51
|
Zhang J, Huang G, Dewan A, Feinstein P, Bozza T. Uncoupling stimulus specificity and glomerular position in the mouse olfactory system. Mol Cell Neurosci 2012; 51:79-88. [PMID: 22926192 DOI: 10.1016/j.mcn.2012.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/10/2012] [Indexed: 11/28/2022] Open
Abstract
Sensory information is often mapped systematically in the brain with neighboring neurons responding to similar stimulus features. The olfactory system represents chemical information as spatial and temporal activity patterns across glomeruli in the olfactory bulb. However, the degree to which chemical features are mapped systematically in the glomerular array has remained controversial. Here, we test the hypothesis that the dual roles of odorant receptors, in axon guidance and odor detection, can serve as a mechanism to map olfactory inputs with respect to their function. We compared the relationship between response specificity and glomerular position in genetically-defined olfactory sensory neurons expressing variant odorant receptors. We find that sensory neurons with the same odor response profile can be mapped to different regions of the bulb, and that neurons with different response profiles can be mapped to the same glomeruli. Our data demonstrate that the two functions of odorant receptors can be uncoupled, indicating that the mechanisms that map olfactory sensory inputs to glomeruli do so without regard to stimulus specificity.
Collapse
Affiliation(s)
- Jingji Zhang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
52
|
Launay G, Téletchéa S, Wade F, Pajot-Augy E, Gibrat JF, Sanz G. Automatic modeling of mammalian olfactory receptors and docking of odorants. Protein Eng Des Sel 2012; 25:377-86. [PMID: 22691703 DOI: 10.1093/protein/gzs037] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We present a procedure that (i) automates the homology modeling of mammalian olfactory receptors (ORs) based on the six three-dimensional (3D) structures of G protein-coupled receptors (GPCRs) available so far and (ii) performs the docking of odorants on these models, using the concept of colony energy to score the complexes. ORs exhibit low-sequence similarities with other GPCR and current alignment methods often fail to provide a reliable alignment. Here, we use a fold recognition technique to obtain a robust initial alignment. We then apply our procedure to a human OR that we have previously functionally characterized. The analysis of the resulting in silico complexes, supported by receptor mutagenesis and functional assays in a heterologous expression system, suggests that antagonists dock in the upper part of the binding pocket whereas agonists dock in the narrow lower part. We propose that the potency of agonists in activating receptors depends on their ability to establish tight interactions with the floor of the binding pocket. We developed a web site that allows the user to upload a GPCR sequence, choose a ligand in a library and obtain the 3D structure of the free receptor and ligand-receptor complex (http://genome.jouy.inra.fr/GPCRautomodel).
Collapse
Affiliation(s)
- Guillaume Launay
- INRA, Mathématique, Informatique et Génome UR1077, 78350 Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
53
|
Lee SH, Kwon OS, Song HS, Park SJ, Sung JH, Jang J, Park TH. Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials 2011; 33:1722-9. [PMID: 22153868 DOI: 10.1016/j.biomaterials.2011.11.044] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/20/2011] [Indexed: 10/14/2022]
Abstract
Sensing smell is a highly complex biological process, and characterizing and mimicking the interaction between the olfactory receptor (OR) protein and its ligands is extremely challenging. Herein, we report a highly sensitive and selective human nose-like nanobioelectronic nose (nbe-nose), which responds to gaseous odorants sensitively and selectively, has a signal specificity pattern similar to that in the cellular signal transduction pathway, and maintains an antagonistic behavior similar to the human nose. The human olfaction mechanism was mimicked by using carboxylated polypyrrole nanotubes (CPNTs) functionalized with human OR protein. The nbe-nose was able to detect gaseous odorants at a concentration as low as 0.02 parts-per-trillion (ppt), which was comparable to a highly trained, human expert's nose. The nbe-nose can be used scientifically for smell mechanism studies. It can be also applied to various fields that rely on smell monitoring for industrial and public purposes.
Collapse
Affiliation(s)
- Sang Hun Lee
- School of Chemical and Biological Engineering, Bio-MAX Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
54
|
Gelis L, Wolf S, Hatt H, Neuhaus EM, Gerwert K. Vorhersage der Ligandenerkennung in einem Geruchsrezeptor durch Kombination von ortsgerichteter Mutagenese und dynamischer Homologie-Modellierung. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103980] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
55
|
Gelis L, Wolf S, Hatt H, Neuhaus EM, Gerwert K. Prediction of a ligand-binding niche within a human olfactory receptor by combining site-directed mutagenesis with dynamic homology modeling. Angew Chem Int Ed Engl 2011; 51:1274-8. [PMID: 22144177 DOI: 10.1002/anie.201103980] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/10/2011] [Indexed: 01/28/2023]
Affiliation(s)
- Lian Gelis
- Lehrstuhl für Zellphysiologie, Ruhr-University Bochum, Germany
| | | | | | | | | |
Collapse
|
56
|
Richgels PK, Rollmann SM. Genetic variation in odorant receptors contributes to variation in olfactory behavior in a natural population of Drosophila melanogaster. Chem Senses 2011; 37:229-40. [PMID: 22038943 DOI: 10.1093/chemse/bjr097] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemoreception is a principle modality by which organisms gain information from their environment, and extensive variation in odor-mediated behavior has been documented within and among species. To examine the mechanisms by which sensory systems mediate these responses, we ask to what extent variation in Drosophila melanogaster odorant receptor genes contributes to variation in odor-mediated behavior. Significant differences in behavioral responses to structurally similar odorants, methyl hexanoate and ethyl hexanoate, were found in a natural population. Polymorphisms in 3 genomic regions (Or22a/Or22b, Or35a, and Or47a) were identified and associated with variation in behavior to these esters. Overall similarity in association profiles for both odorants was observed, except for Or47a in which polymorphisms were associated solely with variation in responses to ethyl hexanoate. Our analyses were then extended to examine polymorphisms in 3 odorant receptors previously reported to contribute to variation in olfactory behavior for the chemically distinct odorants benzaldehyde and acetophenone. Two Or10a polymorphisms were associated with variation in response to ethyl hexanoate. Finally, differences in Or35a and Or47a expression were associated with variation in responses to ethyl hexanoate. These results demonstrate that the genetic variation at the peripheral sensory stage plays a role in mediating differences in odor-mediated behavior.
