51
|
Transcriptomics analysis of hulless barley during grain development with a focus on starch biosynthesis. Funct Integr Genomics 2016; 17:107-117. [PMID: 27913887 PMCID: PMC5203864 DOI: 10.1007/s10142-016-0537-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 10/29/2022]
Abstract
Hulless barley, with its unique nutritional value and potential health benefits, has increasingly attracted attentions in recent years. However, the transcription dynamics during hulless barley grain development is not well understood. In the present study, we investigated the transcriptome changes during barley grain development using Illumina paired-end RNA-sequencing. Two datasets of the developing grain transcriptomes from two barley landraces with the differential seed starch synthesis traits were generated, and comparative transcriptome approach in both genotypes was performed. The results showed that 38 differentially expressed genes (DEGs) were found co-modulated in both genotypes during the barley grain development. Of those, the proteins encoded by most of those DGEs were found, such as alpha-amylase-related proteins, lipid-transfer protein, homeodomain leucine zipper (HD-Zip), NUCLEAR FACTOR-Y, subunit B (NF-YBs), as well as MYB transcription factors. More interestingly, two genes Hvulgare_GLEAN_10012370 and Hvulgare_GLEAN_10021199 encoding SuSy, AGPase (Hvulgare_GLEAN_10033640 and Hvulgare_GLEAN_10056301), as well as SBE2b (Hvulgare_GLEAN_10018352) were found to significantly contribute to the regulatory mechanism during grain development in both genotypes. Moreover, six co-expression modules associated with specific biological processes or pathways (M1 to M6) were identified by consensus co-expression network. Significantly enriched pathways of those module genes showed difference in both genotypes. These results will expand our understanding of the complex molecular mechanism of starch synthesis during barley grain development.
Collapse
|
52
|
Analysis of Large Seeds from Three Different Medicago truncatula Ecotypes Reveals a Potential Role of Hormonal Balance in Final Size Determination of Legume Grains. Int J Mol Sci 2016; 17:ijms17091472. [PMID: 27618017 PMCID: PMC5037750 DOI: 10.3390/ijms17091472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 11/16/2022] Open
Abstract
Legume seeds are important as protein and oil source for human diet. Understanding how their final seed size is determined is crucial to improve crop yield. In this study, we analyzed seed development of three accessions of the model legume, Medicago truncatula, displaying contrasted seed size. By comparing two large seed accessions to the reference accession A17, we described mechanisms associated with large seed size determination and potential factors modulating the final seed size. We observed that early events during embryogenesis had a major impact on final seed size and a delayed heart stage embryo development resulted to large seeds. We also observed that the difference in seed growth rate was mainly due to a difference in embryo cell number, implicating a role of cell division rate. Large seed accessions could be explained by an extended period of cell division due to a longer embryogenesis phase. According to our observations and recent reports, we observed that auxin (IAA) and abscisic acid (ABA) ratio could be a key determinant of cell division regulation at the end of embryogenesis. Overall, our study highlights that timing of events occurring during early seed development play decisive role for final seed size determination.
Collapse
|
53
|
Comas J, Benfeitas R, Vilaprinyo E, Sorribas A, Solsona F, Farré G, Berman J, Zorrilla U, Capell T, Sandmann G, Zhu C, Christou P, Alves R. Identification of line-specific strategies for improving carotenoid production in synthetic maize through data-driven mathematical modeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:455-471. [PMID: 27155093 DOI: 10.1111/tpj.13210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
Plant synthetic biology is still in its infancy. However, synthetic biology approaches have been used to manipulate and improve the nutritional and health value of staple food crops such as rice, potato and maize. With current technologies, production yields of the synthetic nutrients are a result of trial and error, and systematic rational strategies to optimize those yields are still lacking. Here, we present a workflow that combines gene expression and quantitative metabolomics with mathematical modeling to identify strategies for increasing production yields of nutritionally important carotenoids in the seed endosperm synthesized through alternative biosynthetic pathways in synthetic lines of white maize, which is normally devoid of carotenoids. Quantitative metabolomics and gene expression data are used to create and fit parameters of mathematical models that are specific to four independent maize lines. Sensitivity analysis and simulation of each model is used to predict which gene activities should be further engineered in order to increase production yields for carotenoid accumulation in each line. Some of these predictions (e.g. increasing Zmlycb/Gllycb will increase accumulated β-carotenes) are valid across the four maize lines and consistent with experimental observations in other systems. Other predictions are line specific. The workflow is adaptable to any other biological system for which appropriate quantitative information is available. Furthermore, we validate some of the predictions using experimental data from additional synthetic maize lines for which no models were developed.
