51
|
Ettema TJG, Lindås AC, Hjort K, Poplawski AB, Kaessmann H, Grogan DW, Kelman Z, Andersson AF, Pelve EA, Lundgren M, Svärd SG. Rolf Bernander (1956-2014): pioneer of the archaeal cell cycle. Mol Microbiol 2014; 92:903-9. [PMID: 24865634 DOI: 10.1111/mmi.12608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2014] [Indexed: 11/29/2022]
Abstract
On 19 January 2014 Rolf ('Roffe') Bernander passed away unexpectedly. Rolf was a dedicated scientist; his research aimed at unravelling the cell biology of the archaeal domain of life, especially cell cycle-related questions, but he also made important contributions in other areas of microbiology. Rolf had a professor position in the Molecular Evolution programme at Uppsala University, Sweden for about 8 years, and in January 2013 he became chair professor at the Department of Molecular Biosciences, The Wenner-Gren Institute at Stockholm University in Sweden. Rolf was an exceptional colleague and will be deeply missed by his family and friends, and the colleagues and co-workers that he leaves behind in the scientific community. He will be remembered for his endless enthusiasm for science, his analytical mind, and his quirky sense of humour.
Collapse
Affiliation(s)
- Thijs J G Ettema
- Department of Cell- and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Ghasempur S, Eswaramoorthy S, Hillerich BS, Seidel RD, Swaminathan S, Almo SC, Gerlt JA. Discovery of a novel L-lyxonate degradation pathway in Pseudomonas aeruginosa PAO1. Biochemistry 2014; 53:3357-66. [PMID: 24831290 PMCID: PMC4038344 DOI: 10.1021/bi5004298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The l-lyxonate dehydratase (LyxD) in vitro enzymatic
activity and in vivo metabolic function were assigned
to members of an isofunctional family within the mandelate racemase
(MR) subgroup of the enolase superfamily. This study combined in vitro and in vivo data to confirm that
the dehydration of l-lyxonate is the biological role of the
members of this family. In vitro kinetic experiments
revealed catalytic efficiencies of ∼104 M–1 s–1 as previously observed for members of other
families in the MR subgroup. Growth studies revealed that l-lyxonate is a carbon source for Pseudomonas aeruginosa PAO1; transcriptomics using qRT-PCR established that the gene encoding
LyxD as well as several other conserved proximal genes were upregulated
in cells grown on l-lyxonate. The proximal genes were shown
to be involved in a pathway for the degradation of l-lyxonate,
in which the first step is dehydration by LyxD followed by dehydration
of the 2-keto-3-deoxy-l-lyxonate product by 2-keto-3-deoxy-l-lyxonate dehydratase to yield α-ketoglutarate semialdehyde.
In the final step, α-ketoglutarate semialdehyde is oxidized
by a dehydrogenase to α-ketoglutarate, an intermediate in the
citric acid cycle. An X-ray structure for the LyxD from Labrenzia
aggregata IAM 12614 with Mg2+ in the active site
was determined that confirmed the expectation based on sequence alignments
that LyxDs possess a conserved catalytic His-Asp dyad at the end of
seventh and sixth β-strands of the (β/α)7β-barrel domain as well as a conserved KxR motif at the end
of second β-strand; substitutions for His 316 or Arg 179 inactivated
the enzyme. This is the first example of both the LyxD function in
the enolase superfamily and a pathway for the catabolism of l-lyxonate.
Collapse
Affiliation(s)
- Salehe Ghasempur
- Department of Biochemistry, ‡Department of Chemistry, and §Institute for Genomic Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | | | | | | | | | | | |
Collapse
|
53
|
Kort JC, Esser D, Pham TK, Noirel J, Wright PC, Siebers B. A cool tool for hot and sour Archaea: Proteomics of Sulfolobus solfataricus. Proteomics 2013; 13:2831-50. [DOI: 10.1002/pmic.201300088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/23/2013] [Accepted: 05/03/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Julia Christin Kort
- Molecular Enzyme Technology and Biochemistry; Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen; Essen Germany
| | - Dominik Esser
- Molecular Enzyme Technology and Biochemistry; Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen; Essen Germany
| | - Trong Khoa Pham
- Department of Chemical and Biological Engineering; ChELSI Institute, The University of Sheffield; Sheffield UK
| | - Josselin Noirel
- Department of Chemical and Biological Engineering; ChELSI Institute, The University of Sheffield; Sheffield UK
| | - Phillip C. Wright
- Department of Chemical and Biological Engineering; ChELSI Institute, The University of Sheffield; Sheffield UK
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry; Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen; Essen Germany
| |
Collapse
|
54
|
l-Arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of l-arabinose dehydrogenase. Extremophiles 2013; 17:897-909. [DOI: 10.1007/s00792-013-0572-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/25/2013] [Indexed: 02/03/2023]
|
55
|
Abstract
For cellular fitness and survival, gene expression levels need to be regulated in response to a wealth of cellular and environmental signals. TFs (transcription factors) execute a large part of this regulation by interacting with the basal transcription machinery at promoter regions. Archaea are characterized by a simplified eukaryote-like basal transcription machinery and bacteria-type TFs, which convert sequence information into a gene expression output according to cis-regulatory rules. In the present review, we discuss the current state of knowledge about these rules in archaeal systems, ranging from DNA-binding specificities and operator architecture to regulatory mechanisms.
Collapse
|
56
|
Sato T, Fujihashi M, Miyamoto Y, Kuwata K, Kusaka E, Fujita H, Miki K, Atomi H. An uncharacterized member of the ribokinase family in Thermococcus kodakarensis exhibits myo-inositol kinase activity. J Biol Chem 2013; 288:20856-20867. [PMID: 23737529 DOI: 10.1074/jbc.m113.457259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we performed structural and biochemical analyses on the TK2285 gene product, an uncharacterized protein annotated as a member of the ribokinase family, from the hyperthermophilic archaeon Thermococcus kodakarensis. The three-dimensional structure of the TK2285 protein resembled those of previously characterized members of the ribokinase family including ribokinase, adenosine kinase, and phosphofructokinase. Conserved residues characteristic of this protein family were located in a cleft of the TK2285 protein as in other members whose structures have been determined. We thus examined the kinase activity of the TK2285 protein toward various sugars recognized by well characterized ribokinase family members. Although activity with sugar phosphates and nucleosides was not detected, kinase activity was observed toward d-allose, d-lyxose, d-tagatose, d-talose, d-xylose, and d-xylulose. Kinetic analyses with the six sugar substrates revealed high Km values, suggesting that they were not the true physiological substrates. By examining activity toward amino sugars, sugar alcohols, and disaccharides, we found that the TK2285 protein exhibited prominent kinase activity toward myo-inositol. Kinetic analyses with myo-inositol revealed a greater kcat and much lower Km value than those obtained with the monosaccharides, resulting in over a 2,000-fold increase in kcat/Km values. TK2285 homologs are distributed among members of Thermococcales, and in most species, the gene is positioned close to a myo-inositol monophosphate synthase gene. Our results suggest the presence of a novel subfamily of the ribokinase family whose members are present in Archaea and recognize myo-inositol as a substrate.
