51
|
Cao J, Wang T, Wang Q, Zheng X, Huang L. Functional Insights Into Protein Acetylation in the Hyperthermophilic Archaeon Sulfolobus islandicus. Mol Cell Proteomics 2019; 18:1572-1587. [PMID: 31182439 PMCID: PMC6683002 DOI: 10.1074/mcp.ra119.001312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/02/2019] [Indexed: 01/03/2023] Open
Abstract
Proteins undergo acetylation at the Nε-amino group of lysine residues and the Nα-amino group of the N terminus in Archaea as in Bacteria and Eukarya. However, the extent, pattern and roles of the modifications in Archaea remain poorly understood. Here we report the proteomic analyses of a wild-type Sulfolobus islandicus strain and its mutant derivative strains lacking either a homolog of the protein acetyltransferase Pat (ΔSisPat) or a homolog of the Nt-acetyltransferase Ard1 (ΔSisArd1). A total of 1708 Nε-acetylated lysine residues in 684 proteins (26% of the total proteins), and 158 Nt-acetylated proteins (44% of the identified proteins) were found in S. islandicus ΔSisArd1 grew more slowly than the parental strain, whereas ΔSisPat showed no significant growth defects. Only 24 out of the 1503 quantifiable Nε-acetylated lysine residues were differentially acetylated, and all but one of the 24 residues were less acetylated by >1.3 fold in ΔSisPat than in the parental strain, indicating the narrow substrate specificity of the enzyme. Six acyl-CoA synthetases were the preferred substrates of SisPat in vivo, suggesting that Nε-acetylation by the acetyltransferase is involved in maintaining metabolic balance in the cell. Acetylation of acyl-CoA synthetases by SisPat occurred at a sequence motif conserved among all three domains of life. On the other hand, 92% of the acetylated N termini identified were acetylated by SisArd1 in the cell. The enzyme exhibited broad substrate specificity and could modify nearly all types of the target N termini of human NatA-NatF. The deletion of the SisArd1 gene altered the cellular levels of 18% of the quantifiable proteins (1518) by >1.5 fold. Consistent with the growth phenotype of ΔSisArd1, the cellular levels of proteins involved in cell division and cell cycle control, DNA replication, and purine synthesis were significantly lowered in the mutant than those in the parental strain.
Collapse
Affiliation(s)
- Jingjing Cao
- ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China; §College of Life Science, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Tongkun Wang
- ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China; §College of Life Science, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qian Wang
- ¶Core Facility of Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaowei Zheng
- ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China; §College of Life Science, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Li Huang
- ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China; §College of Life Science, University of Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
52
|
Chen Y, Li Y. Site-specific determination of lysine acetylation stoichiometries on the proteome-scale. Methods Enzymol 2019; 626:115-132. [PMID: 31606072 DOI: 10.1016/bs.mie.2019.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Posttranslational modification of proteins (PTMs) offers a versatile mechanism to fine-tune the structure, activity, and interactions of the target proteins. Understanding the dynamics and prevalence of the PTM at the site-specific level will provide mechanistic insight into the physiological significance of the modification pathway in cells and diseases. In this chapter, we describe a highly efficient chemical proteomic workflow for the absolute quantification of lysine acetylation stoichiometry. The strategy is capable of measuring the site-specific prevalence of acetylation in a system-wide and untargeted manner. We highlight the importance of validating the workflow using standard proteins and synthetic peptides. Detailed protocols for global stoichiometric analysis of lysine acetylation from cell lysate are presented.
Collapse
Affiliation(s)
- Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN, United States.
| | - Yunan Li
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
53
|
Christensen DG, Xie X, Basisty N, Byrnes J, McSweeney S, Schilling B, Wolfe AJ. Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions. Front Microbiol 2019; 10:1604. [PMID: 31354686 PMCID: PMC6640162 DOI: 10.3389/fmicb.2019.01604] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
Post-translational modifications (PTM) decorate proteins to provide functional heterogeneity to an existing proteome. The large number of known PTMs highlights the many ways that cells can modify their proteins to respond to diverse stimuli. Recently, PTMs have begun to receive increased interest because new sensitive proteomics workflows and structural methodologies now allow researchers to obtain large-scale, in-depth and unbiased information concerning PTM type and site localization. However, few PTMs have been extensively assessed for functional consequences, leaving a large knowledge gap concerning the inner workings of the cell. Here, we review understanding of N-𝜀-lysine acetylation in bacteria, a PTM that was largely ignored in bacteria until a decade ago. Acetylation is a modification that can dramatically change the function of a protein through alteration of its properties, including hydrophobicity, solubility, and surface properties, all of which may influence protein conformation and interactions with substrates, cofactors and other macromolecules. Most bacteria carry genes predicted to encode the lysine acetyltransferases and lysine deacetylases that add and remove acetylations, respectively. Many bacteria also exhibit acetylation activities that do not depend on an enzyme, but instead on direct transfer of acetyl groups from the central metabolites acetyl coenzyme A or acetyl phosphate. Regardless of mechanism, most central metabolic enzymes possess lysines that are acetylated in a regulated fashion and many of these regulated sites are conserved across the spectrum of bacterial phylogeny. The interconnectedness of acetylation and central metabolism suggests that acetylation may be a response to nutrient availability or the energy status of the cell. However, this and other hypotheses related to acetylation remain untested.
