51
|
Cardet JC, Kim D, Bleecker ER, Casale TB, Israel E, Mauger D, Meyers DA, Ampleford E, Hawkins GA, Tu Y, Liggett SB, Ortega VE. Clinical and molecular implications of RGS2 promoter genetic variation in severe asthma. J Allergy Clin Immunol 2022; 150:721-726.e1. [PMID: 35398411 PMCID: PMC9642856 DOI: 10.1016/j.jaci.2022.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Regulator of G protein signaling (RGS) 2 terminates bronchoconstrictive Gαq signaling; murine RGS2 knockout demonstrate airway hyperresponsiveness. While RGS2 promoter variants rs2746071 and rs2746072 associate with a clinical mild asthma phenotype, their impact on human airway smooth muscle (HASM) contractility and asthma severity outcomes is unknown. OBJECTIVE We sought to determine whether reductions in RGS2 expression seen with these 2 RGS2 promoter variants augment HASM contractility and associate with an asthma severity phenotype. METHODS We transfected HASM with a range of RGS2-specific small interfering RNA (siRNA) concentrations and determined RGS2 protein expression by Western blot analysis and intracellular calcium flux induced by histamine (a Gαq-coupled H1 receptor bronchoconstrictive agonist). We conducted regression-based genotype association analyses of RGS2 variants from 611 patients from the National Heart, Lung, and Blood Institute Severe Asthma Research Program 3. RESULTS RGS2-specific siRNA caused dose-dependent increases in histamine-stimulated bronchoconstrictive intracellular calcium signaling (2-way ANOVA, P < .0001) with a concomitant decrease in RGS2 protein expression. RGS2-specific siRNA did not affect Gαq-independent ionomycin-induced intracellular calcium signaling (P = .42). The minor allele frequency of rs2746071 and rs2746072 was 0.46 and 0.28 among African American/non-Hispanic Black patients and was 0.28 and 0.27 among non-Hispanic White patients, among whom these single nucleotide polymorphisms were in stronger linkage disequilibrium (r2 = 0.97). Among non-Hispanic White patients, risk allele homozygotes for rs2746072 and rs2746071 each had nearly 2-fold greater asthma exacerbation rates relative to alternative genotypes with wild-type alleles (Padditive = 2.86 × 10-5/Precessive = 5.22 × 10-6 and Padditive = 3.46 × 10-6/Precessive = 6.74 × 10-7, respectively) at baseline, which was confirmed by prospective longitudinal exacerbation data. CONCLUSION RGS2 promoter variation associates with a molecular and clinical phenotype characterized by enhanced bronchoconstrictive stimulation in vitro and higher asthma exacerbations rates in non-Hispanic White patients.
Collapse
Affiliation(s)
- Juan Carlos Cardet
- Division of Allergy and Immunology, Internal Medicine Department, Morsani College of Medicine, University of South Florida, Tampa, Fla.
| | - Donghwa Kim
- Departments of Medicine, Molecular Pharmacology and Physiology, and Medical Engineering, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Eugene R Bleecker
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, Ariz
| | - Thomas B Casale
- Division of Allergy and Immunology, Internal Medicine Department, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Elliot Israel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Mass
| | - David Mauger
- Division of Statistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University, Hershey, Pa
| | - Deborah A Meyers
- Division of Genetics, Genomics and Precision Medicine, Department of Medicine, University of Arizona, Tucson, Ariz
| | - Elizabeth Ampleford
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Gregory A Hawkins
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Neb
| | - Stephen B Liggett
- Departments of Medicine, Molecular Pharmacology and Physiology, and Medical Engineering, Morsani College of Medicine, University of South Florida, Tampa, Fla
| | - Victor E Ortega
- Department of Internal Medicine, Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
52
|
Lymperopoulos A, Suster MS, Borges JI. Cardiovascular GPCR regulation by regulator of G protein signaling proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:145-166. [PMID: 36357075 DOI: 10.1016/bs.pmbts.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiovascular homeostasis across all vertebrate species, including humans. In terms of normal cellular function, termination of GPCR signaling via the heterotrimeric G proteins is equally (if not more) important to its stimulation. The Regulator of G protein Signaling (RGS) protein superfamily are indispensable for GPCR signaling cessation at the cell membrane, and thus, for cellular control of GPCR signaling and function. Perturbations in both activation and termination of G protein signaling underlie many examples of cardiovascular dysfunction and heart disease pathogenesis. Despite the plethora of over 30 members comprising the mammalian RGS protein superfamily, each member interacts with a specific set of second messenger pathways and GPCR types/subtypes in a tissue/cell type-specific manner. An increasing number of studies over the past two decades have provided compelling evidence for the involvement of various RGS proteins in physiological regulation of cardiovascular GPCRs and, consequently, also in the pathophysiology of several cardiovascular ailments. This chapter summarizes the current understanding of the functional roles of RGS proteins as they pertain to cardiovascular, i.e., heart, blood vessel, and platelet GPCR function, with a particular focus on their implications for chronic heart failure pathophysiology and therapy.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States.
| | - Malka S Suster
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| |
Collapse
|
53
|
Chan KYY, Chung PY, Zhang C, Poon ENY, Leung AWK, Leung KT. R4 RGS proteins as fine tuners of immature and mature hematopoietic cell trafficking. J Leukoc Biol 2022; 112:785-797. [PMID: 35694792 DOI: 10.1002/jlb.1mr0422-475r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most diverse group of membrane receptors. They are involved in almost every physiologic process and consequently have a pivotal role in an extensive number of pathologies, including genetic, neurologic, and immune system disorders. Indeed, the vast array of GPCRs mechanisms have led to the development of a tremendous number of drug therapies and already account for about a third of marketed drugs. These receptors mediate their downstream signals primarily via G proteins. The regulators of G-protein signaling (RGS) proteins are now in the spotlight as the critical modulatory factors of active GTP-bound Gα subunits of heterotrimeric G proteins to fine-tune the biologic responses driven by the GPCRs. Also, they possess noncanonical functions by multiple mechanisms, such as protein-protein interactions. Essential roles and impacts of these RGS proteins have been revealed in physiology, including hematopoiesis and immunity, and pathologies, including asthma, cancers, and neurologic disorders. This review focuses on the largest subfamily of R4 RGS proteins and provides a brief overview of their structures and G-proteins selectivity. With particular interest, we explore and highlight, their expression in the hematopoietic system and the regulation in the engraftment of hematopoietic stem/progenitor cells (HSPCs). Distinct expression patterns of R4 RGS proteins in the hematopoietic system and their pivotal roles in stem cell trafficking pave the way for realizing new strategies for enhancing the clinical performance of hematopoietic stem cell transplantation. Finally, we discuss the exciting future trends in drug development by targeting RGS activity and expression with small molecules inhibitors and miRNA approaches.