Collapse
Affiliation(s)
- Jorge Comas
- Departament de Ciencies Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomèdica de Lleida IRBLLeida, Edifici de Recerca Biomédica I, Av Rovira Roure 80, Lleida, Catalunya, 25198, Spain
- Computer Science Department and INSPIRES, University of Lleida, Jaume II 69, Lleida, Catalunya, 25001, Spain
| | - Rui Benfeitas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-517, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Ester Vilaprinyo
- Departament de Ciencies Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomèdica de Lleida IRBLLeida, Edifici de Recerca Biomédica I, Av Rovira Roure 80, Lleida, Catalunya, 25198, Spain
| | - Albert Sorribas
- Departament de Ciencies Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
- Institut de Recerca Biomèdica de Lleida IRBLLeida, Edifici de Recerca Biomédica I, Av Rovira Roure 80, Lleida, Catalunya, 25198, Spain
| | - Francesc Solsona
- Computer Science Department and INSPIRES, University of Lleida, Jaume II 69, Lleida, Catalunya, 25001, Spain
| | - Gemma Farré
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida Agrotecnio Center, Avenida Alcalde Rovira Roure 191, Lleida, 25198, Spain
| | - Judit Berman
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida Agrotecnio Center, Avenida Alcalde Rovira Roure 191, Lleida, 25198, Spain
| | - Uxue Zorrilla
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida Agrotecnio Center, Avenida Alcalde Rovira Roure 191, Lleida, 25198, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida Agrotecnio Center, Avenida Alcalde Rovira Roure 191, Lleida, 25198, Spain
| | - Gerhard Sandmann
- Institute of Molecular Bioscience, J. W. Goethe University, Max von Laue Strasse 9, Frankfurt am Main, D-60438, Germany
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida Agrotecnio Center, Avenida Alcalde Rovira Roure 191, Lleida, 25198, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida Agrotecnio Center, Avenida Alcalde Rovira Roure 191, Lleida, 25198, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avancats, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| | - Rui Alves
- Departament de Ciencies Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain.
- Institut de Recerca Biomèdica de Lleida IRBLLeida, Edifici de Recerca Biomédica I, Av Rovira Roure 80, Lleida, Catalunya, 25198, Spain.
| |
Collapse
|
54
|
Zhang F, Hua L, Fei J, Wang F, Liao Y, Fang W, Chen F, Teng N. Chromosome doubling to overcome the chrysanthemum cross barrier based on insight from transcriptomic and proteomic analyses. BMC Genomics 2016; 17:585. [PMID: 27506621 PMCID: PMC4979184 DOI: 10.1186/s12864-016-2939-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/14/2016] [Indexed: 12/05/2022] Open
Abstract
Background Cross breeding is the most commonly used method in chrysanthemum (Chrysanthemum morifolium) breeding; however, cross barriers always exist in these combinations. Many studies have shown that paternal chromosome doubling can often overcome hybridization barriers during cross breeding, although the underlying mechanism has seldom been investigated. Results In this study, we performed two crosses: C. morifolium (pollen receptor) × diploid C. nankingense (pollen donor) and C. morifolium × tetraploid C. nankingense. Seeds were obtained only from the latter cross. RNA-Seq and isobaric tags for relative and absolute quantitation (iTRAQ) were used to investigate differentially expressed genes and proteins during key embryo development stages in the latter cross. A previously performed cross, C. morifolium × diploid C. nankingense, was compared to our results and revealed that transcription factors (i.e., the agamous-like MADS-box protein AGL80 and the leucine-rich repeat receptor protein kinase EXS), hormone-responsive genes (auxin-binding protein 1), genes and proteins related to metabolism (ATP-citrate synthase, citrate synthase and malate dehydrogenase) and other genes reported to contribute to embryo development (i.e., LEA, elongation factor and tubulin) had higher expression levels in the C. morifolium × tetraploid C. nankingense cross. In contrast, genes related to senescence and cell death were down-regulated in the C. morifolium × tetraploid C. nankingense cross. Conclusions The data resources helped elucidate the gene and protein expression profiles and identify functional genes during different development stages. When the chromosomes from the male parent are doubled, the genes contributing to normal embryo developmentare more abundant. However, genes with negative functions were suppressed, suggesting that chromosome doubling may epigenetically inhibit the expression of these genes and allow the embryo to develop normally. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2939-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengjiao Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, China
| | - Lichun Hua
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangsong Fei
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. .,Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing, 210095, China.