Collapse
Affiliation(s)
- David G. Christensen
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Xueshu Xie
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, CA, United States
| | - James Byrnes
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | - Sean McSweeney
- Energy & Photon Sciences Directorate, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, United States
| | | | - Alan J. Wolfe
- Health Sciences Division, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
54
|
Venkat S, Chen H, McGuire P, Stahman A, Gan Q, Fan C. Characterizing lysine acetylation of Escherichia coli type II citrate synthase. FEBS J 2019; 286:2799-2808. [PMID: 30974512 DOI: 10.1111/febs.14845] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/27/2022]
Abstract
The citrate synthase (CS) catalyzes the first reaction of the tricarboxylic acid cycle, playing an important role in central metabolism. The acetylation of lysine residues in the Escherichia coli Type II CS has been identified at multiple sites by proteomic studies, but their effects remain unknown. In this study, we applied the genetic code expansion strategy to generate 10 site-specifically acetylated CS variants which have been identified in nature. Enzyme assays and kinetic analyses showed that lysine acetylation could decrease the overall CS enzyme activity, largely due to the acetylation of K295 which impaired the binding of acetyl-coenzyme A. Further genetic studies as well as in vitro acetylation and deacetylation assays were performed to explore the acetylation and deacetylation processes of the CS, which indicated that the CS could be acetylated by acetyl-phosphate chemically, and be deacetylated by the CobB deacetylase.
Collapse
Affiliation(s)
- Sumana Venkat
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Hao Chen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA
| | - Paige McGuire
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Alleigh Stahman
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.,Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
55
|
Christensen DG, Baumgartner JT, Xie X, Jew KM, Basisty N, Schilling B, Kuhn ML, Wolfe AJ. Mechanisms, Detection, and Relevance of Protein Acetylation in Prokaryotes. mBio 2019; 10:e02708-18. [PMID: 30967470 PMCID: PMC6456759 DOI: 10.1128/mbio.02708-18] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Posttranslational modification of a protein, either alone or in combination with other modifications, can control properties of that protein, such as enzymatic activity, localization, stability, or interactions with other molecules. N-ε-Lysine acetylation is one such modification that has gained attention in recent years, with a prevalence and significance that rival those of phosphorylation. This review will discuss the current state of the field in bacteria and some of the work in archaea, focusing on both mechanisms of N-ε-lysine acetylation and methods to identify, quantify, and characterize specific acetyllysines. Bacterial N-ε-lysine acetylation depends on both enzymatic and nonenzymatic mechanisms of acetylation, and recent work has shed light into the regulation of both mechanisms. Technological advances in mass spectrometry have allowed researchers to gain insight with greater biological context by both (i) analyzing samples either with stable isotope labeling workflows or using label-free protocols and (ii) determining the true extent of acetylation on a protein population through stoichiometry measurements. Identification of acetylated lysines through these methods has led to studies that probe the biological significance of acetylation. General and diverse approaches used to determine the effect of acetylation on a specific lysine will be covered.
Collapse
Affiliation(s)
- D G Christensen
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| | - J T Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - X Xie
- Buck Institute for Research on Aging, Novato, California, USA
| | - K M Jew
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - N Basisty
- Buck Institute for Research on Aging, Novato, California, USA
| | - B Schilling
- Buck Institute for Research on Aging, Novato, California, USA
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California, USA
| | - A J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Health Sciences Division, Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
56
|
Hansen BK, Gupta R, Baldus L, Lyon D, Narita T, Lammers M, Choudhary C, Weinert BT. Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nat Commun 2019; 10:1055. [PMID: 30837475 PMCID: PMC6401094 DOI: 10.1038/s41467-019-09024-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is a reversible posttranslational modification that occurs at thousands of sites on human proteins. However, the stoichiometry of acetylation remains poorly characterized, and is important for understanding acetylation-dependent mechanisms of protein regulation. Here we provide accurate, validated measurements of acetylation stoichiometry at 6829 sites on 2535 proteins in human cervical cancer (HeLa) cells. Most acetylation occurs at very low stoichiometry (median 0.02%), whereas high stoichiometry acetylation (>1%) occurs on nuclear proteins involved in gene transcription and on acetyltransferases. Analysis of acetylation copy numbers show that histones harbor the majority of acetylated lysine residues in human cells. Class I deacetylases target a greater proportion of high stoichiometry acetylation compared to SIRT1 and HDAC6. The acetyltransferases CBP and p300 catalyze a majority (65%) of high stoichiometry acetylation. This resource dataset provides valuable information for evaluating the impact of individual acetylation sites on protein function and for building accurate mechanistic models. Many human proteins are regulated by lysine acetylation, but the degree of acetylation at individual sites is poorly characterized. Here, the authors measure acetylation stoichiometry in the HeLa cell proteome, providing a resource to assess mechanistic constraints on acetylation-mediated protein regulation.
