51
|
Bai L, Li Q, Li L, Lin Y, Zhao S, Wang W, Wang R, Li Y, Yuan J, Wang C, Wang Z, Fan J, Liu E. Plasma High-Mannose and Complex/Hybrid N-Glycans Are Associated with Hypercholesterolemia in Humans and Rabbits. PLoS One 2016; 11:e0146982. [PMID: 26999365 PMCID: PMC4801423 DOI: 10.1371/journal.pone.0146982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022] Open
Abstract
N-glycans play important roles in various pathophysiological processes and can be used as clinical diagnosis markers. However, plasma N-glycans change and their pathophysiological significance in the setting of hypercholesterolemia, a major risk factor for atherosclerosis, is unknown. Here, we collected plasma from both hypercholesterolemic patients and cholesterol-fed hypercholesterolemic rabbits, and determined the changes in the whole-plasma N-glycan profile by electrospray ionization mass spectrometry. We found that both the hypercholesterolemic patients and rabbits showed a dramatic change in their plasma glycan profile. Compared with healthy subjects, the hypercholesterolemic patients exhibited higher plasma levels of a cluster of high-mannose and complex/hybrid N-glycans (mainly including undecorated or sialylated glycans), whereas only a few fucosylated or fucosylated and sialylated N-glycans were increased. Additionally, cholesterol-fed hypercholesterolemic rabbits also displayed increased plasma levels of high-mannose in addition to high complex/hybrid N-glycan levels. The whole-plasma glycan profiles revealed that the plasma N-glycan levels were correlated with the plasma cholesterol levels, implying that N-glycans may be a target for treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Liang Bai
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Qianwei Li
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Lingmei Li
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, Xi’an, 710069, China
| | - Yan Lin
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Sihai Zhao
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Weirong Wang
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Rong Wang
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| | - Yongqin Li
- Department of Cardiology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710004, China
| | - Jiangbei Yuan
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, Xi’an, 710069, China
| | - Chengjian Wang
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, Xi’an, 710069, China
| | - Zhongfu Wang
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Science, Northwest University, Xi’an, 710069, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, 409–3898, Japan
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease, Xi’an Jiaotong University Cardiovascular Research Center, Xi’an, Shaanxi, 710061, China
- Laboratory Animal Center, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, 710061, China
| |
Collapse
|
52
|
Waisberg J, Theodoro TR, Matos LL, Orlandi FB, Serrano RL, Saba GT, Pinhal MAS. Immunohistochemical expression of heparanase isoforms and syndecan-1 proteins in colorectal adenomas. Eur J Histochem 2016; 60:2590. [PMID: 26972718 PMCID: PMC4800254 DOI: 10.4081/ejh.2016.2590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
The proteoglycan syndecan-1 and the endoglucuronidases heparanase-1 and heparanase-2 are involved in molecular pathways that deregulate cell adhesion during carcinogenesis. Few studies have examined the expression of syndecan-1, heparanase-1 and mainly heparanase-2 proteins in non-neoplastic and neoplastic human colorectal adenoma tissues. The aim of this study was to analyze the correlation among the heparanase isoforms and the syndecan-1 proteins through immunohistochemical expression in the tissue of colorectal adenomas. Primary anti-human polyclonal anti-HPSE and anti-HPSE2 antibodies and primary anti-human monoclonal anti-SDC1 antibody were used in the immunohistochemical study. The expressions of heparanase-1 and heparanase-2 proteins were determined in tissue samples from 65 colorectal adenomas; the expression of syndecan-1 protein was obtained from 39 (60%) patients. The histological type of adenoma was tubular in 44 (67.7%) patients and tubular-villous in 21 (32.3%); there were no villous adenomas. The polyps were <1.0 cm in size in 54 (83.1%) patients and ≥1.0 cm in 11 (16.9%). The images were quantified by digital counter with a computer program for this purpose. The expression index represented the relationship between the intensity expression and the percentage of positively stained cells. The results showed that the average of heparanase-1, heparanase-2 and syndecan-1 expression index was 73.29 o.u./µm², 93.34 o.u./µm², and 55.29 o.u./µm², respectively. The correlation between the heparanase-1 and syndecan-1 expression index was positive (R=0.034) and significant (P=0.035). There was a negative (R= -0.384) and significant (P=0.016) correlation between the expression index of heparanase-1 and heparanase-2. A negative (R= -0.421) and significant (P=0.008) correlation between the expression index of heparanase-2 and syndecan-1 was found. We concluded that in colorectal adenomas, the heparanase-1 does not participate in syndecan-1 degradation; the heparanase-2 does not stimulate syndecan-1 degradation by the action of heparanase-1, and the heparanase-2 may be involved in the modulation of the heparanase-1 activity.