Collapse
Affiliation(s)
- P K Richgels
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | | |
Collapse
|
57
|
Dahoun T, Grasso L, Vogel H, Pick H. Recombinant Expression and Functional Characterization of Mouse Olfactory Receptor mOR256-17 in Mammalian Cells. Biochemistry 2011; 50:7228-35. [DOI: 10.1021/bi2008596] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thamani Dahoun
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Luigino Grasso
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Horst Vogel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Horst Pick
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
58
|
Nichols AS, Chen S, Luetje CW. Subunit contributions to insect olfactory receptor function: channel block and odorant recognition. Chem Senses 2011; 36:781-90. [PMID: 21677030 DOI: 10.1093/chemse/bjr053] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Insect olfactory receptors are heteromeric ligand-gated ion channels composed of at least one common subunit (Orco) and at least one subunit that confers odorant specificity. Little is known about how individual subunits contribute to the structure and function of the olfactory receptor complex. We expressed insect olfactory receptors in Xenopus oocytes to investigate 2 functional features, ion channel block and odorant recognition. The sensitivity of Drosophila olfactory receptors to inhibition by ruthenium red, a cation channel blocker, varied widely when different specificity subunits were present, suggesting that the specificity subunits contribute to the structure of the ion pore. Olfactory receptors formed by Dmel\Or35a and Orco subunits from several different species displayed highly similar odorant response profiles, suggesting that the Orco subunit does not contribute to the structure of the odorant-binding site. We further explored odorant recognition by conducting a detailed examination of the odorant specificity Dmel\Or67a + Dmel\Orco, a receptor that responds to aromatic structures. This screen identified agonists, partial agonists, and an antagonist of Dmel\Or67a + Dmel\Orco. Our findings favor specific subunit arrangements within the olfactory receptor complex and provide a preliminary odorophore for an olfactory receptor, offering a useful foundation for future exploration of insect olfactory receptor structure.
Collapse
Affiliation(s)
- Andrew S Nichols
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL 33101, USA
| | | | | |
Collapse
|
59
|
Abaffy T, Defazio AR. The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility. BMC Res Notes 2011; 4:137. [PMID: 21548958 PMCID: PMC3118157 DOI: 10.1186/1756-0500-4-137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 05/06/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Our objective was to study the pattern of olfactory receptor expression within the dorsal and ventral regions of the mouse olfactory epithelium. We hypothesized that olfactory receptors were distributed based on the chemical properties of their ligands: e.g. receptors for polar, hydrophilic and weakly volatile odorants would be present in the dorsal region of olfactory epithelium; while receptors for non-polar, more volatile odorants would be distributed to the ventral region. To test our hypothesis, we used micro-transplantation of cilia-enriched plasma membranes derived from dorsal or ventral regions of the olfactory epithelium into Xenopus oocytes for electrophysiological characterization against a panel of 100 odorants. FINDINGS Odorants detected by ORs from the dorsal and ventral regions showed overlap in volatility and water solubility. We did not find evidence for a correlation between the solubility and volatility of odorants and the functional expression of olfactory receptors in the dorsal or ventral region of the olfactory epithelia. CONCLUSIONS No simple clustering or relationship between chemical properties of odorants could be associated with the different regions of the olfactory epithelium. These results suggest that the location of ORs within the epithelium is not organized based on the physico-chemical properties of their ligands.
Collapse
Affiliation(s)
- Tatjana Abaffy
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, 1600 NW 10thAve, Miami, 33136, Fl, USA.
| | | |
Collapse
|
60
|
Anselmi C, Buonocore A, Centini M, Facino RM, Hatt H. The human olfactory receptor 17-40: requisites for fitting into the binding pocket. Comput Biol Chem 2011; 35:159-68. [PMID: 21704262 DOI: 10.1016/j.compbiolchem.2011.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
To gain structural insight on the interactions between odorants and the human olfactory receptor, we did homology modelling of the receptor structure, followed by molecular docking simulation with ligands. Molecular dynamics simulation on the structures resulting from docking served to estimate the binding free energy of the various odorant families. A correlation with the odorous properties of the ligands is proposed. We also investigated which residues were involved in the binding of a set of properly synthesised ligands and which were required for fitting inside the binding pocket. Olfactive stimulation of the olfactory receptor with odorous molecules was also investigated, using calcium imaging or electrophysiological recordings.
Collapse
Affiliation(s)
- Cecilia Anselmi
- Dipartimento Farmaco Chimico Tecnologico - Centro Interdipartimentale di Scienza e Tecnologia Cosmetiche, University of Siena, Via della Diana 2, 53100 Siena, Italy.
| | | | | | | | | |
Collapse
|
61
|
Baud O, Etter S, Spreafico M, Bordoli L, Schwede T, Vogel H, Pick H. The mouse eugenol odorant receptor: structural and functional plasticity of a broadly tuned odorant binding pocket. Biochemistry 2010; 50:843-53. [PMID: 21142015 DOI: 10.1021/bi1017396] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molecular interactions of odorants with their olfactory receptors (ORs) are of central importance for the ability of the mammalian olfactory system to detect and discriminate a vast variety of odors with a limited set of receptors. How a particular OR binds and distinguishes different odorant molecules remains largely unknown on a structural basis. Here we investigated this question for the mouse eugenol receptor (mOR-EG). By screening a large odorant library, we discovered a wide range of chemical structures activating the receptor in heterologous mammalian cells. Potent agonists comprise (i) benzene, (ii) cyclohexane, or (iii) polycyclic structures substituted with alcohol, aldehyde, keto, ether, or esterified carboxylic groups. To detect those amino acids within the receptor that are in contact with a particular bound odorant molecule, we investigated how distinct mOR-EG point mutants were activated by the different odorant agonists found for the wild-type receptor. We identified 11 amino acids as a part of the receptor's ligand binding pocket. Molecular modeling predicted 10 of these residues in transmembrane helices TM3-TM6 and one in the extracellular loop between TM2 and TM3. These amino acids participate in odorant binding with variable importance depending on the type of odorant, revealing functional "fingerprints" of ligand-receptor interactions.