Collapse
Affiliation(s)
- Bogi Karbech Hansen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Rajat Gupta
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Linda Baldus
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, Greifswald, 17487, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - David Lyon
- Disease Systems Biology Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Michael Lammers
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, Greifswald, 17487, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| | - Brian T Weinert
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
57
|
Chen H, Venkat S, Hudson D, Wang T, Gan Q, Fan C. Site-Specifically Studying Lysine Acetylation of Aminoacyl-tRNA Synthetases. ACS Chem Biol 2019; 14:288-295. [PMID: 30642164 DOI: 10.1021/acschembio.8b01013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) charge their cognate tRNAs with corresponding amino acids, playing key roles in ribosomal protein synthesis. A series of proteomic studies have demonstrated that AARSs have levels of lysine acetylation much higher than those of other proteins in Escherichia coli. To study AARS acetylation, 25 site-specifically acetylated variants of four AARSs were generated by the genetic code expansion strategy. Kinetic analyses were performed to biochemically characterize the impact of site-specific acetylation on AARS functions, including amino acid activation, tRNA aminoacylation, and editing activities. The results showed that impacts of acetylation were different between class I and class II AARSs and also varied among the same class of AARSs. The results also showed that acetylation of threonyl-tRNA synthetase (ThrRS) could affect its editing function. Both in vivo and in vitro studies were further performed to explore the acetylation and deacetylation processes of ThrRS. Although nonenzymatic acetylation and CobB-dependent deacetylation were concluded, the results also indicated the existence of additional modifying enzymes or mechanisms for ThrRS acetylation and deacetylation.
Collapse
|
58
|
YfmK is an N ε-lysine acetyltransferase that directly acetylates the histone-like protein HBsu in Bacillus subtilis. Proc Natl Acad Sci U S A 2019; 116:3752-3757. [PMID: 30808761 DOI: 10.1073/pnas.1815511116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nε-lysine acetylation is an abundant and dynamic regulatory posttranslational modification that remains poorly characterized in bacteria. In bacteria, hundreds of proteins are known to be acetylated, but the biological significance of the majority of these events remains unclear. Previously, we characterized the Bacillus subtilis acetylome and found that the essential histone-like protein HBsu contains seven previously unknown acetylation sites in vivo. Here, we investigate whether acetylation is a regulatory component of the function of HBsu in nucleoid compaction. Using mutations that mimic the acetylated and unacetylated forms of the protein, we show that the inability to acetylate key HBsu lysine residues results in a more compacted nucleoid. We further investigated the mechanism of HBsu acetylation. We screened deletions of the ∼50 putative GNAT domain-encoding genes in B. subtilis for their effects on DNA compaction, and identified five candidates that may encode acetyltransferases acting on HBsu. Genetic bypass experiments demonstrated that two of these, YfmK and YdgE, can acetylate Hbsu, and their potential sites of action on HBsu were identified. Additionally, purified YfmK was able to directly acetylate HBsu in vitro, suggesting that it is the second identified protein acetyltransferase in B. subtilis We propose that at least one physiological function of the acetylation of HBsu at key lysine residues is to regulate nucleoid compaction, analogous to the role of histone acetylation in eukaryotes.
Collapse
|
59
|
Abstract
Posttranslational modifications of proteins control many complex biological processes, including genome expression, chromatin dynamics, metabolism, and cell division through a language of chemical modifications. Improvements in mass spectrometry-based proteomics have demonstrated protein acetylation is a widespread and dynamic modification in the cell; however, many questions remain on the regulation and downstream effects, and an assessment of the overall acetylation stoichiometry is needed. In this chapter, we describe the determination of acetylation stoichiometry using data-independent acquisition mass spectrometry to expand the number of acetylation sites quantified. However, the increased depth of data-independent acquisition is limited by the spectral library used to deconvolute fragmentation spectra. We describe a powerful approach of subcellular fractionation in conjunction with offline prefractionation to increase the depth of the spectral library. This deep interrogation of subcellular compartments provides essential insights into the compartment-specific regulation and downstream functions of protein acetylation.
Collapse
|
60
|
Temporal dynamics of liver mitochondrial protein acetylation and succinylation and metabolites due to high fat diet and/or excess glucose or fructose. PLoS One 2018; 13:e0208973. [PMID: 30586434 PMCID: PMC6306174 DOI: 10.1371/journal.pone.0208973] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Dietary macronutrient composition alters metabolism through several mechanisms, including post-translational modification (PTM) of proteins. To connect diet and molecular changes, here we performed short- and long-term feeding of mice with standard chow diet (SCD) and high-fat diet (HFD), with or without glucose or fructose supplementation, and quantified liver metabolites, 861 proteins, and 1,815 protein level-corrected mitochondrial acetylation and succinylation sites. Nearly half the acylation sites were altered by at least one diet; nutrient-specific changes in protein acylation sometimes encompass entire pathways. Although acetyl-CoA is an intermediate in both sugar and fat metabolism, acetyl-CoA had a dichotomous fate depending on its source; chronic feeding of dietary sugars induced protein hyperacetylation, whereas the same duration of HFD did not. Instead, HFD resulted in citrate accumulation, anaplerotic metabolism of amino acids, and protein hypo-succinylation. Together, our results demonstrate novel connections between dietary macronutrients, protein post-translational modifications, and regulation of fuel selection in liver.