Collapse
Affiliation(s)
- Takaaki Sato
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan,; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Masahiro Fujihashi
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan; Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan, and
| | - Yukika Miyamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan, and
| | - Keiko Kuwata
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Eriko Kusaka
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruo Fujita
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kunio Miki
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan; Department of Chemistry, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan, and
| | - Haruyuki Atomi
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan,; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan.
| |
Collapse
|
57
|
Archer RM, Royer SF, Mahy W, Winn CL, Danson MJ, Bull SD. Syntheses of 2-Keto-3-deoxy-D-xylonate and 2-Keto-3-deoxy-L-arabinonate as Stereochemical Probes for Demonstrating the Metabolic Promiscuity ofSulfolobus solfataricusTowardsD-Xylose andL-Arabinose. Chemistry 2013; 19:2895-902. [DOI: 10.1002/chem.201203489] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/12/2012] [Indexed: 11/08/2022]
|
58
|
Unraveling the function of paralogs of the aldehyde dehydrogenase super family from Sulfolobus solfataricus. Extremophiles 2013; 17:205-16. [PMID: 23296511 DOI: 10.1007/s00792-012-0507-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/17/2012] [Indexed: 01/16/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) have been well established in all three domains of life and were shown to play essential roles, e.g., in intermediary metabolism and detoxification. In the genome of Sulfolobus solfataricus, five paralogs of the aldehyde dehydrogenases superfamily were identified, however, so far only the non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) and α-ketoglutaric semialdehyde dehydrogenase (α-KGSADH) have been characterized. Detailed biochemical analyses of the remaining three ALDHs revealed the presence of two succinic semialdehyde dehydrogenase (SSADH) isoenzymes catalyzing the NAD(P)(+)-dependent oxidation of succinic semialdehyde. Whereas SSO1629 (SSADH-I) is specific for NAD(+), SSO1842 (SSADH-II) exhibits dual cosubstrate specificity (NAD(P)(+)). Physiological significant activity for both SSO-SSADHs was only detected with succinic semialdehyde and α-ketoglutarate semialdehyde. Bioinformatic reconstructions suggest a major function of both enzymes in γ-aminobutyrate, polyamine as well as nitrogen metabolism and they might additionally also function in pentose metabolism. Phylogenetic studies indicated a close relationship of SSO-SSALDHs to GAPNs and also a convergent evolution with the SSADHs from E. coli. Furthermore, for SSO1218, methylmalonate semialdehyde dehydrogenase (MSDH) activity was demonstrated. The enzyme catalyzes the NAD(+)- and CoA-dependent oxidation of methylmalonate semialdehyde, malonate semialdehyde as well as propionaldehyde (PA). For MSDH, a major function in the degradation of branched chain amino acids is proposed which is supported by the high sequence homology with characterized MSDHs from bacteria. This is the first report of MSDH as well as SSADH isoenzymes in Archaea.
Collapse
|
59
|
Esser D, Pham TK, Reimann J, Albers SV, Siebers B, Wright PC. Change of carbon source causes dramatic effects in the phospho-proteome of the archaeon Sulfolobus solfataricus. J Proteome Res 2012; 11:4823-33. [PMID: 22639831 DOI: 10.1021/pr300190k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein phosphorylation is known to occur in Archaea. However, knowledge of phosphorylation in the third domain of life is rather scarce. Homology-based searches of archaeal genome sequences reveals the absence of two-component systems in crenarchaeal genomes but the presence of eukaryotic-like protein kinases and protein phosphatases. Here, the influence of the offered carbon source (glucose versus tryptone) on the phospho-proteome of Sulfolobus solfataricus P2 was studied by precursor acquisition independent from ion count (PAcIFIC). In comparison to previous phospho-proteome studies, a high number of phosphorylation sites (1318) located on 690 phospho-peptides from 540 unique phospho-proteins were detected, thus increasing the number of currently known archaeal phospho-proteins from 80 to 621. Furthermore, a 25.8/20.6/53.6 Ser/Thr/Tyr percentage ratio with an unexpectedly high predominance of tyrosine phosphorylation was detected. Phospho-proteins in most functional classes (21 out of 26 arCOGs) were identified, suggesting an important regulatory role in S. solfataricus. Focusing on the central carbohydrate metabolism in response to the offered carbon source, significant changes were observed. The observed complex phosphorylation pattern hints at an important physiological function of protein phosphorylation in control of the central carbohydrate metabolism, which might particularly operate in channeling carbon flux into the respective metabolic pathways.
Collapse
Affiliation(s)
- D Esser
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | | | | | | | | | | |
Collapse
|
60
|
Bourke HE, Salmon LJ, Waller A, Patterson V, Pinczewski LA. Survival of the anterior cruciate ligament graft and the contralateral ACL at a minimum of 15 years. Am J Sports Med 2012; 40:1985-92. [PMID: 22869626 DOI: 10.1177/0363546512454414] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The risks for primary anterior cruciate ligament (ACL) rupture have been established. What is less well known is the risk of graft rupture after reconstruction and also the risk of a primary ACL rupture in the contralateral knee. PURPOSE To determine the long-term survival of the ACL graft and the contralateral ACL (CACL) after reconstruction and to identify factors that increase the odds of subsequent ACL injury. STUDY DESIGN Case series; Level of evidence, 4. METHODS All patients having undergone primary ACL reconstruction in 1993 or 1994 by a single surgeon in a single unit were considered. Patients were contacted to complete a subjective interview by telephone or e-mail questionnaire at a minimum of 15 years after surgery. RESULTS A total of 755 patients met the inclusion criteria, and ACL reconstruction was performed using a single-incision endoscopic technique with either autologous bone-patellar tendon-bone graft (BPTB; n = 314) or hamstring tendon graft (HT; n = 359) and metal interference screw fixation. Of these patients, 673 (89%) completed the questionnaire; 23% had sustained either a graft rupture or CACL rupture. Expected survival of the ACL graft was 95%, 93%, 91%, and 89% at a respective 2, 5, 10, and 15 years after reconstruction. Expected survival of the CACL was 97%, 93%, 90%, and 87%, respectively. Survival of the ACL graft was less favorable in men than in women (P = .007); ACL graft survival was not significantly different between the HT (88%) or BPTB (91%) groups (P = .149). Rupture of the CACL occurred twice as frequently as graft rupture in the BPTB group (graft survival, 84% vs 89%; P = .003). A positive family history of ACL rupture doubled the odds of both ACL graft and CACL rupture. The mean International Knee Documentation Committee subjective score at 15 years was 85. Return to preinjury sport levels was reported in 73% of patients, and 51% were still participating in strenuous or very strenuous activities at 15 years. CONCLUSION Fifteen years after ACL reconstruction, expected survival of the ACL graft was 89% and expected survival of the CACL was 86%. Graft choice did not affect ACL graft rupture, but using BPTB increased the risk of CACL rupture compared with HT. Men had a less favorable survival rate of the ACL graft than did women, and a family history of ACL rupture increased the risk of both ACL graft and CACL rupture.
Collapse
Affiliation(s)
- Henry E Bourke
- North Sydney Orthopaedic and Sports Medicine Centre, Wollstonecraft, Sydney, NSW 2065, Australia
| | | | | | | | | |
Collapse
|
61
|
Ulas T, Riemer SA, Zaparty M, Siebers B, Schomburg D. Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus. PLoS One 2012; 7:e43401. [PMID: 22952675 PMCID: PMC3432047 DOI: 10.1371/journal.pone.0043401] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022] Open
Abstract
We describe the reconstruction of a genome-scale metabolic model of the crenarchaeon Sulfolobus solfataricus, a hyperthermoacidophilic microorganism. It grows in terrestrial volcanic hot springs with growth occurring at pH 2–4 (optimum 3.5) and a temperature of 75–80°C (optimum 80°C). The genome of Sulfolobus solfataricus P2 contains 2,992,245 bp on a single circular chromosome and encodes 2,977 proteins and a number of RNAs. The network comprises 718 metabolic and 58 transport/exchange reactions and 705 unique metabolites, based on the annotated genome and available biochemical data. Using the model in conjunction with constraint-based methods, we simulated the metabolic fluxes induced by different environmental and genetic conditions. The predictions were compared to experimental measurements and phenotypes of S. solfataricus. Furthermore, the performance of the network for 35 different carbon sources known for S. solfataricus from the literature was simulated. Comparing the growth on different carbon sources revealed that glycerol is the carbon source with the highest biomass flux per imported carbon atom (75% higher than glucose). Experimental data was also used to fit the model to phenotypic observations. In addition to the commonly known heterotrophic growth of S. solfataricus, the crenarchaeon is also able to grow autotrophically using the hydroxypropionate-hydroxybutyrate cycle for bicarbonate fixation. We integrated this pathway into our model and compared bicarbonate fixation with growth on glucose as sole carbon source. Finally, we tested the robustness of the metabolism with respect to gene deletions using the method of Minimization of Metabolic Adjustment (MOMA), which predicted that 18% of all possible single gene deletions would be lethal for the organism.
