51
|
Willemin A, Szabó D, Pombo A. Epigenetic regulatory layers in the 3D nucleus. Mol Cell 2024; 84:415-428. [PMID: 38242127 PMCID: PMC10872226 DOI: 10.1016/j.molcel.2023.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Nearly 7 decades have elapsed since Francis Crick introduced the central dogma of molecular biology, as part of his ideas on protein synthesis, setting the fundamental rules of sequence information transfer from DNA to RNAs and proteins. We have since learned that gene expression is finely tuned in time and space, due to the activities of RNAs and proteins on regulatory DNA elements, and through cell-type-specific three-dimensional conformations of the genome. Here, we review major advances in genome biology and discuss a set of ideas on gene regulation and highlight how various biomolecular assemblies lead to the formation of structural and regulatory features within the nucleus, with roles in transcriptional control. We conclude by suggesting further developments that will help capture the complex, dynamic, and often spatially restricted events that govern gene expression in mammalian cells.
Collapse
Affiliation(s)
- Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| | - Dominik Szabó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany; Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany.
| |
Collapse
|
52
|
Seif E, Francis NJ. A Two-Step Mechanism for Creating Stable, Condensed Chromatin with the Polycomb Complex PRC1. Molecules 2024; 29:323. [PMID: 38257239 PMCID: PMC10821450 DOI: 10.3390/molecules29020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The Drosophila PRC1 complex regulates gene expression by modifying histone proteins and chromatin architecture. Two PRC1 subunits, PSC and Ph, are most implicated in chromatin architecture. In vitro, PRC1 compacts chromatin and inhibits transcription and nucleosome remodeling. The long disordered C-terminal region of PSC (PSC-CTR) is important for these activities, while Ph has little effect. In cells, Ph is important for condensate formation, long-range chromatin interactions, and gene regulation, and its polymerizing sterile alpha motif (SAM) is implicated in these activities. In vitro, truncated Ph containing the SAM and two other conserved domains (mini-Ph) undergoes phase separation with chromatin, suggesting a mechanism for SAM-dependent condensate formation in vivo. How the distinct activities of PSC and Ph on chromatin function together in PRC1 is not known. To address this question, we analyzed structures formed with large chromatin templates and PRC1 in vitro. PRC1 bridges chromatin into extensive fibrillar networks. Ph, its SAM, and SAM polymerization activity have little effect on these structures. Instead, the PSC-CTR controls their growth, and is sufficient for their formation. To understand how phase separation driven by Ph SAM intersects with the chromatin bridging activity of the PSC-CTR, we used mini-Ph to form condensates with chromatin and then challenged them with PRC1 lacking Ph (PRC1ΔPh). PRC1ΔPh converts mini-Ph chromatin condensates into clusters of small non-fusing condensates and bridged fibers. These condensates retain a high level of chromatin compaction and do not intermix. Thus, phase separation of chromatin by mini-Ph, followed by the action of the PSC-CTR, creates a unique chromatin organization with regions of high nucleosome density and extraordinary stability. We discuss how this coordinated sequential activity of two proteins found in the same complex may occur and the possible implications of stable chromatin architectures in maintaining transcription states.
Collapse
Affiliation(s)
- Elias Seif
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada;
| | - Nicole J. Francis
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada;
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montréal, QC H4A 3J1, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
53
|
Salomone J, Farrow E, Gebelein B. Homeodomain complex formation and biomolecular condensates in Hox gene regulation. Semin Cell Dev Biol 2024; 152-153:93-100. [PMID: 36517343 PMCID: PMC10258226 DOI: 10.1016/j.semcdb.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/21/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Hox genes are a family of homeodomain transcription factors that regulate specialized morphological structures along the anterior-posterior axis of metazoans. Over the past few decades, researchers have focused on defining how Hox factors with similar in vitro DNA binding activities achieve sufficient target specificity to regulate distinct cell fates in vivo. In this review, we highlight how protein interactions with other transcription factors, many of which are also homeodomain proteins, result in the formation of transcription factor complexes with enhanced DNA binding specificity. These findings suggest that Hox-regulated enhancers utilize distinct combinations of homeodomain binding sites, many of which are low-affinity, to recruit specific Hox complexes. However, low-affinity sites can only yield reproducible responses with high transcription factor concentrations. To overcome this limitation, recent studies revealed how transcription factors, including Hox factors, use intrinsically disordered domains (IDRs) to form biomolecular condensates that increase protein concentrations. Moreover, Hox factors with altered IDRs have been associated with altered transcriptional activity and human disease states, demonstrating the importance of IDRs in mediating essential Hox output. Collectively, these studies highlight how Hox factors use their DNA binding domains, protein-protein interaction domains, and IDRs to form specific transcription factor complexes that yield accurate gene expression.
Collapse
Affiliation(s)
- Joseph Salomone
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Edward Farrow
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 7007, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
54
|
Liu J, Fan H, Liang X, Chen Y. Polycomb repressor complex: Its function in human cancer and therapeutic target strategy. Biomed Pharmacother 2023; 169:115897. [PMID: 37981459 DOI: 10.1016/j.biopha.2023.115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
The Polycomb Repressor Complex (PRC) plays a pivotal role in gene regulation during development and disease, with dysregulation contributing significantly to various human cancers. The intricate interplay between PRC and cellular signaling pathways sheds light on cancer complexity. PRC presents promising therapeutic opportunities, with inhibitors undergoing rigorous evaluation in preclinical and clinical studies. In this review, we emphasize the critical role of PRC complex in gene regulation, particularly PcG proteins mediated chromatin compaction through phase separation. We also highlight the pathological implications of PRC complex dysregulation in various tumors, elucidating underlying mechanisms driving cancer progression. The burgeoning field of therapeutic strategies targeting PRC complexes, notably EZH2 inhibitors, has advanced significantly. However, we explore the need for combination therapies to enhance PRC targeted treatments efficacy, providing a glimpse into the future of cancer therapeutics.
Collapse
Affiliation(s)
- Jingrong Liu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Hongjie Fan
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
55
|
Cai L, Wang GG. Through the lens of phase separation: intrinsically unstructured protein and chromatin looping. Nucleus 2023; 14:2179766. [PMID: 36821650 PMCID: PMC9980480 DOI: 10.1080/19491034.2023.2179766] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The establishment, maintenance and dynamic regulation of three-dimensional (3D) chromatin structures provide an important means for partitioning of genome into functionally distinctive domains, which helps to define specialized gene expression programs associated with developmental stages and cell types. Increasing evidence supports critical roles for intrinsically disordered regions (IDRs) harbored within transcription factors (TFs) and chromatin-modulatory proteins in inducing phase separation, a phenomenon of forming membrane-less condensates through partitioning of biomolecules. Such a process is also critically involved in the establishment of high-order chromatin structures and looping. IDR- and phase separation-driven 3D genome (re)organization often goes wrong in disease such as cancer. This review discusses about recent advances in understanding how phase separation of intrinsically disordered proteins (IDPs) modulates chromatin looping and gene expression.
Collapse
Affiliation(s)
- Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,Ling Cai Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,CONTACT Gang Greg Wang Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC27599, USA
| |
Collapse
|
56
|
Geng J, Feng W, Liu Y, Li J, Gao H, Wu B. Protein phase separation disorder as a potentially pervasive pathogenic mechanism of male infertility. Med Hypotheses 2023; 181:111189. [DOI: 10.1016/j.mehy.2023.111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
57
|
Lu G, Li P. PHF1 compartmentalizes PRC2 via phase separation. Biochem J 2023; 480:1833-1844. [PMID: 37888776 DOI: 10.1042/bcj20230040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
Polycomb repressive complex 2 (PRC2) is central to polycomb repression as it trimethylates lysine 27 on histone H3 (H3K27me3). How PRC2 is recruited to its targets to deposit H3K27me3 remains an open question. Polycomb-like (PCL) proteins, a group of conserved PRC2 accessory proteins, can direct PRC2 to its targets. In this report, we demonstrate that a PCL protein named PHF1 forms phase-separated condensates at H3K27me3 loci that recruit PRC2. Combining cellular observation and biochemical reconstitution, we show that the N-terminal domains of PHF1 cooperatively mediate target recognition, the chromo-like domain recruits PRC2, and the intrinsically disordered region (IDR) drives phase separation. Moreover, we reveal that the condensates compartmentalize PRC2, DNA, and nucleosome arrays by phase separation. Luciferase reporter assays confirm that PHF1 phase separation promotes transcription repression, further supporting a role of the condensates in polycomb repression. Based on our findings, we propose that these condensates create favorable microenvironments at the target loci for PRC2 to function.