Collapse
|
61
|
Li Y, Evers J, Luo A, Erber L, Postler Z, Chen Y. A Quantitative Chemical Proteomics Approach for Site-specific Stoichiometry Analysis of Ubiquitination. Angew Chem Int Ed Engl 2018; 58:537-541. [DOI: 10.1002/anie.201810569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/07/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Yunan Li
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Jonathan Evers
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Zachary Postler
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| |
Collapse
|
62
|
Li Y, Evers J, Luo A, Erber L, Postler Z, Chen Y. A Quantitative Chemical Proteomics Approach for Site-specific Stoichiometry Analysis of Ubiquitination. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yunan Li
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Jonathan Evers
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Zachary Postler
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| |
Collapse
|
63
|
Suzuki S, Kondo N, Yoshida M, Nishiyama M, Kosono S. Dynamic changes in lysine acetylation and succinylation of the elongation factor Tu in Bacillus subtilis. MICROBIOLOGY-SGM 2018; 165:65-77. [PMID: 30394869 DOI: 10.1099/mic.0.000737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nε-lysine acetylation and succinylation are ubiquitous post-translational modifications in eukaryotes and bacteria. In the present study, we showed a dynamic change in acetylation and succinylation of TufA, the translation elongation factor Tu, from Bacillus subtilis. Increased acetylation of TufA was observed during the exponential growth phase in LB and minimal glucose conditions, and its acetylation level decreased upon entering the stationary phase, while its succinylation increased during the late stationary phase. TufA was also succinylated during vegetative growth under minimal citrate or succinate conditions. Mutational analysis showed that triple succinylation mimic mutations at Lys306, Lys308 and Lys316 in domain-3 of TufA had a negative effect on B. subtilis growth, whereas the non-acylation mimic mutations at these three lysine residues did not. Consistent with the growth phenotypes, the triple succinylation mimic mutant showed 67 % decreased translation activity in vitro, suggesting a possibility that succinylation at the lysine residues in domain-3 decreases the translation activity. TufA, including Lys308, was non-enzymatically succinylated by physiological concentrations of succinyl-CoA. Lys42 in the G-domain was identified as the most frequently modified acetylation site, though its acetylation was likely dispensable for TufA translation activity and growth. Determination of the intracellular levels of acetylating substrates and TufA acetylation revealed that acetyl phosphate was responsible for acetylation at several lysine sites of TufA, but not for Lys42 acetylation. It was speculated that acetyl-CoA was likely responsible for Lys42 acetylation, though AcuA acetyltransferase was not involved. Zn2+-dependent AcuC and NAD+-dependent SrtN deacetylases were responsible for deacetylation of TufA, including Lys42. These findings suggest the potential regulatory roles of acetylation and succinylation in controlling TufA function and translation in response to nutrient environments in B. subtilis.
Collapse
Affiliation(s)
- Shota Suzuki
- 1Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoko Kondo
- 1Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Minoru Yoshida
- 2Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,3Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,4RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Makoto Nishiyama
- 1Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,2Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Saori Kosono
- 1Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.,4RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.,2Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
64
|
A Putative Acetylation System in Vibrio cholerae Modulates Virulence in Arthropod Hosts. Appl Environ Microbiol 2018; 84:AEM.01113-18. [PMID: 30143508 DOI: 10.1128/aem.01113-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/19/2018] [Indexed: 12/16/2022] Open
Abstract
Acetylation is a broadly conserved mechanism of covalently modifying the proteome to precisely control protein activity. In bacteria, central metabolic enzymes and regulatory proteins, including those involved in virulence, can be targeted for acetylation. In this study, we directly link a putative acetylation system to metabolite-dependent virulence in the pathogen Vibrio cholerae We demonstrate that the cobB and yfiQ genes, which encode homologs of a deacetylase and an acetyltransferase, respectively, modulate V. cholerae metabolism of acetate, a bacterially derived short-chain fatty acid with important physiological roles in a diversity of host organisms. In Drosophila melanogaster, a model arthropod host for V. cholerae infection, the pathogen consumes acetate within the gastrointestinal tract, which contributes to fly mortality. We show that deletion of cobB impairs growth on acetate minimal medium, delays the consumption of acetate from rich medium, and reduces virulence of V. cholerae toward Drosophila These impacts can be reversed by complementing cobB or by introducing a deletion of yfiQ into the ΔcobB background. We further show that cobB controls the accumulation of triglycerides in the Drosophila midgut, which suggests that cobB directly modulates metabolite levels in vivo In Escherichia coli K-12, yfiQ is upregulated by cAMP-cAMP receptor protein (CRP), and we identified a similar pattern of regulation in V. cholerae, arguing that the system is activated in response to similar environmental cues. In summary, we demonstrate that proteins likely involved in acetylation can modulate the outcome of infection by regulating metabolite exchange between pathogens and their colonized hosts.IMPORTANCE The bacterium Vibrio cholerae causes severe disease in humans, and strains can persist in the environment in association with a wide diversity of host species. By investigating the molecular mechanisms that underlie these interactions, we can better understand constraints affecting the ecology and evolution of this global pathogen. The Drosophila model of Vibrio cholerae infection has revealed that bacterial regulation of acetate and other small metabolites from within the fly gastrointestinal tract is crucial for its virulence. Here, we demonstrate that genes that may modify the proteome of V. cholerae affect virulence toward Drosophila, most likely by modulating central metabolic pathways that control the consumption of acetate as well as other small molecules. These findings further highlight the many layers of regulation that tune bacterial metabolism to alter the trajectory of interactions between bacteria and their hosts.