Collapse
Affiliation(s)
- Thomas Ulas
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - S. Alexander Riemer
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie Zaparty
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Bettina Siebers
- Faculty of Chemistry, Biofilm Centre, Molecular Enzyme Technology and Biochemistry, University of Duisburg-Essen, Essen, Germany
| | - Dietmar Schomburg
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
62
|
Toivari MH, Nygård Y, Penttilä M, Ruohonen L, Wiebe MG. Microbial D-xylonate production. Appl Microbiol Biotechnol 2012; 96:1-8. [PMID: 22875400 PMCID: PMC3433669 DOI: 10.1007/s00253-012-4288-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/05/2012] [Accepted: 07/07/2012] [Indexed: 01/27/2023]
Abstract
d-Xylonic acid is a versatile platform chemical with reported applications as complexing agent or chelator, in dispersal of concrete, and as a precursor for compounds such as co-polyamides, polyesters, hydrogels and 1,2,4-butanetriol. With increasing glucose prices, d-xylonic acid may provide a cheap, non-food derived alternative for gluconic acid, which is widely used (about 80 kton/year) in pharmaceuticals, food products, solvents, adhesives, dyes, paints and polishes. Large-scale production has not been developed, reflecting the current limited market for d-xylonate. d-Xylonic acid occurs naturally, being formed in the first step of oxidative metabolism of d-xylose by some archaea and bacteria via the action of d-xylose or d-glucose dehydrogenases. High extracellular concentrations of d-xylonate have been reported for various bacteria, in particular Gluconobacter oxydans and Pseudomonas putida. High yields of d-xylonate from d-xylose make G. oxydans an attractive choice for biotechnical production. G. oxydans is able to produce d-xylonate directly from plant biomass hydrolysates, but rates and yields are reduced because of sensitivity to hydrolysate inhibitors. Recently, d-xylonate has been produced by the genetically modified bacterium Escherichia coli and yeast Saccharomyces cerevisiae and Kluyveromyces lactis. Expression of NAD+-dependent d-xylose dehydrogenase of Caulobacter crescentus in either E. coli or in a robust, hydrolysate-tolerant, industrial Saccharomyces cerevisiae strain has resulted in d-xylonate titres, which are comparable to those seen with G. oxydans, at a volumetric rate approximately 30 % of that observed with G. oxydans. With further development, genetically modified microbes may soon provide an alternative for production of d-xylonate at industrial scale.
Collapse
Affiliation(s)
- Mervi H Toivari
- VTT, Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT Espoo, Finland.
| | | | | | | | | |
Collapse
|
63
|
White CE, Gavina JMA, Morton R, Britz-McKibbin P, Finan TM. Control of hydroxyproline catabolism inSinorhizobium meliloti. Mol Microbiol 2012; 85:1133-47. [DOI: 10.1111/j.1365-2958.2012.08164.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
64
|
Abstract
Thermoacidophilic archaea comprise one of the major classes of extremophiles. Most belong to the family Sulfolobales within the phylum Crenarchaeota. They are of applied interest as sources of hyperstable enzymes, for biomining of base and precious metals, and for evolutionary studies because of their use of eukaryotic-like subcellular mechanisms. Genetic methods are available for several species particularly Sulfolobus solfataricus. This organism has a considerable number of methods available for the construction of novel cell lines with unique functions. This chapter presents recent developments in the use of homologous recombination and linear DNA for the engineering of site-specific changes in the genome of S. solfataricus.
Collapse
|
65
|
Characterization of the mmsAB-araD1 (gguABC) genes of Agrobacterium tumefaciens. J Bacteriol 2011; 193:6586-96. [PMID: 21984786 DOI: 10.1128/jb.05790-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chvE-gguABC operon plays a critical role in both virulence and sugar utilization through the activities of the periplasmic ChvE protein, which binds to a variety of sugars. The roles of the GguA, GguB, and GguC are not known. While GguA and GguB are homologous to bacterial ABC transporters, earlier genetic analysis indicated that they were not necessary for utilization of sugars as the sole carbon source. To further examine this issue, in-frame deletions were constructed separately for each of the three genes. Our growth analysis clearly indicated that GguA and GguB play a role in sugar utilization and strongly suggests that GguAB constitute an ABC transporter with a wide range of substrates, including L-arabinose, D-fucose, D-galactose, D-glucose, and D-xylose. Site-directed mutagenesis showed that a Walker A motif was vital to the function of GguA. We therefore propose renaming gguAB as mmsAB, for multiple monosaccharide transport. A gguC deletion affected growth only on L-arabinose medium, suggesting that gguC encodes an enzyme specific to L-arabinose metabolism, and this gene was renamed araD1. Results from bioinformatics and experimental analyses indicate that Agrobacterium tumefaciens uses a pathway involving nonphosphorylated intermediates to catabolize L-arabinose via an L-arabinose dehydrogenase, AraA(At), encoded at the Atu1113 locus.
Collapse
|
66
|
Novel metabolic pathways in Archaea. Curr Opin Microbiol 2011; 14:307-14. [PMID: 21612976 DOI: 10.1016/j.mib.2011.04.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/18/2011] [Indexed: 11/24/2022]
Abstract
The Archaea harbor many metabolic pathways that differ to previously recognized classical pathways. Glycolysis is carried out by modified versions of the Embden-Meyerhof and Entner-Doudoroff pathways. Thermophilic archaea have recently been found to harbor a bi-functional fructose-1,6-bisphosphate aldolase/phosphatase for gluconeogenesis. A number of novel pentose-degrading pathways have also been recently identified. In terms of anabolic metabolism, a pathway for acetate assimilation, the methylaspartate cycle, and two CO2-fixing pathways, the 3-hydroxypropionate/4-hydroxybutyrate cycle and the dicarboxylate/4-hydroxybutyrate cycle, have been elucidated. As for biosynthetic pathways, recent studies have clarified the enzymes responsible for several steps involved in the biosynthesis of inositol phospholipids, polyamine, coenzyme A, flavin adeninedinucleotide and heme. By examining the presence/absence of homologs of these enzymes on genome sequences, we have found that the majority of these enzymes and pathways are specific to the Archaea.
Collapse
|
67
|
Abstract
Sulfolobus solfataricus and Sulfolobus islandicus contain several genes exhibiting D-arabinose-inducible expression and these systems are ideal for studying mechanisms of archaeal gene expression. At sequence level, only two highly conserved cis elements are present on the promoters: a regulatory element named ara box directing arabinose-inducible expression and the basal promoter element TATA, serving as the binding site for the TATA-binding protein. Strikingly, these promoters possess a modular structure that allows an essentially inactive basal promoter to be strongly activated. The invoked mechanisms include TFB (transcription factor B) recruitment by the ara-box-binding factor to activate gene expression and modulation of TFB recruitment efficiency to yield differential gene expression.
Collapse
|
68
|
An additional glucose dehydrogenase from Sulfolobus solfataricus: fine-tuning of sugar degradation? Biochem Soc Trans 2011; 39:77-81. [DOI: 10.1042/bst0390077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Within the SulfoSYS (Sulfolobus Systems Biology) project, the effect of temperature on a metabolic network is investigated at the systems level. Sulfolobus solfataricus utilizes an unusual branched ED (Entner–Doudoroff) pathway for sugar degradation that is promiscuous for glucose and galactose. In the course of metabolic pathway reconstruction, a glucose dehydrogenase isoenzyme (GDH-2, SSO3204) was identified. GDH-2 exhibits high similarity to the previously characterized GDH-1 (SSO3003, 61% amino acid identity), but possesses different enzymatic properties, particularly regarding substrate specificity and catalytic efficiency. In contrast with GDH-1, which exhibits broad substrate specificity for C5 and C6 sugars, GDH-2 is absolutely specific for glucose. The comparison of kinetic parameters suggests that GDH-2 might represent the major player in glucose catabolism via the branched ED pathway, whereas GDH-1 might have a dominant role in galactose degradation via the same pathway as well as in different sugar-degradation pathways.
Collapse
|
69
|
Absence of diauxie during simultaneous utilization of glucose and Xylose by Sulfolobus acidocaldarius. J Bacteriol 2011; 193:1293-301. [PMID: 21239580 DOI: 10.1128/jb.01219-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfolobus acidocaldarius utilizes glucose and xylose as sole carbon sources, but its ability to metabolize these sugars simultaneously is not known. We report the absence of diauxie during growth of S. acidocaldarius on glucose and xylose as co-carbon sources. The presence of glucose did not repress xylose utilization. The organism utilized a mixture of 1 g/liter of each sugar simultaneously with a specific growth rate of 0.079 h(-1) and showed no preference for the order in which it utilized each sugar. The organism grew faster on 2 g/liter xylose (0.074 h(-1)) as the sole carbon source than on an equal amount of glucose (0.022 h(-1)). When grown on a mixture of the two carbon sources, the growth rate of the organism increased from 0.052 h(-1) to 0.085 h(-1) as the ratio of xylose to glucose increased from 0.25 to 4. S. acidocaldarius appeared to utilize a mixture of glucose and xylose at a rate roughly proportional to their concentrations in the medium, resulting in complete utilization of both sugars at about the same time. Gene expression in cells grown on xylose alone was very similar to that in cells grown on a mixture of xylose and glucose and substantially different from that in cells grown on glucose alone. The mechanism by which the organism utilized a mixture of sugars has yet to be elucidated.