Collapse
Affiliation(s)
- Genzhe Lu
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
- Tsinghua Xuetang Life Science Program, Tsinghua University, Beijing 100084, China
| | - Pilong Li
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
58
|
Krug B, Hu B, Chen H, Ptack A, Chen X, Gretarsson KH, Deshmukh S, Kabir N, Andrade AF, Jabbour E, Harutyunyan AS, Lee JJY, Hulswit M, Faury D, Russo C, Xu X, Johnston MJ, Baguette A, Dahl NA, Weil AG, Ellezam B, Dali R, Blanchette M, Wilson K, Garcia BA, Soni RK, Gallo M, Taylor MD, Kleinman CL, Majewski J, Jabado N, Lu C. H3K27me3 spreading organizes canonical PRC1 chromatin architecture to regulate developmental programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.567931. [PMID: 38116029 PMCID: PMC10729739 DOI: 10.1101/2023.11.28.567931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Polycomb Repressive Complex 2 (PRC2)-mediated histone H3K27 tri-methylation (H3K27me3) recruits canonical PRC1 (cPRC1) to maintain heterochromatin. In early development, polycomb-regulated genes are connected through long-range 3D interactions which resolve upon differentiation. Here, we report that polycomb looping is controlled by H3K27me3 spreading and regulates target gene silencing and cell fate specification. Using glioma-derived H3 Lys-27-Met (H3K27M) mutations as tools to restrict H3K27me3 deposition, we show that H3K27me3 confinement concentrates the chromatin pool of cPRC1, resulting in heightened 3D interactions mirroring chromatin architecture of pluripotency, and stringent gene repression that maintains cells in progenitor states to facilitate tumor development. Conversely, H3K27me3 spread in pluripotent stem cells, following neural differentiation or loss of the H3K36 methyltransferase NSD1, dilutes cPRC1 concentration and dissolves polycomb loops. These results identify the regulatory principles and disease implications of polycomb looping and nominate histone modification-guided distribution of reader complexes as an important mechanism for nuclear compartment organization. Highlights The confinement of H3K27me3 at PRC2 nucleation sites without its spreading correlates with increased 3D chromatin interactions.The H3K27M oncohistone concentrates canonical PRC1 that anchors chromatin loop interactions in gliomas, silencing developmental programs.Stem and progenitor cells require factors promoting H3K27me3 confinement, including H3K36me2, to maintain cPRC1 loop architecture.The cPRC1-H3K27me3 interaction is a targetable driver of aberrant self-renewal in tumor cells.
Collapse
|
59
|
Zhong L, Wang J, Chen W, Lv D, Zhang R, Wang X, Zeng C, He X, Zheng L, Gao Y, Wang S, Li M, Wu Y, Yin J, Kang T, Liao D. Augmenting L3MBTL2-induced condensates suppresses tumor growth in osteosarcoma. SCIENCE ADVANCES 2023; 9:eadi0889. [PMID: 37992172 PMCID: PMC10664996 DOI: 10.1126/sciadv.adi0889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
Osteosarcoma is a highly aggressive cancer and lacks effective therapeutic targets. We found that L3MBTL2 acts as a tumor suppressor by transcriptionally repressing IFIT2 in osteosarcoma. L3MBTL2 recruits the components of Polycomb repressive complex 1.6 to form condensates via both Pho-binding pockets and polybasic regions within carboxyl-terminal intrinsically disordered regions; the L3MBTL2-induced condensates are required for its tumor suppression. Multi-monoubiquitination of L3MBTL2 by UBE2O results in its proteasomal degradation, and the UBE2O/L3MBTL2 axis was crucial for osteosarcoma growth. There is a reverse correlation between L3MBTL2 and UBE2O in osteosarcoma tissues, and higher UBE2O and lower L3MBTL2 are associated with poorer prognosis in osteosarcoma. Pharmacological blockage of UBE2O by arsenic trioxide can enhance L3MBTL2-induced condensates and consequently suppress osteosarcoma growth. Our findings unveil a crucial biological function of L3MBTL2-induced condensates in mediating tumor suppression, proposing the UBE2O-L3MBTL2 axis as a potential cancer therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Li Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jingxuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wanqi Chen
- Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dongming Lv
- Department of Musculoskeletal Oncology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cuiling Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaobo He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lisi Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shang Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Miao Li
- Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
60
|
Yan K, Ji Q, Zhao D, Li M, Sun X, Wang Z, Liu X, Liu Z, Li H, Ding Y, Wang S, Belmonte JCI, Qu J, Zhang W, Liu GH. SGF29 nuclear condensates reinforce cellular aging. Cell Discov 2023; 9:110. [PMID: 37935676 PMCID: PMC10630320 DOI: 10.1038/s41421-023-00602-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/07/2023] [Indexed: 11/09/2023] Open
Abstract
Phase separation, a biophysical segregation of subcellular milieus referred as condensates, is known to regulate transcription, but its impacts on physiological processes are less clear. Here, we demonstrate the formation of liquid-like nuclear condensates by SGF29, a component of the SAGA transcriptional coactivator complex, during cellular senescence in human mesenchymal progenitor cells (hMPCs) and fibroblasts. The Arg 207 within the intrinsically disordered region is identified as the key amino acid residue for SGF29 to form phase separation. Through epigenomic and transcriptomic analysis, our data indicated that both condensate formation and H3K4me3 binding of SGF29 are essential for establishing its precise chromatin location, recruiting transcriptional factors and co-activators to target specific genomic loci, and initiating the expression of genes associated with senescence, such as CDKN1A. The formation of SGF29 condensates alone, however, may not be sufficient to drive H3K4me3 binding or achieve transactivation functions. Our study establishes a link between phase separation and aging regulation, highlighting nuclear condensates as a functional unit that facilitate shaping transcriptional landscapes in aging.
Collapse
Affiliation(s)
- Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dongxin Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingheng Li
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Sun
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Zehua Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoqian Liu
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zunpeng Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongyu Li
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingjie Ding
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
61
|
Hamali B, Amine AAA, Al-Sady B. Regulation of the heterochromatin spreading reaction by trans-acting factors. Open Biol 2023; 13:230271. [PMID: 37935357 PMCID: PMC10645111 DOI: 10.1098/rsob.230271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
Heterochromatin is a gene-repressive protein-nucleic acid ultrastructure that is initially nucleated by DNA sequences. However, following nucleation, heterochromatin can then propagate along the chromatin template in a sequence-independent manner in a reaction termed spreading. At the heart of this process are enzymes that deposit chemical information on chromatin, which attracts the factors that execute chromatin compaction and transcriptional or co/post-transcriptional gene silencing. Given that these enzymes deposit guiding chemical information on chromatin they are commonly termed 'writers'. While the processes of nucleation and central actions of writers have been extensively studied and reviewed, less is understood about how the spreading process is regulated. We discuss how the chromatin substrate is prepared for heterochromatic spreading, and how trans-acting factors beyond writer enzymes regulate it. We examine mechanisms by which trans-acting factors in Suv39, PRC2, SETDB1 and SIR writer systems regulate spreading of the respective heterochromatic marks across chromatin. While these systems are in some cases evolutionarily and mechanistically quite distant, common mechanisms emerge which these trans-acting factors exploit to tune the spreading reaction.
Collapse
Affiliation(s)
- Bulut Hamali
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- The G. W. Hooper Foundation, San Francisco, CA 94143, USA
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Ahmed A A Amine
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- The G. W. Hooper Foundation, San Francisco, CA 94143, USA
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- The G. W. Hooper Foundation, San Francisco, CA 94143, USA
| |
Collapse
|
62
|
Zhang W, Wang H, Ma Y, Gao B, Guan P, Huang X, Ouyang W, Guo M, Chen G, Li G, Li X. Domains Rearranged Methylase 2 maintains DNA methylation at large DNA hypomethylated shores and long-range chromatin interactions in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2333-2347. [PMID: 37539491 PMCID: PMC10579712 DOI: 10.1111/pbi.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/25/2023] [Accepted: 07/08/2023] [Indexed: 08/05/2023]
Abstract
DNA methylation plays an important role in gene regulation and genomic stability. However, large DNA hypomethylated regions known as DNA methylation valleys (DMVs) or canyons have also been suggested to serve unique regulatory functions, largely unknown in rice (Oryza sativa). Here, we describe the DMVs in rice seedlings, which were highly enriched with developmental and transcription regulatory genes. Further detailed analysis indicated that grand DMVs (gDMVs) might be derived from nuclear integrants of organelle DNA (NORGs). Furthermore, Domains Rearranged Methylase 2 (OsDRM2) maintained DNA methylation at short DMV (sDMV) shores. Epigenetic maps indicated that sDMVs were marked with H3K4me3 and/or H3K27me3, although the loss of DNA methylation had a negligible effect on histone modification within these regions. In addition, we constructed H3K27me3-associated interaction maps for homozygous T-DNA insertion mutant of the gene (osdrm2) and wild type (WT). From a global perspective, most (90%) compartments were stable between osdrm2 and WT plants. At a high resolution, we observed a dramatic loss of long-range chromatin loops in osdrm2, which suffered an extensive loss of non-CG (CHG and CHH, H = A, T, or C) methylation. From another viewpoint, the loss of non-CG methylation at sDMV shores in osdrm2 could disrupt H3K27me3-mediated chromatin interaction networks. Overall, our results demonstrated that DMVs are a key genomic feature in rice and are precisely regulated by epigenetic modifications, including DNA methylation and histone modifications. OsDRM2 maintained DNA methylation at sDMV shores, while OsDRM2 deficiency strongly affected three-dimensional (3D) genome architectures.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Huanhuan Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Yuning Ma
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Baibai Gao
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Pengpeng Guan
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Xingyu Huang
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Weizhi Ouyang
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Minrong Guo
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Guoting Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Guoliang Li
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
| | - Xingwang Li
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
63
|
Niekamp S, Marr SK, Oei TA, Subramanian R, Kingston RE. Modularity of PRC1 Composition and Chromatin Interaction define Condensate Properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564217. [PMID: 37961190 PMCID: PMC10634914 DOI: 10.1101/2023.10.26.564217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Polycomb repressive complexes (PRC) play a key role in gene repression and are indispensable for proper development. Canonical PRC1 forms condensates in vitro and in cells and the ability of PRC1 to form condensates has been proposed to contribute to maintenance of repression. However, how chromatin and the various subunits of PRC1 contribute to condensation is largely unexplored. Using single-molecule imaging, we demonstrate that nucleosomal arrays and PRC1 act synergistically, reducing the critical concentration required for condensation by more than 20-fold. By reconstituting and imaging PRC1 with various subunit compositions, we find that the exact combination of PHC and CBX subunits determine the initiation, morphology, stability, and dynamics of condensates. In particular, the polymerization activity of PHC2 strongly influences condensate dynamics to promote formation of structures with distinct domains that adhere to each other but do not coalesce. Using live cell imaging, we confirmed that CBX properties are critical for condensate initiation and that PHC polymerization is important to maintain stable condensates. Together, we propose that PRC1 can fine-tune the degree and type of condensation by altering its composition which might offer important flexibility of regulatory function during different stages of development.