Collapse
Affiliation(s)
- Kathy Yuen Yee Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Po Yee Chung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chi Zhang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ellen Ngar Yun Poon
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Alex Wing Kwan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Department of Paediatrics & Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
54
|
Carbone AM, Borges JI, Suster MS, Sizova A, Cora N, Desimine VL, Lymperopoulos A. Regulator of G-Protein Signaling-4 Attenuates Cardiac Adverse Remodeling and Neuronal Norepinephrine Release-Promoting Free Fatty Acid Receptor FFAR3 Signaling. Int J Mol Sci 2022; 23:5803. [PMID: 35628613 PMCID: PMC9147283 DOI: 10.3390/ijms23105803] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Propionic acid is a cell nutrient but also a stimulus for cellular signaling. Free fatty acid receptor (FFAR)-3, also known as GPR41, is a Gi/o protein-coupled receptor (GPCR) that mediates some of the propionate's actions in cells, such as inflammation, fibrosis, and increased firing/norepinephrine release from peripheral sympathetic neurons. The regulator of G-protein Signaling (RGS)-4 inactivates (terminates) both Gi/o- and Gq-protein signaling and, in the heart, protects against atrial fibrillation via calcium signaling attenuation. RGS4 activity is stimulated by β-adrenergic receptors (ARs) via protein kinase A (PKA)-dependent phosphorylation. Herein, we examined whether RGS4 modulates cardiac FFAR3 signaling/function. We report that RGS4 is essential for dampening of FFAR3 signaling in H9c2 cardiomyocytes, since siRNA-mediated RGS4 depletion significantly enhanced propionate-dependent cAMP lowering, Gi/o activation, p38 MAPK activation, pro-inflammatory interleukin (IL)-1β and IL-6 production, and pro-fibrotic transforming growth factor (TGF)-β synthesis. Additionally, catecholamine pretreatment blocked propionic acid/FFAR3 signaling via PKA-dependent activation of RGS4 in H9c2 cardiomyocytes. Finally, RGS4 opposes FFAR3-dependent norepinephrine release from sympathetic-like neurons (differentiated Neuro-2a cells) co-cultured with H9c2 cardiomyocytes, thereby preserving the functional βAR number of the cardiomyocytes. In conclusion, RGS4 appears essential for propionate/FFAR3 signaling attenuation in both cardiomyocytes and sympathetic neurons, leading to cardioprotection against inflammation/adverse remodeling and to sympatholysis, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL 33328-2018, USA; (A.M.C.); (J.I.B.); (M.S.S.); (A.S.); (N.C.); (V.L.D.)
| |
Collapse
|
55
|
Yuan G, Yang S. Effect of Regulator of G Protein Signaling Proteins on Bone. Front Endocrinol (Lausanne) 2022; 13:842421. [PMID: 35573989 PMCID: PMC9098968 DOI: 10.3389/fendo.2022.842421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/01/2022] [Indexed: 01/08/2023] Open
Abstract
Regulator of G protein signaling (RGS) proteins are critical negative molecules of G protein-coupled receptor (GPCR) signaling, which mediates a variety of biological processes in bone homeostasis and diseases. The RGS proteins are divided into nine subfamilies with a conserved RGS domain which plays an important role in regulating the GTPase activity. Mutations of some RGS proteins change bone development and/or metabolism, causing osteopathy. In this review, we summarize the recent findings of RGS proteins in regulating osteoblasts, chondrocytes, and osteoclasts. We also highlight the impacts of RGS on bone development, bone remodeling, and bone-related diseases. Those studies demonstrate that RGS proteins might be potential drug targets for bone diseases.
Collapse
Affiliation(s)
- Gongsheng Yuan
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shuying Yang
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- The Penn Center for Musculoskeletal Disorders, Penn Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Innovation and Precision Dentistry, Penn Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
56
|
Chen H, Zhang S, Zhang X, Liu H. QR code model: a new possibility for GPCR phosphorylation recognition. Cell Commun Signal 2022; 20:23. [PMID: 35236365 PMCID: PMC8889771 DOI: 10.1186/s12964-022-00832-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane proteins in the human body and are responsible for accurately transmitting extracellular information to cells. Arrestin is an important member of the GPCR signaling pathway. The main function of arrestin is to assist receptor desensitization, endocytosis and signal transduction. In these processes, the recognition and binding of arrestin to phosphorylated GPCRs is fundamental. However, the mechanism by which arrestin recognizes phosphorylated GPCRs is not fully understood. The GPCR phosphorylation recognition "bar code model" and "flute" model describe the basic process of receptor phosphorylation recognition in terms of receptor phosphorylation sites, arrestin structural changes and downstream signaling. These two models suggest that GPCR phosphorylation recognition is a process involving multiple factors. This process can be described by a "QR code" model in which ligands, GPCRs, G protein-coupled receptor kinase, arrestin, and phosphorylation sites work together to determine the biological functions of phosphorylated receptors. Video Abstract.
Collapse
Affiliation(s)
- Hao Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men Street, Beijing, 100069, People's Republic of China
| | - Suli Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men Street, Beijing, 100069, People's Republic of China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Xi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men Street, Beijing, 100069, People's Republic of China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 Xitoutiao, You An Men Street, Beijing, 100069, People's Republic of China. .,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
57
|
Jarończyk M, Walory J. Novel Molecular Targets of Antidepressants. Molecules 2022; 27:533. [PMID: 35056845 PMCID: PMC8778443 DOI: 10.3390/molecules27020533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Antidepressants target a variety of proteins in the central nervous system (CNS), the most important belonging to the family of G-protein coupled receptors and the family of neurotransmitter transporters. The increasing number of crystallographic structures of these proteins have significantly contributed to the knowledge of their mechanism of action, as well as to the design of new drugs. Several computational approaches such as molecular docking, molecular dynamics, and virtual screening are useful for elucidating the mechanism of drug action and are important for drug design. This review is a survey of molecular targets for antidepressants in the CNS and computer based strategies to discover novel compounds with antidepressant activity.
Collapse
|
58
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
59
|
Differential methamphetamine-induced behavioral effects in male and female mice lacking regulator of G Protein signaling 4. Behav Brain Res 2022; 423:113770. [DOI: 10.1016/j.bbr.2022.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/03/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
|
60
|
Jeong E, Kim Y, Jeong J, Cho Y. Structure of the class C orphan GPCR GPR158 in complex with RGS7-Gβ5. Nat Commun 2021; 12:6805. [PMID: 34815401 PMCID: PMC8611064 DOI: 10.1038/s41467-021-27147-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Abstract
GPR158, a class C orphan GPCR, functions in cognition, stress-induced mood control, and synaptic development. Among class C GPCRs, GPR158 is unique as it lacks a Venus flytrap-fold ligand-binding domain and terminates Gαi/o protein signaling through the RGS7-Gβ5 heterodimer. Here, we report the cryo-EM structures of GPR158 alone and in complex with one or two RGS7-Gβ5 heterodimers. GPR158 dimerizes through Per-Arnt-Sim-fold extracellular and transmembrane (TM) domains connected by an epidermal growth factor-like linker. The TM domain (TMD) reflects both inactive and active states of other class C GPCRs: a compact intracellular TMD, conformations of the two intracellular loops (ICLs) and the TMD interface formed by TM4/5. The ICL2, ICL3, TM3, and first helix of the cytoplasmic coiled-coil provide a platform for the DHEX domain of one RGS7 and the second helix recruits another RGS7. The unique features of the RGS7-binding site underlie the selectivity of GPR158 for RGS7.