Collapse
Affiliation(s)
- Olivia Baud
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
62
|
Cometto-Muñiz JE, Abraham MH. Structure-activity relationships on the odor detectability of homologous carboxylic acids by humans. Exp Brain Res 2010; 207:75-84. [PMID: 20931179 PMCID: PMC2964470 DOI: 10.1007/s00221-010-2430-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 09/18/2010] [Indexed: 11/03/2022]
Abstract
We measured concentration detection functions for the odor detectability of the homologs: formic, acetic, butyric, hexanoic, and octanoic acids. Subjects (14 ≤ n ≤ 18) comprised young (19-37 years), healthy, nonsmoker, and normosmic participants from both genders. Vapors were delivered by air dilution olfactometry, using a three-alternative forced-choice procedure against carbon-filtered air, and an ascending concentration approach. Delivered concentrations were established by gas chromatography (flame ionization detector) in parallel with testing. Group and individual olfactory functions were modeled by a sigmoid (logistic) equation from which two parameters are calculated: C, the odor detection threshold (ODT) and D, the steepness of the function. Thresholds declined with carbon chain length along formic, acetic, and butyric acid where they reached a minimum (ODTs = 514, 5.2, and 0.26 ppb by volume, respectively). Then, they increased for hexanoic (1.0 ppb) and octanoic (0.86 ppb) acid. Odor thresholds and interindividual differences in olfactory acuity among these young, normosmic participants were lower than traditionally thought and reported. No significant effects of gender on odor detectability were observed. The finding of an optimum molecular size for odor potency along homologs confirms a prediction made by a model of ODTs based on a solvation equation. We discuss the mechanistic implications of this model for the process of olfactory detection.
Collapse
Affiliation(s)
- J Enrique Cometto-Muñiz
- Chemosensory Perception Laboratory, Department of Surgery Otolaryngology, University of California, San Diego, 9500 Gilman Dr, Mail Code 0957, La Jolla, CA 92093-0957, USA.
| | | |
Collapse
|
63
|
Odorant receptor polymorphisms and natural variation in olfactory behavior in Drosophila melanogaster. Genetics 2010; 186:687-97. [PMID: 20628035 DOI: 10.1534/genetics.110.119446] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Animals perceive and discriminate among a vast array of sensory cues in their environment. Both genetic and environmental factors contribute to individual variation in behavioral responses to these cues. Here, we asked to what extent sequence variants in six Drosophila melanogaster odorant receptor (Or) genes are associated with variation in behavioral responses to benzaldehyde by sequencing alleles from a natural population. Sequence analyses showed signatures of deviations from neutrality for Or42b and Or85f, and linkage disequilibrium analyses showed a history of extensive recombination between polymorphic markers for all six Or genes. We identified polymorphisms in Or10a, Or43a, and Or67b that were significantly associated with variation in response to benzaldehyde. To verify these associations, we repeated the analyses with an independent set of behavioral measurements of responses to a structurally similar odorant, acetophenone. Association profiles for both odorants were similar with many polymorphisms and haplotypes associated with variation in responsiveness to both odorants. Some polymorphisms, however, were associated with one, but not the other odorant. We also observed a correspondence between behavioral response to benzaldehyde and differences in Or10a and Or43a expression. These results illustrate that sequence variants that arise during the evolution of odorant receptor genes can contribute to individual variation in olfactory behavior and give rise to subtle shifts in olfactory perception.
Collapse
|
64
|
Galizia CG, Münch D, Strauch M, Nissler A, Ma S. Integrating heterogeneous odor response data into a common response model: A DoOR to the complete olfactome. Chem Senses 2010; 35:551-63. [PMID: 20530377 PMCID: PMC2924422 DOI: 10.1093/chemse/bjq042] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have developed a new computational framework for merging odor response data sets from heterogeneous studies, creating a consensus metadatabase, the database of odor responses (DoOR). As a result, we obtained a functional atlas of all available odor responses in Drosophila melanogaster. Both the program and the data set are freely accessible and downloadable on the Internet (http://neuro.uni-konstanz.de/DoOR). The procedure can be adapted to other species, thus creating a family of “olfactomes” in the near future. Drosophila melanogaster was chosen because of all species this one is closest to having the complete olfactome characterized, with the highest number of deorphanized receptors available. The database guarantees long-term stability (by offering time-stamped, downloadable versions), up-to-date accuracy (by including new data sets as soon as they are published), and portability (for other species). We hope that this comprehensive repository of odor response profiles will be useful to the olfactory community and to computational neuroscientists alike.
Collapse
Affiliation(s)
- C Giovanni Galizia
- Department of Neurobiology, University of Konstanz, 78457 Konstanz, Germany.
| | | | | | | | | |
Collapse
|
65
|
Affiliation(s)
- Barry W Ache
- Center for Smell and Taste, University of Florida, Gainesville, 32610, USA.
| |
Collapse
|
66
|
Gomez-Marin A, Duistermars BJ, Frye MA, Louis M. Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior. Front Cell Neurosci 2010; 4:6. [PMID: 20407585 PMCID: PMC2854573 DOI: 10.3389/fncel.2010.00006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/10/2010] [Indexed: 11/21/2022] Open
Abstract
Early in evolution, the ability to sense and respond to changing environments must have provided a critical survival advantage to living organisms. From bacteria and worms to flies and vertebrates, sophisticated mechanisms have evolved to enhance odor detection and localization. Here, we review several modes of chemotaxis. We further consider the relevance of a striking and recurrent motif in the organization of invertebrate and vertebrate sensory systems, namely the existence of two symmetrical olfactory sensors. By combining our current knowledge about the olfactory circuits of larval and adult Drosophila, we examine the molecular and neural mechanisms underlying robust olfactory perception and extend these analyses to recent behavioral studies addressing the relevance and function of bilateral olfactory input for gradient detection. Finally, using a comparative theoretical approach based on Braitenberg's vehicles, we speculate about the relationships between anatomy, circuit architecture and stereotypical orientation behaviors.