Collapse
|
64
|
Brown K, Chew PY, Ingersoll S, Espinosa JR, Aguirre A, Espinoza A, Wen J, Astatike K, Kutateladze TG, Collepardo-Guevara R, Ren X. Principles of assembly and regulation of condensates of Polycomb repressive complex 1 through phase separation. Cell Rep 2023; 42:113136. [PMID: 37756159 PMCID: PMC10862386 DOI: 10.1016/j.celrep.2023.113136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) undergoes phase separation to form Polycomb condensates that are multi-component hubs for silencing Polycomb target genes. In this study, we demonstrate that formation and regulation of PRC1 condensates are consistent with the scaffold-client model, where the Chromobox 2 (CBX2) protein behaves as the scaffold while the other PRC1 proteins are clients. Such clients induce a re-entrant phase transition of CBX2 condensates. The composition of the multi-component PRC1 condensates (1) determines the dynamic properties of the scaffold protein; (2) selectively promotes the formation of CBX4-PRC1 condensates while dissolving condensates of CBX6-, CBX7-, and CBX8-PRC1; and (3) controls the enrichment of CBX4-, CBX7-, and CBX8-PRC1 in CBX2-PRC1 condensates and the exclusion of CBX6-PRC1 from CBX2-PRC1 condensates. Our findings uncover how multi-component PRC1 condensates are assembled via an intricate scaffold-client mechanism whereby the properties of the PRC1 condensates are sensitively regulated by its composition and stoichiometry.
Collapse
Affiliation(s)
- Kyle Brown
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Steven Ingersoll
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Jorge R Espinosa
- Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Anne Aguirre
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Axel Espinoza
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Joey Wen
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Kalkidan Astatike
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364, USA; Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217-3364, USA.
| |
Collapse
|
65
|
Doi A, Suarez GD, Droste R, Horvitz HR. A DEAD-box helicase drives the partitioning of a pro-differentiation NAB protein into nuclear foci. Nat Commun 2023; 14:6593. [PMID: 37852948 PMCID: PMC10584935 DOI: 10.1038/s41467-023-42345-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
How cells regulate gene expression in a precise spatiotemporal manner during organismal development is a fundamental question in biology. Although the role of transcriptional condensates in gene regulation has been established, little is known about the function and regulation of these molecular assemblies in the context of animal development and physiology. Here we show that the evolutionarily conserved DEAD-box helicase DDX-23 controls cell fate in Caenorhabditis elegans by binding to and facilitating the condensation of MAB-10, the C. elegans homolog of mammalian NGFI-A-binding (NAB) protein. MAB-10 is a transcriptional cofactor that functions with the early growth response (EGR) protein LIN-29 to regulate the transcription of genes required for exiting the cell cycle, terminal differentiation, and the larval-to-adult transition. We suggest that DEAD-box helicase proteins function more generally during animal development to control the condensation of NAB proteins important in cell identity and that this mechanism is evolutionarily conserved. In mammals, such a mechanism might underlie terminal cell differentiation and when dysregulated might promote cancerous growth.
Collapse
Affiliation(s)
- Akiko Doi
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gianmarco D Suarez
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rita Droste
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - H Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
66
|
Mazzocca M, Loffreda A, Colombo E, Fillot T, Gnani D, Falletta P, Monteleone E, Capozi S, Bertrand E, Legube G, Lavagnino Z, Tacchetti C, Mazza D. Chromatin organization drives the search mechanism of nuclear factors. Nat Commun 2023; 14:6433. [PMID: 37833263 PMCID: PMC10575952 DOI: 10.1038/s41467-023-42133-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Nuclear factors rapidly scan the genome for their targets, but the role of nuclear organization in such search is uncharted. Here we analyzed how multiple factors explore chromatin, combining live-cell single-molecule tracking with multifocal structured illumination of DNA density. We find that factors displaying higher bound fractions sample DNA-dense regions more exhaustively. Focusing on the tumor-suppressor p53, we demonstrate that it searches for targets by alternating between rapid diffusion in the interchromatin compartment and compact sampling of chromatin dense regions. Efficient targeting requires balanced interactions with chromatin: fusing p53 with an exogenous intrinsically disordered region potentiates p53-mediated target gene activation at low concentrations, but leads to condensates at higher levels, derailing its search and downregulating transcription. Our findings highlight the role of disordered regions on factors search and showcase a powerful method to generate traffic maps of the eukaryotic nucleus to dissect how its organization guides nuclear factors action.
Collapse
Affiliation(s)
- Matteo Mazzocca
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Alessia Loffreda
- IRCCS Ospedale San Raffaele, Experimental Imaging Center, Via Olgettina 58, 20132, Milan, Italy
| | - Emanuele Colombo
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Tom Fillot
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
- IRCCS Ospedale San Raffaele, Experimental Imaging Center, Via Olgettina 58, 20132, Milan, Italy
| | - Daniela Gnani
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Paola Falletta
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | | | - Serena Capozi
- Institut de Génétique Moléculaire de Montpellier, CNRS, Montpellier, 34293, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, CNRS, Montpellier, 34293, France
| | - Gaelle Legube
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Zeno Lavagnino
- IRCCS Ospedale San Raffaele, Experimental Imaging Center, Via Olgettina 58, 20132, Milan, Italy
- IFOM ETS- The AIRC Institute of Molecular Oncology-Via Adamello 16, 20139, Milan, Italy
| | - Carlo Tacchetti
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
- IRCCS Ospedale San Raffaele, Experimental Imaging Center, Via Olgettina 58, 20132, Milan, Italy
| | - Davide Mazza
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy.
- IRCCS Ospedale San Raffaele, Experimental Imaging Center, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
67
|
Kuwayama N, Kujirai T, Kishi Y, Hirano R, Echigoya K, Fang L, Watanabe S, Nakao M, Suzuki Y, Ishiguro KI, Kurumizaka H, Gotoh Y. HMGA2 directly mediates chromatin condensation in association with neuronal fate regulation. Nat Commun 2023; 14:6420. [PMID: 37828010 PMCID: PMC10570362 DOI: 10.1038/s41467-023-42094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Identification of factors that regulate chromatin condensation is important for understanding of gene regulation. High-mobility group AT-hook (HMGA) proteins 1 and 2 are abundant nonhistone chromatin proteins that play a role in many biological processes including tissue stem-progenitor cell regulation, but the nature of their protein function remains unclear. Here we show that HMGA2 mediates direct condensation of polynucleosomes and forms droplets with nucleosomes. Consistently, most endogenous HMGA2 localized to transposase 5- and DNase I-inaccessible chromatin regions, and its binding was mostly associated with gene repression, in mouse embryonic neocortical cells. The AT-hook 1 domain was necessary for chromatin condensation by HMGA2 in vitro and in cellulo, and an HMGA2 mutant lacking this domain was defective in the ability to maintain neuronal progenitors in vivo. Intrinsically disordered regions of other proteins could substitute for the AT-hook 1 domain in promoting this biological function of HMGA2. Taken together, HMGA2 may regulate neural cell fate by its chromatin condensation activity.