Collapse
|
53
|
Sethi MK, Fanayan S. Mass Spectrometry-Based N-Glycomics of Colorectal Cancer. Int J Mol Sci 2015; 16:29278-304. [PMID: 26690136 PMCID: PMC4691109 DOI: 10.3390/ijms161226165] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide. An increased molecular understanding of the CRC pathology is warranted to gain insights into the underlying molecular and cellular mechanisms of the disease. Altered protein glycosylation patterns are associated with most diseases including malignant transformation. Recent advances in mass spectrometry and bioinformatics have accelerated glycomics research and present a new paradigm for cancer biomarker discovery. Mass spectrometry (MS)-based glycoproteomics and glycomics, therefore, hold considerable promise to improve the discovery of novel biomarkers with utility in disease diagnosis and therapy. This review focuses on the emerging field of glycomics to present a comprehensive review of advances in technologies and their application in studies aimed at discovering novel glycan-based biomarkers. We will also discuss some of the challenges associated with using glycans as biomarkers.
Collapse
Affiliation(s)
- Manveen K Sethi
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Susan Fanayan
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| |
Collapse
|
54
|
Holst S, Deuss AJM, van Pelt GW, van Vliet SJ, Garcia-Vallejo JJ, Koeleman CAM, Deelder AM, Mesker WE, Tollenaar RA, Rombouts Y, Wuhrer M. N-glycosylation Profiling of Colorectal Cancer Cell Lines Reveals Association of Fucosylation with Differentiation and Caudal Type Homebox 1 (CDX1)/Villin mRNA Expression. Mol Cell Proteomics 2015; 15:124-40. [PMID: 26537799 PMCID: PMC4762531 DOI: 10.1074/mcp.m115.051235] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 01/05/2023] Open
Abstract
Various cancers such as colorectal cancer (CRC) are associated with alterations in protein glycosylation. CRC cell lines are frequently used to study these (glyco)biological changes and their mechanisms. However, differences between CRC cell lines with regard to their glycosylation have hitherto been largely neglected. Here, we comprehensively characterized the N-glycan profiles of 25 different CRC cell lines, derived from primary tumors and metastatic sites, in order to investigate their potential as glycobiological tumor model systems and to reveal glycans associated with cell line phenotypes. We applied an optimized, high-throughput membrane-based enzymatic glycan release for small sample amounts. Released glycans were derivatized to stabilize and differentiate between α2,3- and α2,6-linked N-acetylneuraminic acids, followed by N-glycosylation analysis by MALDI-TOF(/TOF)-MS. Our results showed pronounced differences between the N-glycosylation patterns of CRC cell lines. CRC cell line profiles differed from tissue-derived N-glycan profiles with regard to their high-mannose N-glycan content but showed a large overlap for complex type N-glycans, supporting their use as a glycobiological cancer model system. Importantly, we could show that the high-mannose N-glycans did not only occur as intracellular precursors but were also present at the cell surface. The obtained CRC cell line N-glycan features were not clearly correlated with mRNA expression levels of glycosyltransferases, demonstrating the usefulness of performing the structural analysis of glycans. Finally, correlation of CRC cell line glycosylation features with cancer cell markers and phenotypes revealed an association between highly fucosylated glycans and CDX1 and/or villin mRNA expression that both correlate with cell differentiation. Together, our findings provide new insights into CRC-associated glycan changes and setting the basis for more in-depth experiments on glycan function and regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yoann Rombouts
- From the ‡Center for Proteomics and Metabolomics, ¶Department of RheumatologyLeiden University Medical Center, Leiden, The Netherlands; ‡‡Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59 000 Lille, France
| | - Manfred Wuhrer
- From the ‡Center for Proteomics and Metabolomics, ‖Department of Molecular Cell Biology and Immunology and **Division of BioAnalytical Chemistry, VU University Medical Center, Amsterdam, The Netherlands;
| |
Collapse
|
55
|