Collapse
Affiliation(s)
- Alex Gomez-Marin
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation, Universitat Pompeu Fabra Barcelona, Spain
| | | | | | | |
Collapse
|
67
|
Guo S, Kim J. Dissecting the molecular mechanism of drosophila odorant receptors through activity modeling and comparative analysis. Proteins 2010; 78:381-99. [PMID: 19714770 DOI: 10.1002/prot.22556] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To gain insight into the molecular mechanism of odorant receptors (ORs) in Drosophila species, we developed a Quantitative Structure Activity Relationship (QSAR) model that predicts experimentally measured electrophysiological activities between 24 D. melanogaster ORs and 108 odorants. Although the model is limited by the tested odorants,analyzing the model allowed dissection of specific topological and chemical properties necessary for an odorant to elicit excitatory or inhibitory receptor response. Linear odorants with five to eight nonhydrogen atoms at the main chain and hydrogen-bond acceptor and/or hydrogen-bond donor at its ends were found to stimulate strong excitatory response. A comparative sequence analysis of 90 ORs in 15 orthologous groups identified 15 putative specificity-determining residues (SDRs) and 15 globally conserved residues that we postulate as functionally key residues. Mapping to a model of secondary structure resulted in 14 out of 30 key residues locating to the transmembrane (TM) domains. Twelve residues, including six SDRs and six conserved residues, are located at the extracellular halves of the TM domains. Combining the evidence from the QSAR modeling and the comparative sequence analysis, we hypothesize that the Drosophila ORs accept odorants into a binding pocket located on the extracellular halves of its TM domains. The QSAR modeling suggests that the binding pocket is around 15 A in depth and about 6 A in width. Twelve mainly polar or charged key residues, both SDRs and conserved, are located in this pocket and postulated to distinguish docked odorants via primarily geometry fitting and hydrogen-bond interaction.
Collapse
Affiliation(s)
- Sheng Guo
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
68
|
Kato A, Touhara K. Mammalian olfactory receptors: pharmacology, G protein coupling and desensitization. Cell Mol Life Sci 2009; 66:3743-53. [PMID: 19652915 PMCID: PMC11115879 DOI: 10.1007/s00018-009-0111-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/10/2009] [Accepted: 07/15/2009] [Indexed: 12/14/2022]
Abstract
The vertebrate olfactory system recognizes and discriminates between thousands of structurally diverse odorants. Detection of odorants in mammals is mediated by olfactory receptors (ORs), which comprise the largest superfamily of G protein-coupled receptors (GPCRs). Upon odorant binding, ORs couple to G proteins, resulting in an increase in intracellular cAMP levels and subsequent receptor signaling. In this review, we will discuss recently published studies outlining the molecular basis of odor discrimination, focusing on pharmacology, G protein activation, and desensitization of ORs. A greater understanding of the molecular mechanisms underlying OR activity may help in the discovery of agonists and antagonists of ORs, and of GPCRs with potential therapeutic applications.
Collapse
Affiliation(s)
- Aya Kato
- Department of Integrated Biosciences, The University of Tokyo, Room 201, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| | - Kazushige Touhara
- Department of Integrated Biosciences, The University of Tokyo, Room 201, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562 Japan
| |
Collapse
|
69
|
Hamana H, Shou-xin L, Breuils L, Hirono J, Sato T. Heterologous functional expression system for odorant receptors. J Neurosci Methods 2009; 185:213-20. [PMID: 19799933 DOI: 10.1016/j.jneumeth.2009.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/30/2009] [Accepted: 09/22/2009] [Indexed: 11/16/2022]
Abstract
Heterologous functional expression system for odorant receptors (ORs) is essential for investigating the structure-activity relationship (SAR) of various ligands. Different systems that coexpressed ORs with different G-protein alpha subunits (Galpha) demonstrated inconsistent effects on weak agonists and antagonists, but retained original relative sensitivities to potent agonists. In order to maintain the binding specificity of Galpha to ORs, we constructed a chimeric Galpha(15_olf), which contained the Galpha(15) sequence with the conserved C-terminal region of Galpha(olf). The Ca(2+) responses of the HEK293 cells that coexpressed OR-S6 with Galpha(15_olf) were more robust and reproducible compared to those of cells that coexpressed OR-S6 with Galpha(15). Furthermore, Galpha(15) sometimes induced unstable Ca(2+) responses that limited the accuracy of quantitative comparison of peak responses. Our results showed that a heterologous expression system that coexpressed ORs with Galpha(15_olf) and receptor transporting proteins was suitable for SAR analysis of various ligands.
Collapse
Affiliation(s)
- Hiroshi Hamana
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, 3-11-46 Nakoji, Amagasaki, Hyogo 661-0974, Japan
| | | | | | | | | |
Collapse
|
70
|
Pick H, Etter S, Baud O, Schmauder R, Bordoli L, Schwede T, Vogel H. Dual activities of odorants on olfactory and nuclear hormone receptors. J Biol Chem 2009; 284:30547-55. [PMID: 19723634 DOI: 10.1074/jbc.m109.040964] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have screened an odorant compound library and discovered molecules acting as chemical signals that specifically activate both G-protein-coupled olfactory receptors (ORs) on the cell surface of olfactory sensory neurons and the human nuclear estrogen receptor alpha (ER) involved in transcriptional regulation of cellular differentiation and proliferation in a wide variety of tissues. Hence, these apparent dual active odorants induce distinct signal transduction pathways at different subcellular localizations, which affect both neuronal signaling, resulting in odor perception, and the ER-dependent transcriptional control of specific genes. We demonstrate these effects using fluorescence-based in vitro and cellular assays. Among these odorants, we have identified synthetic sandalwood compounds, an important class of molecules used in the fragrance industry. For one estrogenic odorant we have also identified the cognate OR. This prompted us to compare basic molecular recognition principles of odorants on the two structurally and apparent functionally non-related receptors using computational modeling in combination with functional assays. Faced with the increasing evidence that ORs may perform chemosensory functions in a number of tissues outside of the nasal olfactory epithelium, the unraveling of these molecular ligand-receptor interaction principles is of critical importance. In addition the evidence that certain olfactory sensory neurons naturally co-express ORs and ERs may provide a direct functional link between the olfactory and hormonal systems in humans. Our results are therefore useful for defining the structural and functional characteristics of ER-specific odorants and the role of odorant molecules in cellular processes other than olfaction.