Collapse
Affiliation(s)
- Eunyoung Jeong
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yoojoong Kim
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jihong Jeong
- grid.49100.3c0000 0001 0742 4007Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
61
|
Yuan G, Fu C, Yang ST, Yuh DY, Hajishengallis G, Yang S. RGS12 Drives Macrophage Activation and Osteoclastogenesis in Periodontitis. J Dent Res 2021; 101:448-457. [PMID: 34796776 DOI: 10.1177/00220345211045303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Periodontitis is a complex inflammatory disease affecting the supporting structures of teeth and is associated with systemic inflammatory disorders. Regulator of G-protein signaling 12 (RGS12), the largest protein in the RGS protein family, plays a crucial role in the development of inflammation and bone remodeling. However, the role and mechanism(s) by which RGS12 may regulate periodontitis have not been elucidated. Here, we showed that ablation of RGS12 in Mx1+ hematopoietic cells blocked bone loss in the ligature-induced periodontitis model, as evidenced morphometrically and by micro-computed tomography analysis of the alveolar bone. Moreover, hematopoietic cell-specific deletion of RGS12 inhibited osteoclast formation and activity as well as the production of inflammatory cytokines such as IL1β, IL6, and TNFα in the diseased periodontal tissue. In the in vitro experiments, we found that the overexpression of RGS12 promoted the reprogramming of macrophages to the proinflammatory M1 type, but not the anti-inflammatory M2 type, and enhanced the ability of macrophages for migration. Conversely, knockdown of RGS12 in macrophages inhibited the production of inflammatory cytokines and migration of macrophages in response to lipopolysaccharide stimulation. Our results demonstrate for the first time that inhibition of RGS12 in macrophages is a promising therapeutic target for the treatment of periodontitis.
Collapse
Affiliation(s)
- G Yuan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C Fu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Orthodontics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Department of Orthodontics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - S T Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D Y Yuh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei
| | - G Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
62
|
Zheng HC, Jiang HM. Shuttling of cellular proteins between the plasma membrane and nucleus (Review). Mol Med Rep 2021; 25:14. [PMID: 34779504 PMCID: PMC8600410 DOI: 10.3892/mmr.2021.12530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/09/2021] [Indexed: 11/23/2022] Open
Abstract
Recently accumulated evidence has indicated that the nucleomembrane shuttling of cellular proteins is common, which provides new insight into the subcellular translocation and biological functions of proteins synthesized in the cytoplasm. The present study aimed to clarify the trafficking of proteins between the plasma membrane and nucleus. These proteins primarily consist of transmembrane receptors, membrane adaptor proteins, adhesive proteins, signal proteins and nuclear proteins, which contribute to proliferation, apoptosis, chemoresistance, adhesion, migration and gene expression. The proteins frequently undergo cross-talk, such as the interaction of transmembrane proteins with signal proteins. The transmembrane proteins undergo endocytosis, infusion into organelles or proteolysis into soluble forms for import into the nucleus, while nuclear proteins interact with membrane proteins or act as receptors. The nucleocytosolic translocation involves export or import through nuclear membrane pores by importin or exportin. Nuclear proteins generally interact with other transcription factors, and then binding to the promoter for gene expression, while membrane proteins are responsible for signal initiation by binding to other membrane and/or adaptor proteins. Protein translocation occurs in a cell-specific manner and is closely linked to cellular biological events. The present review aimed to improve understanding of cytosolic protein shuttling between the plasma membrane and nucleus and the associated signaling pathways.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Hua-Mao Jiang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
63
|
R4 RGS proteins suppress engraftment of human hematopoietic stem/progenitor cells by modulating SDF-1/CXCR4 signaling. Blood Adv 2021; 5:4380-4392. [PMID: 34500454 PMCID: PMC8579266 DOI: 10.1182/bloodadvances.2020003307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
Specific R4 RGS members are expressed in human HSPCs and regulated by the SDF-1/CXCR4 axis. RGS1/13/16 suppress HSPC engraftment, SDF-1 signaling, and key effectors of stem cell trafficking/maintenance.
Homing and engraftment of hematopoietic stem/progenitor cells (HSPCs) into the bone marrow (BM) microenvironment are tightly regulated by the chemokine stromal cell–derived factor-1 (SDF-1) and its G-protein–coupled receptor C-X-C motif chemokine receptor 4 (CXCR4), which on engagement with G-protein subunits, trigger downstream migratory signals. Regulators of G-protein signaling (RGS) are GTPase-accelerating protein of the Gα subunit and R4 subfamily members have been implicated in SDF-1–directed trafficking of mature hematopoietic cells, yet their expression and influence on HSPCs remain mostly unknown. Here, we demonstrated that human CD34+ cells expressed multiple R4 RGS genes, of which RGS1, RGS2, RGS13, and RGS16 were significantly upregulated by SDF-1 in a CXCR4-dependent fashion. Forced overexpression of RGS1, RGS13, or RGS16 in CD34+ cells not only inhibited SDF-1–directed migration, calcium mobilization, and phosphorylation of AKT, ERK, and STAT3 in vitro, but also markedly reduced BM engraftment in transplanted NOD/SCID mice. Genome-wide microarray analysis of RGS-overexpressing CD34+ cells detected downregulation of multiple effectors with established roles in stem cell trafficking/maintenance. Convincingly, gain-of-function of selected effectors or ex vivo priming with their ligands significantly enhanced HSPC engraftment. We also constructed an evidence-based network illustrating the overlapping mechanisms of RGS1, RGS13, and RGS16 downstream of SDF-1/CXCR4 and Gαi. This model shows that these RGS members mediate compromised kinase signaling and negative regulation of stem cell functions, complement activation, proteolysis, and cell migration. Collectively, this study uncovers an essential inhibitory role of specific R4 RGS proteins in stem cell engraftment, which could potentially be exploited to develop improved clinical HSPC transplantation protocols.
Collapse
|
64
|
Cox AD, Der CJ. Filling in the GAPs in understanding RAS. Science 2021; 374:152-153. [PMID: 34618580 DOI: 10.1126/science.abl3639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, USA.,Department of Radiation Oncology, University of North Carolina at Chapel Hill, NC, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
65
|
Degrandmaison J, Grisé O, Parent JL, Gendron L. Differential barcoding of opioid receptors trafficking. J Neurosci Res 2021; 100:99-128. [PMID: 34559903 DOI: 10.1002/jnr.24949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Over the past several years, studies have highlighted the δ-opioid receptor (DOPr) as a promising therapeutic target for chronic pain management. While exhibiting milder undesired effects than most currently prescribed opioids, its specific agonists elicit effective analgesic responses in numerous animal models of chronic pain, including inflammatory, neuropathic, diabetic, and cancer-related pain. However, as compared with the extensively studied μ-opioid receptor, the molecular mechanisms governing its trafficking remain elusive. Recent advances have denoted several significant particularities in the regulation of DOPr intracellular routing, setting it apart from the other members of the opioid receptor family. Although they share high homology, each opioid receptor subtype displays specific amino acid patterns potentially involved in the regulation of its trafficking. These precise motifs or "barcodes" are selectively recognized by regulatory proteins and therefore dictate several aspects of the itinerary of a receptor, including its anterograde transport, internalization, recycling, and degradation. With a specific focus on the regulation of DOPr trafficking, this review will discuss previously reported, as well as potential novel trafficking barcodes within the opioid and nociceptin/orphanin FQ opioid peptide receptors, and their impact in determining distinct interactomes and physiological responses.