Collapse
|
65
|
Bao W, Yuan CA, Zhang Y, Han K, Nandi AK, Honig B, Huang DS. Mutli-Features Prediction of Protein Translational Modification Sites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1453-1460. [PMID: 28961121 DOI: 10.1109/tcbb.2017.2752703] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Post translational modification plays a significiant role in the biological processing. The potential post translational modification is composed of the center sites and the adjacent amino acid residues which are fundamental protein sequence residues. It can be helpful to perform their biological functions and contribute to understanding the molecular mechanisms that are the foundations of protein design and drug design. The existing algorithms of predicting modified sites often have some shortcomings, such as lower stability and accuracy. In this paper, a combination of physical, chemical, statistical, and biological properties of a protein have been ulitized as the features, and a novel framework is proposed to predict a protein's post translational modification sites. The multi-layer neural network and support vector machine are invoked to predict the potential modified sites with the selected features that include the compositions of amino acid residues, the E-H description of protein segments, and several properties from the AAIndex database. Being aware of the possible redundant information, the feature selection is proposed in the propocessing step in this research. The experimental results show that the proposed method has the ability to improve the accuracy in this classification issue.
Collapse
|
66
|
James AM, Smith CL, Smith AC, Robinson AJ, Hoogewijs K, Murphy MP. The Causes and Consequences of Nonenzymatic Protein Acylation. Trends Biochem Sci 2018; 43:921-932. [PMID: 30131192 DOI: 10.1016/j.tibs.2018.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022]
Abstract
Thousands of protein acyl modification sites have now been identified in vivo. However, at most sites the acylation stoichiometry is low, making functional enzyme-driven regulation in the majority of cases unlikely. As unmediated acylation can occur on the surface of proteins when acyl-CoA thioesters react with nucleophilic cysteine and lysine residues, slower nonenzymatic processes likely underlie most protein acylation. Here, we review how nonenzymatic acylation of nucleophilic lysine and cysteine residues occurs; the factors that enhance acylation at particular sites; and the strategies that have evolved to limit protein acylation. We conclude that protein acylation is an unavoidable consequence of the central role of reactive thioesters in metabolism. Finally, we propose a hypothesis for why low-stoichiometry protein acylation is selected against by evolution and how it might contribute to degenerative processes such as aging.
Collapse
Affiliation(s)
- Andrew M James
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Cassandra L Smith
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anthony C Smith
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Alan J Robinson
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Kurt Hoogewijs
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK; Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|
67
|
James AM, Smith AC, Smith CL, Robinson AJ, Murphy MP. Proximal Cysteines that Enhance Lysine N-Acetylation of Cytosolic Proteins in Mice Are Less Conserved in Longer-Living Species. Cell Rep 2018; 24:1445-1455. [PMID: 30089256 PMCID: PMC6092265 DOI: 10.1016/j.celrep.2018.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/19/2018] [Accepted: 07/01/2018] [Indexed: 12/29/2022] Open
Abstract
Acetyl-coenzyme A (CoA) is an abundant metabolite that can also alter protein function through non-enzymatic N-acetylation of protein lysines. This N-acetylation is greatly enhanced in vitro if an adjacent cysteine undergoes initial S-acetylation, as this can lead to S→N transfer of the acetyl moiety. Here, using modeled mouse structures of 619 proteins N-acetylated in mouse liver, we show lysine N-acetylation is greater in vivo if a cysteine is within ∼10 Å. Extension to the genomes of 52 other mammalian and bird species shows pairs of proximal cysteine and N-acetylated lysines are less conserved, implying most N-acetylation is detrimental. Supporting this, there is less conservation of cytosolic pairs of proximal cysteine and N-acetylated lysines in species with longer lifespans. As acetyl-CoA levels are linked to nutrient supply, these findings suggest how dietary restriction could extend lifespan and how pathologies resulting from dietary excess may occur.
Collapse
Affiliation(s)
- Andrew M James
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.
| | - Anthony C Smith
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Cassandra L Smith
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Alan J Robinson
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
68
|
Kremer M, Kuhlmann N, Lechner M, Baldus L, Lammers M. Comment on 'YcgC represents a new protein deacetylase family in prokaryotes'. eLife 2018; 7:37798. [PMID: 29939131 PMCID: PMC6023612 DOI: 10.7554/elife.37798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Lysine acetylation is a post-translational modification that is conserved from bacteria to humans. It is catalysed by the activities of lysine acetyltransferases, which use acetyl-CoA as the acetyl-donor molecule, and lysine deacetylases, which remove the acetyl moiety. Recently, it was reported that YcgC represents a new prokaryotic deacetylase family with no apparent homologies to existing deacetylases (Tu et al., 2015). Here we report the results of experiments which demonstrate that YcgC is not a deacetylase.