Collapse
Affiliation(s)
- Horst Pick
- Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
71
|
Fleischer J, Breer H, Strotmann J. Mammalian olfactory receptors. Front Cell Neurosci 2009; 3:9. [PMID: 19753143 PMCID: PMC2742912 DOI: 10.3389/neuro.03.009.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 08/07/2009] [Indexed: 11/30/2022] Open
Abstract
Perception of chemical stimuli from the environment is essential to most animals; accordingly, they are equipped with a complex olfactory system capable of receiving a nearly unlimited number of odorous substances and pheromones. This enormous task is accomplished by olfactory sensory neurons (OSNs) arranged in several chemosensory compartments in the nose. The sensitive and selective responsiveness of OSNs to odorous molecules and pheromones is based on distinct receptors in their chemosensory membrane; consequently, olfactory receptors play a key role for a reliable recognition and an accurate processing of chemosensory information. They are therefore considered as key elements for an understanding of the principles and mechanisms underlying the sense of smell. The repertoire of olfactory receptors in mammals encompasses hundreds of different receptor types which are highly diverse and expressed in distinct subcompartments of the nose. Accordingly, they are categorized into several receptor families, including odorant receptors (ORs), vomeronasal receptors (V1Rs and V2Rs), trace amine-associated receptors (TAARs), formyl peptide receptors (FPRs), and the membrane guanylyl cyclase GC-D. This large and complex receptor repertoire is the basis for the enormous chemosensory capacity of the olfactory system.
Collapse
Affiliation(s)
- Joerg Fleischer
- Institute of Physiology, University of Hohenheim Stuttgart, Germany
| | | | | |
Collapse
|
72
|
Reisert J, Restrepo D. Molecular tuning of odorant receptors and its implication for odor signal processing. Chem Senses 2009; 34:535-45. [PMID: 19525317 DOI: 10.1093/chemse/bjp028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The discovery of the odorant receptor (OR) family by Buck and Axel in 1991 provided a quantum jump in our understanding of olfactory function. However, the study of the responsiveness of ORs to odor ligands was challenging due to the difficulties in deorphanizing the receptors. In this manuscript, we review recent findings of OR responsiveness that have come about through improved OR deorphanization methods, site-directed mutagenesis, structural modeling studies, and studies of OR responses in situ in olfactory sensory neurons. Although there has been a major leap in our understanding of receptor-ligand interactions and how these contribute to the input to the olfactory system, an improvement of our understanding of receptor structure and dynamics and interactions with intracellular and extracellular proteins is necessary.
Collapse
Affiliation(s)
- Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
73
|
Imai T, Sakano H. Odorant receptor-mediated signaling in the mouse. Curr Opin Neurobiol 2009; 18:251-60. [PMID: 18721880 DOI: 10.1016/j.conb.2008.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 07/16/2008] [Indexed: 11/17/2022]
Abstract
In the mouse olfactory system, there are approximately 1000 types of odorant receptors (ORs), which perform multiple functions in olfactory sensory neurons (OSNs). In addition to detecting odors, the functional OR protein ensures the singular gene choice of the OR by negative-feedback regulation. ORs also direct the axonal projection of OSNs both globally and locally by modulating the transcriptional levels of axon-guidance and axon-sorting molecules. In these latter processes, the second messenger, cAMP, plays differential roles in the fasciculation and targeting of axons. In this review, we will discuss how ORs differentially regulate intracellular signals for distinct functions.
Collapse
Affiliation(s)
- Takeshi Imai
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan.
| | | |
Collapse
|
74
|
Abstract
The ability of mammals to identify and distinguish among many thousands of different odorants suggests a combinatorial use of odorant receptors, with each receptor detecting multiple odorants and each odorant interacting with multiple receptors. Numerous receptors may be devoted to the sampling of particularly important regions of odor space. In this study, we explore the similarities and differences in the molecular receptive ranges of four mouse odorant receptors (MOR23-1, MOR31-4, MOR32-11 and MOR40-4), which have previously been identified as receptors for aliphatic carboxylic acids. Each receptor was expressed in Xenopus oocytes, along with Galpha(olf) and the cystic fibrosis transmembrane regulator to allow electrophysiological assay of receptor responses. We find that even though these receptors are relatively unrelated, there is extensive overlap among their receptive ranges. That is, these receptors sample a similar region of odor space. However, the receptive range of each receptor is unique. Thus, these receptors contribute to the depth of coverage of this small region of odor space. Such a group of receptors with overlapping, but distinct receptive ranges, may participate in making fine distinctions among complex mixtures of closely related odorant compounds.