Collapse
|
70
|
Nunn CEM, Johnsen U, Schönheit P, Fuhrer T, Sauer U, Hough DW, Danson MJ. Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius. J Biol Chem 2010; 285:33701-9. [PMID: 20736170 PMCID: PMC2962468 DOI: 10.1074/jbc.m110.146332] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/27/2010] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that the hyperthermophilic archaeon, Sulfolobus solfataricus, catabolizes d-glucose and d-galactose to pyruvate and glyceraldehyde via a non-phosphorylative version of the Entner-Doudoroff pathway. At each step, one enzyme is active with both C6 epimers, leading to a metabolically promiscuous pathway. On further investigation, the catalytic promiscuity of the first enzyme in this pathway, glucose dehydrogenase, has been shown to extend to the C5 sugars, D-xylose and L-arabinose. In the current paper we establish that this promiscuity for C6 and C5 metabolites is also exhibited by the third enzyme in the pathway, 2-keto-3-deoxygluconate aldolase, but that the second step requires a specific C5-dehydratase, the gluconate dehydratase being active only with C6 metabolites. The products of this pathway for the catabolism of D-xylose and L-arabinose are pyruvate and glycolaldehyde, pyruvate entering the citric acid cycle after oxidative decarboxylation to acetyl-coenzyme A. We have identified and characterized the enzymes, both native and recombinant, that catalyze the conversion of glycolaldehyde to glycolate and then to glyoxylate, which can enter the citric acid cycle via the action of malate synthase. Evidence is also presented that similar enzymes for this pentose sugar pathway are present in Sulfolobus acidocaldarius, and metabolic tracer studies in this archaeon demonstrate its in vivo operation in parallel with a route involving no aldol cleavage of the 2-keto-3-deoxy-pentanoates but direct conversion to the citric acid cycle C5-metabolite, 2-oxoglutarate.
Collapse
Affiliation(s)
- Charlotte E. M. Nunn
- From the Centre for Extremophile Research, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Ulrike Johnsen
- the Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24116 Kiel, Germany, and
| | - Peter Schönheit
- the Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24116 Kiel, Germany, and
| | - Tobias Fuhrer
- the Institute for Molecular Systems Biology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Uwe Sauer
- the Institute for Molecular Systems Biology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - David W. Hough
- From the Centre for Extremophile Research, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Michael J. Danson
- From the Centre for Extremophile Research, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
71
|
Kale AJ, McGlinchey RP, Moore BS. Characterization of 5-chloro-5-deoxy-D-ribose 1-dehydrogenase in chloroethylmalonyl coenzyme A biosynthesis: substrate and reaction profiling. J Biol Chem 2010; 285:33710-7. [PMID: 20736169 PMCID: PMC2962469 DOI: 10.1074/jbc.m110.153833] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/10/2010] [Indexed: 11/06/2022] Open
Abstract
SalM is a short-chain dehydrogenase/reductase enzyme from the marine actinomycete Salinispora tropica that is involved in the biosynthesis of chloroethylmalonyl-CoA, a novel halogenated polyketide synthase extender unit of the proteasome inhibitor salinosporamide A. SalM was heterologously overexpressed in Escherichia coli and characterized in vitro for its substrate specificity, kinetics, and reaction profile. A sensitive real-time (13)C NMR assay was developed to visualize the oxidation of 5-chloro-5-deoxy-D-ribose to 5-chloro-5-deoxy-D-ribono-γ-lactone in an NAD(+)-dependent reaction, followed by spontaneous lactone hydrolysis to 5-chloro-5-deoxy-D-ribonate. Although short-chain dehydrogenase/reductase enzymes are widely regarded as metal-independent, a strong divalent metal cation dependence for Mg(2+), Ca(2+), or Mn(2+) was observed with SalM. Oxidative activity was also measured with the alternative substrates D-erythrose and D-ribose, making SalM the first reported stereospecific non-phosphorylative ribose 1-dehydrogenase.
Collapse
Affiliation(s)
- Andrew J. Kale
- From the Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and
| | - Ryan P. McGlinchey
- From the Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and
| | - Bradley S. Moore
- From the Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, and
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
72
|
Hot Transcriptomics. ARCHAEA 2010; 2010:897585. [PMID: 21350598 PMCID: PMC3038420 DOI: 10.1155/2010/897585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 11/19/2010] [Accepted: 12/20/2010] [Indexed: 12/14/2022]
Abstract
DNA microarray technology allows for a quick and easy comparison of complete transcriptomes, resulting in improved molecular insight in fluctuations of gene expression. After emergence of the microarray technology about a decade ago, the technique has now matured and has become routine in many molecular biology laboratories. Numerous studies have been performed that have provided global transcription patterns of many organisms under a wide range of conditions. Initially, implementation of this high-throughput technology has lead to high expectations for ground breaking discoveries. Here an evaluation is performed of the insight that transcriptome analysis has brought about in the field of hyperthermophilic archaea. The examples that will be discussed have been selected on the basis of their impact, in terms of either biological insight or technological progress.
Collapse
|
73
|
Rakus JF, Kalyanaraman C, Fedorov AA, Fedorov EV, Mills-Groninger FP, Toro R, Bonanno J, Bain K, Sauder JM, Burley SK, Almo SC, Jacobson MP, Gerlt JA. Computation-facilitated assignment of the function in the enolase superfamily: a regiochemically distinct galactarate dehydratase from Oceanobacillus iheyensis . Biochemistry 2009; 48:11546-58. [PMID: 19883118 PMCID: PMC2787699 DOI: 10.1021/bi901731c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The structure of an uncharacterized member of the enolase superfamily from Oceanobacillus iheyensis (GI 23100298, IMG locus tag Ob2843, PDB entry 2OQY ) was determined by the New York SGX Research Center for Structural Genomics (NYSGXRC). The structure contained two Mg(2+) ions located 10.4 A from one another, with one located in the canonical position in the (beta/alpha)(7)beta-barrel domain (although the ligand at the end of the fifth beta-strand is His, unprecedented in structurally characterized members of the superfamily); the second is located in a novel site within the capping domain. In silico docking of a library of mono- and diacid sugars to the active site predicted a diacid sugar as a likely substrate. Activity screening of a physical library of acid sugars identified galactarate as the substrate (k(cat) = 6.8 s(-1), K(M) = 620 microM, k(cat)/K(M) = 1.1 x 10(4) M(-1) s(-1)), allowing functional assignment of Ob2843 as galactarate dehydratase (GalrD-II). The structure of a complex of the catalytically impaired Y90F mutant with Mg(2+) and galactarate allowed identification of a Tyr 164-Arg 162 dyad as the base that initiates the reaction by abstraction of the alpha-proton and Tyr 90 as the acid that facilitates departure of the beta-OH leaving group. The enzyme product is 2-keto-d-threo-4,5-dihydroxyadipate, the enantiomer of the product obtained in the GalrD reaction catalyzed by a previously characterized bifunctional l-talarate/galactarate dehydratase (TalrD/GalrD). On the basis of the different active site structures and different regiochemistries, we recognize that these functions represent an example of apparent, not actual, convergent evolution of function. The structure of GalrD-II and its active site architecture allow identification of the seventh functionally and structurally characterized subgroup in the enolase superfamily. This study provides an additional example in which an integrated sequence- and structure-based strategy employing computational approaches is a viable approach for directing functional assignment of unknown enzymes discovered in genome projects.