Thomas SN, Harlan R, Chen J, Aiyetan P, Liu Y, Sokoll LJ, Aebersold R, Chan DW, Zhang H. Multiplexed Targeted Mass Spectrometry-Based Assays for the Quantification of N-Linked Glycosite-Containing Peptides in Serum. Anal Chem 2015; 87:10830-8. [PMID: 26451657 DOI: 10.1021/acs.analchem.5b02063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein glycosylation is one of the most common protein modifications, and the quantitative analysis of glycoproteins has the potential to reveal biological functions and their association with disease. However, the high throughput accurate quantification of glycoproteins is technically challenging due to the scarcity of robust assays to detect and quantify glycoproteins. Here we describe the development of multiplexed targeted MS assays to quantify N-linked glycosite-containing peptides in serum using parallel reaction monitoring (PRM). Each assay was characterized by its performance metrics and criteria established by the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (NCI CPTAC) to facilitate the widespread adoption of the assays in studies designed to confidently detect changes in the relative abundance of these analytes. An in-house developed software program, MRMPlus, was used to compute assay performance parameters including specificity, precision, and repeatability. We show that 43 selected N-linked glycosite-containing peptides identified in prostate cancer tissue studies carried out in our group were detected in the sera of prostate cancer patients within the quantitative range of the developed PRM assays. A total of 41 of these formerly N-linked glycosite-containing peptides (corresponding to 37 proteins) were reproducibly quantified based on their relative peak area ratios in human serum during PRM assay development, with 4 proteins showing differential significance in serum from nonaggressive (NAG) vs aggressive (AG) prostate cancer patient serum (n = 50, NAG vs AG). The data demonstrate that the assays can be used for the high throughput and reproducible quantification of a panel of formerly N-linked glycosite-containing peptides. The developed assays can also be used for the quantification of formerly N-linked glycosite-containing peptides in human serum irrespective of disease state.
Collapse
Affiliation(s)
- Stefani N Thomas
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine , 1550 Orleans Street, CRBII Room 3M03, Baltimore, Maryland 21231, United States
| | - Robert Harlan
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine , 1550 Orleans Street, CRBII Room 3M03, Baltimore, Maryland 21231, United States
| | - Jing Chen
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine , 1550 Orleans Street, CRBII Room 3M03, Baltimore, Maryland 21231, United States
| | - Paul Aiyetan
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine , 1550 Orleans Street, CRBII Room 3M03, Baltimore, Maryland 21231, United States
| | - Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland
| | - Lori J Sokoll
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine , 1550 Orleans Street, CRBII Room 3M03, Baltimore, Maryland 21231, United States
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich , 8093 Zurich, Switzerland.,Faculty of Science, University of Zurich , 8057 Zurich, Switzerland
| | - Daniel W Chan
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine , 1550 Orleans Street, CRBII Room 3M03, Baltimore, Maryland 21231, United States
| | - Hui Zhang
- Department of Pathology, Clinical Chemistry Division, Johns Hopkins University School of Medicine , 1550 Orleans Street, CRBII Room 3M03, Baltimore, Maryland 21231, United States
| |
Collapse
|
56
|
Ahadova A, Gebert J, von Knebel Doeberitz M, Kopitz J, Kloor M. Dose-dependent effect of 2-deoxy-D-glucose on glycoprotein mannosylation in cancer cells. IUBMB Life 2015; 67:218-26. [PMID: 25854316 DOI: 10.1002/iub.1364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/02/2015] [Indexed: 12/11/2022]
Abstract
High glucose consumption due to Warburg effect is one of the metabolic hallmarks of cancer. Consequently, glucose antimetabolites, such as 2-deoxy-glucose (2DG), can induce substantial growth inhibition of cancer cells. However, the inhibition of metabolic pathways is not the sole effect of 2DG on cancer cells. As mannose-mimetic molecule, 2DG is believed to interfere with normal glycosylation of proteins in cells. Here, we address how 2DG influences protein glycosylation in cancer cells and discuss possible implications of the consequences of this influence. In detail, six colorectal cancer cell lines were examined for alterations of protein glycosylation by measuring monosaccharide incorporation into