| |
Collapse
|
55
|
Oracz K, Stawska M. Cellular Recycling of Proteins in Seed Dormancy Alleviation and Germination. FRONTIERS IN PLANT SCIENCE 2016; 7:1128. [PMID: 27512405 PMCID: PMC4961694 DOI: 10.3389/fpls.2016.01128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/15/2016] [Indexed: 05/24/2023]
Abstract
Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well-documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant's photosynthetic tissues have been well-characterized since many years, but in non-photosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is discussed. Based on the current knowledge the model of cellular recycling of proteins in germinating seeds is also proposed.
Collapse
|
56
|
Parreira J, Bouraada J, Fitzpatrick M, Silvestre S, Bernardes da Silva A, Marques da Silva J, Almeida A, Fevereiro P, Altelaar A, Araújo S. Differential proteomics reveals the hallmarks of seed development in common bean ( Phaseolus vulgaris L.). J Proteomics 2016; 143:188-198. [DOI: 10.1016/j.jprot.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022]
|
57
|
Galili G, Amir R, Fernie AR. The Regulation of Essential Amino Acid Synthesis and Accumulation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:153-78. [PMID: 26735064 DOI: 10.1146/annurev-arplant-043015-112213] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although amino acids are critical for all forms of life, only proteogenic amino acids that humans and animals cannot synthesize de novo and therefore must acquire in their diets are classified as essential. Nine amino acids-lysine, methionine, threonine, phenylalanine, tryptophan, valine, isoleucine, leucine, and histidine-fit this definition. Despite their nutritional importance, several of these amino acids are present in limiting quantities in many of the world's major crops. In recent years, a combination of reverse genetic and biochemical approaches has been used to define the genes encoding the enzymes responsible for synthesizing, degrading, and regulating these amino acids. In this review, we describe recent advances in our understanding of the metabolism of the essential amino acids, discuss approaches for enhancing their levels in plants, and appraise efforts toward their biofortification in crop plants.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Rachel Amir
- Laboratory of Plant Science, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel;
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
58
|
Jimenez-Lopez JC, Zienkiewicz A, Zienkiewicz K, Alché JD, Rodríguez-García MI. Biogenesis of protein bodies during legumin accumulation in developing olive (Olea europaea L.) seed. PROTOPLASMA 2016; 253:517-30. [PMID: 25994087 DOI: 10.1007/s00709-015-0830-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 05/07/2015] [Indexed: 05/15/2023]
Abstract
Much of our current knowledge about seed development and differentiation regarding reserves synthesis and accumulation come from monocot (cereals) plants. Studies in dicotyledonous seeds differentiation are limited to a few species and in oleaginous species are even scarcer despite their agronomic and economic importance. We examined the changes accompanying the differentiation of olive endosperm and cotyledon with a focus on protein bodies (PBs) biogenesis during legumin protein synthesis and accumulation, with the aim of getting insights and a better understanding of the PBs' formation process. Cotyledon and endosperm undergo differentiation during seed development, where an asynchronous time-course of protein synthesis, accumulation, and differential PB formation patterns was found in both tissues. At the end of seed maturation, a broad population of PBs, particularly in cotyledon cells, was distinguishable in terms of number per cell and morphometric and cytochemical features. Olive seed development is a tissue-dependent process characterized by differential rates of legumin accumulation and PB formation in the main tissues integrating seed. One of the main features of the impressive differentiation process is the specific formation of a broad group of PBs, particularly in cotyledon cells, which might depend on selective accumulation and packaging of proteins and specific polypeptides into PBs. The nature and availability of the major components detected in the PBs of olive seed are key parameters in order to consider the potential use of this material as a suitable source of carbon and nitrogen for animal or even human use.
Collapse
Affiliation(s)
- Jose C Jimenez-Lopez
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia.