Collapse
Affiliation(s)
- John F. Rakus
- Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, School of Pharmacy and California Institute for Quantitative Biomedical Research, University of California, 1700 4th Street, San Francisco, California 94158
| | - Alexander A. Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Elena V. Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Fiona P. Mills-Groninger
- Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Rafael Toro
- New York SGX Research Center for Structural Genomics (NYSGXRC), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jeffrey Bonanno
- New York SGX Research Center for Structural Genomics (NYSGXRC), Albert Einstein College of Medicine, Bronx, New York 10461
| | - Kevin Bain
- New York SGX Research Center for Structural Genomics (NYSGXRC), Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA92121
| | - J. Michael Sauder
- New York SGX Research Center for Structural Genomics (NYSGXRC), Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA92121
| | - Stephen K. Burley
- New York SGX Research Center for Structural Genomics (NYSGXRC), Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA92121
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461,New York SGX Research Center for Structural Genomics (NYSGXRC), Albert Einstein College of Medicine, Bronx, New York 10461,To whom correspondence should be addressed: J.A.G.: Department of Biochemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, IL 61801. Telephone: (217) 244-7414. Fax: (217) 244-6538. M.P.J., Department of Pharmaceutical Chemistry, University of California, San Francisco, 1600 16th Street, San Francisco, CA 94158. Telephone: (415) 514-9811. Fax: (415) 514-4260. . S.C.A.: Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461. Phone: (718) 430-2746. Fax: (718) 430-8565.
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, School of Pharmacy and California Institute for Quantitative Biomedical Research, University of California, 1700 4th Street, San Francisco, California 94158,To whom correspondence should be addressed: J.A.G.: Department of Biochemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, IL 61801. Telephone: (217) 244-7414. Fax: (217) 244-6538. M.P.J., Department of Pharmaceutical Chemistry, University of California, San Francisco, 1600 16th Street, San Francisco, CA 94158. Telephone: (415) 514-9811. Fax: (415) 514-4260. . S.C.A.: Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461. Phone: (718) 430-2746. Fax: (718) 430-8565.
| | - John A. Gerlt
- Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801,To whom correspondence should be addressed: J.A.G.: Department of Biochemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, IL 61801. Telephone: (217) 244-7414. Fax: (217) 244-6538. M.P.J., Department of Pharmaceutical Chemistry, University of California, San Francisco, 1600 16th Street, San Francisco, CA 94158. Telephone: (415) 514-9811. Fax: (415) 514-4260. . S.C.A.: Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461. Phone: (718) 430-2746. Fax: (718) 430-8565.
| |
Collapse
|
74
|
Peng N, Xia Q, Chen Z, Liang YX, She Q. An upstream activation element exerting differential transcriptional activation on an archaeal promoter. Mol Microbiol 2009; 74:928-39. [PMID: 19818017 DOI: 10.1111/j.1365-2958.2009.06908.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microorganisms can utilize different sugars as energy and carbon sources and the genes involved in sugar metabolism often exhibit highly regulated expression. To study cis-acting elements controlling arabinose-responsive expression in archaea, the promoter of the Sulfolobus solfataricus araS gene encoding an arabinose binding protein was characterized using an Sulfolobus islandicus reporter gene system. The minimal active araS promoter (P(araS)) was found to be 59 nucleotides long and harboured four promoter elements: an ara-box, an upstream transcription factor B-responsive element (BRE), a TATA-box and a proximal promoter element, each of which contained important nucleotides that either greatly decreased or completely abolished promoter activity upon mutagenesis. The basal araS promoter was virtually inactive due to intrinsically weak BRE element, and the upstream activating sequence (UAS) ara-box activated the basal promoter by recruiting transcription factor B to its BRE. While this UAS ensured a general expression from an inactive or weak basal promoter in the presence of other tested carbon resources, it exhibited a strong arabinose-responsive transcriptional activation. To our knowledge, this represents the first example of an archaeal UAS that exhibits differential activation to the expression on the same promoter in the presence of different carbon sources.
Collapse
Affiliation(s)
- Nan Peng
- State key laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
75
|
Simon G, Walther J, Zabeti N, Combet-Blanc Y, Auria R, van der Oost J, Casalot L. Effect of O2concentrations onSulfolobus solfataricusâP2. FEMS Microbiol Lett 2009; 299:255-60. [DOI: 10.1111/j.1574-6968.2009.01759.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
76
|
Johnsen U, Dambeck M, Zaiss H, Fuhrer T, Soppa J, Sauer U, Schönheit P. D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. J Biol Chem 2009; 284:27290-303. [PMID: 19584053 DOI: 10.1074/jbc.m109.003814] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pathway of D-xylose degradation in archaea is unknown. In a previous study we identified in Haloarcula marismortui the first enzyme of xylose degradation, an inducible xylose dehydrogenase (Johnsen, U., and Schönheit, P. (2004) J. Bacteriol. 186, 6198-6207). Here we report a comprehensive study of the complete D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. The analyses include the following: (i) identification of the degradation pathway in vivo following (13)C-labeling patterns of proteinogenic amino acids after growth on [(13)C]xylose; (ii) identification of xylose-induced genes by DNA microarray experiments; (iii) characterization of enzymes; and (iv) construction of in-frame deletion mutants and their functional analyses in growth experiments. Together, the data indicate that D-xylose is oxidized exclusively to the tricarboxylic acid cycle intermediate alpha-ketoglutarate, involving D-xylose dehydrogenase (HVO_B0028), a novel xylonate dehydratase (HVO_B0038A), 2-keto-3-deoxyxylonate dehydratase (HVO_B0027), and alpha-ketoglutarate semialdehyde dehydrogenase (HVO_B0039). The functional involvement of these enzymes in xylose degradation was proven by growth studies of the corresponding in-frame deletion mutants, which all lost the ability to grow on d-xylose, but growth on glucose was not significantly affected. This is the first report of an archaeal D-xylose degradation pathway that differs from the classical D-xylose pathway in most bacteria involving the formation of xylulose 5-phosphate as an intermediate. However, the pathway shows similarities to proposed oxidative pentose degradation pathways to alpha-ketoglutarate in few bacteria, e.g. Azospirillum brasilense and Caulobacter crescentus, and in the archaeon Sulfolobus solfataricus.
Collapse
Affiliation(s)
- Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, D-24118 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
77
|
Watanabe S, Makino K. Novel modified version of nonphosphorylated sugar metabolism - an alternative l-rhamnose pathway of Sphingomonas sp. FEBS J 2009; 276:1554-67. [DOI: 10.1111/j.1742-4658.2009.06885.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
78
|
Rakus JF, Fedorov AA, Fedorov EV, Glasner ME, Hubbard BK, Delli JD, Babbitt PC, Almo SC, Gerlt JA. Evolution of enzymatic activities in the enolase superfamily: L-rhamnonate dehydratase. Biochemistry 2008; 47:9944-54. [PMID: 18754693 PMCID: PMC2562705 DOI: 10.1021/bi800914r] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The l-rhamnonate dehydratase (RhamD) function was assigned to a previously uncharacterized family in the mechanistically diverse enolase superfamily that is encoded by the genome of Escherichia coli K-12. We screened a library of acid sugars to discover that the enzyme displays a promiscuous substrate specificity: l-rhamnonate (6-deoxy- l-mannonate) has the "best" kinetic constants, with l-mannonate, l-lyxonate, and d-gulonate dehydrated less efficiently. Crystal structures of the RhamDs from both E. coli K-12 and Salmonella typhimurium LT2 (95% sequence identity) were obtained in the presence of Mg (2+); the structure of the RhamD from S. typhimurium was also obtained in the presence of 3-deoxy- l-rhamnonate (obtained by reduction of the product with NaBH 4). Like other members of the enolase superfamily, RhamD contains an N-terminal alpha + beta capping domain and a C-terminal (beta/alpha) 7beta-barrel (modified TIM-barrel) catalytic domain with the active site located at the interface between the two domains. In contrast to other members, the specificity-determining "20s loop" in the capping domain is extended in length and the "50s loop" is truncated. The ligands for the Mg (2+) are Asp 226, Glu 252 and Glu 280 located at the ends of the third, fourth and fifth beta-strands, respectively. The active site of RhamD contains a His 329-Asp 302 dyad at the ends of the seventh and sixth beta-strands, respectively, with His 329 positioned to function as the general base responsible for abstraction of the C2 proton of l-rhamnonate to form a Mg (2+)-stabilized enediolate intermediate. However, the active site does not contain other acid/base catalysts that have been implicated in the reactions catalyzed by other members of the MR subgroup of the enolase superfamily. Based on the structure of the liganded complex, His 329 also is expected to function as the general acid that both facilitates departure of the 3-OH group in a syn-dehydration reaction and delivers a proton to carbon-3 to replace the 3-OH group with retention of configuration.