Collapse
Affiliation(s)
- Jade Degrandmaison
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Quebec Network of Junior Pain Investigators, QC, Canada
| | - Olivier Grisé
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Quebec Pain Research Network, QC, Canada
| |
Collapse
|
66
|
Asli A, Higazy-Mreih S, Avital-Shacham M, Kosloff M. Residue-level determinants of RGS R4 subfamily GAP activity and specificity towards the G i subfamily. Cell Mol Life Sci 2021; 78:6305-6318. [PMID: 34292354 PMCID: PMC11072900 DOI: 10.1007/s00018-021-03898-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023]
Abstract
The structural basis for the GTPase-accelerating activity of regulators of G protein signaling (RGS) proteins, as well as the mechanistic basis for their specificity in interacting with the heterotrimeric (αβγ) G proteins they inactivate, is not sufficiently understood at the family level. Here, we used biochemical assays to compare RGS domains across the RGS family and map those individual residues that favorably contribute to GTPase-accelerating activity, and those residues responsible for attenuating RGS domain interactions with Gα subunits. We show that conserved interactions of RGS residues with both the Gα switch I and II regions are crucial for RGS activity, while the reciprocal effects of "modulatory" and "disruptor" residues selectively modulate RGS activity. Our results quantify how specific interactions between RGS domains and Gα subunits are set by a balance between favorable RGS residue interactions with particular Gα switch regions, and unfavorable interactions with the Gα helical domain.
Collapse
Affiliation(s)
- Ali Asli
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Sabreen Higazy-Mreih
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Meirav Avital-Shacham
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
67
|
Katayama H. Rheumatoid arthritis: Development after the emergence of a chemokine for neutrophils in the synovium. Bioessays 2021; 43:e2100119. [PMID: 34432907 DOI: 10.1002/bies.202100119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022]
Abstract
Rheumatoid arthritis (RA) may not be a multifactorial disease; it can be hypothesized that RA is developed through a series of events following a triggering event, which is the emergence of a chemokine for neutrophils in the synovium. IL-17A, secreted by infiltrated neutrophils, stimulates synoviocytes to produce CCL20, which attracts various CCR6-expressing cells, including Th17 cells. Monocytes (macrophages) appear after neutrophil infiltration according to the natural course of inflammation and secrete IL-1β and TNFα. Then, IL-17A, IL-1β, and TNFα stimulate synoviocytes to produce CCL20, amplifying the inflammation. Varieties of chemokines secreted by infiltrating cells accumulate in the synovium and induce synoviocyte proliferation by binding to the corresponding G protein-coupled receptors, thus expanding the synovial tissue. CCL20 in this tissue attracts circulating monocytes that express both CCR6 and receptor activator of NF-κB (RANK), which differentiate into osteoclasts in the presence of RANKL. In this way, pannus is formed, and bone destruction begins.
Collapse
|
68
|
Balezina OP, Tarasova EO, Gaydukov AE. Noncanonical Activity of Endocannabinoids and Their Receptors in Central and Peripheral Synapses. BIOCHEMISTRY (MOSCOW) 2021; 86:818-832. [PMID: 34284706 DOI: 10.1134/s0006297921070038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review focuses on new aspects of endocannabinoid functions and mechanisms of activity in central and peripheral synapses, different from the general viewpoint that endocannabinoids are retrograde signaling molecules, which inhibit neurotransmitter release by activating specific presynaptic endocannabinoid receptors CB1 and CB2. Biased agonism of the endogenous and synthetic cannabinoids as well as ability of the CB-receptors to couple not only with classical Gi-proteins, but also with Gs- and Gq-proteins and, moreover, with β-arrestins (thereby triggering additional signaling pathways in synapses) are described here in detail. Examples of noncanonical tonic activity of endocannabinoids and their receptors and their role in synaptic function are also presented. The role of endocannabinoids in short-term and long-term potentiation of neurotransmitter release in central synapses and their facilitating effect on quantal size and other parameters of acetylcholine release in mammalian neuromuscular junctions are highlighted in this review. In conclusion, it is stated that the endocannabinoid system has a wider range of various multidirectional modulating effects (both potentiating and inhibiting) on neurotransmitter release than initially recognized. Re-evaluation of the functions of endocannabinoid system with consideration of its noncanonical features will lead to better understanding of its role in the normal and pathological functioning of the nervous system and other systems of the body, which has an enormous practical value.
Collapse
Affiliation(s)
- Olga P Balezina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | | |
Collapse
|
69
|
Moesslacher CS, Kohlmayr JM, Stelzl U. Exploring absent protein function in yeast: assaying post translational modification and human genetic variation. MICROBIAL CELL (GRAZ, AUSTRIA) 2021; 8:164-183. [PMID: 34395585 PMCID: PMC8329848 DOI: 10.15698/mic2021.08.756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023]
Abstract
Yeast is a valuable eukaryotic model organism that has evolved many processes conserved up to humans, yet many protein functions, including certain DNA and protein modifications, are absent. It is this absence of protein function that is fundamental to approaches using yeast as an in vivo test system to investigate human proteins. Functionality of the heterologous expressed proteins is connected to a quantitative, selectable phenotype, enabling the systematic analyses of mechanisms and specificity of DNA modification, post-translational protein modifications as well as the impact of annotated cancer mutations and coding variation on protein activity and interaction. Through continuous improvements of yeast screening systems, this is increasingly carried out on a global scale using deep mutational scanning approaches. Here we discuss the applicability of yeast systems to investigate absent human protein function with a specific focus on the impact of protein variation on protein-protein interaction modulation.
Collapse
Affiliation(s)
- Christina S Moesslacher
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| | - Johanna M Kohlmayr
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences and BioTechMed-Graz, University of Graz, Graz, Austria
- Contributed equally to the writing of this review
| |
Collapse
|
70
|
Chinn IK, Xie Z, Chan EC, Nagata BM, Koval A, Chen WS, Zhang F, Ganesan S, Hong DN, Suzuki M, Nardone G, Moore IN, Katanaev VL, Balazs AE, Liu C, Lupski JR, Orange JS, Druey KM. Short stature and combined immunodeficiency associated with mutations in RGS10. Sci Signal 2021; 14:14/693/eabc1940. [PMID: 34315806 DOI: 10.1126/scisignal.abc1940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the clinical and molecular phenotype of three siblings from one family, who presented with short stature and immunodeficiency and carried uncharacterized variants in RGS10 (c.489_491del:p.E163del and c.G511T:p.A171S). This gene encodes regulator of G protein signaling 10 (RGS10), a member of a large family of GTPase-activating proteins (GAPs) that targets heterotrimeric G proteins to constrain the activity of G protein-coupled receptors, including receptors for chemoattractants. The affected individuals exhibited systemic abnormalities directly related to the RGS10 mutations, including recurrent infections, hypergammaglobulinemia, profoundly reduced lymphocyte chemotaxis, abnormal lymph node architecture, and short stature due to growth hormone deficiency. Although the GAP activity of each RGS10 variant was intact, each protein exhibited aberrant patterns of PKA-mediated phosphorylation and increased cytosolic and cell membrane localization and activity compared to the wild-type protein. We propose that the RGS10 p.E163del and p.A171S mutations lead to mislocalization of the RGS10 protein in the cytosol, thereby resulting in attenuated chemokine signaling. This study suggests that RGS10 is critical for both immune competence and normal hormonal metabolism in humans and that rare RGS10 variants may contribute to distinct systemic genetic disorders.