Collapse
Grants
- This research was supported by AMED-CREST and AMED-PRIME of the Japan Agency for Medical Research and Development (JP22gm1310004, JP22gm6110021), SECOM Science and Technology Foundation SECOM Science and Technology Foundation (for Y.K.), Platform Project for Supporting Drug Discovery and Life Science Research from AMED JP21am0101076 and (for H.K.), Research Support Project for Life Science and Drug Discovery from AMED JP22ama121009 (for H.K.), Japan Science and Technology Agency ERATO JPMJER1901 (for H.K.) and by KAKENHI grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science (JP21J14115 for N.K.; JP22K15033 for T.K.;16H06279, 20H03179, 21H00242 and 22H04687 for Y.K.; 20K07589 for S.W.; JP20H00449, JP18H05534 for H.K.; JP22H00431, JP16H06279 and JP22H04925 for Y.G.)
Collapse
Affiliation(s)
- Naohiro Kuwayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yusuke Kishi
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Rina Hirano
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Kenta Echigoya
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Lingyan Fang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Sugiko Watanabe
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Mitsuyoshi Nakao
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Kei-Ichiro Ishiguro
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
68
|
Negri ML, D'Annunzio S, Vitali G, Zippo A. May the force be with you: Nuclear condensates function beyond transcription control: Potential nongenetic functions of nuclear condensates in physiological and pathological conditions. Bioessays 2023; 45:e2300075. [PMID: 37530178 DOI: 10.1002/bies.202300075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Over the past decade, research has revealed biomolecular condensates' relevance in diverse cellular functions. Through a phase separation process, they concentrate macromolecules in subcompartments shaping the cellular organization and physiology. In the nucleus, biomolecular condensates assemble relevant biomolecules that orchestrate gene expression. We here hypothesize that chromatin condensates can also modulate the nongenetic functions of the genome, including the nuclear mechanical properties. The importance of chromatin condensates is supported by the genetic evidence indicating that mutations in their members are causative of a group of rare Mendelian diseases named chromatinopathies (CPs). Despite a broad spectrum of clinical features and the perturbations of the epigenetic machinery characterizing the CPs, recent findings highlighted negligible changes in gene expression. These data argue in favor of possible noncanonical functions of chromatin condensates in regulating the genome's spatial organization and, consequently, the nuclear mechanics. In this review, we discuss how condensates may impact nuclear mechanical properties, thus affecting the cellular response to mechanical cues and, eventually, cell fate and identity. Chromatin condensates organize macromolecules in the nucleus orchestrating the transcription regulation and mutations in their members are responsible for rare diseases named chromatinopathies. We argue that chromatin condensates, in concert with the nuclear lamina, may also govern the nuclear mechanical properties affecting the cellular response to external cues.
Collapse
Affiliation(s)
- Maria Luce Negri
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Sarah D'Annunzio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Vitali
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessio Zippo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
69
|
Williamson I, Boyle S, Grimes GR, Friman ET, Bickmore WA. Dispersal of PRC1 condensates disrupts polycomb chromatin domains and loops. Life Sci Alliance 2023; 6:e202302101. [PMID: 37487640 PMCID: PMC10366532 DOI: 10.26508/lsa.202302101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
Polycomb repressive complex 1 (PRC1) strongly influences 3D genome organization, mediating local chromatin compaction and clustering of target loci. Several PRC1 subunits have the capacity to form biomolecular condensates through liquid-liquid phase separation in vitro and when tagged and over-expressed in cells. Here, we use 1,6-hexanediol, which can disrupt liquid-like condensates, to examine the role of endogenous PRC1 biomolecular condensates on local and chromosome-wide clustering of PRC1-bound loci. Using imaging and chromatin immunoprecipitation, we show that PRC1-mediated chromatin compaction and clustering of targeted genomic loci-at different length scales-can be reversibly disrupted by the addition and subsequent removal of 1,6-hexanediol to mouse embryonic stem cells. Decompaction and dispersal of polycomb domains and clusters cannot be solely attributable to reduced PRC1 occupancy detected by chromatin immunoprecipitation following 1,6-hexanediol treatment as the addition of 2,5-hexanediol has similar effects on binding despite this alcohol not perturbing PRC1-mediated 3D clustering, at least at the sub-megabase and megabase scales. These results suggest that weak hydrophobic interactions between PRC1 molecules may have a role in polycomb-mediated genome organization.
Collapse
Affiliation(s)
- Iain Williamson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Elias T Friman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
70
|
Wang T, Shi S, Shi Y, Jiang P, Hu G, Ye Q, Shi Z, Yu K, Wang C, Fan G, Zhao S, Ma H, Chang ACY, Li Z, Bian Q, Lin CP. Chemical-induced phase transition and global conformational reorganization of chromatin. Nat Commun 2023; 14:5556. [PMID: 37689690 PMCID: PMC10492836 DOI: 10.1038/s41467-023-41340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
Chemicals or drugs can accumulate within biomolecular condensates formed through phase separation in cells. Here, we use super-resolution imaging to search for chemicals that induce phase transition within chromatin at the microscale. This microscopic screening approach reveals that adriamycin (doxorubicin) - a widely used anticancer drug that is known to interact with chromatin - specifically induces visible local condensation and global conformational change of chromatin in cancer and primary cells. Hi-C and ATAC-seq experiments systematically and quantitatively demonstrate that adriamycin-induced chromatin condensation is accompanied by weakened chromatin interaction within topologically associated domains, compartment A/B switching, lower chromatin accessibility, and corresponding transcriptomic changes. Mechanistically, adriamycin complexes with histone H1 and induces phase transition of H1, forming fibrous aggregates in vitro. These results reveal a phase separation-driven mechanism for a chemotherapeutic drug.
Collapse
Affiliation(s)
- Tengfei Wang
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Shuxiang Shi
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- Lingang Laboratory, 200031, Shanghai, China
| | - Yuanyuan Shi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Peipei Jiang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Qinying Ye
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Zhan Shi
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Kexin Yu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- iHuman Institute, ShanghaiTech University, 201010, Shanghai, China
| | - Chenguang Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoping Fan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Suwen Zhao
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- iHuman Institute, ShanghaiTech University, 201010, Shanghai, China
| | - Hanhui Ma
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Alex C Y Chang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Li
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
71
|
Schuette G, Ding X, Zhang B. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction. Biophys J 2023; 122:3425-3438. [PMID: 37496267 PMCID: PMC10502442 DOI: 10.1016/j.bpj.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Genome-wide chromosome conformation capture (Hi-C) experiments have revealed many structural features of chromatin across multiple length scales. Further understanding genome organization requires relating these discoveries to the mechanisms that establish chromatin structures and reconstructing these structures in three dimensions, but both objectives are difficult to achieve with existing algorithms that are often computationally expensive. To alleviate this challenge, we present an algorithm that efficiently converts Hi-C data into contact energies, which measure the interaction strength between genomic loci brought into proximity. Contact energies are local quantities unaffected by the topological constraints that correlate Hi-C contact probabilities. Thus, extracting contact energies from Hi-C contact probabilities distills the biologically unique information contained in the data. We show that contact energies reveal the location of chromatin loop anchors, support a phase separation mechanism for genome compartmentalization, and parameterize polymer simulations that predict three-dimensional chromatin structures. Therefore, we anticipate that contact energy extraction will unleash the full potential of Hi-C data and that our inversion algorithm will facilitate the widespread adoption of contact energy analysis.
Collapse
Affiliation(s)
- Greg Schuette
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
72
|
Kramer HM, Cook DE, Seidl MF, Thomma BP. Epigenetic regulation of nuclear processes in fungal plant pathogens. PLoS Pathog 2023; 19:e1011525. [PMID: 37535497 PMCID: PMC10399791 DOI: 10.1371/journal.ppat.1011525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Through the association of protein complexes to DNA, the eukaryotic nuclear genome is broadly organized into open euchromatin that is accessible for enzymes acting on DNA and condensed heterochromatin that is inaccessible. Chemical and physical alterations to chromatin may impact its organization and functionality and are therefore important regulators of nuclear processes. Studies in various fungal plant pathogens have uncovered an association between chromatin organization and expression of in planta-induced genes that are important for pathogenicity. This review discusses chromatin-based regulation mechanisms as determined in the fungal plant pathogen Verticillium dahliae and relates the importance of epigenetic transcriptional regulation and other nuclear processes more broadly in fungal plant pathogens.
Collapse
Affiliation(s)
- H. Martin Kramer
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - David E. Cook
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Michael F. Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Bart P.H.J. Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| |
Collapse
|
73
|
Qin X, Long Y, Bai X, Cao L, Yan H, Zhang K, Wang B, Wu X. The disordered C terminus of ALKBH5 promotes phase separation and paraspeckles assembly. J Biol Chem 2023; 299:105071. [PMID: 37474102 PMCID: PMC10457456 DOI: 10.1016/j.jbc.2023.105071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Paraspeckles (PS) are nuclear structures scaffolded by the long noncoding RNA NEAT1 and protein components such as NONO and SFPQ. We previously found that the upregulation of RNA N6-methyl-adenosine (m6A) demethylase ALKBH5 facilitates hypoxia-induced paraspeckle assembly through erasing m6A marks on NEAT1, thus stabilizing it. However, it remains unclear how these processes are spatiotemporally coordinated. Here we discover that ALKBH5 specifically binds to proteins in PS and forms phase-separated droplets that are incorporated into PS through its C-terminal intrinsically disordered region (cIDR). Upon exposure to hypoxia, rapid ALKBH5 condensation in PS induces m6A demethylation of NEAT1, which further facilitates PS formation before the upregulation of ALKBH5 expression. In cells expressing ALKBH5 lacking cIDR, PS fail to be formed in response to hypoxia, accompanied with insufficient m6A demethylation of NEAT1 and its destabilization. We also demonstrate that ALKBH5-cIDR is indispensable for hypoxia-induced effects such as cancer cell invasion. Therefore, our study has identified the role of ALKBH5 in phase separation as the molecular basis of the positive feedback loop for PS formation between ALKBH5 incorporation into PS and NEAT1 stabilization.