Collapse
Affiliation(s)
- John F. Rakus
- Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Alexander A. Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
- New York SGX Research Center for Structural Genomics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Elena V. Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Margaret E. Glasner
- Department of Biopharmaceutical Sciences, School of Pharmacy and California Institute for Quantitative Biomedical Research, University of California, 1700 4th Street, San Francisco, California 94158
| | - Brian K. Hubbard
- Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Joseph D. Delli
- Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| | - Patricia C. Babbitt
- Department of Biopharmaceutical Sciences, School of Pharmacy and California Institute for Quantitative Biomedical Research, University of California, 1700 4th Street, San Francisco, California 94158
| | - Steven C. Almo
- New York SGX Research Center for Structural Genomics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - John A. Gerlt
- Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801
| |
Collapse
|
79
|
Watanabe S, Saimura M, Makino K. Eukaryotic and bacterial gene clusters related to an alternative pathway of nonphosphorylated L-rhamnose metabolism. J Biol Chem 2008; 283:20372-82. [PMID: 18505728 DOI: 10.1074/jbc.m801065200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Entner-Doudoroff (ED) pathway is a classic central pathway of d-glucose metabolism in all three phylogenetic domains. On the other hand, Archaea and/or bacteria possess several modified versions of the ED pathway, in which nonphosphorylated intermediates are involved. Several fungi, including Pichia stipitis and Debaryomyces hansenii, possess an alternative pathway of L-rhamnose metabolism, which is different from the known bacterial pathway. Gene cluster related to this hypothetical pathway was identified by bioinformatic analysis using the metabolic enzymes involved in analogous sugar pathways to the ED pathway. Furthermore, the homologous gene cluster was found not only in many other fungi but also several bacteria, including Azotobacter vinelandii. Four putative metabolic genes, LRA1-4, were cloned, overexpressed in Escherichia coli, and purified. Substrate specificity and kinetic analysis revealed that nonphosphorylated intermediates related to L-rhamnose are significant active substrates for the purified LRA1-4 proteins. Furthermore, L-2-keto-3-deoxyrhamnonate was structurally identified as both reaction products of dehydration by LRA3 and aldol condensation by LRA4. These results suggested that the LRA1-4 genes encode L-rhamnose 1-dehydrogenase, L-rhamnono-gamma-lactonase, L-rhamnonate dehydratase, and L-KDR aldolase, respectively, by which L-rhamnose is converted into pyruvate and L-lactaldehyde through analogous reaction steps to the ED pathway. There was no evolutionary relationship between L-KDR aldolases from fungi and bacteria.
Collapse
Affiliation(s)
- Seiya Watanabe
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, Japan.
| | | | | |
Collapse
|
80
|
Wolucka BA. Biosynthesis of D-arabinose in mycobacteria - a novel bacterial pathway with implications for antimycobacterial therapy. FEBS J 2008; 275:2691-711. [PMID: 18422659 DOI: 10.1111/j.1742-4658.2008.06395.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Decaprenyl-phospho-arabinose (beta-D-arabinofuranosyl-1-O-monophosphodecaprenol), the only known donor of d-arabinose in bacteria, and its precursor, decaprenyl-phospho-ribose (beta-D-ribofuranosyl-1-O-monophosphodecaprenol), were first described in 1992. En route to D-arabinofuranose, the decaprenyl-phospho-ribose 2'-epimerase converts decaprenyl-phospho-ribose to decaprenyl-phospho-arabinose, which is a substrate for arabinosyltransferases in the synthesis of the cell-wall arabinogalactan and lipoarabinomannan polysaccharides of mycobacteria. The first step of the proposed decaprenyl-phospho-arabinose biosynthesis pathway in Mycobacterium tuberculosis and related actinobacteria is the formation of D-ribose 5-phosphate from sedoheptulose 7-phosphate, catalysed by the Rv1449 transketolase, and/or the isomerization of d-ribulose 5-phosphate, catalysed by the Rv2465 d-ribose 5-phosphate isomerase. d-Ribose 5-phosphate is a substrate for the Rv1017 phosphoribosyl pyrophosphate synthetase which forms 5-phosphoribosyl 1-pyrophosphate (PRPP). The activated 5-phosphoribofuranosyl residue of PRPP is transferred by the Rv3806 5-phosphoribosyltransferase to decaprenyl phosphate, thus forming 5'-phosphoribosyl-monophospho-decaprenol. The dephosphorylation of 5'-phosphoribosyl-monophospho-decaprenol to decaprenyl-phospho-ribose by the putative Rv3807 phospholipid phosphatase is the committed step of the pathway. A subsequent 2'-epimerization of decaprenyl-phospho-ribose by the heteromeric Rv3790/Rv3791 2'-epimerase leads to the formation of the decaprenyl-phospho-arabinose precursor for the synthesis of the cell-wall arabinans in Actinomycetales. The mycobacterial 2'-epimerase Rv3790 subunit is similar to the fungal D-arabinono-1,4-lactone oxidase, the last enzyme in the biosynthesis of D-erythroascorbic acid, thus pointing to an evolutionary link between the D-arabinofuranose- and L-ascorbic acid-related pathways. Decaprenyl-phospho-arabinose has been a lead compound for the chemical synthesis of substrates for mycobacterial arabinosyltransferases and of new inhibitors and potential antituberculosis drugs. The peculiar (omega,mono-E,octa-Z) configuration of decaprenol has yielded insights into lipid biosynthesis, and has led to the identification of the novel Z-polyprenyl diphosphate synthases of mycobacteria. Mass spectrometric methods were developed for the analysis of anomeric linkages and of dolichol phosphate-related lipids. In the field of immunology, the renaissance in mycobacterial polyisoprenoid research has led to the identification of mimetic mannosyl-beta-1-phosphomycoketides of pathogenic mycobacteria as potent lipid antigens presented by CD1c proteins to human T cells.
Collapse
Affiliation(s)
- Beata A Wolucka
- Laboratory of Mycobacterial Biochemistry, Institute of Public Health, Brussels, Belgium.
| |
Collapse
|
81
|
Brouns SJJ, Barends TRM, Worm P, Akerboom J, Turnbull AP, Salmon L, van der Oost J. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily. J Mol Biol 2008; 379:357-71. [PMID: 18448118 DOI: 10.1016/j.jmb.2008.03.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 03/22/2008] [Accepted: 03/25/2008] [Indexed: 11/29/2022]
Abstract
The archaeon Sulfolobus solfataricus converts d-arabinose to 2-oxoglutarate by an enzyme set consisting of two dehydrogenases and two dehydratases. The third step of the pathway is catalyzed by a novel 2-keto-3-deoxy-D-arabinonate dehydratase (KdaD). In this study, the crystal structure of the enzyme has been solved to 2.1 A resolution. The enzyme forms an oval-shaped ring of four subunits, each consisting of an N-terminal domain with a four-stranded beta-sheet flanked by two alpha-helices, and a C-terminal catalytic domain with a fumarylacetoacetate hydrolase (FAH) fold. Crystal structures of complexes of the enzyme with magnesium or calcium ions and either a substrate analog 2-oxobutyrate, or the aldehyde enzyme product 2,5-dioxopentanoate revealed that the divalent metal ion in the active site is coordinated octahedrally by three conserved carboxylate residues, a water molecule, and both the carboxylate and the oxo groups of the substrate molecule. An enzymatic mechanism for base-catalyzed dehydration is proposed on the basis of the binding mode of the substrate to the metal ion, which suggests that the enzyme enhances the acidity of the protons alpha to the carbonyl group, facilitating their abstraction by glutamate 114. A comprehensive structural comparison of members of the FAH superfamily is presented and their evolution is discussed, providing a basis for functional investigations of this largely unexplored protein superfamily.
