51
|
Kant S, Agarwal S, Pancholi P, Pancholi V. TheStreptococcus pyogenesorphan protein tyrosine phosphatase, SP-PTP, possesses dual specificity and essential virulence regulatory functions. Mol Microbiol 2015; 97:515-40. [DOI: 10.1111/mmi.13047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Sashi Kant
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Shivani Agarwal
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Preeti Pancholi
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| | - Vijay Pancholi
- Department of Pathology; The Ohio State University College of Medicine; Wexner Medical Center; Columbus OH USA
| |
Collapse
|
52
|
Hatzihristidis T, Desai N, Hutchins AP, Meng TC, Tremblay ML, Miranda-Saavedra D. A Drosophila-centric view of protein tyrosine phosphatases. FEBS Lett 2015; 589:951-66. [PMID: 25771859 DOI: 10.1016/j.febslet.2015.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/30/2022]
Abstract
Most of our knowledge on protein tyrosine phosphatases (PTPs) is derived from human pathologies and mouse knockout models. These models largely correlate well with human disease phenotypes, but can be ambiguous due to compensatory mechanisms introduced by paralogous genes. Here we present the analysis of the PTP complement of the fruit fly and the complementary view that PTP studies in Drosophila will accelerate our understanding of PTPs in physiological and pathological conditions. With only 44 PTP genes, Drosophila represents a streamlined version of the human complement. Our integrated analysis places the Drosophila PTPs into evolutionary and functional contexts, thereby providing a platform for the exploitation of the fly for PTP research and the transfer of knowledge onto other model systems.
Collapse
Affiliation(s)
- Teri Hatzihristidis
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Nikita Desai
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Andrew P Hutchins
- Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tzu-Ching Meng
- Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Michel L Tremblay
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Québec H3A 1A3, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| | - Diego Miranda-Saavedra
- World Premier International (WPI) Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan; Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, 28049 Madrid, Spain; IE Business School, IE University, María de Molina 31 bis, 28006 Madrid, Spain.
| |
Collapse
|
53
|
Zhou P, Li W, Wong D, Xie J, Av-Gay Y. Phosphorylation control of protein tyrosine phosphatase A activity in Mycobacterium tuberculosis. FEBS Lett 2014; 589:326-31. [PMID: 25535696 DOI: 10.1016/j.febslet.2014.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 11/25/2022]
Abstract
Protein tyrosine phosphatase A (PtpA) has been shown to play a key role in human macrophage infection by Mycobacterium tuberculosis (Mtb). Protein tyrosine kinase A (PtkA) was the first protein tyrosine kinase shown to phosphorylate PtpA. Here, we found that PtkA-mediated phosphorylation of PtPA on Tyr-128 and Tyr-129 enhances the PtPA phosphatase activity. Moreover, ex-vivo protein-protein interaction assays showed that PtpA can be phosphorylated by several eukaryotic-like Ser/Thr protein kinases, such as protein kinase A (PknA). PknA was found to regulate PtpA phosphatase activity through Thr-45 phosphorylation. These results indicate that members of two independent families of protein kinases tune PtpA activity in Mtb.
Collapse
Affiliation(s)
- Peifu Zhou
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V5Z 3J5, Canada; Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-environment and Bio-resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; Institute of Ethnic-minority Medicine, School of Chemistry & Environmental Science, Guizhou Minzu University, Guiyang 550025, China
| | - Wu Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-environment and Bio-resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Dennis Wong
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V5Z 3J5, Canada
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-environment and Bio-resource of the Three Gorges Area, Key Laboratory of Eco-environment of Three Gorges Reservoir, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Yossef Av-Gay
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC V5Z 3J5, Canada.