Collapse
Affiliation(s)
- Xiaoyang Qin
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Yan Long
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xue Bai
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Lei Cao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Han Yan
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Bo Wang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
74
|
Hertzog M, Erdel F. The Material Properties of the Cell Nucleus: A Matter of Scale. Cells 2023; 12:1958. [PMID: 37566037 PMCID: PMC10416959 DOI: 10.3390/cells12151958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Chromatin regulatory processes physically take place in the environment of the cell nucleus, which is filled with the chromosomes and a plethora of smaller biomolecules. The nucleus contains macromolecular assemblies of different sizes, from nanometer-sized protein complexes to micrometer-sized biomolecular condensates, chromosome territories, and nuclear bodies. This multiscale organization impacts the transport processes within the nuclear interior, the global mechanical properties of the nucleus, and the way the nucleus senses and reacts to mechanical stimuli. Here, we discuss recent work on these aspects, including microrheology and micromanipulation experiments assessing the material properties of the nucleus and its subcomponents. We summarize how the properties of multiscale media depend on the time and length scales probed in the experiment, and we reconcile seemingly contradictory observations made on different scales. We also revisit the concept of liquid-like and solid-like material properties for complex media such as the nucleus. We propose that the nucleus can be considered a multiscale viscoelastic medium composed of three major components with distinct properties: the lamina, the chromatin network, and the nucleoplasmic fluid. This multicomponent organization enables the nucleus to serve its different functions as a reaction medium on the nanoscale and as a mechanosensor and structural scaffold on the microscale.
Collapse
Affiliation(s)
| | - Fabian Erdel
- MCD, Center for Integrative Biology (CBI), University of Toulouse, CNRS, 169 Avenue Marianne Grunberg-Manago, 31062 Toulouse, France
| |
Collapse
|
75
|
Zhang S, Pei G, Li B, Li P, Lin Y. Abnormal phase separation of biomacromolecules in human diseases. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1133-1152. [PMID: 37475546 PMCID: PMC10423695 DOI: 10.3724/abbs.2023139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Membrane-less organelles (MLOs) formed through liquid-liquid phase separation (LLPS) are associated with numerous important biological functions, but the abnormal phase separation will also dysregulate the physiological processes. Emerging evidence points to the importance of LLPS in human health and diseases. Nevertheless, despite recent advancements, our knowledge of the molecular relationship between LLPS and diseases is frequently incomplete. In this review, we outline our current understanding about how aberrant LLPS affects developmental disorders, tandem repeat disorders, cancers and viral infection. We also examine disease mechanisms driven by aberrant condensates, and highlight potential treatment approaches. This study seeks to expand our understanding of LLPS by providing a valuable new paradigm for understanding phase separation and human disorders, as well as to further translate our current knowledge regarding LLPS into therapeutic discoveries.
Collapse
Affiliation(s)
- Songhao Zhang
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Gaofeng Pei
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Boya Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| | - Pilong Li
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- Frontier Research Center for Biological StructureTsinghua UniversityBeijing100084China
| | - Yi Lin
- State Key Laboratory of Membrane BiologyTsinghua University-Peking University Joint Centre for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- IDG/McGovern Institute for Brain Research at Tsinghua UniversityBeijing100084China
| |
Collapse
|
76
|
Schuette G, Ding X, Zhang B. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533194. [PMID: 36993500 PMCID: PMC10055272 DOI: 10.1101/2023.03.17.533194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genome-wide chromosome conformation capture (Hi-C) experiments have revealed many structural features of chromatin across multiple length scales. Further understanding genome organization requires relating these discoveries to the mechanisms that establish chromatin structures and reconstructing these structures in three dimensions, but both objectives are difficult to achieve with existing algorithms that are often computationally expensive. To alleviate this challenge, we present an algorithm that efficiently converts Hi-C data into contact energies, which measure the interaction strength between genomic loci brought into proximity. Contact energies are local quantities unaffected by the topological constraints that correlate Hi-C contact probabilities. Thus, extracting contact energies from Hi-C contact probabilities distills the biologically unique information contained in the data. We show that contact energies reveal the location of chromatin loop anchors, support a phase separation mechanism for genome compartmentalization, and parameterize polymer simulations that predict three-dimensional chromatin structures. Therefore, we anticipate that contact energy extraction will unleash the full potential of Hi-C data and that our inversion algorithm will facilitate the widespread adoption of contact energy analysis.
Collapse
Affiliation(s)
- Greg Schuette
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xinqiang Ding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
77
|
Lee S, Abini-Agbomson S, Perry DS, Goodman A, Rao B, Huang MY, Diedrich JK, Moresco JJ, Yates JR, Armache KJ, Madhani HD. Intrinsic mesoscale properties of a Polycomb protein underpin heterochromatin fidelity. Nat Struct Mol Biol 2023; 30:891-901. [PMID: 37217653 PMCID: PMC11935295 DOI: 10.1038/s41594-023-01000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/17/2023] [Indexed: 05/24/2023]
Abstract
Little is understood about how the two major types of heterochromatin domains (HP1 and Polycomb) are kept separate. In the yeast Cryptococcus neoformans, the Polycomb-like protein Ccc1 prevents deposition of H3K27me3 at HP1 domains. Here we show that phase separation propensity underpins Ccc1 function. Mutations of the two basic clusters in the intrinsically disordered region or deletion of the coiled-coil dimerization domain alter phase separation behavior of Ccc1 in vitro and have commensurate effects on formation of Ccc1 condensates in vivo, which are enriched for PRC2. Notably, mutations that alter phase separation trigger ectopic H3K27me3 at HP1 domains. Supporting a direct condensate-driven mechanism for fidelity, Ccc1 droplets efficiently concentrate recombinant C. neoformans PRC2 in vitro whereas HP1 droplets do so only weakly. These studies establish a biochemical basis for chromatin regulation in which mesoscale biophysical properties play a key functional role.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Stephen Abini-Agbomson
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Daniela S Perry
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Allen Goodman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Beiduo Rao
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Manning Y Huang
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Karim-Jean Armache
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
78
|
Kim JJ, Steinson ER, Lau MS, de Rooij DG, Page DC, Kingston RE. Cell type-specific role of CBX2 and its disordered region in spermatogenesis. Genes Dev 2023; 37:640-660. [PMID: 37553262 PMCID: PMC10499018 DOI: 10.1101/gad.350393.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Polycomb group (PcG) proteins maintain the repressed state of lineage-inappropriate genes and are therefore essential for embryonic development and adult tissue homeostasis. One critical function of PcG complexes is modulating chromatin structure. Canonical Polycomb repressive complex 1 (cPRC1), particularly its component CBX2, can compact chromatin and phase-separate in vitro. These activities are hypothesized to be critical for forming a repressed physical environment in cells. While much has been learned by studying these PcG activities in cell culture models, it is largely unexplored how cPRC1 regulates adult stem cells and their subsequent differentiation in living animals. Here, we show in vivo evidence of a critical nonenzymatic repressive function of cPRC1 component CBX2 in the male germline. CBX2 is up-regulated as spermatogonial stem cells differentiate and is required to repress genes that were active in stem cells. CBX2 forms condensates (similar to previously described Polycomb bodies) that colocalize with target genes bound by CBX2 in differentiating spermatogonia. Single-cell analyses of mosaic Cbx2 mutant testes show that CBX2 is specifically required to produce differentiating A1 spermatogonia. Furthermore, the region of CBX2 responsible for compaction and phase separation is needed for the long-term maintenance of male germ cells in the animal. These results emphasize that the regulation of chromatin structure by CBX2 at a specific stage of spermatogenesis is critical, which distinguishes this from a mechanism that is reliant on histone modification.
Collapse
Affiliation(s)
- Jongmin J Kim
- Department of Molecular Biology, MGH Research Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Emma R Steinson
- Department of Molecular Biology, MGH Research Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Mei Sheng Lau
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore 138673, Republic of Singapore
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Robert E Kingston
- Department of Molecular Biology, MGH Research Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA;
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
79
|
Segal D, Dostie J. The Talented LncRNAs: Meshing into Transcriptional Regulatory Networks in Cancer. Cancers (Basel) 2023; 15:3433. [PMID: 37444543 DOI: 10.3390/cancers15133433] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
As a group of diseases characterized by uncontrollable cell growth, cancer is highly multifaceted in how it overrides checkpoints controlling proliferation. Amongst the regulators of these checkpoints, long non-coding RNAs (lncRNAs) can have key roles in why natural biological processes go haywire. LncRNAs represent a large class of regulatory transcripts that can localize anywhere in cells. They were found to affect gene expression on many levels from transcription to mRNA translation and even protein stability. LncRNA participation in such control mechanisms can depend on cell context, with given transcripts sometimes acting as oncogenes or tumor suppressors. Importantly, the tissue-specificity and low expression levels of lncRNAs make them attractive therapeutic targets or biomarkers. Here, we review the various cellular processes affected by lncRNAs and outline molecular strategies they use to control gene expression, particularly in cancer and in relation to transcription factors.