Collapse
Affiliation(s)
- Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreienplein 10, 6703 HB Wageningen, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
82
|
Regulation of D-xylose metabolism in Caulobacter crescentus by a LacI-type repressor. J Bacteriol 2007; 189:8828-34. [PMID: 17933895 DOI: 10.1128/jb.01342-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the oligotrophic freshwater bacterium Caulobacter crescentus, D-xylose induces expression of over 50 genes, including the xyl operon, which encodes key enzymes for xylose metabolism. The promoter (P(xylX)) controlling expression of the xyl operon is widely used as a tool for inducible heterologous gene expression in C. crescentus. We show here that P(xylX) and at least one other promoter in the xylose regulon (P(xylE)) are controlled by the CC3065 (xylR) gene product, a LacI-type repressor. Electrophoretic gel mobility shift assays showed that operator binding by XylR is greatly reduced in the presence of D-xylose. The data support the hypothesis that there is a simple regulatory mechanism in which XylR obstructs xylose-inducible promoters in the absence of the sugar; the repressor is induced to release DNA upon binding D-xylose, thereby freeing the promoter for productive interaction with RNA polymerase. XylR also has an effect on glucose metabolism, as xylR mutants exhibit reduced expression of the Entner-Doudoroff operon and their ability to utilize glucose as a sole carbon and energy source is compromised.
Collapse
|
83
|
Chong PK, Burja AM, Radianingtyas H, Fazeli A, Wright PC. Proteome and transcriptional analysis of ethanol-grown Sulfolobus solfataricus P2 reveals ADH2, a potential alcohol dehydrogenase. J Proteome Res 2007; 6:3985-94. [PMID: 17824633 DOI: 10.1021/pr070232y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sulfolobus solfataricus P2 was shown to survive on ethanol at various concentrations (0.08-3.97% w/v) as the sole carbon source. The highest ethanol consumption rate was 15.1 mg/L/hr (via GC-MS analysis) in cultures grown on 0.79% w/v ethanol. In vivo metabolic labeling, using 13C universally labeled ethanol, provided evidence for both ethanol uptake and metabolic utilization. Results obtained from isobaric mass tag-facilitated shotgun proteomics (iTRAQ) indicate that on average, 21 and 31% of the 284 proteins identified (with > or = 2 MS/MS) are increased and decreased expression in ethanol cultures compared to glucose control cultures. Preliminary analysis shows >2-fold increase of the zinc-dependent alcohol dehydrogenase, ADH-10 (SSO2536), and the putative ADH-2 (SSO0764) in both translational and transcriptional data (using quantitative RT-PCR), suggesting both proteins are integral to ethanol metabolism. Evidence that ethanol was catabolised into central metabolism via acetyl-CoA intermediates was further indicated by another >2-fold increase in protein expression levels of various acetyl-CoA synthetases. The decreased expression (>2-fold) of isocitrate dehydrogenase at the protein level suggests that the ethanol grown cultures shifted toward the glyoxylate cycle. Subsequently, the activity of ADH-2 was confirmed by overexpression in Escherichia coli, with the resultant purified in vitro enzyme exhibiting an activity that increased with temperature up to 95 degrees C, and giving a specific activity of 1.05 U/mg.
Collapse
Affiliation(s)
- Poh Kuan Chong
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | | | | | | | | |
Collapse
|
84
|
Salzano AM, Febbraio F, Farias T, Cetrangolo GP, Nucci R, Scaloni A, Manco G. Redox stress proteins are involved in adaptation response of the hyperthermoacidophilic archaeon Sulfolobus solfataricus to nickel challenge. Microb Cell Fact 2007; 6:25. [PMID: 17692131 PMCID: PMC1995220 DOI: 10.1186/1475-2859-6-25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 08/12/2007] [Indexed: 11/21/2022] Open
Abstract
Background Exposure to nickel (Ni) and its chemical derivatives has been associated with severe health effects in human. On the contrary, poor knowledge has been acquired on target physiological processes or molecular mechanisms of this metal in model organisms, including Bacteria and Archaea. In this study, we describe an analysis focused at identifying proteins involved in the recovery of the archaeon Sulfolobus solfataricus strain MT4 from Ni-induced stress. Results To this purpose, Sulfolobus solfataricus was grown in the presence of the highest nickel sulphate concentration still allowing cells to survive; crude extracts from treated and untreated cells were compared at the proteome level by using a bi-dimensional chromatography approach. We identified several proteins specifically repressed or induced as result of Ni treatment. Observed up-regulated proteins were largely endowed with the ability to trigger recovery from oxidative and osmotic stress in other biological systems. It is noteworthy that most of the proteins induced following Ni treatment perform similar functions and a few have eukaryal homologue counterparts. Conclusion These findings suggest a series of preferential gene expression pathways activated in adaptation response to metal challenge.
Collapse
Affiliation(s)
- Anna M Salzano
- Laboratorio di Proteomica e Spettrometria di Massa, ISPAAM, Consiglio Nazionale delle Ricerche, 80147 Napoli, Italy
| | - Ferdinando Febbraio
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Tiziana Farias
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni P Cetrangolo
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Roberto Nucci
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Andrea Scaloni
- Laboratorio di Proteomica e Spettrometria di Massa, ISPAAM, Consiglio Nazionale delle Ricerche, 80147 Napoli, Italy
| | - Giuseppe Manco
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
85
|
Berkner S, Grogan D, Albers SV, Lipps G. Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic Acids Res 2007; 35:e88. [PMID: 17576673 PMCID: PMC1919505 DOI: 10.1093/nar/gkm449] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The extreme thermoacidophiles of the genus Sulfolobus are among the best-studied archaea but have lacked small, reliable plasmid vectors, which have proven extremely useful for manipulating and analyzing genes in other microorganisms. Here we report the successful construction of a series of Sulfolobus-Escherichia coli shuttle vectors based on the small multicopy plasmid pRN1 from Sulfolobus islandicus. Selection in suitable uracil auxotrophs is provided through inclusion of pyrEF genes in the plasmid. The shuttle vectors do not integrate into the genome and do not rearrange. The plasmids allow functional overexpression of genes, as could be demonstrated for the beta-glycosidase (lacS) gene of S. solfataricus. In addition, we demonstrate that this beta-glycosidase gene could function as selectable marker in S. solfataricus. The shuttle plasmids differ in their interruption sites within pRN1 and allowed us to delineate functionally important regions of pRN1. The orf56/orf904 operon appears to be essential for pRN1 replication, in contrast interruption of the highly conserved orf80/plrA gene is tolerated. The new vector system promises to facilitate genetic studies of Sulfolobus and to have biotechnological uses, such as the overexpression or optimization of thermophilic enzymes that are not readily performed in mesophilic hosts.
Collapse
Affiliation(s)
- Silvia Berkner
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany, Department of Biological Sciences, University of Cincinnati, OH 45221-0006, USA and Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
| | - Dennis Grogan
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany, Department of Biological Sciences, University of Cincinnati, OH 45221-0006, USA and Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
| | - Sonja-Verena Albers
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany, Department of Biological Sciences, University of Cincinnati, OH 45221-0006, USA and Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
| | - Georg Lipps
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany, Department of Biological Sciences, University of Cincinnati, OH 45221-0006, USA and Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
- *To whom correspondence should be addressed: +49 921 552433, Fax: +49 921 552432,
| |
Collapse
|
86
|
Brouns SJJ, Turnbull AP, Willemen HLDM, Akerboom J, van der Oost J. Crystal structure and biochemical properties of the D-arabinose dehydrogenase from Sulfolobus solfataricus. J Mol Biol 2007; 371:1249-60. [PMID: 17610898 DOI: 10.1016/j.jmb.2007.05.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/01/2007] [Accepted: 05/30/2007] [Indexed: 11/19/2022]
Abstract
Sulfolobus solfataricus metabolizes the five-carbon sugar d-arabinose to 2-oxoglutarate by an inducible pathway consisting of dehydrogenases and dehydratases. Here we report the crystal structure and biochemical properties of the first enzyme of this pathway: the d-arabinose dehydrogenase. The AraDH structure was solved to a resolution of 1.80 A by single-wavelength anomalous diffraction and phased using the two endogenous zinc ions per subunit. The structure revealed a catalytic and cofactor binding domain, typically present in mesophilic and thermophilic alcohol dehydrogenases. Cofactor modeling showed the presence of a phosphate binding pocket sequence motif (SRS-X2-H), which is likely to be responsible for the enzyme's preference for NADP+. The homo-tetrameric enzyme is specific for d-arabinose, l-fucose, l-galactose and d-ribose, which could be explained by the hydrogen bonding patterns of the C3 and C4 hydroxyl groups observed in substrate docking simulations. The enzyme optimally converts sugars at pH 8.2 and 91 degrees C, and displays a half-life of 42 and 26 min at 85 and 90 degrees C, respectively, indicating that the enzyme is thermostable at physiological operating temperatures of 80 degrees C. The structure represents the first crystal structure of an NADP+-dependent member of the medium-chain dehydrogenase/reductase (MDR) superfamily from Archaea.
