB, Parc Científic de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
58
|
A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci U S A 2008; 105:16831-6. [PMID: 18854416 DOI: 10.1073/pnas.0808687105] [Citation(s) in RCA: 365] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vernalization, the acceleration of flowering by winter, involves cold-induced epigenetic silencing of Arabidopsis FLC. This process has been shown to require conserved Polycomb Repressive Complex 2 (PRC2) components including the Su(z)12 homologue, VRN2, and two plant homeodomain (PHD) finger proteins, VRN5 and VIN3. However, the sequence of events leading to FLC repression was unclear. Here we show that, contrary to expectations, VRN2 associates throughout the FLC locus independently of cold. The vernalization-induced silencing is triggered by the cold-dependent association of the PHD finger protein VRN5 to a specific domain in FLC intron 1, and this association is dependent on the cold-induced PHD protein VIN3. In plants returned to warm conditions, VRN5 distribution changes, and it associates more broadly over FLC, coincident with significant increases in H3K27me3. Biochemical purification of a VRN5 complex showed that during prolonged cold a PHD-PRC2 complex forms composed of core PRC2 components (VRN2, SWINGER [an E(Z) HMTase homologue], FIE [an ESC homologue], MSI1 [p55 homologue]), and three related PHD finger proteins, VRN5, VIN3, and VEL1. The PHD-PRC2 activity increases H3K27me3 throughout the locus to levels sufficient for stable silencing. Arabidopsis PHD-PRC2 thus seems to act similarly to Pcl-PRC2 of Drosophila and PHF1-PRC2 of mammals. These data show FLC silencing involves changed composition and dynamic redistribution of Polycomb complexes at different stages of the vernalization process, a mechanism with greater parallels to Polycomb silencing of certain mammalian loci than the classic Drosophila Polycomb targets.
Collapse
|
59
|
Joshi P, Carrington EA, Wang L, Ketel CS, Miller EL, Jones RS, Simon JA. Dominant alleles identify SET domain residues required for histone methyltransferase of Polycomb repressive complex 2. J Biol Chem 2008; 283:27757-27766. [PMID: 18693240 DOI: 10.1074/jbc.m804442200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycomb gene silencing requires histone methyltransferase activity of Polycomb repressive complex 2 (PRC2), which methylates lysine 27 of histone H3. Information on how PRC2 works is limited by lack of structural data on the catalytic subunit, Enhancer of zeste (E(Z)), and the paucity of E(z) mutant alleles that alter its SET domain. Here we analyze missense alleles of Drosophila E(z), selected for molecular study because of their dominant genetic effects. Four missense alleles identify key E(Z) SET domain residues, and a fifth is located in the adjacent CXC domain. Analysis of mutant PRC2 complexes in vitro, and H3-K27 methylation in vivo, shows that each SET domain mutation disrupts PRC2 histone methyltransferase. Based on known SET domain structures, the mutations likely affect either the lysine-substrate binding pocket, the binding site for the adenosylmethionine methyl donor, or a critical tyrosine predicted to interact with the substrate lysine epsilon-amino group. In contrast, the CXC mutant retains catalytic activity, Lys-27 specificity, and trimethylation capacity. Deletion analysis also reveals a functional requirement for a conserved E(Z) domain N-terminal to CXC and SET. These results identify critical SET domain residues needed for PRC2 enzyme function, and they also emphasize functional inputs from outside the SET domain.
Collapse
Affiliation(s)
- Preeti Joshi
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minneapolis 55455
| | | | - Liangjun Wang
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minneapolis 55455
| | - Carrie S Ketel
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minneapolis 55455
| | - Ellen L Miller
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minneapolis 55455
| | - Richard S Jones
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275.
| | - Jeffrey A Simon
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minneapolis 55455.
| |
Collapse
|
60
|
Tiwari VK, Cope L, McGarvey KM, Ohm JE, Baylin SB. A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations. Genome Res 2008; 18:1171-9. [PMID: 18502945 DOI: 10.1101/gr.073452.107] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We describe construction of a novel modification, "6C," of chromatin looping assays that allows specific proteins that may mediate long-range chromatin interactions to be defined. This approach combines the standard looping approaches previously defined with an immunoprecipitation step to investigate involvement of the specific protein. The efficacy of this approach is demonstrated by using a Polycomb group (PcG) protein, Enhancer of Zeste (EZH2), as an example of how our assay might be used. EZH2, as a protein of the PcG complex, PRC2, has an important role in the propagation of epigenetic memory through deposition of the repressive mark, histone H3, lysine 27, tri-methylation (H3K27me3). Using our new 6C assay, we show how EZH2 is a direct mediator of long-range intra- and interchromosomal interactions that can regulate transcriptional down-regulation of multiple genes by facilitating physical proximities between distant chromatin regions, thus targeting sites within to PcG machinery.