Collapse
Affiliation(s)
- Dana Segal
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Josée Dostie
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
80
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
81
|
Grewal SIS. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol Cell 2023; 83:1767-1785. [PMID: 37207657 PMCID: PMC10309086 DOI: 10.1016/j.molcel.2023.04.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Heterochromatin plays a fundamental role in gene regulation, genome integrity, and silencing of repetitive DNA elements. Histone modifications are essential for the establishment of heterochromatin domains, which is initiated by the recruitment of histone-modifying enzymes to nucleation sites. This leads to the deposition of histone H3 lysine-9 methylation (H3K9me), which provides the foundation for building high-concentration territories of heterochromatin proteins and the spread of heterochromatin across extended domains. Moreover, heterochromatin can be epigenetically inherited during cell division in a self-templating manner. This involves a "read-write" mechanism where pre-existing modified histones, such as tri-methylated H3K9 (H3K9me3), support chromatin association of the histone methyltransferase to promote further deposition of H3K9me. Recent studies suggest that a critical density of H3K9me3 and its associated factors is necessary for the propagation of heterochromatin domains across multiple generations. In this review, I discuss the key experiments that have highlighted the importance of modified histones for epigenetic inheritance.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
82
|
Zhou H, Feng W, Yu J, Shafiq TA, Paulo JA, Zhang J, Luo Z, Gygi SP, Moazed D. SENP3 and USP7 regulate Polycomb-rixosome interactions and silencing functions. Cell Rep 2023; 42:112339. [PMID: 37014752 PMCID: PMC10777863 DOI: 10.1016/j.celrep.2023.112339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/14/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
The rixosome and PRC1 silencing complexes are associated with deSUMOylating and deubiquitinating enzymes, SENP3 and USP7, respectively. How deSUMOylation and deubiquitylation contribute to rixosome- and Polycomb-mediated silencing is not fully understood. Here, we show that the enzymatic activities of SENP3 and USP7 are required for silencing of Polycomb target genes. SENP3 deSUMOylates several rixosome subunits, and this activity is required for association of the rixosome with PRC1. USP7 associates with canonical PRC1 (cPRC1) and deubiquitinates the chromodomain subunits CBX2 and CBX4, and inhibition of USP activity results in disassembly of cPRC1. Finally, both SENP3 and USP7 are required for Polycomb- and rixosome-dependent silencing at an ectopic reporter locus. These findings demonstrate that SUMOylation and ubiquitination regulate the assembly and activities of the rixosome and Polycomb complexes and raise the possibility that these modifications provide regulatory mechanisms that may be utilized during development or in response to environmental challenges.
Collapse
Affiliation(s)
- Haining Zhou
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenzhi Feng
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Juntao Yu
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tiasha A Shafiq
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jiuchun Zhang
- Initiative for Genome Editing and Neurodegeneration, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Zhenhua Luo
- Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
83
|
Glancy E, Wang C, Tuck E, Healy E, Amato S, Neikes HK, Mariani A, Mucha M, Vermeulen M, Pasini D, Bracken AP. PRC2.1- and PRC2.2-specific accessory proteins drive recruitment of different forms of canonical PRC1. Mol Cell 2023; 83:1393-1411.e7. [PMID: 37030288 PMCID: PMC10168607 DOI: 10.1016/j.molcel.2023.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/19/2023] [Accepted: 03/16/2023] [Indexed: 04/10/2023]
Abstract
Polycomb repressive complex 2 (PRC2) mediates H3K27me3 deposition, which is thought to recruit canonical PRC1 (cPRC1) via chromodomain-containing CBX proteins to promote stable repression of developmental genes. PRC2 forms two major subcomplexes, PRC2.1 and PRC2.2, but their specific roles remain unclear. Through genetic knockout (KO) and replacement of PRC2 subcomplex-specific subunits in naïve and primed pluripotent cells, we uncover distinct roles for PRC2.1 and PRC2.2 in mediating the recruitment of different forms of cPRC1. PRC2.1 catalyzes the majority of H3K27me3 at Polycomb target genes and is sufficient to promote recruitment of CBX2/4-cPRC1 but not CBX7-cPRC1. Conversely, while PRC2.2 is poor at catalyzing H3K27me3, we find that its accessory protein JARID2 is essential for recruitment of CBX7-cPRC1 and the consequent 3D chromatin interactions at Polycomb target genes. We therefore define distinct contributions of PRC2.1- and PRC2.2-specific accessory proteins to Polycomb-mediated repression and uncover a new mechanism for cPRC1 recruitment.
Collapse
Affiliation(s)
- Eleanor Glancy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Cheng Wang
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Ellen Tuck
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Evan Healy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Simona Amato
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Hannah K Neikes
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Andrea Mariani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Marlena Mucha
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands; The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Diego Pasini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Health Sciences, University of Milan, Via A. di Rudini 8, 20142 Milan, Italy
| | - Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
84
|
Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e223. [PMID: 36875159 PMCID: PMC9974629 DOI: 10.1002/mco2.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Biomolecular condensates are cellular structures composed of membraneless assemblies comprising proteins or nucleic acids. The formation of these condensates requires components to change from a state of solubility separation from the surrounding environment by undergoing phase transition and condensation. Over the past decade, it has become widely appreciated that biomolecular condensates are ubiquitous in eukaryotic cells and play a vital role in physiological and pathological processes. These condensates may provide promising targets for the clinic research. Recently, a series of pathological and physiological processes have been found associated with the dysfunction of condensates, and a range of targets and methods have been demonstrated to modulate the formation of these condensates. A more extensive description of biomolecular condensates is urgently needed for the development of novel therapies. In this review, we summarized the current understanding of biomolecular condensates and the molecular mechanisms of their formation. Moreover, we reviewed the functions of condensates and therapeutic targets for diseases. We further highlighted the available regulatory targets and methods, discussed the significance and challenges of targeting these condensates. Reviewing the latest developments in biomolecular condensate research could be essential in translating our current knowledge on the use of condensates for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xin Niu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Lei Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jisheng Liu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhouChina
| |
Collapse
|
85
|
Amiad Pavlov D, Unnikannan CP, Lorber D, Bajpai G, Olender T, Stoops E, Reuveny A, Safran S, Volk T. The LINC Complex Inhibits Excessive Chromatin Repression. Cells 2023; 12:932. [PMID: 36980273 PMCID: PMC10047284 DOI: 10.3390/cells12060932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex transduces nuclear mechanical inputs suggested to control chromatin organization and gene expression; however, the underlying mechanism is currently unclear. We show here that the LINC complex is needed to minimize chromatin repression in muscle tissue, where the nuclei are exposed to significant mechanical inputs during muscle contraction. To this end, the genomic binding profiles of Polycomb, Heterochromatin Protein1 (HP1a) repressors, and of RNA-Pol II were studied in Drosophila larval muscles lacking functional LINC complex. A significant increase in the binding of Polycomb and parallel reduction of RNA-Pol-II binding to a set of muscle genes was observed. Consistently, enhanced tri-methylated H3K9 and H3K27 repressive modifications and reduced chromatin activation by H3K9 acetylation were found. Furthermore, larger tri-methylated H3K27me3 repressive clusters, and chromatin redistribution from the nuclear periphery towards nuclear center, were detected in live LINC mutant larval muscles. Computer simulation indicated that the observed dissociation of the chromatin from the nuclear envelope promotes growth of tri-methylated H3K27 repressive clusters. Thus, we suggest that by promoting chromatin-nuclear envelope binding, the LINC complex restricts the size of repressive H3K27 tri-methylated clusters, thereby limiting the binding of Polycomb transcription repressor, directing robust transcription in muscle fibers.
Collapse
Affiliation(s)
- Daria Amiad Pavlov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Dana Lorber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gaurav Bajpai
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elizabeth Stoops
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adriana Reuveny
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Samuel Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
86
|
Yeo SJ, Ying C, Fullwood MJ, Tergaonkar V. Emerging regulatory mechanisms of noncoding RNAs in topologically associating domains. Trends Genet 2023; 39:217-232. [PMID: 36642680 DOI: 10.1016/j.tig.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
Topologically associating domains (TADs) are integral to spatial genome organization, instructing gene expression, and cell fate. Recently, several advances have uncovered roles for noncoding RNAs (ncRNAs) in the regulation of the form and function of mammalian TADs. Phase separation has also emerged as a potential arbiter of ncRNAs in the regulation of TADs. In this review we discuss the implications of these novel findings in relation to how ncRNAs might structurally and functionally regulate TADs from two perspectives: moderating loop extrusion through interactions with architectural proteins, and facilitating TAD phase separation. Additionally, we propose future studies and directions to investigate these phenomena.