Collapse
Affiliation(s)
- Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, Netherlands.
| | | | | | | | | |
Collapse
|
87
|
Ettema TJG, Ahmed H, Geerling ACM, van der Oost J, Siebers B. The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner-Doudoroff pathway. Extremophiles 2007; 12:75-88. [PMID: 17549431 DOI: 10.1007/s00792-007-0082-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 03/28/2007] [Indexed: 11/25/2022]
Abstract
Archaea utilize a branched modification of the classical Entner-Doudoroff (ED) pathway for sugar degradation. The semi-phosphorylative branch merges at the level of glyceraldehyde 3-phosphate (GAP) with the lower common shunt of the Emden-Meyerhof-Parnas pathway. In Sulfolobus solfataricus two different GAP converting enzymes-classical phosphorylating GAP dehydrogenase (GAPDH) and the non-phosphorylating GAPDH (GAPN)-were identified. In Sulfolobales the GAPN encoding gene is found adjacent to the ED gene cluster suggesting a function in the regulation of the semi-phosphorylative ED branch. The biochemical characterization of the recombinant GAPN of S. solfataricus revealed that-like the well-characterized GAPN from Thermoproteus tenax-the enzyme of S. solfataricus exhibits allosteric properties. However, both enzymes show some unexpected differences in co-substrate specificity as well as regulatory fine-tuning, which seem to reflect an adaptation to the different lifestyles of both organisms. Phylogenetic analyses and database searches in Archaea indicated a preferred distribution of GAPN (and/or GAP oxidoreductase) in hyperthermophilic Archaea supporting the previously suggested role of GAPN in metabolic thermoadaptation. This work suggests an important role of GAPN in the regulation of carbon degradation via modifications of the EMP and the branched ED pathway in hyperthermophilic Archaea.
Collapse
Affiliation(s)
- Thijs J G Ettema
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, 752 36 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
88
|
Chong PK, Burja AM, Radianingtyas H, Fazeli A, Wright PC. Translational and transcriptional analysis of Sulfolobus solfataricus P2 to provide insights into alcohol and ketone utilisation. Proteomics 2007; 7:424-35. [PMID: 17211831 DOI: 10.1002/pmic.200600746] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The potential of Sulfolobus solfataricus P2 for alcohol or ketone bioconversion was explored in this study. S. solfataricus was grown in different concentrations (0.1-0.8% w/v) of alcohols or ketones (ethanol, iso-propanol, n-propanol, acetone, phenol and hexanol) in the presence of 0.4% w/v glucose. Consequently, the addition of these alcohols or ketones into the growth media had an inhibitory effect on biomass production, whereby lag times increased and specific growth rates decreased when compared to a glucose control. Complete glucose utilisation was observed in all cultures, although slower rates of glucose consumption were observed in experimental cultures (average of 14.9 mg/L/h compared to 18.9 mg/L/h in the control). On the other hand, incomplete solvent utilisation was observed, with the highest solvent consumption being approximately 51% of the initial concentration in acetone cultures. Translational responses of S. solfataricus towards these alcohols or ketones were then investigated using the isobaric tags for relative and absolute quantitation (iTRAQ) technique. The majority (>80%) of proteins identified and quantified showed no discernable changes in regulation compared to the control. These results, along with those obtained from transcriptional analysis of key genes involved within this catabolic process using quantitative RT-PCR and metabolite analysis, demonstrate successful alcohol or ketone conversion in S. solfataricus.
Collapse
Affiliation(s)
- Poh Kuan Chong
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Sheffield, UK
| | | | | | | | | |
Collapse
|
89
|
Watanabe S, Yamada M, Ohtsu I, Makino K. α-Ketoglutaric Semialdehyde Dehydrogenase Isozymes Involved in Metabolic Pathways of D-Glucarate, D-Galactarate, and Hydroxy-L-proline. J Biol Chem 2007; 282:6685-95. [PMID: 17202142 DOI: 10.1074/jbc.m611057200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Azospirillum brasilense possesses an alternative pathway of l-arabinose metabolism in which alpha-ketoglutaric semialdehyde (alphaKGSA) dehydrogenase (KGSADH) is involved in the last step, the conversion of alphaKGSA to alpha-ketoglutarate. In the preceding studies, we identified a set of metabolic genes of the l-arabinose pathway including the KGSADH gene (Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 2612-2623; Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 28876-28888; Watanabe, S., Shimada, N., Tajima, K., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 33521-33536). Here, we describe that A. brasilense possesses two different KGSADH isozymes from l-arabinose-related enzyme (KGSADH-I); that is, d-glucarate/d-galactarate-inducible KGSADH-II and hydroxy-l-proline-inducible KGSADH-III. They were purified homogeneously from A. brasilense cells grown on d-galactarate or hydroxy-l-proline, respectively. When compared with KGSADH-I, amino acid sequences of KGSADH-II and KGSADH-III were significantly similar but not totally identical. Physiological characterization using recombinant enzymes revealed that KGSADH-II and KGSADH-III showed similar high substrate specificity for alphaKGSA and different coenzyme specificity; that is, NAD(+)-dependent KGSADH-II and NADP(+)-dependent KGSADH-III. In the phylogenetic tree of the aldehyde dehydrogenase (ALDH) superfamily, KGSADH-II and KGSADH-III were poorly related to the known ALDH subclasses including KGSADH-I. On the other hand, ALDH-like ycbD protein involved in d-glucarate/d-galactarate operon from Bacillus subtilis is closely related to the methylmalonyl semialdehyde dehydrogenase subclass but not A. brasilense KGSADH isozymes. To estimate the correct function, the corresponding gene was expressed, purified, and characterized. Kinetic analysis revealed the physiological role as NADP(+)-dependent KGSADH. We conclude that three different types of KGSADH appeared in the bacterial evolutional stage convergently. Furthermore, even the same pathway such as l-arabinose and d-glucarate/d-galactarate metabolism also evolved by the independent involvement of KGSADH.
Collapse
Affiliation(s)
- Seiya Watanabe
- Faculty of Engineering, Kyoto University, Kyotodaigaku-katsura, Saikyo-ku, Kyoto 615-8530, Japan
| | | | | | | |
Collapse
|
90
|
Chong PK, Burja AM, Radianingtyas H, Fazeli A, Wright PC. Proteome analysis of Sulfolobus solfataricus P2 propanol metabolism. J Proteome Res 2007; 6:1430-9. [PMID: 17315908 DOI: 10.1021/pr060575g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfolobus solfataricus P2 is able to metabolize n-propanol as the sole carbon source. An average n-propanol consumption rate of 9.7 and 3.3 mg/L/hr was detected using GC-MS analysis from S. solfataricus cultures grown in 0.40 and 0.16% w/v n-propanol, respectively. The detection of propionaldehyde, the key intermediate of n-propanol degradation, produced at a rate of 1.3 and 1.0 mg/L/hr in 0.40 and 0.16% w/v n-propanol cultures, further validated the ability of S. solfataricus to utilize n-propanol. The translational and transcriptional responses of S. solfataricus grown on n-propanol versus glucose were also investigated using quantitative RT-PCR and iTRAQ approaches. Approximately 257 proteins with > or =2 MS/MS spectra were identified and quantified via iTRAQ. The global quantitative proteome overview obtained showed significant up-regulation of acetyl-CoA synthetases, propionyl-CoA carboxylase, and methylmalonyl-CoA mutase enzymes. This led to the proposition that the propionyl-CoA formed from n-propanol degradation is catabolised into the citrate cycle (central metabolism) via succinyl-CoA intermediates. In contrast, evidence obtained from these analysis approaches and in vivo stable isotope labeling experiments, suggests that S. solfataricus is only capable of converting isopropyl alcohol to acetone (and vice versa) but lacks the ability to further metabolize these compounds.
Collapse
Affiliation(s)
- Poh Kuan Chong
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | | | | | | | | |
Collapse
|