| |
Collapse
|
54
|
Barák I. Complexity of bacterial phosphorylation interaction network. Front Microbiol 2014; 5:725. [PMID: 25566234 PMCID: PMC4269134 DOI: 10.3389/fmicb.2014.00725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/02/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| |
Collapse
|
55
|
Dunker AK, Bondos SE, Huang F, Oldfield CJ. Intrinsically disordered proteins and multicellular organisms. Semin Cell Dev Biol 2014; 37:44-55. [PMID: 25307499 DOI: 10.1016/j.semcdb.2014.09.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/15/2014] [Accepted: 09/30/2014] [Indexed: 12/12/2022]
Abstract
Intrinsically disordered proteins (IDPs) and IDP regions lack stable tertiary structure yet carry out numerous biological functions, especially those associated with signaling, transcription regulation, DNA condensation, cell division, and cellular differentiation. Both post-translational modifications (PTMs) and alternative splicing (AS) expand the functional repertoire of IDPs. Here we propose that an "IDP-based developmental toolkit," which is comprised of IDP regions, PTMs, especially multiple PTMs, within these IDP regions, and AS events within segments of pre-mRNA that code for these same IDP regions, allows functional diversification and environmental responsiveness for molecules that direct the development of complex metazoans.
Collapse
Affiliation(s)
- A Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University Schools of Medicine and Informatics, Indianapolis, IN 46202, United States.
| | - Sarah E Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, United States.
| | - Fei Huang
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University Schools of Medicine and Informatics, Indianapolis, IN 46202, United States.
| | - Christopher J Oldfield
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University Schools of Medicine and Informatics, Indianapolis, IN 46202, United States.
| |
Collapse
|
56
|
Sherman DR, Grundner C. Agents of change - concepts in Mycobacterium tuberculosis Ser/Thr/Tyr phosphosignalling. Mol Microbiol 2014; 94:231-41. [PMID: 25099260 DOI: 10.1111/mmi.12747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2014] [Indexed: 11/26/2022]
Abstract
The flow of information from the outside to the inside of bacterial cells is largely directed by protein kinases. In addition to histidine/aspartate phosphorelays of two-component response regulators, recent work in Mycobacterium tuberculosis (Mtb) reinforces the idea that phosphorylation on serine (Ser), threonine (Thr) and tyrosine (Tyr) is central to bacterial physiology and pathogenesis, and that the corresponding phosphosystems are highly similar to those in eukaryotes. In this way, eukaryotes are a useful guide to understanding Ser/Thr/Tyr phosphorylation (O-phosphorylation) in prokaryotes such as Mtb. However, as novel functions and components of bacterial O-phosphorylation are identified, distinct differences between pro- and eukaryotic phosphosignalling systems become apparent. The emerging picture of O-phosphorylation in Mtb is complicated, goes beyond the eukaryotic paradigms, and shows the limitations of viewing bacterial phosphosignalling within the confines of the 'eukaryotic-like' model. Here, we summarize recent findings about Ser/Thr and the recently discovered Tyr phosphorylation pathways in Mtb, highlight the similarities and differences between eukaryotic and prokaryotic O-phosphorylation, and pose additional questions about signalling components, pathway organization, and ultimately, the cellular roles of O-phosphorylation in Mtb physiology and pathogenesis.
Collapse
Affiliation(s)
- David R Sherman
- Seattle Biomedical Research Institute, Seattle, WA, 98109, USA; Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | | |
Collapse
|
57
|
Abstract
The importance of reversible protein phosphorylation to cellular regulation cannot be overstated. In eukaryotic cells, protein kinase/phosphatase signaling pathways regulate a staggering number of cellular processes, including cell proliferation, cell death (apoptosis, necroptosis, necrosis), metabolism (at both the cellular and organismal levels), behavior and neurological function, development, and pathogen resistance. Although protein phosphorylation as a mode of eukaryotic cell regulation is familiar to most biochemists, many are less familiar with protein kinase/phosphatase signaling networks that function in prokaryotes. In this thematic minireview series, we present four minireviews that cover the important field of prokaryotic protein phosphorylation.
Collapse
Affiliation(s)
- John M Kyriakis
- From Mercury Therapeutics, Incorporated, Woburn, Massachusetts 01801
| |
Collapse
|