Collapse
Affiliation(s)
- Sarah E Repicky
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA
| | | |
Collapse
|
75
|
Nozawa M, Nei M. Genomic drift and copy number variation of chemosensory receptor genes in humans and mice. Cytogenet Genome Res 2009; 123:263-9. [PMID: 19287163 DOI: 10.1159/000184716] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2008] [Indexed: 11/19/2022] Open
Abstract
Recent studies about the structural variation of genomic sequences have shown that there is a large amount of copy number variations (CNVs) of genes within species. Analyzing Redon et al.'s (2006) crude data on copy number variable regions (CNVRs), we previously showed that CNVs are particularly high for chemosensory receptor genes in human populations. In this paper, we reanalyzed the CNVs of these genes using more refined data by Perry et al. (2008). The results showed that the extent of CNVs is somewhat lower in this dataset than in the previous one, but that the extent is still substantial for olfactory receptor (OR), vomeronasal receptor (VR), and taste receptor (TR) genes. We also studied the CNVs for chemosensory receptor genes in mice, using CNVR data obtained from inbred strains. It was found that the extent of CNVs is quite substantial but is lower than that for human populations. However, because the mouse data came from inbred strains and might be biased, this conclusion should be regarded as tentative. Despite this reservation, the distribution of gene copy number for the OR gene family was approximately normal in both humans and mice, suggesting that genomic drift caused by random duplication and deletion of genes plays important roles in determining the evolutionary change of chemosensation.
Collapse
Affiliation(s)
- M Nozawa
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA, USA
| | | |
Collapse
|
76
|
Abstract
Olfactory receptors, in addition to being involved in first step of the physiological processes that leads to olfaction, occupy an important place in mammalian genomes. ORs constitute super families in these genomes. Elucidating ol-factory receptor function at a molecular level can be aided by a computationally derived structure and an understanding of its interactions with odor molecules. Experimental functional analyses of olfactory receptors in conjunction with computational studies serve to validate findings and generate hypotheses. We present here a review of the research efforts in: creating computational models of olfactory receptors, identifying binding strategies for these receptors with odorant molecules, performing medium to long range simulation studies of odor ligands in the receptor binding region, and identifying amino acid positions within the receptor that are responsible for ligand-binding and olfactory receptor activation. Written as a primer and a teaching tool, this review will help researchers extend the methodologies described herein to other GPCRs.
Collapse
Affiliation(s)
- Chiquito J. Crasto
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
77
|
Abstract
Voltage-clamp techniques are typically used to study the plasma membrane proteins, such as ion channels and transporters that control bioelectrical signals. Many of these proteins have been cloned and can now be studied as potential targets for drug development. The two approaches most commonly used for heterologous expression of cloned ion channels and transporters involve either transfection of the genes into small cells grown in tissue culture or the injection of the genetic material into larger cells. The standard large cells used for the expression of cloned cDNA or synthetic RNA are the egg progenitor cells (oocytes) of the African frog, Xenopus laevis. Until recently, cellular electrophysiology was performed manually by a single operator, one cell at a time. However, methods of high throughput electrophysiology have been developed which are automated and permit data acquisition and analysis from multiple cells in parallel. These methods are breaking a bottleneck in drug discovery, useful in some cases for primary screening as well as for thorough characterization of new drugs. Increasing throughput of high-quality functional data greatly augments the efficiency of academic research and pharmaceutical drug development. Some examples of studies that benefit most from high throughput electrophysiology include pharmaceutical screening of targeted compound libraries, secondary screening of identified compounds for subtype selectivity, screening mutants of ligand-gated channels for changes in receptor function, scanning mutagenesis of protein segments, and mutant-cycle analysis. We describe here the main features and potential applications of OpusXpress, an efficient commercially available system for automated recording from Xenopus oocytes. We show some types of data that have been gathered by this system and review realized and potential applications.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA.
| | | |
Collapse
|
78
|
Peterlin Z, Li Y, Sun G, Shah R, Firestein S, Ryan K. The importance of odorant conformation to the binding and activation of a representative olfactory receptor. CHEMISTRY & BIOLOGY 2008; 15:1317-27. [PMID: 19101476 PMCID: PMC2628580 DOI: 10.1016/j.chembiol.2008.10.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/19/2008] [Accepted: 10/27/2008] [Indexed: 11/28/2022]
Abstract
Olfactory receptors (ORs) form a large family of G protein-coupled receptor proteins (GPCRs) responsible for sensing the ambient chemical environment. The molecular recognition strategies used by ORs to detect and distinguish odorant molecules are unclear. Here, we investigated the variable of odorant carbon chain conformation for an established odorant-OR pair: n-octanal and rat OR-I7. A series of conformationally restricted octanal mimics were tested on live olfactory sensory neurons (OSNs). Our results support a model in which unactivated OR-I7 binds aliphatic aldehydes indiscriminately, and then applies conformational and length filters to distinguish agonists from antagonists. Specific conformers are proposed to activate OR-I7 by steric buttressing of an OR activation pocket. Probing endogenously expressed rat OSNs with octanal and constrained mimics furnished evidence that odorant conformation contributes to an odorant's unique olfactory code signature.
Collapse
Affiliation(s)
- Zita Peterlin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Yadi Li
- Department of Chemistry and Biochemistry, City College of New York, and Graduate School, City University of New York, New York, NY 10032, USA
| | - Guangxing Sun
- Department of Chemistry and Biochemistry, City College of New York, and Graduate School, City University of New York, New York, NY 10032, USA
| | - Rohan Shah
- Department of Chemistry and Biochemistry, City College of New York, and Graduate School, City University of New York, New York, NY 10032, USA
| | - Stuart Firestein
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Kevin Ryan
- Department of Chemistry and Biochemistry, City College of New York, and Graduate School, City University of New York, New York, NY 10032, USA
| |
Collapse
|
79
|
Triballeau N, Van Name E, Laslier G, Cai D, Paillard G, Sorensen PW, Hoffmann R, Bertrand HO, Ngai J, Acher FC. High-potency olfactory receptor agonists discovered by virtual high-throughput screening: molecular probes for receptor structure and olfactory function. Neuron 2008; 60:767-74. [PMID: 19081373 PMCID: PMC2652502 DOI: 10.1016/j.neuron.2008.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 11/03/2008] [Accepted: 11/10/2008] [Indexed: 11/27/2022]
Abstract
The detection of diverse chemical structures by the vertebrate olfactory system is accomplished by the recognition of odorous ligands by their cognate receptors. In the present study, we used computational screening to discover novel high-affinity agonists of an olfactory G protein-coupled receptor that recognizes amino acid ligands. Functional testing of the top candidates validated several agonists with potencies higher than any of the receptor's known natural ligands. Computational modeling revealed molecular interactions involved in ligand binding and further highlighted interactions that have been conserved in evolutionarily divergent amino acid receptors. Significantly, the top compounds display robust activities as odorants in vivo and include a natural product that may be used to signal the presence of bacteria in the environment. Our virtual screening approach should be applicable to the identification of new bioactive molecules for probing the structure of chemosensory receptors and the function of chemosensory systems in vivo.