Collapse
Affiliation(s)
- Samuel Jianjie Yeo
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore 308232, Singapore
| | - Chen Ying
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore 117599, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Pathology and the Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
| |
Collapse
|
87
|
Staples MI, Frazer C, Fawzi NL, Bennett RJ. Phase separation in fungi. Nat Microbiol 2023; 8:375-386. [PMID: 36782025 PMCID: PMC10081517 DOI: 10.1038/s41564-022-01314-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/16/2022] [Indexed: 02/15/2023]
Abstract
Phase separation, in which macromolecules partition into a concentrated phase that is immiscible with a dilute phase, is involved with fundamental cellular processes across the tree of life. We review the principles of phase separation and highlight how it impacts diverse processes in the fungal kingdom. These include the regulation of autophagy, cell signalling pathways, transcriptional circuits and the establishment of asymmetry in fungal cells. We describe examples of stable, phase-separated assemblies including membraneless organelles such as the nucleolus as well as transient condensates that also arise through phase separation and enable cells to rapidly and reversibly respond to important environmental cues. We showcase how research into phase separation in model yeasts, such as Saccharomyces cerevisiae and Schizosaccharomyces pombe, in conjunction with that in plant and human fungal pathogens, such as Ashbya gossypii and Candida albicans, is continuing to enrich our understanding of fundamental molecular processes.
Collapse
Affiliation(s)
- Mae I Staples
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Corey Frazer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Nicolas L Fawzi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| |
Collapse
|
88
|
Nepita I, Piazza S, Ruglioni M, Cristiani S, Bosurgi E, Salvadori T, Vicidomini G, Diaspro A, Castello M, Cerase A, Bianchini P, Storti B, Bizzarri R. On the Advent of Super-Resolution Microscopy in the Realm of Polycomb Proteins. BIOLOGY 2023; 12:374. [PMID: 36979066 PMCID: PMC10044799 DOI: 10.3390/biology12030374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
The genomes of metazoans are organized at multiple spatial scales, ranging from the double helix of DNA to whole chromosomes. The intermediate genomic scale of kilobases to megabases, which corresponds to the 50-300 nm spatial scale, is particularly interesting, as the 3D arrangement of chromatin is implicated in multiple regulatory mechanisms. In this context, polycomb group (PcG) proteins stand as major epigenetic modulators of chromatin function, acting prevalently as repressors of gene transcription by combining chemical modifications of target histones with physical crosslinking of distal genomic regions and phase separation. The recent development of super-resolution microscopy (SRM) has strongly contributed to improving our comprehension of several aspects of nano-/mesoscale (10-200 nm) chromatin domains. Here, we review the current state-of-the-art SRM applied to PcG proteins, showing that the application of SRM to PcG activity and organization is still quite limited and mainly focused on the 3D assembly of PcG-controlled genomic loci. In this context, SRM approaches have mostly been applied to multilabel fluorescence in situ hybridization (FISH). However, SRM data have complemented the maps obtained from chromosome capture experiments and have opened a new window to observe how 3D chromatin topology is modulated by PcGs.
Collapse
Affiliation(s)
- Irene Nepita
- Nanoscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
| | - Simonluca Piazza
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
- R&D Department, Genoa Instruments s.r.l., Via E. Melen 83, 16152 Genova, Italy
| | - Martina Ruglioni
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy
| | - Sofia Cristiani
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy
| | - Emanuele Bosurgi
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy
| | - Tiziano Salvadori
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
| | - Alberto Diaspro
- Nanoscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
- DIFILAB, Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Marco Castello
- Nanoscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
- R&D Department, Genoa Instruments s.r.l., Via E. Melen 83, 16152 Genova, Italy
| | - Andrea Cerase
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Strada Statale dell’Abetone Brennero 4, 56123 Pisa, Italy
| | - Paolo Bianchini
- Nanoscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
- DIFILAB, Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Ranieri Bizzarri
- Nanoscopy, Istituto Italiano di Tecnologia, Via E. Melen 83, 16152 Genova, Italy
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Via Roma 65, 56126 Pisa, Italy
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
89
|
Li X, An Z, Zhang W, Li F. Phase Separation: Direct and Indirect Driving Force for High-Order Chromatin Organization. Genes (Basel) 2023; 14:499. [PMID: 36833426 PMCID: PMC9956262 DOI: 10.3390/genes14020499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The multi-level spatial chromatin organization in the nucleus is closely related to chromatin activity. The mechanism of chromatin organization and remodeling attract much attention. Phase separation describes the biomolecular condensation which is the basis for membraneless compartments in cells. Recent research shows that phase separation is a key aspect to drive high-order chromatin structure and remodeling. In addition, chromatin functional compartmentalization in the nucleus which is formed by phase separation also plays an important role in overall chromatin structure. In this review, we summarized the latest work about the role of phase separation in spatial chromatin organization, focusing on direct and indirect effects of phase separation on 3D chromatin organization and its impact on transcription regulation.
Collapse
Affiliation(s)
- Xiaoli Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Cell Biology and Genetics, Core Facility of Developmental Biology, Chongqing Medical University, Chongqing 400016, China
| | - Ziyang An
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Feifei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
90
|
Lambert É, Puwakdandawa K, Tao YF, Robert F. From structure to molecular condensates: emerging mechanisms for Mediator function. FEBS J 2023; 290:286-309. [PMID: 34698446 DOI: 10.1111/febs.16250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023]
Abstract
Mediator is a large modular protein assembly whose function as a coactivator of transcription is conserved in all eukaryotes. The Mediator complex can integrate and relay signals from gene-specific activators bound at enhancers to activate the general transcription machinery located at promoters. It has thus been described as a bridge between these elements during initiation of transcription. Here, we review recent studies on Mediator relating to its structure, gene specificity and general requirement, roles in chromatin architecture as well as novel concepts involving phase separation and transcriptional bursting. We revisit the mechanism of action of Mediator and ultimately put forward models for its mode of action in gene activation.
Collapse
Affiliation(s)
- Élie Lambert
- Institut de recherches cliniques de Montréal, Canada
| | | | - Yi Fei Tao
- Institut de recherches cliniques de Montréal, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Canada
| |
Collapse
|
91
|
Wibisana JN, Inaba T, Sako Y, Okada M. Quantitative Imaging Analysis of NF-κB for Mathematical Modeling Applications. Methods Mol Biol 2023; 2634:253-266. [PMID: 37074582 DOI: 10.1007/978-1-0716-3008-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Mathematical models can integrate different types of experimental datasets, reconstitute biological systems in silico, and identify previously unknown molecular mechanisms. Over the past decade, mathematical models have been developed based on quantitative observations, such as live-cell imaging and biochemical assays. However, it is difficult to directly integrate next-generation sequencing (NGS) data. Although highly dimensional, NGS data mostly only provides a "snapshot" of cellular states. Nevertheless, the development of various methods for NGS analysis has led to much more accurate predictions of transcription factor activity and has revealed various concepts regarding transcriptional regulation. Therefore, fluorescence live-cell imaging of transcription factors can help alleviate the limitations in NGS data by supplementing temporal information, linking NGS to mathematical modeling. This chapter introduces an analytical method for quantifying dynamics of nuclear factor kappaB (NF-κB) which forms aggregates in the nucleus. The method may also be applicable to other transcription factors regulated in a similar fashion.
Collapse
Affiliation(s)
| | - Takehiko Inaba
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Resaerch, Hirosawa, Wako, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Resaerch, Hirosawa, Wako, Japan
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
- Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.
| |
Collapse
|
92
|
Ling X, Liu X, Jiang S, Fan L, Ding J. The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:42. [PMID: 36539553 PMCID: PMC9768101 DOI: 10.1186/s13619-022-00145-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022]
Abstract
Cell fate transition is a fascinating process involving complex dynamics of three-dimensional (3D) chromatin organization and phase separation, which play an essential role in cell fate decision by regulating gene expression. Phase separation is increasingly being considered a driving force of chromatin folding. In this review, we have summarized the dynamic features of 3D chromatin and phase separation during physiological and pathological cell fate transitions and systematically analyzed recent evidence of phase separation facilitating the chromatin structure. In addition, we discuss current advances in understanding how phase separation contributes to physical and functional enhancer-promoter contacts. We highlight the functional roles of 3D chromatin organization and phase separation in cell fate transitions, and more explorations are required to study the regulatory relationship between 3D chromatin organization and phase separation. 3D chromatin organization (shown by Hi-C contact map) and phase separation are highly dynamic and play functional roles during early embryonic development, cell differentiation, somatic reprogramming, cell transdifferentiation and pathogenetic process. Phase separation can regulate 3D chromatin organization directly, but whether 3D chromatin organization regulates phase separation remains unclear.