Collapse
Affiliation(s)
- Vijay K Tiwari
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland 21231, USA
| | | | | | | | | |
Collapse
|
61
|
Polycomb complexes and epigenetic states. Curr Opin Cell Biol 2008; 20:266-73. [PMID: 18439810 DOI: 10.1016/j.ceb.2008.03.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 03/11/2008] [Indexed: 11/22/2022]
Abstract
Important advances in the study of Polycomb Group (PcG) complexes in the past two years have focused on the role of this repressive system in programing the genome. Genome-wide analyses have shown that PcG mechanisms control a large number of genes regulating many cellular functions and all developmental pathways. Current evidence shows that, contrary to the classical picture of their role, PcG complexes do not set a repressed chromatin state that is maintained throughout development but have a much more dynamic role. PcG target genes can become repressed or be reactivated or exist in intermediate states. What controls the balance between repression and derepression is a crucial question in understanding development and differentiation in higher organisms.
Collapse
|
62
|
Köhler C, Villar CBR. Programming of gene expression by Polycomb group proteins. Trends Cell Biol 2008; 18:236-43. [PMID: 18375123 DOI: 10.1016/j.tcb.2008.02.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 02/11/2008] [Accepted: 02/13/2008] [Indexed: 01/30/2023]
Abstract
Polycomb group (PcG) complexes maintain epigenetically repressed states that need to be reprogrammed when cells become committed to differentiation. In contrast to the previously held belief that PcG complexes regulate only a few selected genes, recent efforts have revealed hundreds of potential PcG targets in mammals, insects and plants. These results have changed our perception about PcG recruitment and function on chromatin. Both in animals and plants, evolutionarily conserved PcG complexes mark the chromatin of their target genes by methylation at histone H3 lysine 27. Surprisingly, however, both the proteins recognizing this mark and the mechanisms causing gene repression differ between both kingdoms. This suggests that different developmental strategies used in plant and animal development entailed the evolution of different repressive maintenance mechanisms.
Collapse
Affiliation(s)
- Claudia Köhler
- Institute of Plant Sciences and Zurich-Basel Plant Science Center, Swiss Federal Institute of Technology, ETH Center, CH-8092 Zurich, Switzerland.
| | | |
Collapse
|
63
|
SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol Cell Biol 2008; 28:3457-64. [PMID: 18332116 DOI: 10.1128/mcb.02019-07] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stable silencing of the INK4b-ARF-INK4a tumor suppressor locus occurs in a variety of human cancers, including malignant rhabdoid tumors (MRTs). MRTs are extremely aggressive cancers caused by the loss of the hSNF5 subunit of the SWI/SNF chromatin-remodeling complex. We found previously that, in MRT cells, hSNF5 is required for p16(INK4a) induction, mitotic checkpoint activation, and cellular senescence. Here, we investigated how the balance between Polycomb group (PcG) silencing and SWI/SNF activation affects epigenetic control of the INK4b-ARF-INK4a locus in MRT cells. hSNF5 reexpression in MRT cells caused SWI/SNF recruitment and activation of p15(INK4b) and p16(INK4a), but not of p14(ARF). Gene activation by hSNF5 is strictly dependent on the SWI/SNF motor subunit BRG1. SWI/SNF mediates eviction of the PRC1 and PRC2 PcG silencers and extensive chromatin reprogramming. Concomitant with PcG complex removal, the mixed lineage leukemia 1 (MLL1) protein is recruited and active histone marks supplant repressive ones. Strikingly, loss of PcG complexes is accompanied by DNA methyltransferase DNMT3B dissociation and reduced DNA methylation. Thus, various chromatin states can be modulated by SWI/SNF action. Collectively, these findings emphasize the close interconnectivity and dynamics of diverse chromatin modifications in cancer and gene control.