Collapse
Affiliation(s)
- Nicolas Triballeau
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR-8601, Université Paris Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France
- Accelrys, Parc-Club Orsay Université, 20 rue J. Rostand, 91898 Orsay Cedex, France
| | - Eric Van Name
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute and Functional Genomics Laboratory, University of California, Berkeley, California 94720, USA
| | - Guillaume Laslier
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR-8601, Université Paris Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France
| | - Diana Cai
- Department of Fisheries, Wildlife & Conservation Biology, University of Minnesota, 1980 Folwell Avenue, St. Paul, Minnesota 55108, USA
| | - Guillaume Paillard
- Accelrys, Parc-Club Orsay Université, 20 rue J. Rostand, 91898 Orsay Cedex, France
| | - Peter W. Sorensen
- Department of Fisheries, Wildlife & Conservation Biology, University of Minnesota, 1980 Folwell Avenue, St. Paul, Minnesota 55108, USA
| | - Rémy Hoffmann
- Accelrys, Parc-Club Orsay Université, 20 rue J. Rostand, 91898 Orsay Cedex, France
| | | | - John Ngai
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute and Functional Genomics Laboratory, University of California, Berkeley, California 94720, USA
| | - Francine C. Acher
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, CNRS UMR-8601, Université Paris Descartes, 45 rue des Saints Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
80
|
Santos PSC, Füst G, Prohászka Z, Volz A, Horton R, Miretti M, Yu CY, Beck S, Uchanska-Ziegler B, Ziegler A. Association of smoking behavior with an odorant receptor allele telomeric to the human major histocompatibility complex. GENETIC TESTING 2008; 12:481-6. [PMID: 18939942 PMCID: PMC2635552 DOI: 10.1089/gte.2008.0029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Smoking behavior has been associated in two independent European cohorts with the most common Caucasian human leukocyte antigen (HLA) haplotype (A1-B8-DR3). We aimed to test whether polymorphic members of the two odorant receptor (OR) clusters within the extended HLA complex might be responsible for the observed association, by genotyping a cohort of Hungarian women in which the mentioned association had been found. One hundred and eighty HLA haplotypes from Centre d'Etude du Polymorphisme Humain families were analyzed in silico to identify single-nucleotide polymorphisms (SNPs) within OR genes that are in linkage disequilibrium with the A1-B8-DR3 haplotype, as well as with two other haplotypes indirectly linked to smoking behavior. A nonsynonymous SNP within the OR12D3 gene (rs3749971(T)) was found to be linked to the A1-B8-DR3 haplotype. This polymorphism leads to a (97)Thr --> Ile exchange that affects a putative ligand binding region of the OR12D3 protein. Smoking was found to be associated in the Hungarian cohort with the rs3749971(T) allele (p = 1.05 x 10(-2)), with higher significance than with A1-B8-DR3 (p = 2.38 x 10(-2)). Our results link smoking to a distinct OR allele, and demonstrate that the rs3749971(T) polymorphism is associated with the HLA haplotype-dependent differential recognition of cigarette smoke components, at least among Caucasian women.
Collapse
Affiliation(s)
| | - George Füst
- Third Department of Internal Medicine and Szentagothai János Knowledge Center, Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- Third Department of Internal Medicine and Szentagothai János Knowledge Center, Semmelweis University, Budapest, Hungary
- Research Group of Inflammation Biology and Immunogenomics, National Academy of Sciences, Budapest, Hungary
| | - Armin Volz
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Roger Horton
- Genome Campus, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Marcos Miretti
- Genome Campus, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Chack-Yung Yu
- Center for Molecular and Human Genetics, Columbus Children’s Research Institute and College of Medicine and Public Health, The Ohio State University, Columbus, Ohio
| | - Stephan Beck
- UCL Cancer Institute, University College London, London, United Kingdom
| | | | - Andreas Ziegler
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
81
|
Lai PC, Bahl G, Gremigni M, Matarazzo V, Clot-Faybesse O, Ronin C, Crasto CJ. An olfactory receptor pseudogene whose function emerged in humans: a case study in the evolution of structure-function in GPCRs. ACTA ACUST UNITED AC 2008; 9:29-40. [PMID: 18802787 DOI: 10.1007/s10969-008-9043-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 08/19/2008] [Indexed: 11/25/2022]
Abstract
Human olfactory receptor, hOR17-210, is identified as a pseudogene in the human genome. Experimental data has shown however, that the gene product of frame-shifted, cloned hOR17-210 cDNA was able to bind an odorant-binding protein and is narrowly tuned for excitation by cyclic ketones. Supported by experimental results, we used the bioinformatics methods of sequence analysis (genome-wide and pair-wise), computational protein modeling and docking, to show that functionality in this receptor is retained due to sequence-structure features not previously observed in mammalian ORs. This receptor does not possess the first two transmembrane helical domains (of seven typically seen in GPCRs). It however, possesses an additional TM that has not been observed in other human olfactory receptors. By incorporating these novel structural features, we created two putative models for this receptor. We also docked odor ligands that were experimentally shown to bind hOR17-210. We show how and why structural modifications of OR17-210 do not hinder this receptor's functionality. Our studies reveal that novel gene rearrangements that result in sequence and structural diversity may have a bearing on OR and GPCR function and evolution.