Collapse
Affiliation(s)
- Magdalena Kremer
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nora Kuhlmann
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marius Lechner
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Linda Baldus
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Michael Lammers
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Greifswald, Germany
| |
Collapse
|
69
|
Wei L, Meyer JG, Schilling B. Quantification of Site-specific Protein Lysine Acetylation and Succinylation Stoichiometry Using Data-independent Acquisition Mass Spectrometry. J Vis Exp 2018. [PMID: 29683460 PMCID: PMC5933372 DOI: 10.3791/57209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Post-translational modification (PTM) of protein lysine residues by NƐ-acylation induces structural changes that can dynamically regulate protein functions, for example, by changing enzymatic activity or by mediating interactions. Precise quantification of site-specific protein acylation occupancy, or stoichiometry, is essential for understanding the functional consequences of both global low-level stoichiometry and individual high-level acylation stoichiometry of specific lysine residues. Other groups have reported measurement of lysine acetylation stoichiometry by comparing the ratio of peptide precursor isotopes from endogenous, natural abundance acylation and exogenous, heavy isotope-labeled acylation introduced after quantitative chemical acetylation of proteins using stable isotope-labeled acetic anhydride. This protocol describes an optimized approach featuring several improvements, including: (1) increased chemical acylation efficiency, (2) the ability to measure protein succinylation in addition to acetylation, and (3) improved quantitative accuracy due to reduced interferences using fragment ion quantification from data-independent acquisitions (DIA) instead of precursor ion signal from data-dependent acquisition (DDA). The use of extracted peak areas from fragment ions for quantification also uniquely enables differentiation of site-level acylation stoichiometry from proteolytic peptides containing more than one lysine residue, which is not possible using precursor ion signals for quantification. Data visualization in Skyline, an open source quantitative proteomics environment, allows for convenient data inspection and review. Together, this workflow offers unbiased, precise, and accurate quantification of site-specific lysine acetylation and succinylation occupancy of an entire proteome, which may reveal and prioritize biologically relevant acylation sites.
Collapse
Affiliation(s)
- Lei Wei
- Buck Institute for Research on Aging
| | | | | |
Collapse
|
70
|
Sun XL, Yang YH, Zhu L, Liu FY, Xu JP, Huang XW, Mo MH, Liu T, Zhang KQ. The lysine acetylome of the nematocidal bacterium Bacillus nematocida and impact of nematode on the acetylome. J Proteomics 2018; 177:31-39. [DOI: 10.1016/j.jprot.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
|
71
|
Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements. J Proteomics 2018; 189:60-66. [PMID: 29605292 DOI: 10.1016/j.jprot.2018.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
Increasing number of studies report the relevance of protein Ser/Thr/Tyr phosphorylation in bacterial physiology, yet the analysis of this type of modification in bacteria still presents a considerable challenge. Unlike in eukaryotes, where tens of thousands of phosphorylation events likely occupy more than two thirds of the proteome, the abundance of protein phosphorylation is much lower in bacteria. Even the state-of-the-art phosphopeptide enrichment protocols fail to remove the high background of abundant unmodified peptides, leading to low signal intensity and undersampling of phosphopeptide precursor ions in consecutive data-dependent MS runs. Consequently, large-scale bacterial phosphoproteomic datasets often suffer from poor reproducibility and a high number of missing values. Here we explore the application of parallel reaction monitoring (PRM) on a Q Exactive mass spectrometer in bacterial phosphoproteome analysis, focusing especially on run-to-run sampling reproducibility. In multiple measurements of identical phosphopeptide-enriched samples, we show that PRM outperforms data-dependent acquisition (DDA) in terms of detection frequency, reaching almost complete sampling efficiency, compared to 20% in DDA. We observe a similar trend over multiple heterogeneous phosphopeptide-enriched samples and conclude that PRM shows a great promise in bacterial phosphoproteomics analyses where reproducible detection and quantification of a relatively small set of phosphopeptides is desired. SIGNIFICANCE: Bacterial phosphorylated peptides occur in low abundance compared to their unmodified counterparts, and are therefore rarely reproducibly detected in shotgun (DDA) proteomics measurements. Here we show that parallel reaction monitoring complements DDA analyses and makes detection of known, targeted phosphopeptides more reproducible. This will be of significance in replicated MS measurements that have a goal to reproducibly detect and quantify phosphopeptides of interest.
Collapse
|
72
|
Carrico C, Meyer JG, He W, Gibson BW, Verdin E. The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications. Cell Metab 2018; 27. [PMID: 29514063 PMCID: PMC5863732 DOI: 10.1016/j.cmet.2018.01.016] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Post-translational modification of lysine residues via reversible acylation occurs on proteins from diverse pathways, functions, and organisms. While nuclear protein acylation reflects the competing activities of enzymatic acyltransferases and deacylases, mitochondrial acylation appears to be driven mostly via a non-enzymatic mechanism. Three protein deacylases, SIRT3, SIRT4, and SIRT5, reside in the mitochondria and remove these modifications from targeted proteins in an NAD+-dependent manner. Recent proteomic surveys of mitochondrial protein acylation have identified the sites of protein acetylation, succinylation, glutarylation, and malonylation and their regulation by SIRT3 and SIRT5. Here, we review recent advances in this rapidly moving field, their biological significance, and their implications for mitochondrial function, metabolic regulation, and disease pathogenesis.