Collapse
|
64
|
Misulovin Z, Schwartz YB, Li XY, Kahn TG, Gause M, MacArthur S, Fay JC, Eisen MB, Pirrotta V, Biggin MD, Dorsett D. Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma 2008; 117:89-102. [PMID: 17965872 PMCID: PMC2258211 DOI: 10.1007/s00412-007-0129-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/02/2007] [Accepted: 10/04/2007] [Indexed: 01/13/2023]
Abstract
The cohesin complex is a chromosomal component required for sister chromatid cohesion that is conserved from yeast to man. The similarly conserved Nipped-B protein is needed for cohesin to bind to chromosomes. In higher organisms, Nipped-B and cohesin regulate gene expression and development by unknown mechanisms. Using chromatin immunoprecipitation, we find that Nipped-B and cohesin bind to the same sites throughout the entire non-repetitive Drosophila genome. They preferentially bind transcribed regions and overlap with RNA polymerase II. This contrasts sharply with yeast, where cohesin binds almost exclusively between genes. Differences in cohesin and Nipped-B binding between Drosophila cell lines often correlate with differences in gene expression. For example, cohesin and Nipped-B bind the Abd-B homeobox gene in cells in which it is transcribed, but not in cells in which it is silenced. They bind to the Abd-B transcription unit and downstream regulatory region and thus could regulate both transcriptional elongation and activation. We posit that transcription facilitates cohesin binding, perhaps by unfolding chromatin, and that Nipped-B then regulates gene expression by controlling cohesin dynamics. These mechanisms are likely involved in the etiology of Cornelia de Lange syndrome, in which mutation of one copy of the NIPBL gene encoding the human Nipped-B ortholog causes diverse structural and mental birth defects.
Collapse
Affiliation(s)
- Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Yuri B. Schwartz
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Xiao-Yong Li
- Berkeley Drosophila Transcription Network Project, Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tatyana G. Kahn
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Stewart MacArthur
- Berkeley Drosophila Transcription Network Project, Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Justin C. Fay
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Michael B. Eisen
- Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Berkeley Drosophila Transcription Network Project, Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Mark D. Biggin
- Berkeley Drosophila Transcription Network Project, Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA, e-mail:
| |
Collapse
|
65
|
Calonje M, Sanchez R, Chen L, Sung ZR. EMBRYONIC FLOWER1 participates in polycomb group-mediated AG gene silencing in Arabidopsis. THE PLANT CELL 2008; 20:277-91. [PMID: 18281509 PMCID: PMC2276442 DOI: 10.1105/tpc.106.049957] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 01/07/2008] [Accepted: 01/31/2008] [Indexed: 05/17/2023]
Abstract
Polycomb group (PcG)-mediated gene silencing is a common developmental strategy used to maintain stably inherited repression of target genes and involves different protein complexes known as Polycomb-repressive complexes (PRCs). In animals, the two best-characterized PcG complexes are PRC1 and PRC2. In this report, we demonstrate that the plant-specific protein EMBRYONIC FLOWER1 (EMF1) functions in maintaining the repression of the flower homeotic gene AGAMOUS (AG) during vegetative development in Arabidopsis thaliana by acting in concert with the EMF2 complex, a putative equivalent of Drosophila melanogaster PRC2. We show that AG regulatory sequences are required for its ectopic expression in both emf1 and emf2 mutants and that EMF2 is required for trimethylation of histone 3 lysine 27 on the AG chromatin. We found that EMF1 interacts directly with AG and that this interaction depends on the presence of EMF2. Together with the finding of EMF1 interference with transcription in vitro, these results suggest that EMF1 enables transcriptional repression of AG after the action of the putative EMF2 complex. Our data indicate that EMF1 plays a PRC1-like role in the PcG-mediated floral repression mechanism.