Collapse
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhihui Xie
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA
| | - Eunice C Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva CH-1211, Switzerland.,School of Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, Vladivostok 690950, Russia
| | - Wei-Sheng Chen
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA
| | - Fan Zhang
- Transgenic Core, NHLBI/NIH, Bethesda, MD 20892 USA
| | - Sundar Ganesan
- Biological Imaging Section, NIAID/NIH Bethesda, MD 20892, USA
| | - Diana N Hong
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Motoshi Suzuki
- Protein Chemistry Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Glenn Nardone
- Protein Chemistry Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva CH-1211, Switzerland.,School of Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, Vladivostok 690950, Russia
| | - Andrea E Balazs
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Chengyu Liu
- Transgenic Core, NHLBI/NIH, Bethesda, MD 20892 USA
| | - James R Lupski
- Department of Molecular and Human Genetics and Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston, TX 77030, USA.,Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jordan S Orange
- Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA.
| |
Collapse
|
71
|
RGS4 inhibition and the effects of adrenoceptor and cholinoceptor agonists on isolated left atrium and aorta of normal and diabetic rats. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
72
|
Rgs4 is a regulator of mTOR activity required for motoneuron axon outgrowth and neuronal development in zebrafish. Sci Rep 2021; 11:13338. [PMID: 34172795 PMCID: PMC8233358 DOI: 10.1038/s41598-021-92758-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The Regulator of G protein signaling 4 (Rgs4) is a member of the RGS proteins superfamily that modulates the activity of G-protein coupled receptors. It is mainly expressed in the nervous system and is linked to several neuronal signaling pathways; however, its role in neural development in vivo remains inconclusive. Here, we generated and characterized a rgs4 loss of function model (MZrgs4) in zebrafish. MZrgs4 embryos showed motility defects and presented reduced head and eye sizes, reflecting defective motoneurons axon outgrowth and a significant decrease in the number of neurons in the central and peripheral nervous system. Forcing the expression of Rgs4 specifically within motoneurons rescued their early defective outgrowth in MZrgs4 embryos, indicating an autonomous role for Rgs4 in motoneurons. We also analyzed the role of Akt, Erk and mechanistic target of rapamycin (mTOR) signaling cascades and showed a requirement for these pathways in motoneurons axon outgrowth and neuronal development. Drawing on pharmacological and rescue experiments in MZrgs4, we provide evidence that Rgs4 facilitates signaling mediated by Akt, Erk and mTOR in order to drive axon outgrowth in motoneurons and regulate neuronal numbers.
Collapse
|
73
|
Nubbemeyer B, Pepanian A, Paul George AA, Imhof D. Strategies towards Targeting Gαi/s Proteins: Scanning of Protein-Protein Interaction Sites To Overcome Inaccessibility. ChemMedChem 2021; 16:1696-1715. [PMID: 33615736 PMCID: PMC8252600 DOI: 10.1002/cmdc.202100039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Heterotrimeric G proteins are classified into four subfamilies and play a key role in signal transduction. They transmit extracellular signals to intracellular effectors subsequent to the activation of G protein-coupled receptors (GPCRs), which are targeted by over 30 % of FDA-approved drugs. However, addressing G proteins as drug targets represents a compelling alternative, for example, when G proteins act independently of the corresponding GPCRs, or in cases of complex multifunctional diseases, when a large number of different GPCRs are involved. In contrast to Gαq, efforts to target Gαi/s by suitable chemical compounds has not been successful so far. Here, a comprehensive analysis was conducted examining the most important interface regions of Gαi/s with its upstream and downstream interaction partners. By assigning the existing compounds and the performed approaches to the respective interfaces, the druggability of the individual interfaces was ranked to provide perspectives for selective targeting of Gαi/s in the future.
Collapse
Affiliation(s)
- Britta Nubbemeyer
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Anna Pepanian
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | | | - Diana Imhof
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
74
|
Haji E, Al Mahri S, Aloraij Y, Malik SS, Mohammad S. Functional Characterization of the Obesity-Linked Variant of the β 3-Adrenergic Receptor. Int J Mol Sci 2021; 22:ijms22115721. [PMID: 34072007 PMCID: PMC8199065 DOI: 10.3390/ijms22115721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Adrenergic receptor β3 (ADRβ3) is a member of the rhodopsin-like G protein-coupled receptor family. The binding of the ligand to ADRβ3 activates adenylate cyclase and increases cAMP in the cells. ADRβ3 is highly expressed in white and brown adipocytes and controls key regulatory pathways of lipid metabolism. Trp64Arg (W64R) polymorphism in the ADRβ3 is associated with the early development of type 2 diabetes mellitus, lower resting metabolic rate, abdominal obesity, and insulin resistance. It is unclear how the substitution of W64R affects the functioning of ADRβ3. This study was initiated to functionally characterize this obesity-linked variant of ADRβ3. We evaluated in detail the expression, subcellular distribution, and post-activation behavior of the WT and W64R ADRβ3 using single cell quantitative fluorescence microscopy. When expressed in HEK 293 cells, ADRβ3 shows a typical distribution displayed by other GPCRs with a predominant localization at the cell surface. Unlike adrenergic receptor β2 (ADRβ2), agonist-induced desensitization of ADRβ3 does not involve loss of cell surface expression. WT and W64R variant of ADRβ3 displayed comparable biochemical properties, and there was no significant impact of the substitution of tryptophan with arginine on the expression, cellular distribution, signaling, and post-activation behavior of ADRβ3. The obesity-linked W64R variant of ADRβ3 is indistinguishable from the WT ADRβ3 in terms of expression, cellular distribution, signaling, and post-activation behavior.
Collapse
|
75
|
Obeng S, Hiranita T, León F, McMahon LR, McCurdy CR. Novel Approaches, Drug Candidates, and Targets in Pain Drug Discovery. J Med Chem 2021; 64:6523-6548. [PMID: 33956427 DOI: 10.1021/acs.jmedchem.1c00028] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because of the problems associated with opioids, drug discovery efforts have been employed to develop opioids with reduced side effects using approaches such as biased opioid agonism, multifunctional opioids, and allosteric modulation of opioid receptors. Receptor targets such as adrenergic, cannabinoid, P2X3 and P2X7, NMDA, serotonin, and sigma, as well as ion channels like the voltage-gated sodium channels Nav1.7 and Nav1.8 have been targeted to develop novel analgesics. Several enzymes, such as soluble epoxide hydrolase, sepiapterin reductase, and MAGL/FAAH, have also been targeted to develop novel analgesics. In this review, old and recent targets involved in pain signaling and compounds acting at these targets are summarized. In addition, strategies employed to reduce side effects, increase potency, and efficacy of opioids are also elaborated. This review should aid in propelling drug discovery efforts to discover novel analgesics.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Takato Hiranita
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia 29208, United States
| | - Lance R McMahon
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
76
|
Dhukhwa A, Al Aameri RFH, Sheth S, Mukherjea D, Rybak L, Ramkumar V. Regulator of G protein signaling 17 represents a novel target for treating cisplatin induced hearing loss. Sci Rep 2021; 11:8116. [PMID: 33854102 PMCID: PMC8046767 DOI: 10.1038/s41598-021-87387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Regulators of G protein signaling (RGS) accelerate the GTPase activity of G proteins to enable rapid termination of the signals triggered by G protein-coupled receptors (GPCRs). Activation of several GPCRs, including cannabinoid receptor 2 (CB2R) and adenosine A1 receptor (A1AR), protects against noise and drug-induced ototoxicity. One such drug, cisplatin, an anticancer agent used to treat various solid tumors, produces permanent hearing loss in experimental animals and in a high percentage of cancer patients who undergo treatments. In this study we show that cisplatin induces the expression of the RGS17 gene and increases the levels of RGS17 protein which contributes to a significant proportion of the hearing loss. Knockdown of RGS17 suppressed cisplatin-induced hearing loss in male Wistar rats, while overexpression of RGS17 alone produced hearing loss in vivo. Furthermore, RGS17 and CB2R negatively regulate the expression of each other. These data suggest that RGS17 mediates cisplatin ototoxicity by uncoupling cytoprotective GPCRs from their normal G protein interactions, thereby mitigating the otoprotective contributions of endogenous ligands of these receptors. Thus, RGS17 represents a novel mediator of cisplatin ototoxicity and a potential therapeutic target for treating hearing loss.