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, National Council for Scientific Research (CSIC), Profesor Albareda 1, Granada, 18008, Spain.
| | - Agnieszka Zienkiewicz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, National Council for Scientific Research (CSIC), Profesor Albareda 1, Granada, 18008, Spain
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, 87-100, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, 87-100, Poland
| | - Krzysztof Zienkiewicz
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, National Council for Scientific Research (CSIC), Profesor Albareda 1, Granada, 18008, Spain
- Department of Cell Biology, Nicolaus Copernicus University, Toruń, 87-100, Poland
| | - Juan D Alché
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, National Council for Scientific Research (CSIC), Profesor Albareda 1, Granada, 18008, Spain
| | - Maria I Rodríguez-García
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, National Council for Scientific Research (CSIC), Profesor Albareda 1, Granada, 18008, Spain.
| |
Collapse
|
59
|
Wang L, Fu J, Li M, Fragner L, Weckwerth W, Yang P. Metabolomic and Proteomic Profiles Reveal the Dynamics of Primary Metabolism during Seed Development of Lotus (Nelumbo nucifera). FRONTIERS IN PLANT SCIENCE 2016; 7:750. [PMID: 27375629 PMCID: PMC4894879 DOI: 10.3389/fpls.2016.00750] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/17/2016] [Indexed: 05/20/2023]
Abstract
Sacred lotus (Nelumbo nucifera) belongs to the Nelumbonaceae family. Its seeds are widely consumed in Asian countries as snacks or even medicine. Besides the market value, lotus seed also plays a crucial role in the lotus life cycle. Consequently, it is essential to gain a comprehensive understanding of the development of lotus seed. During its development, lotus seed undergoes cell division, expansion, reserve accumulation, desiccation, and maturation phases. We observed morphological and biochemical changes from 10 to 25 days after pollination (DAP) which corresponded to the reserve synthesis and accumulation phase. The volume of the seed expanded until 20 DAP with the color of the seed coat changing from yellow-green to dark green and gradually fading again. Starch and protein rapidly accumulated from 15 to 20 DAP. To further reveal metabolic adaptation, primary metabolites and proteins profiles were obtained using mass spectrometry based platforms. Metabolites and enzymes involved in sugar metabolism, glycolysis, TCA cycle and amino acid metabolism showed sequential dynamics enabling the clear separation of the different metabolic states during lotus seed development. The integration of the data revealed a highly significant metabolic switch at 15 DAP going through a transition of metabolically highly active tissue to the preparation of storage tissue. The results provide a reference data set for the evaluation of primary metabolism during lotus seed development.
Collapse
Affiliation(s)
- Lei Wang
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Jinlei Fu
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Ming Li
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Lena Fragner
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
- Vienna Metabolomics Center, University of ViennaVienna, Austria
- *Correspondence: Pingfang Yang, ; Wolfram Weckwerth,
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- Sino-African Joint Research Center, Chinese Academy of SciencesWuhan, China
- *Correspondence: Pingfang Yang, ; Wolfram Weckwerth,
| |
Collapse
|
60
|
Kang Y, Li M, Sinharoy S, Verdier J. A Snapshot of Functional Genetic Studies in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2016; 7:1175. [PMID: 27555857 PMCID: PMC4977297 DOI: 10.3389/fpls.2016.01175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 07/21/2016] [Indexed: 05/21/2023]
Abstract
In the current context of food security, increase of plant protein production in a sustainable manner represents one of the major challenges of agronomic research, which could be partially resolved by increased cultivation of legume crops. Medicago truncatula is now a well-established model for legume genomic and genetic studies. With the establishment of genomics tools and mutant populations in M. truncatula, it has become an important resource to answer some of the basic biological questions related to plant development and stress tolerance. This review has an objective to overview a decade of genetic studies in this model plant from generation of mutant populations to nowadays. To date, the three biological fields, which have been extensively studied in M. truncatula, are the symbiotic nitrogen fixation, the seed development, and the abiotic stress tolerance, due to their significant agronomic impacts. In this review, we summarize functional genetic studies related to these three major biological fields. We integrated analyses of a nearly exhaustive list of genes into their biological contexts in order to provide an overview of the forefront research advances in this important legume model plant.