Collapse
Affiliation(s)
- Myriam Calonje
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
66
|
Ohno K, McCabe D, Czermin B, Imhof A, Pirrotta V. ESC, ESCL and their roles in Polycomb Group mechanisms. Mech Dev 2008; 125:527-41. [PMID: 18276122 DOI: 10.1016/j.mod.2008.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 11/30/2007] [Accepted: 01/03/2008] [Indexed: 10/22/2022]
Abstract
The Drosophila esc gene is a Polycomb Group (PcG) gene whose product is essential for histone H3 K27 methylation and PcG silencing yet genetic analysis indicated that its product was needed only in the very early embryo. We know now that escl, a close homologue of esc exists in the Drosophila genome. In contrast with earlier studies, we find that both esc and escl are expressed at all stages of development. We show that three major differences between the two genes are in the transcriptional control, which allows esc to make a much stronger maternal contribution; in the splicing efficiency, which makes a major difference in the early escl function; and in the lower participation of ESCL in the PRC2 complex and lower enzymatic activity of the resulting complex. Both genes can sustain normal development in the absence of the other except for the critical role provided by maternal esc product in early embryonic development. Finally, using zygotic mutations in both genes, we show that the gradual loss of function of PRC2 activity leads first to a loss of histone H3 K27 methylation and only at a later stage to a gradual loss of PRC1 binding to chromatin.
Collapse
Affiliation(s)
- Katsuhito Ohno
- Department of Molecular Biology and Biochemistry, Rutgers University, Nelson Laboratories, 604 Allison Road, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
67
|
Abstract
How signaling cascades influence gene regulation at the level of chromatin modification is not well understood. We studied this process using the Wingless/Wnt pathway in Drosophila. When cells sense Wingless ligand, Armadillo (the fly beta-catenin) becomes stabilized and translocates to the nucleus, where it binds to the sequence-specific DNA binding protein TCF to activate transcription of target genes. Here, we show that Wingless signaling induces TCF and Armadillo recruitment to a select subset of TCF binding site clusters that act as Wingless response elements. Despite this localized TCF/Armadillo recruitment, histones are acetylated over a wide region (up to 30 kb) surrounding the Wingless response elements in response to pathway activation. This widespread histone acetylation occurs independently of transcription. In contrast to Wingless targets, other active genes not regulated by the pathway display sharp acetylation peaks centered on their core promoters. Widespread acetylation of Wingless targets is dependent upon CBP, a histone acetyltransferase known to bind to Armadillo and is correlated with activation of target gene expression. These data suggest that pathway activation induces localized recruitment of TCF/Armadillo/CBP to Wingless response elements, leading to widespread histone acetylation of target loci prior to transcriptional activation.
Collapse
|
68
|
Yasuhara JC, Wakimoto BT. Molecular landscape of modified histones in Drosophila heterochromatic genes and euchromatin-heterochromatin transition zones. PLoS Genet 2007; 4:e16. [PMID: 18208336 PMCID: PMC2211541 DOI: 10.1371/journal.pgen.0040016] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 12/10/2007] [Indexed: 01/11/2023] Open
Abstract
Constitutive heterochromatin is enriched in repetitive sequences and histone H3-methylated-at-lysine 9. Both components contribute to heterochromatin's ability to silence euchromatic genes. However, heterochromatin also harbors hundreds of expressed genes in organisms such as Drosophila. Recent studies have provided a detailed picture of sequence organization of D. melanogaster heterochromatin, but how histone modifications are associated with heterochromatic sequences at high resolution has not been described. Here, distributions of modified histones in the vicinity of heterochromatic genes of normal embryos and embryos homozygous for a chromosome rearrangement were characterized using chromatin immunoprecipitation and genome tiling arrays. We found that H3-di-methylated-at-lysine 9 (H3K9me2) was depleted at the 5′ ends but enriched throughout transcribed regions of heterochromatic genes. The profile was distinct from that of euchromatic genes and suggests that heterochromatic genes are integrated