cellular glycoproteins and cell surface glycosylation by lectin FACS. A significant increase in mannose incorporation was observed on treatment with 2DG (1 mM for 48 h), which was also reflected by an increased binding of the mannose-binding lectin Concanavalin A in FACS analysis. This phenomenon, which could be reversed by external addition of mannose, was not caused by 2DG-mediated mannosidase inhibition, as shown by pulse-chase experiments, arguing in favor of the hypothesis that 2DG directly influenced the incorporation of mannose. Increased mannose content was generally observed in cellular glycoproteins, including glycoproteins isolated from the plasma membrane fraction. Our results indicate that 2DG at low doses, which have only a limited metabolism-related effect on glycosylation, induces a strong increase in mannose incorporation into cellular glycoproteins. On the other hand, higher 2DG concentrations (10 and 20 mM) led to a significant decrease of absolute mannose incorporation accompanied by a dramatically reduced protein synthesis rate. 2DG-induced alterations of glycosylation may represent a novel mechanism potentially explaining the varied effects of 2DG on cancer cells. Moreover, 2DG treatment may open a path toward novel diagnostic and cancer therapeutic approaches, which specifically target altered glycoantigen structures induced by 2DG.
Collapse
Affiliation(s)
- Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Heidelberg, Germany; Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
57
|
Thaysen-Andersen M, Venkatakrishnan V, Loke I, Laurini C, Diestel S, Parker BL, Packer NH. Human neutrophils secrete bioactive paucimannosidic proteins from azurophilic granules into pathogen-infected sputum. J Biol Chem 2015; 290:8789-802. [PMID: 25645918 DOI: 10.1074/jbc.m114.631622] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
Unlike plants and invertebrates, mammals reportedly lack proteins displaying asparagine (N)-linked paucimannosylation (mannose(1-3)fucose(0-1)N-acetylglucosamine(2)Asn). Enabled by technology advancements in system-wide biomolecular characterization, we document that protein paucimannosylation is a significant host-derived molecular signature of neutrophil-rich sputum from pathogen-infected human lungs and is negligible in pathogen-free sputum. Five types of paucimannosidic N-glycans were carried by compartment-specific and inflammation-associated proteins of the azurophilic granules of human neutrophils including myeloperoxidase (MPO), azurocidin, and neutrophil elastase. The timely expressed human azurophilic granule-resident β-hexosaminidase A displayed the capacity to generate paucimannosidic N-glycans by trimming hybrid/complex type N-glycan intermediates with relative broad substrate specificity. Paucimannosidic N-glycoepitopes showed significant co-localization with β-hexosaminidase A and the azurophilic marker MPO in human neutrophils using immunocytochemistry. Furthermore, promyelocyte stage-specific expression of genes coding for paucimannosidic proteins and biosynthetic enzymes indicated a novel spatio-temporal biosynthetic route in early neutrophil maturation. The absence of bacterial exoglycosidase activities and paucimannosidic N-glycans excluded exogenous origins of paucimannosylation. Paucimannosidic proteins from isolated and sputum neutrophils were preferentially secreted upon inoculation with virulent Pseudomonas aeruginosa. Finally, paucimannosidic proteins displayed affinities to mannose-binding lectin, suggesting immune-related functions of paucimannosylation in activated human neutrophils. In conclusion, we are the first to document that human neutrophils produce, store and, upon activation, selectively secrete bioactive paucimannosidic proteins into sputum of lungs undergoing pathogen-based inflammation.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia,
| | - Vignesh Venkatakrishnan
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia
| | - Ian Loke
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia
| | - Christine Laurini
- the Institute of Nutrition and Food Sciences, University of Bonn, Bonn 53113, Germany, and
| | - Simone Diestel
- the Institute of Nutrition and Food Sciences, University of Bonn, Bonn 53113, Germany, and
| | - Benjamin L Parker
- the Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, New South Wales-2010, Australia
| | - Nicolle H Packer
- From the Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales-2109, Australia
| |
Collapse
|