Collapse
Affiliation(s)
- Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Raheem F H Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, 33169, USA
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Leonard Rybak
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
77
|
Hu Y, Zheng M, Wang S, Gao L, Gou R, Liu O, Dong H, Li X, Lin B. Identification of a five-gene signature of the RGS gene family with prognostic value in ovarian cancer. Genomics 2021; 113:2134-2144. [PMID: 33845140 DOI: 10.1016/j.ygeno.2021.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/01/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
The RGS (regulator of G protein signaling) gene family, which includes negative regulators of G protein-coupled receptors, comprises important drug targets for malignant tumors. It is thus of great significance to explore the value of RGS family genes for diagnostic and prognostic prediction in ovarian cancer. The RNA-seq, immunophenotype, and stem cell index data of pan-cancer, The Cancer Genome Atlas (TCGA) data, and GTEx data of ovarian cancer were downloaded from the UCSC Xena database. In the pan-cancer database, the expression level of RGS1, RGS18, RGS19, and RGS13 was positively correlated with stromal and immune cell scores. Cancer patients with high RGS18 expression were more sensitive to cyclophosphamide and nelarabine, whereas those with high RGS19 expression were more sensitive to cladribine and nelarabine. The relationship between RGS family gene expression and overall survival (OS) and progression-free survival (PFS) of ovarian cancer patients was analyzed using the KM-plotter database, RGS17, RGS16, RGS1, and RGS8 could be used as diagnostic biomarkers of the immune subtype of ovarian cancer, and RGS10 and RGS16 could be used as biomarkers to predict the clinical stage of this disease. Further, Lasso cox analysis identified a five-gene risk score (RGS11, RGS10, RGS13, RGS4, and RGS3). Multivariate COX analysis showed that the risk score was an independent prognostic factor for patients with ovarian cancer. Immunohistochemistry and the HPA protein database confirmed that the five-gene signature is overexpressed in ovarian cancer. GSEA showed that it is mainly involved in the ECM-receptor interaction, TGF-beta signaling pathway, Wnt signaling pathway, and chemokine signaling pathway, which promote the occurrence and development of ovarian cancer. The prediction model of ovarian cancer constructed using RGS family genes is of great significance for clinical decision making and the personalized treatment of patients with ovarian cancer.
Collapse
Affiliation(s)
- Yuexin Hu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Mingjun Zheng
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China; Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Shuang Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Lingling Gao
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Rui Gou
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Ouxuan Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Hui Dong
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Xiao Li
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China
| | - Bei Lin
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, China; Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, China.
| |
Collapse
|
78
|
Hayes MP, O'Brien JB, Crawford RA, Fowler CA, Yu L, Doorn JA, Roman DL. Fragment-Based Nuclear Magnetic Resonance Screen against a Regulator of G Protein Signaling Identifies a Binding "Hot Spot". Chembiochem 2021; 22:1609-1620. [PMID: 33480159 DOI: 10.1002/cbic.202000740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/13/2021] [Indexed: 11/10/2022]
Abstract
Regulator of G protein signaling (RGS) proteins have attracted attention as a result of their primary role in directing the specificity as well as the temporal and spatial aspects of G protein-coupled receptor signaling. In addition, alterations in RGS protein expression have been observed in a number of disease states, including certain cancers. In this area, RGS17 is of particular interest. It has been demonstrated that, while RGS17 is expressed primarily in the central nervous system, it has been found to be inappropriately expressed in lung, prostate, breast, cervical, and hepatocellular carcinomas. Overexpression of RGS17 leads to dysfunction in inhibitory G protein signaling and an overproduction of the intracellular second messenger cAMP, which in turn alters the transcription patterns of proteins known to promote various cancer types. Suppressing RGS17 expression with RNA interference (RNAi) has been found to decrease tumorigenesis and sufficiently prevents cancer cell migration, leading to the hypothesis that pharmacological blocking of RGS17 function could be useful in anticancer therapies. We have identified small-molecule fragments capable of binding the RGS homology (RH) domain of RGS17 by using a nuclear magnetic resonance fragment-based screening approach. By chemical shift mapping of the two-dimensional 15 N,1 H heteronuclear single quantum coherence (HSQC) spectra of the backbone-assigned 15 N-labeled RGS17-RH, we determined the fragment binding sites to be distant from the Gα interface. Thus, our study identifies a putative fragment binding site on RGS17 that was previously unknown.
Collapse
Affiliation(s)
- Michael P Hayes
- Department of Pharmaceutical Sciences and Experimental Therapeutics College of Pharmacy, University of Iowa, 180 S Grand Avenue, CPB 538, Iowa City, IA 52245, USA.,Present address: Beckman Coulter, Indianapolis, IN 46268, USA
| | - Joseph B O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics College of Pharmacy, University of Iowa, 180 S Grand Avenue, CPB 538, Iowa City, IA 52245, USA
| | - Rachel A Crawford
- Department of Pharmaceutical Sciences and Experimental Therapeutics College of Pharmacy, University of Iowa, 180 S Grand Avenue, CPB 538, Iowa City, IA 52245, USA
| | - C Andrew Fowler
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 285 Newton Rd, Iowa City, IA 52245, USA.,Present address: Bruker Biospin Corporation, Billerica, MA 01821-3991, USA
| | - Liping Yu
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 285 Newton Rd, Iowa City, IA 52245, USA
| | - Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics College of Pharmacy, University of Iowa, 180 S Grand Avenue, CPB 538, Iowa City, IA 52245, USA.,Iowa Neuroscience Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics College of Pharmacy, University of Iowa, 180 S Grand Avenue, CPB 538, Iowa City, IA 52245, USA.,Iowa Neuroscience Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
79
|
Vazquez-Jimenez JG, Corpus-Navarro MS, Rodriguez-Chavez JM, Jaramillo-Ramirez HJ, Hernandez-Aranda J, Galindo-Hernandez O, Machado-Contreras JR, Trejo-Trejo M, Guerrero-Hernandez A, Olivares-Reyes JA. The Increased Expression of Regulator of G-Protein Signaling 2 (RGS2) Inhibits Insulin-Induced Akt Phosphorylation and Is Associated with Uncontrolled Glycemia in Patients with Type 2 Diabetes. Metabolites 2021; 11:91. [PMID: 33562475 PMCID: PMC7915073 DOI: 10.3390/metabo11020091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Experimental evidence in mice models has demonstrated that a high regulator of G-protein signaling 2 (RSG2) protein levels precede an insulin resistance state. In the same context, a diet rich in saturated fatty acids induces an increase in RGS2 protein expression, which has been associated with decreased basal metabolism in mice; however, the above has not yet been analyzed in humans. For this reason, in the present study, we examined the association between RGS2 expression and insulin resistance state. The incubation with palmitic acid (PA), which inhibits insulin-mediated Akt Ser473 phosphorylation, resulted in the increased RGS2 expression in human umbilical vein endothelial-CS (HUVEC-CS) cells. The RGS2 overexpression without PA was enough to inhibit insulin-mediated Akt Ser473 phosphorylation in HUVEC-CS cells. Remarkably, the platelet RGS2 expression levels were higher in type 2 diabetes mellitus (T2DM) patients than in healthy donors. Moreover, an unbiased principal component analysis (PCA) revealed that RGS2 expression level positively correlated with glycated hemoglobin (HbA1c) and negatively with age and high-density lipoprotein cholesterol (HDL) in T2DM patients. Furthermore, PCA showed that healthy subjects segregated from T2DM patients by having lower levels of HbA1c and RGS2. These results demonstrate that RGS2 overexpression leads to decreased insulin signaling in a human endothelial cell line and is associated with poorly controlled diabetes.