into, rather than insulated from, the H3K9me2-enriched domain. Moreover, the profile was only subtly affected by a Su(var)3–9 null mutation, implicating a histone methyltransferase other than SU(VAR)3–9 as responsible for most H3K9me2 associated with heterochromatic genes in embryos. On a chromosomal scale, we observed a sharp transition to the H3K9me2 domain, which coincided with increased retrotransposon density in the euchromatin-heterochromatin (eu-het) transition zones on the long chromosome arms. Thus, a certain density of retrotransposons, rather than specific boundary elements, may demarcate Drosophila pericentric heterochromatin. We also demonstrate that a chromosome rearrangement that created a new eu-het junction altered H3K9me2 distribution and induced new euchromatic sites of enrichment as far as several megabases away from the breakpoint. Taken together, the findings argue against simple classification of H3K9me as the definitive signature of silenced genes, and clarify roles of histone modifications and repetitive DNAs in heterochromatin. The results are also relevant for understanding the effects of chromosome aberrations and the megabase scale over which epigenetic position effects can operate in multicellular organisms. The chromosomal domain “heterochromatin” was first defined at the cytological level by its deeply staining appearance compared to more lightly stained domains called “euchromatin.” Abnormal juxtaposition of these two domains by chromosome rearrangements results in silencing of the nearby euchromatic genes. This effect is mediated by heterochromatin-enriched chromosomal proteins and led to the prevalent view of heterochromatin as incompatible with gene expression. Paradoxically, some expressed genes reside within heterochromatin. In this study, we examined how heterochromatic genes fit into a genomic context known for silencing effects. We found that Drosophila heterochromatic genes are integrated into the domain enriched in the modified histone H3K9me2, suggesting that the effect of this protein on gene expression is context-dependent. We also investigated the molecular nature of euchromatin-heterochromatin transition zones in the normal and rearranged chromosomes. The results provide insights into the functions of repetitive DNAs and H3K9me2 in heterochromatin and document the long distance over which a heterochromatic breakpoint can affect the molecular landscape of a chromosomal region. These findings have implications for understanding the consequences of chromosome abnormalities in organisms, including humans.
Collapse
Affiliation(s)
- Jiro C Yasuhara
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Barbara T Wakimoto
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
69
|
Comparing active and repressed expression states of genes controlled by the Polycomb/Trithorax group proteins. Proc Natl Acad Sci U S A 2007; 104:16615-20. [PMID: 17921257 DOI: 10.1073/pnas.0701538104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Drosophila Polycomb group (PcG) and Trithorax group (TrxG) proteins are responsible for the maintenance of stable transcription patterns of many developmental regulators, such as the homeotic genes. We have used ChIP-on-chip to compare the distribution of several PcG/TrxG proteins, as well as histone modifications in active and repressed genes across the two homeotic complexes ANT-C and BX-C. Our data indicate the colocalization of the Polycomb repressive complex 1 (PRC1) with Trx and the DNA binding protein Pleiohomeotic (Pho) at discrete sequence elements as well as significant chromatin assembly differences in active and inactive regions. Trx binds to the promoters of active genes and noncoding transcripts. Most strikingly, in the active state, Pho covers extended chromatin domains over many kilobases. This feature of Pho, observed on many polytene chromosome puffs, reflects a previously undescribed function. At the hsp70 gene, we demonstrate in mutants that Pho is required for transcriptional recovery after heat shock. Besides its presumptive function in recruiting PcG complexes to their site of action, our results now uncover that Pho plays an additional role in the repression of already induced genes.
Collapse
|
70
|
Nekrasov M, Klymenko T, Fraterman S, Papp B, Oktaba K, Köcher T, Cohen A, Stunnenberg HG, Wilm M, Müller J. Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. EMBO J 2007; 26:4078-88. [PMID: 17762866 PMCID: PMC1964751 DOI: 10.1038/sj.emboj.7601837] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 07/31/2007] [Indexed: 01/25/2023] Open