Collapse
Affiliation(s)
- Chris Carrico
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Gladstone Institutes and University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jesse G Meyer
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Wenjuan He
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brad W Gibson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Gladstone Institutes and University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
73
|
Liu YT, Pan Y, Lai F, Yin XF, Ge R, He QY, Sun X. Comprehensive analysis of the lysine acetylome and its potential regulatory roles in the virulence of Streptococcus pneumoniae. J Proteomics 2018; 176:46-55. [DOI: 10.1016/j.jprot.2018.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/18/2018] [Accepted: 01/25/2018] [Indexed: 12/28/2022]
|
74
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
75
|
Liu S, Yu F, Yang Z, Wang T, Xiong H, Chang C, Yu W, Li N. Establishment of Dimethyl Labeling-based Quantitative Acetylproteomics in Arabidopsis. Mol Cell Proteomics 2018; 17:1010-1027. [PMID: 29440448 DOI: 10.1074/mcp.ra117.000530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
Protein acetylation, one of many types of post-translational modifications (PTMs), is involved in a variety of biological and cellular processes. In the present study, we applied both CsCl density gradient (CDG) centrifugation-based protein fractionation and a dimethyl-labeling-based 4C quantitative PTM proteomics workflow in the study of dynamic acetylproteomic changes in Arabidopsis. This workflow integrates the dimethyl chemical labeling with chromatography-based acetylpeptide separation and enrichment followed by mass spectrometry (MS) analysis, the extracted ion chromatogram (XIC) quantitation-based computational analysis of mass spectrometry data to measure dynamic changes of acetylpeptide level using an in-house software program, named Stable isotope-based Quantitation-Dimethyl labeling (SQUA-D), and finally the confirmation of ethylene hormone-regulated acetylation using immunoblot analysis. Eventually, using this proteomic approach, 7456 unambiguous acetylation sites were found from 2638 different acetylproteins, and 5250 acetylation sites, including 5233 sites on lysine side chain and 17 sites on protein N termini, were identified repetitively. Out of these repetitively discovered acetylation sites, 4228 sites on lysine side chain (i.e. 80.5%) are novel. These acetylproteins are exemplified by the histone superfamily, ribosomal and heat shock proteins, and proteins related to stress/stimulus responses and energy metabolism. The novel acetylproteins enriched by the CDG centrifugation fractionation contain many cellular trafficking proteins, membrane-bound receptors, and receptor-like kinases, which are mostly involved in brassinosteroid, light, gravity, and development signaling. In addition, we identified 12 highly conserved acetylation site motifs within histones, P-glycoproteins, actin depolymerizing factors, ATPases, transcription factors, and receptor-like kinases. Using SQUA-D software, we have quantified 33 ethylene hormone-enhanced and 31 hormone-suppressed acetylpeptide groups or called unique PTM peptide arrays (UPAs) that share the identical unique PTM site pattern (UPSP). This CDG centrifugation protein fractionation in combination with dimethyl labeling-based quantitative PTM proteomics, and SQUA-D may be applied in the quantitation of any PTM proteins in any model eukaryotes and agricultural crops as well as tissue samples of animals and human beings.
Collapse
Affiliation(s)
- Shichang Liu
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fengchao Yu
- §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.,¶Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhu Yang
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China.,‖The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| | - Tingliang Wang
- **Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hairong Xiong
- ‡‡College of Life Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Caren Chang
- §§Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland 20742-5815
| | - Weichuan Yu
- §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China; .,¶Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ning Li
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China; .,‖The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
76
|
Davis R, Écija-Conesa A, Gallego-Jara J, de Diego T, Filippova EV, Kuffel G, Anderson WF, Gibson BW, Schilling B, Canovas M, Wolfe AJ. An acetylatable lysine controls CRP function in E. coli. Mol Microbiol 2017; 107:116-131. [PMID: 29105190 DOI: 10.1111/mmi.13874] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 01/02/2023]
Abstract
Transcriptional regulation is the key to ensuring that proteins are expressed at the proper time and the proper amount. In Escherichia coli, the transcription factor cAMP receptor protein (CRP) is responsible for much of this regulation. Questions remain, however, regarding the regulation of CRP activity itself. Here, we demonstrate that a lysine (K100) on the surface of CRP has a dual function: to promote CRP activity at Class II promoters, and to ensure proper CRP steady state levels. Both functions require the lysine's positive charge; intriguingly, the positive charge of K100 can be neutralized by acetylation using the central metabolite acetyl phosphate as the acetyl donor. We propose that CRP K100 acetylation could be a mechanism by which the cell downwardly tunes CRP-dependent Class II promoter activity, whilst elevating CRP steady state levels, thus indirectly increasing Class I promoter activity. This mechanism would operate under conditions that favor acetate fermentation, such as during growth on glucose as the sole carbon source or when carbon flux exceeds the capacity of the central metabolic pathways.