Collapse
Affiliation(s)
- Peter C Lai
- Division of Natural Science, Mathematics, and Computing, Bard College at Simon's Rock, Great Barrington, MA, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Gelperin A. Neural Computations with Mammalian Infochemicals. J Chem Ecol 2008; 34:928-42. [DOI: 10.1007/s10886-008-9483-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 12/28/2007] [Accepted: 04/23/2008] [Indexed: 12/22/2022]
|
83
|
Abstract
Most animal species rely on odorant compounds to locate food, predators, or toxins. The sense of smell is also involved in animal communication, and revealing the underlying mechanisms will therefore facilitate a deeper understanding of animal behaviour. Since the 1940s different theories have speculated on the fundamental basis of olfaction. It was assumed that odorant molecules were recognized by selective protein receptors in the nose, triggering a nervous signal processed by the brain. The discovery of these receptors in the early 1990s allowed great progress in understanding the physiological and biochemical principles of olfaction. An overview of the different mechanisms involved in the coding of odour character as well as odour intensity is presented here, focusing on the biochemical basis of odorant recognition. Despite the enormous progress achieved in recent years, details of odorant-receptor interaction at the molecular level and the mechanisms of olfactory receptor activation are poorly understood. The likely role of metal ions in odorant recognition is discussed, and also the perireceptor events involved in odorant transport and biotransformation, with a view to providing a comprehensive overview of mammalian olfaction to guide future computational structural models and the design of functional experiments. Recent studies have analysed the olfactory genome of several species, providing information about the evolution of olfaction. The role of the olfactory system in animal communication is also described.
Collapse
Affiliation(s)
- Manuel Zarzo
- Department of Applied Statistics, Technical University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
84
|
Wanner KW, Nichols AS, Walden KKO, Brockmann A, Luetje CW, Robertson HM. A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc Natl Acad Sci U S A 2007; 104:14383-8. [PMID: 17761794 PMCID: PMC1964862 DOI: 10.1073/pnas.0705459104] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By using a functional genomics approach, we have identified a honey bee [Apis mellifera (Am)] odorant receptor (Or) for the queen substance 9-oxo-2-decenoic acid (9-ODA). Honey bees live in large eusocial colonies in which a single queen is responsible for reproduction, several thousand sterile female worker bees complete a myriad of tasks to maintain the colony, and several hundred male drones exist only to mate. The "queen substance" [also termed the queen retinue pheromone (QRP)] is an eight-component pheromone that maintains the queen's dominance in the colony. The main component, 9-ODA, acts as a releaser pheromone by attracting workers to the queen and as a primer pheromone by physiologically inhibiting worker ovary development; it also acts as a sex pheromone, attracting drones during mating flights. However, the extent to which social and sexual chemical messages are shared remains unresolved. By using a custom chemosensory-specific microarray and qPCR, we identified four candidate sex pheromone Ors (AmOr10, -11, -18, and -170) from the honey bee genome based on their biased expression in drone antennae. We assayed the pheromone responsiveness of these receptors by using Xenopus oocytes and electrophysiology. AmOr11 responded specifically to 9-ODA (EC50=280+/-31 nM) and not to any of the other seven QRP components, other social pheromones, or floral odors. We did not observe any responses of the other three Ors to any of the eight QRP pheromone components, suggesting 9-ODA is the only QRP component that also acts as a long-distance sex pheromone.
Collapse
Affiliation(s)
- Kevin W. Wanner
- *Department of Entomology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and
| | - Andrew S. Nichols
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Kimberly K. O. Walden
- *Department of Entomology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and
| | - Axel Brockmann
- *Department of Entomology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and
| | - Charles W. Luetje
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Hugh M. Robertson
- *Department of Entomology, University of Illinois at Urbana–Champaign, Urbana, IL 61801; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
85
|
Stary A, Suwattanasophon C, Wolschann P, Buchbauer G. Differences in (-)citronellal binding to various odorant receptors. Biochem Biophys Res Commun 2007; 361:941-5. [PMID: 17681278 DOI: 10.1016/j.bbrc.2007.07.137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 07/19/2007] [Indexed: 10/23/2022]
Abstract
To test the hypothesis that olfactory receptors (ORs) recognize different molecular features of odor molecules termed "odotypes", we studied receptor-ligand interactions of two human and two mouse ORs, recognizing (-)citronellal. Structurally similar receptors provide identical binding pockets (OLFR43, OR1A1, and OR1A2), and have comparable EC(50) values. Other ORs with lower sequence identity bind (-)citronellal in a different way, leading to different EC(50) values.
Collapse
Affiliation(s)
- Anna Stary
- Institute for Theoretical Chemistry, University of Vienna, Waehringer Strasse 17, A-1090 Vienna, Austria.
| | | | | | | |
Collapse
|
86
|
Zhuang H, Matsunami H. Synergism of Accessory Factors in Functional Expression of Mammalian Odorant Receptors. J Biol Chem 2007; 282:15284-93. [PMID: 17387175 DOI: 10.1074/jbc.m700386200] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery of odorant receptors led to endeavors in matching them with their cognate ligands. Although it has been challenging to functionally express odorant receptors in heterologous cells, previous studies have linked efficient odorant receptor expression with N-terminal modifications and accessory proteins, including the receptor-transporting proteins (RTPs) and Ric8b. Here we have shown that a shorter form of RTP1, RTP1S, supports robust cell-surface and functional expression of representative odorant receptors. Using a combination of accessory proteins, including RTP1S, Ric8b, and G(alphaolf), a diverse set of untagged odorant receptors were successfully expressed heterologously due to the synergistic effects among the various accessory proteins. Furthermore, the addition of an N-terminal rhodopsin tag to the odorant receptors, along with the same set of accessory proteins, exhibits an additional level of synergism, inducing enhanced odorant receptor responses to odorants and thus defining a more efficient heterologous expression system. We then showed that the presence or absence of different N-terminal tags has little effect on the ligand specificity of odorant receptors, although the amount of receptor expressed can play a role in the ligand response profile. The accuracy of the odorant receptor heterologous expression system involving tagged odorant receptors and various accessory proteins promises success in high throughput de-orphaning of mammalian odorant receptors.
Collapse
Affiliation(s)
- Hanyi Zhuang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|