Collapse
Affiliation(s)
- Xiaoru Ling
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Xinyi Liu
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Shaoshuai Jiang
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Lili Fan
- grid.258164.c0000 0004 1790 3548Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong China
| | - Junjun Ding
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.410737.60000 0000 8653 1072Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 China ,grid.13291.380000 0001 0807 1581West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
93
|
Luo Y, Xiang S, Feng J. Protein Phase Separation: New Insights into Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235971. [PMID: 36497453 PMCID: PMC9740862 DOI: 10.3390/cancers14235971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Phase separation is now acknowledged as an essential biologic mechanism wherein distinct activated molecules assemble into a different phase from the surrounding constituents of a cell. Condensates formed by phase separation play an essential role in the life activities of various organisms under normal physiological conditions, including the advanced structure and regulation of chromatin, autophagic degradation of incorrectly folded or unneeded proteins, and regulation of the actin cytoskeleton. During malignant transformation, abnormally altered condensate assemblies are often associated with the abnormal activation of oncogenes or inactivation of tumor suppressors, resulting in the promotion of the carcinogenic process. Thus, understanding the role of phase separation in various biological evolutionary processes will provide new ideas for the development of drugs targeting specific condensates, which is expected to be an effective cancer therapy strategy. However, the relationship between phase separation and cancer has not been fully elucidated. In this review, we mainly summarize the main processes and characteristics of phase separation and the main methods for detecting phase separation. In addition, we summarize the cancer proteins and signaling pathways involved in phase separation and discuss their promising future applications in addressing the unmet clinical therapeutic needs of people with cancer. Finally, we explain the means of targeted phase separation and cancer treatment.
Collapse
|
94
|
RINGs, DUBs and Abnormal Brain Growth-Histone H2A Ubiquitination in Brain Development and Disease. EPIGENOMES 2022; 6:epigenomes6040042. [PMID: 36547251 PMCID: PMC9778336 DOI: 10.3390/epigenomes6040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
During mammalian neurodevelopment, signaling pathways converge upon transcription factors (TFs) to establish appropriate gene expression programmes leading to the production of distinct neural and glial cell types. This process is partially regulated by the dynamic modulation of chromatin states by epigenetic systems, including the polycomb group (PcG) family of co-repressors. PcG proteins form multi-subunit assemblies that sub-divide into distinct, yet functionally related families. Polycomb repressive complexes 1 and 2 (PRC1 and 2) modify the chemical properties of chromatin by covalently modifying histone tails via H2A ubiquitination (H2AK119ub1) and H3 methylation, respectively. In contrast to the PRCs, the Polycomb repressive deubiquitinase (PR-DUB) complex removes H2AK119ub1 from chromatin through the action of the C-terminal hydrolase BAP1. Genetic screening has identified several PcG mutations that are causally associated with a range of congenital neuropathologies associated with both localised and/or systemic growth abnormalities. As PRC1 and PR-DUB hold opposing functions to control H2AK119ub1 levels across the genome, it is plausible that such neurodevelopmental disorders arise through a common mechanism. In this review, we will focus on advancements regarding the composition and opposing molecular functions of mammalian PRC1 and PR-DUB, and explore how their dysfunction contributes to the emergence of neurodevelopmental disorders.
Collapse
|
95
|
Jeong J, Lee JH, Carcamo CC, Parker MW, Berger JM. DNA-Stimulated Liquid-Liquid phase separation by eukaryotic topoisomerase ii modulates catalytic function. eLife 2022; 11:e81786. [PMID: 36342377 PMCID: PMC9674351 DOI: 10.7554/elife.81786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Type II topoisomerases modulate chromosome supercoiling, condensation, and catenation by moving one double-stranded DNA segment through a transient break in a second duplex. How DNA strands are chosen and selectively passed to yield appropriate topological outcomes - for example, decatenation vs. catenation - is poorly understood. Here, we show that at physiological enzyme concentrations, eukaryotic type IIA topoisomerases (topo IIs) readily coalesce into condensed bodies. DNA stimulates condensation and fluidizes these assemblies to impart liquid-like behavior. Condensation induces both budding yeast and human topo IIs to switch from DNA unlinking to active DNA catenation, and depends on an unstructured C-terminal region, the loss of which leads to high levels of knotting and reduced catenation. Our findings establish that local protein concentration and phase separation can regulate how topo II creates or dissolves DNA links, behaviors that can account for the varied roles of the enzyme in supporting transcription, replication, and chromosome compaction.
Collapse
Affiliation(s)
- Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Claudia C Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Matthew W Parker
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
96
|
Abstract
Polycomb group (PcG) proteins are crucial chromatin regulators that maintain repression of lineage-inappropriate genes and are therefore required for stable cell fate. Recent advances show that PcG proteins form distinct multi-protein complexes in various cellular environments, such as in early development, adult tissue maintenance and cancer. This surprising compositional diversity provides the basis for mechanistic diversity. Understanding this complexity deepens and refines the principles of PcG complex recruitment, target-gene repression and inheritance of memory. We review how the core molecular mechanism of Polycomb complexes operates in diverse developmental settings and propose that context-dependent changes in composition and mechanism are essential for proper epigenetic regulation in development.
Collapse
Affiliation(s)
- Jongmin J Kim
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Kingston
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
97
|
Guo Y, Wang GG. Modulation of the high-order chromatin structure by Polycomb complexes. Front Cell Dev Biol 2022; 10:1021658. [PMID: 36274840 PMCID: PMC9579376 DOI: 10.3389/fcell.2022.1021658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The multi-subunit Polycomb Repressive Complex (PRC) 1 and 2 act, either independently or synergistically, to maintain and enforce a repressive state of the target chromatin, thereby regulating the processes of cell lineage specification and organismal development. In recent years, deep sequencing-based and imaging-based technologies, especially those tailored for mapping three-dimensional (3D) chromatin organization and structure, have allowed a better understanding of the PRC complex-mediated long-range chromatin contacts and DNA looping. In this review, we review current advances as for how Polycomb complexes function to modulate and help define the high-order chromatin structure and topology, highlighting the multi-faceted roles of Polycomb proteins in gene and genome regulation.
Collapse
Affiliation(s)
- Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Yiran Guo, ; Gang Greg Wang,
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Yiran Guo, ; Gang Greg Wang,
| |
Collapse
|
98
|
Gouveia B, Kim Y, Shaevitz JW, Petry S, Stone HA, Brangwynne CP. Capillary forces generated by biomolecular condensates. Nature 2022; 609:255-264. [PMID: 36071192 DOI: 10.1038/s41586-022-05138-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 07/25/2022] [Indexed: 12/21/2022]
Abstract
Liquid-liquid phase separation and related phase transitions have emerged as generic mechanisms in living cells for the formation of membraneless compartments or biomolecular condensates. The surface between two immiscible phases has an interfacial tension, generating capillary forces that can perform work on the surrounding environment. Here we present the physical principles of capillarity, including examples of how capillary forces structure multiphase condensates and remodel biological substrates. As with other mechanisms of intracellular force generation, for example, molecular motors, capillary forces can influence biological processes. Identifying the biomolecular determinants of condensate capillarity represents an exciting frontier, bridging soft matter physics and cell biology.
Collapse
Affiliation(s)
- Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Yoonji Kim
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA.
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA. .,The Howard Hughes Medical Institute, Princeton, NJ, USA.
| |
Collapse
|
99
|
Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 2022; 23:563-580. [PMID: 35338361 DOI: 10.1038/s41576-022-00468-7] [Citation(s) in RCA: 469] [Impact Index Per Article: 156.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/16/2022]
Abstract
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Center Munich, Munich, Germany.
- Faculty of Biology, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.
| |
Collapse
|
100
|
Doyle EJ, Morey L, Conway E. Know when to fold 'em: Polycomb complexes in oncogenic 3D genome regulation. Front Cell Dev Biol 2022; 10:986319. [PMID: 36105358 PMCID: PMC9464936 DOI: 10.3389/fcell.2022.986319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is spatially and temporally regulated through a series of orchestrated processes resulting in the formation of 3D chromatin structures such as topologically associating domains (TADs), loops and Polycomb Bodies. These structures are closely linked to transcriptional regulation, with loss of control of these processes a frequent feature of cancer and developmental syndromes. One such oncogenic disruption of the 3D genome is through recurrent dysregulation of Polycomb Group Complex (PcG) functions either through genetic mutations, amplification or deletion of genes that encode for PcG proteins. PcG complexes are evolutionarily conserved epigenetic complexes. They are key for early development and are essential transcriptional repressors. PcG complexes include PRC1, PRC2 and PR-DUB which are responsible for the control of the histone modifications H2AK119ub1 and H3K27me3. The spatial distribution of the complexes within the nuclear environment, and their associated modifications have profound effects on the regulation of gene transcription and the 3D genome. Nevertheless, how PcG complexes regulate 3D chromatin organization is still poorly understood. Here we glean insights into the role of PcG complexes in 3D genome regulation and compaction, how these processes go awry during tumorigenesis and the therapeutic implications that result from our insights into these mechanisms.
Collapse
Affiliation(s)
- Emma J. Doyle
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Lluis Morey
- Sylvester Comprehensive Cancer Centre, Miami, FL, United States
- Department of Human Genetics, Biomedical Research Building, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eric Conway
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|