Abstract
PRC2 is thought to be the histone methyltransferase (HMTase) responsible for H3-K27 trimethylation at Polycomb target genes. Here we report the biochemical purification and characterization of a distinct form of Drosophila PRC2 that contains the Polycomb group protein polycomblike (Pcl). Like PRC2, Pcl-PRC2 is an H3-K27-specific HMTase that mono-, di- and trimethylates H3-K27 in nucleosomes in vitro. Analysis of Drosophila mutants that lack Pcl unexpectedly reveals that Pcl-PRC2 is required to generate high levels of H3-K27 trimethylation at Polycomb target genes but is dispensable for the genome-wide H3-K27 mono- and dimethylation that is generated by PRC2. In Pcl mutants, Polycomb target genes become derepressed even though H3-K27 trimethylation at these genes is only reduced and not abolished, and even though targeting of the Polycomb protein complexes PhoRC and PRC1 to Polycomb response elements is not affected. Pcl-PRC2 is thus the HMTase that generates the high levels of H3-K27 trimethylation in Polycomb target genes that are needed to maintain a Polycomb-repressed chromatin state.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas Köcher
- Gene Expression Programme, EMBL, Heidelberg, Germany
| | - Adrian Cohen
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Matthias Wilm
- Gene Expression Programme, EMBL, Heidelberg, Germany
| | - Jürg Müller
- Gene Expression Programme, EMBL, Heidelberg, Germany
- Gene Expression Programme, EMBL, Meyerhofstrasse 1, Heidelberg 69117, Germany. Tel.: +49 6221 387629; Fax: +49 6221 387518; E-mail:
| |
Collapse
|
71
|
Sipos L, Kozma G, Molnár E, Bender W. In situ dissection of a Polycomb response element in Drosophila melanogaster. Proc Natl Acad Sci U S A 2007; 104:12416-21. [PMID: 17640916 PMCID: PMC1941339 DOI: 10.1073/pnas.0703144104] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genes of the Polycomb group maintain long-term, segment-specific repression of the homeotic genes in Drosophila. DNA targets of Polycomb group proteins, called Polycomb response elements (PREs), have been defined by several assays, but they have not been dissected in their original chromosomal context. An enhanced method of gene conversion was developed to generate a series of small, targeted deletions encompassing the best-studied PRE, upstream of the Ultrabithorax (Ubx) transcription unit in the bithorax complex. Deletions that removed an essential 185-bp core of the PRE caused anterior misexpression of Ubx and posterior segmental transformations, including the conversion of the third thoracic segment toward a duplicate first abdominal segment. These phenotypes were variable, suggesting some cooperation between this PRE and others in the bithorax complex. Larger deletions up to 3 kb were also created, which removed DNA sites reportedly needed for Ubx activation, including putative trithorax response elements. These deletions resulted in neither loss of Ubx expression nor loss-of-function phenotypes. Thus, the 3-kb region including the PRE is required for repression, but not for activation, of Ubx.
Collapse
Affiliation(s)
- László Sipos
- Institute of Genetics, Biological Research Center of Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | | | | | | |
Collapse
|
72
|
Chang S, Aune TM. Dynamic changes in histone-methylation 'marks' across the locus encoding interferon-γ during the differentiation of T helper type 2 cells. Nat Immunol 2007; 8:723-31. [PMID: 17546034 DOI: 10.1038/ni1473] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 04/25/2007] [Indexed: 02/03/2023]
Abstract
The 'histone-code' hypothesis proposes that cell fate 'decisions' are achieved through the creation of stable epigenetic histone 'marks' at gene loci. Here we explored the formation of marks of repressive methylation of histone 3 at lysine 9 (H3-K9) and of H3-K27 at the locus encoding interferon-gamma (Ifng locus) during the commitment of naive T cells to the T helper type 1 (TH1) and TH2 lineages. Methylation of H3-K9 across the Ifng locus was rapidly induced in differentiating TH1 and TH2 cells and was sustained in TH1 cells. In contrast, TH2 differentiation caused loss of methylation of H3-K9 and gain of methylation of H3-K27 by mechanisms dependent on the transcription factors GATA-3 and STAT6. Thus, histone-methylation marks at the Ifng locus are highly dynamic, which may ensure higher-order transcriptional regulation during early lineage commitment.