Collapse
Affiliation(s)
- Robert Davis
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Ana Écija-Conesa
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', Murcia, E-30100, Spain
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', Murcia, E-30100, Spain
| | - Teresa de Diego
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', Murcia, E-30100, Spain
| | - Ekaterina V Filippova
- Department of Biochemistry and Molecular Genetics, Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gina Kuffel
- Loyola Genomics Facility, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Wayne F Anderson
- Department of Biochemistry and Molecular Genetics, Center for Structural Genomics of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | | | - Manuel Canovas
- Department of Biochemistry and Molecular Biology (B) and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence ''Campus Mare Nostrum'', Murcia, E-30100, Spain
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| |
Collapse
|
77
|
Abstract
Nε-Lysine acetylation is now recognized as an abundant posttranslational modification (PTM) that influences many essential biological pathways. Advancements in mass spectrometry-based proteomics have led to the discovery that bacteria contain hundreds of acetylated proteins, contrary to the prior notion of acetylation events being rare in bacteria. Although the mechanisms that regulate protein acetylation are still not fully defined, it is understood that this modification is finely tuned via both enzymatic and nonenzymatic mechanisms. The opposing actions of Gcn5-related N-acetyltransferases (GNATs) and deacetylases, including sirtuins, provide the enzymatic control of lysine acetylation. A nonenzymatic mechanism of acetylation has also been demonstrated and proven to be prominent in bacteria, as well as in mitochondria. The functional consequences of the vast majority of the identified acetylation sites remain unknown. From studies in mammalian systems, acetylation of critical lysine residues was shown to impact protein function by altering its structure, subcellular localization, and interactions. It is becoming apparent that the same diversity of functions can be found in bacteria. Here, we review current knowledge of the mechanisms and the functional consequences of acetylation in bacteria. Additionally, we discuss the methods available for detecting acetylation sites, including quantitative mass spectrometry-based methods, which promise to promote this field of research. We conclude with possible future directions and broader implications of the study of protein acetylation in bacteria.
Collapse
|
78
|
Martin AS, Abraham DM, Hershberger KA, Bhatt DP, Mao L, Cui H, Liu J, Liu X, Muehlbauer MJ, Grimsrud PA, Locasale JW, Payne RM, Hirschey MD. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich's ataxia cardiomyopathy model. JCI Insight 2017; 2:93885. [PMID: 28724806 DOI: 10.1172/jci.insight.93885] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/06/2017] [Indexed: 12/23/2022] Open
Abstract
Increasing NAD+ levels by supplementing with the precursor nicotinamide mononucleotide (NMN) improves cardiac function in multiple mouse models of disease. While NMN influences several aspects of mitochondrial metabolism, the molecular mechanisms by which increased NAD+ enhances cardiac function are poorly understood. A putative mechanism of NAD+ therapeutic action exists via activation of the mitochondrial NAD+-dependent protein deacetylase sirtuin 3 (SIRT3). We assessed the therapeutic efficacy of NMN and the role of SIRT3 in the Friedreich's ataxia cardiomyopathy mouse model (FXN-KO). At baseline, the FXN-KO heart has mitochondrial protein hyperacetylation, reduced Sirt3 mRNA expression, and evidence of increased NAD+ salvage. Remarkably, NMN administered to FXN-KO mice restores cardiac function to near-normal levels. To determine whether SIRT3 is required for NMN therapeutic efficacy, we generated SIRT3-KO and SIRT3-KO/FXN-KO (double KO [dKO]) models. The improvement in cardiac function upon NMN treatment in the FXN-KO is lost in the dKO model, demonstrating that the effects of NMN are dependent upon cardiac SIRT3. Coupled with cardio-protection, SIRT3 mediates NMN-induced improvements in both cardiac and extracardiac metabolic function and energy metabolism. Taken together, these results serve as important preclinical data for NMN supplementation or SIRT3 activator therapy in Friedreich's ataxia patients.
Collapse
Affiliation(s)
- Angelical S Martin
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center.,Department of Pharmacology and Cancer Biology
| | - Dennis M Abraham
- Department of Medicine, Division of Cardiology and Duke Cardiovascular Physiology Core, Duke University Medical Center, Durham, North Carolina, USA
| | - Kathleen A Hershberger
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center.,Department of Pharmacology and Cancer Biology
| | - Dhaval P Bhatt
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center
| | - Lan Mao
- Department of Medicine, Division of Cardiology and Duke Cardiovascular Physiology Core, Duke University Medical Center, Durham, North Carolina, USA
| | - Huaxia Cui
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center
| | - Juan Liu
- Department of Pharmacology and Cancer Biology
| | | | - Michael J Muehlbauer
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center
| | - Jason W Locasale
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center.,Department of Pharmacology and Cancer Biology
| | - R Mark Payne
- Department of Medicine, Division of Pediatrics, Indiana University, Indianapolis, Indiana, USA
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center.,Department of Pharmacology and Cancer Biology.,Department of Medicine, Division of Endocrinology, Metabolism, & Nutrition, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|