Collapse
Affiliation(s)
- J. Gustavo Vazquez-Jimenez
- Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.G.V.-J.); (J.H.-A.); (A.G.-H.)
- Laboratory of Molecular Pathogenesis, School of Medicine, Campus Mexicali, Autonomous University of Baja California, Mexicali, Baja California 21000, Mexico; (M.S.C.-N.); (J.M.R.-C.); (J.R.M.-C.)
| | - M. Stephanie Corpus-Navarro
- Laboratory of Molecular Pathogenesis, School of Medicine, Campus Mexicali, Autonomous University of Baja California, Mexicali, Baja California 21000, Mexico; (M.S.C.-N.); (J.M.R.-C.); (J.R.M.-C.)
| | - J. Miguel Rodriguez-Chavez
- Laboratory of Molecular Pathogenesis, School of Medicine, Campus Mexicali, Autonomous University of Baja California, Mexicali, Baja California 21000, Mexico; (M.S.C.-N.); (J.M.R.-C.); (J.R.M.-C.)
| | | | - Judith Hernandez-Aranda
- Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.G.V.-J.); (J.H.-A.); (A.G.-H.)
| | - Octavio Galindo-Hernandez
- Laboratory of Biochemistry, School of Medicine, Campus Mexicali, Autonomous University of Baja California, Mexicali, Baja California 21000, Mexico;
| | - J. Rene Machado-Contreras
- Laboratory of Molecular Pathogenesis, School of Medicine, Campus Mexicali, Autonomous University of Baja California, Mexicali, Baja California 21000, Mexico; (M.S.C.-N.); (J.M.R.-C.); (J.R.M.-C.)
| | - Marina Trejo-Trejo
- School of Sports, Campus Mexicali, Autonomous University of Baja California, Mexicali, Baja California 21000, Mexico;
| | - Agustin Guerrero-Hernandez
- Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.G.V.-J.); (J.H.-A.); (A.G.-H.)
| | - J. Alberto Olivares-Reyes
- Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV-IPN, Mexico City 07360, Mexico; (J.G.V.-J.); (J.H.-A.); (A.G.-H.)
| |
Collapse
|
80
|
Zhang S, Chen Y, Wang Y, Zhang P, Chen G, Zhou Y. Insights Into Translatomics in the Nervous System. Front Genet 2021; 11:599548. [PMID: 33408739 PMCID: PMC7779767 DOI: 10.3389/fgene.2020.599548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Most neurological disorders are caused by abnormal gene translation. Generally, dysregulation of elements involved in the translational process disrupts homeostasis in neurons and neuroglia. Better understanding of how the gene translation process occurs requires detailed analysis of transcriptomic and proteomic profile data. However, a lack of strictly direct correlations between mRNA and protein levels limits translational investigation by combining transcriptomic and proteomic profiling. The much better correlation between proteins and translated mRNAs than total mRNAs in abundance and insufficiently sensitive proteomics approach promote the requirement of advances in translatomics technology. Translatomics which capture and sequence the mRNAs associated with ribosomes has been effective in identifying translational changes by genetics or projections, ribosome stalling, local translation, and transcript isoforms in the nervous system. Here, we place emphasis on the main three translatomics methods currently used to profile mRNAs attached to ribosome-nascent chain complex (RNC-mRNA). Their prominent applications in neurological diseases including glioma, neuropathic pain, depression, fragile X syndrome (FXS), neurodegenerative disorders are outlined. The content reviewed here expands our understanding on the contributions of aberrant translation to neurological disease development.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongjie Wang
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
81
|
Ahlers-Dannen KE, Spicer MM, Fisher RA. RGS Proteins as Critical Regulators of Motor Function and Their Implications in Parkinson's Disease. Mol Pharmacol 2020; 98:730-738. [PMID: 32015009 PMCID: PMC7662528 DOI: 10.1124/mol.119.118836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/25/2020] [Indexed: 11/22/2022] Open
Abstract
Parkinson disease (PD) is a devastating, largely nonfamilial, age-related disorder caused by the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Release of DA from these neurons into the dorsal striatum is crucial for regulating movement and their loss causes PD. Unfortunately, the mechanisms underlying SNc neurodegeneration remain unclear, and currently there is no cure for PD, only symptomatic treatments. Recently, several regulator of G protein signaling (RGS) proteins have emerged as critical modulators of PD pathogenesis and/or motor dysfunction and dyskinesia: RGSs 4, 6, 9, and 10. Striatal RGS4 has been shown to exacerbate motor symptoms of DA loss by suppressing M4-autoreceptor-Gα i/o signaling in striatal cholinergic interneurons. RGS6 and RGS9 are key regulators of D2R-Gα i/o signaling in SNc DA neurons and striatal medium spiny neurons, respectively. RGS6, expressed in human and mouse SNc DA neurons, suppresses characteristic PD hallmarks in aged mice, including SNc DA neuron loss, motor deficits, and α-synuclein accumulation. After DA depletion, RGS9 (through its inhibition of medium spiny neuron D2R signaling) suppresses motor dysfunction induced by L-DOPA or D2R-selective agonists. RGS10 is highly expressed in microglia, the brain's resident immune cells. Within the SNc, RGS10 may promote DA neuron survival through the upregulation of prosurvival genes and inhibition of microglial inflammatory factor expression. Thus, RGSs 4, 6, 9, and 10 are critical modulators of cell signaling pathways that promote SNc DA neuron survival and/or proper motor control. Accordingly, these RGS proteins represent novel therapeutic targets for the treatment of PD pathology. SIGNIFICANCE STATEMENT: Parkinson disease (PD), the most common movement disorder, is a progressive neurodegenerative disease characterized by substantia nigra pars compacta (SNc) dopamine (DA) neuron loss and subsequent motor deficits. Current PD therapies only target disease motor symptomology and are fraught with side effects. Therefore, researchers have begun to explore alternative therapeutic options. Regulator of G protein signaling (RGS) proteins, whether primarily expressed in SNc DA neurons (RGS6), striatal neurons (RGSs 4 and 9), or microglia (RGS10), modulate key signaling pathways important for SNc DA neuron survival and/or proper motor control. As such, RGS proteins represent novel therapeutic targets in PD.