Collapse
Affiliation(s)
- Shaojing Chang
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
73
|
Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 2007; 5:e129. [PMID: 17439305 PMCID: PMC1852588 DOI: 10.1371/journal.pbio.0050129] [Citation(s) in RCA: 557] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 03/07/2007] [Indexed: 11/19/2022] Open
Abstract
Trimethylation of histone H3 lysine 27 (H3K27me3) plays critical roles in regulating animal development, and in several cases, H3K27me3 is also required for the proper expression of developmentally important genes in plants. However, the extent to which H3K27me3 regulates plant genes on a genome-wide scale remains unknown. In addition, it is not clear whether the establishment and spreading of H3K27me3 occur through the same mechanisms in plants and animals. We identified regions containing H3K27me3 in the genome of the flowering plant Arabidopsis thaliana using a high-density whole-genome tiling microarray. The results suggest that H3K27me3 is a major silencing mechanism in plants that regulates an unexpectedly large number of genes in Arabidopsis (~4,400), and that the maintenance of H3K27me3 is largely independent of other epigenetic pathways, such as DNA methylation or RNA interference. Unlike in animals, where H3K27m3 occupies large genomic regions, in Arabidopsis, we found that H3K27m3 domains were largely restricted to the transcribed regions of single genes. Furthermore, unlike in animals systems, H3K27m3 domains were not preferentially associated with low-nucleosome density regions. The results suggest that different mechanisms may underlie the establishment and spreading of H3K27me3 in plants and animals.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Oliver Clarenz
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
- School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Shawn Cokus
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yana V Bernatavichute
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Justin Goodrich
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
- School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
74
|
Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell 2007; 128:735-45. [PMID: 17320510 DOI: 10.1016/j.cell.2007.02.009] [Citation(s) in RCA: 1057] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins are critical regulators of numerous developmental genes. To silence or activate gene expression, respectively, PcG and trxG proteins bind to specific regions of DNA and direct the posttranslational modification of histones. Recent work suggests that PcG proteins regulate the nuclear organization of their target genes and that PcG-mediated gene silencing involves noncoding RNAs and the RNAi machinery.
Collapse
Affiliation(s)
- Bernd Schuettengruber
- Institute of Human Genetics, CNRS, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
75
|
Abstract
Chemical modifications to DNA and histone proteins form a complex regulatory network that modulates chromatin structure and genome function. The epigenome refers to the complete description of these potentially heritable changes across the genome. The composition of the epigenome within a given cell is a function of genetic determinants, lineage, and environment. With the sequencing of the human genome completed, investigators now seek a comprehensive view of the epigenetic changes that determine how genetic information is made manifest across an incredibly varied background of developmental stages, tissue types, and disease states. Here we review current research efforts, with an emphasis on large-scale studies, emerging technologies, and challenges ahead.
Collapse
Affiliation(s)
- Bradley E Bernstein
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
76
|
Schwartz YB, Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 2007; 8:9-22. [PMID: 17173055 DOI: 10.1038/nrg1981] [Citation(s) in RCA: 662] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polycomb group complexes, which are known to regulate homeotic genes, have now been found to control hundreds of other genes in mammals and insects. First believed to progressively assemble and package chromatin, they are now thought to be localized, but induce a methylation mark on histone H3 over a broad chromatin domain. Recent progress has changed our view of how these complexes are recruited, and how they affect chromatin and repress gene activity. Polycomb complexes function as global enforcers of epigenetically repressed states, balanced by an antagonistic state that is mediated by Trithorax. These epigenetic states must be reprogrammed when cells become committed to differentiation.
Collapse
Affiliation(s)
- Yuri B Schwartz
- Department of Molecular Biology and Biochemistry, Rutgers University, Nelson Laboratories, 604 Allison Road, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
77
|
Mohd-Sarip A, van der Knaap JA, Wyman C, Kanaar R, Schedl P, Verrijzer CP. Architecture of a Polycomb Nucleoprotein Complex. Mol Cell 2006; 24:91-100. [PMID: 17018295 DOI: 10.1016/j.molcel.2006.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 06/22/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
Polycomb group (PcG) epigenetic silencing proteins act through cis-acting DNA sequences, named Polycomb response elements (PREs). Within PREs, Pleiohomeotic (PHO) binding sites and juxtaposed Pc binding elements (PBEs) function as an integrated DNA platform for the synergistic binding of PHO and the multisubunit Polycomb core complex (PCC). Here, we analyzed the architecture of the PHO/PCC/PRE nucleoprotein complex. DNase I footprinting revealed extensive contacts between PHO/PCC and the PRE. Scanning force microscopy (SFM) in combination with DNA topological assays suggested that PHO/PCC wraps the PRE DNA around its surface in a constrained negative supercoil. These features are difficult to reconcile with the simultaneous presence of nucleosomes at the PRE. Indeed, chromatin immunoprecipitations (ChIPs) and nuclease mapping demonstrated that PREs are nucleosome depleted in vivo. We discuss the implications of these findings for models explaining PRE function.
Collapse
Affiliation(s)
- Adone Mohd-Sarip
- Department of Biochemistry, Centre for Biomedical Genetics, Erasmus University Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|