Collapse
Affiliation(s)
- Katelin E Ahlers-Dannen
- Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Mackenzie M Spicer
- Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Rory A Fisher
- Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
82
|
RNA methylations in human cancers. Semin Cancer Biol 2020; 75:97-115. [DOI: 10.1016/j.semcancer.2020.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 12/24/2022]
|
83
|
Abstract
The endocannabinoid system (ECS) is a highly versatile signaling system within the nervous system. Despite its widespread localization, its functions within the context of distinct neural processes are very well discernable and specific. This is remarkable, and the question remains as to how such specificity is achieved. One key player in the ECS is the cannabinoid type 1 receptor (CB1), a G protein-coupled receptor characterized by the complexity of its cell-specific expression, cellular and subcellular localization, and its adaptable regulation of intracellular signaling cascades. CB1 receptors are involved in different synaptic and cellular plasticity processes and in the brain's bioenergetics in a context-specific manner. CB2 receptors are also important in several processes in neurons, glial cells, and immune cells of the brain. As polymorphisms in ECS components, as well as external impacts such as stress and metabolic challenges, can both lead to dysregulated ECS activity and subsequently to possible neuropsychiatric disorders, pharmacological intervention targeting the ECS is a promising therapeutic approach. Understanding the neurobiology of cannabinoid receptor signaling in depth will aid optimal design of therapeutic interventions, minimizing unwanted side effects.
.
Collapse
Affiliation(s)
- Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
84
|
Regulators of G protein signalling as pharmacological targets for the treatment of neuropathic pain. Pharmacol Res 2020; 160:105148. [PMID: 32858121 DOI: 10.1016/j.phrs.2020.105148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022]
Abstract
Neuropathic pain, a specific type of chronic pain resulting from persistent nervous tissue lesions, is a debilitating condition that affects about 7% of the population. This condition remains particularly difficult to treat because of the poor understanding of its underlying mechanisms. Drugs currently used to alleviate this chronic pain syndrome are of limited benefit due to their lack of efficacy and the elevated risk of side effects, especially after a prolonged period of treatment. Although drugs targeting G protein-coupled receptors (GPCR) also have several limitations, such as progressive loss of efficacy due to receptor desensitization or unavoidable side effects due to wide receptor distribution, the identification of several molecular partners that contribute to the fine-tuning of receptor activity has raised new opportunities for the development of alternative therapeutic approaches. Regulators of G protein signalling (RGS) act intracellularly by influencing the coupling process and activity of G proteins, and are amongst the best-characterized physiological modulators of GPCR. Changes in RGS expression have been documented in a range of models of neuropathic pain, or after prolonged treatment with diverse analgesics, and could participate in altered pain processing as well as impaired physiological or pharmacological control of nociceptive signals. The present review summarizes the experimental data that implicates RGS in the development of pain with focus on the pathological mechanisms of neuropathic pain, including the impact of neuropathic lesions on RGS expression and, reciprocally, the influence of modifying RGS on GPCRs involved in the modulation of nociception as well as on the outcome of pain. In this context, we address the question of the relevance of RGS as promising targets in the treatment of neuropathic pain.
Collapse
|
85
|
Chinn AM, Insel PA. Cyclic AMP in dendritic cells: A novel potential target for disease-modifying agents in asthma and other allergic disorders. Br J Pharmacol 2020; 177:3363-3377. [PMID: 32372523 DOI: 10.1111/bph.15095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Allergic diseases are immune disorders that are a global health problem, affecting a large portion of the world's population. Allergic asthma is a heterogeneous disease that alters the biology of the airway. A substantial portion of patients with asthma do not respond to conventional therapies; thus, new and effective therapeutics are needed. Dendritic cells (DCs), antigen presenting cells that regulate helper T cell differentiation, are key drivers of allergic inflammation but are not the target of current therapies. Here we review the role of dendritic cells in allergic conditions and propose a disease-modifying strategy for treating allergic asthma: cAMP-mediated inhibition of dendritic cells to blunt allergic inflammation. This approach contrasts with current treatments that focus on treating clinical manifestations of airway inflammation. Disease-modifying agents that target cAMP and its signalling pathway in dendritic cells may provide a novel means to treat asthma and other allergic diseases.
Collapse
Affiliation(s)
- Amy M Chinn
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
86
|
Sussman CR, Wang X, Chebib FT, Torres VE. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell Signal 2020; 72:109649. [PMID: 32335259 DOI: 10.1016/j.cellsig.2020.109649] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disorder associated with polycystic liver disease (PLD) and other extrarenal manifestations, the most common monogenic cause of end-stage kidney disease, and a major burden for public health. Many studies have shown that alterations in G-protein and cAMP signaling play a central role in its pathogenesis. As for many other diseases (35% of all approved drugs target G-protein coupled receptors (GPCRs) or proteins functioning upstream or downstream from GPCRs), treatments targeting GPCR have shown effectiveness in slowing the rate of progression of ADPKD. Tolvaptan, a vasopressin V2 receptor antagonist is the first drug approved by regulatory agencies to treat rapidly progressive ADPKD. Long-acting somatostatin analogs have also been effective in slowing the rates of growth of polycystic kidneys and liver. Although no treatment has so far been able to prevent the development or stop the progression of the disease, these encouraging advances point to G-protein and cAMP signaling as a promising avenue of investigation that may lead to more effective and safe treatments. This will require a better understanding of the relevant GPCRs, G-proteins, cAMP effectors, and of the enzymes and A-kinase anchoring proteins controlling the compartmentalization of cAMP signaling. The purpose of this review is to provide an overview of general GPCR signaling; the function of polycystin-1 (PC1) as a putative atypical adhesion GPCR (aGPCR); the roles of PC1, polycystin-2 (PC2) and the PC1-PC2 complex in the regulation of calcium and cAMP signaling; the cross-talk of calcium and cAMP signaling in PKD; and GPCRs, adenylyl cyclases, cyclic nucleotide phosphodiesterases, and protein kinase A as therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
87
|
Abstract
Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein-coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family-specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts.
Collapse
Affiliation(s)
- Evi Kostenis
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany.
| | - Eva Marie Pfeil
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| | - Suvi Annala
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
88
|
Dahlgren C, Holdfeldt A, Lind S, Mårtensson J, Gabl M, Björkman L, Sundqvist M, Forsman H. Neutrophil Signaling That Challenges Dogmata of G Protein-Coupled Receptor Regulated Functions. ACS Pharmacol Transl Sci 2020; 3:203-220. [PMID: 32296763 DOI: 10.1021/acsptsci.0c00004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/24/2022]
Abstract
Activation as well as recruitment of neutrophils, the most abundant leukocyte in human blood, to sites of infection/inflammation largely rely on surface-exposed chemoattractant receptors. These receptors belong to the family of 7-transmembrane domain receptors also known as G protein-coupled receptors (GPCRs) due to the fact that part of the downstream signaling relies on an activation of heterotrimeric G proteins. The neutrophil GPCRs share significant sequence homologies but bind many structurally diverse activating (agonistic) and inhibiting (antagonistic) ligands, ranging from fatty acids to purines, peptides, and lipopeptides. Recent structural and functional studies of neutrophil receptors have generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization mechanisms and reactivation, and communication (cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on neutrophil GPCRs. In addition, unmet challenges are dealt with, including recognition by the receptors of diverse ligands and how biased signaling mediates different biological effects.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Simon Lind
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Michael Gabl
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| |
Collapse
|