Collapse
Affiliation(s)
- Yun Kang
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Minguye Li
- University of Chinese Academy of SciencesBeijing, China
- Shanghai Plant Stress Center, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Senjuti Sinharoy
- Department of Biotechnology, University of CalcuttaCalcutta, India
| | - Jerome Verdier
- Shanghai Plant Stress Center, Shanghai Institutes of Biological Sciences, Chinese Academy of SciencesShanghai, China
- *Correspondence: Jerome Verdier
| |
Collapse
|
61
|
Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N. Legume proteomics: Progress, prospects, and challenges. Proteomics 2015; 16:310-27. [DOI: 10.1002/pmic.201500257] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/19/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Dipak Gayen
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Saurabh Gayali
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| |
Collapse
|
62
|
Ghan R, Van Sluyter SC, Hochberg U, Degu A, Hopper DW, Tillet RL, Schlauch KA, Haynes PA, Fait A, Cramer GR. Five omic technologies are concordant in differentiating the biochemical characteristics of the berries of five grapevine (Vitis vinifera L.) cultivars. BMC Genomics 2015; 16:946. [PMID: 26573226 PMCID: PMC4647476 DOI: 10.1186/s12864-015-2115-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/20/2015] [Indexed: 11/23/2022] Open
Abstract
Background Grape cultivars and wines are distinguishable by their color, flavor and aroma profiles. Omic analyses (transcripts, proteins and metabolites) are powerful tools for assessing biochemical differences in biological systems. Results Berry skins of red- (Cabernet Sauvignon, Merlot, Pinot Noir) and white-skinned (Chardonnay, Semillon) wine grapes were harvested near optimum maturity (°Brix-to-titratable acidity ratio) from the same experimental vineyard. The cultivars were exposed to a mild, seasonal water-deficit treatment from fruit set until harvest in 2011. Identical sample aliquots were analyzed for transcripts by grapevine whole-genome oligonucleotide microarray and RNAseq technologies, proteins by nano-liquid chromatography-mass spectroscopy, and metabolites by gas chromatography-mass spectroscopy and liquid chromatography-mass spectroscopy. Principal components analysis of each of five Omic technologies showed similar results across cultivars in all Omic datasets. Comparison of the processed data of genes mapped in RNAseq and microarray data revealed a strong Pearson’s correlation (0.80). The exclusion of probesets associated with genes with potential for cross-hybridization on the microarray improved the correlation to 0.93. The overall concordance of protein with transcript data was low with a Pearson’s correlation of 0.27 and 0.24 for the RNAseq and microarray data, respectively. Integration of metabolite with protein and transcript data produced an expected model of phenylpropanoid biosynthesis, which distinguished red from white grapes, yet provided detail of individual cultivar differences. The mild water deficit treatment did not significantly alter the abundance of proteins or metabolites measured in the five cultivars, but did have a small effect on gene expression. Conclusions The five Omic technologies were consistent in distinguishing cultivar variation. There was high concordance between transcriptomic technologies, but generally protein abundance did not correlate well with transcript abundance. The integration of multiple high-throughput Omic datasets revealed complex biochemical variation amongst five cultivars of an ancient and economically important crop species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2115-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan Ghan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| | - Steven C Van Sluyter
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| | - Uri Hochberg
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, Midreshet Ben-Gurion, 84990, Israel.
| | - Asfaw Degu
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, Midreshet Ben-Gurion, 84990, Israel.
| | - Daniel W Hopper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| | - Richard L Tillet
- Nevada Center for Bioinformatics, University of Nevada, Reno, Reno, NV, 89557, USA.
| | - Karen A Schlauch
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, 89557, USA. .,Nevada Center for Bioinformatics, University of Nevada, Reno, Reno, NV, 89557, USA.
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| | - Aaron Fait
- Ben-Gurion University of the Negev, Jacob Blaustein Institutes for Desert Research, Midreshet Ben-Gurion, 84990, Israel.
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| |
Collapse
|
63
|
Lambirth KC, Whaley AM, Blakley IC, Schlueter JA, Bost KL, Loraine AE, Piller KJ. A Comparison of transgenic and wild type soybean seeds: analysis of transcriptome profiles using RNA-Seq. BMC Biotechnol 2015; 15:89. [PMID: 26427366 PMCID: PMC4591623 DOI: 10.1186/s12896-015-0207-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/22/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Soybean (Glycine max) has been bred for thousands of years to produce seeds rich in protein for human and animal consumption, making them an appealing bioreactor for producing valuable recombinant proteins at high levels. However, the effects of expressing recombinant protein at high levels on bean physiology are not well understood. To address this, we investigated whether gene expression within transgenic soybean seed tissue is altered when large amounts of recombinant proteins are being produced and stored exclusively in the seeds. We used RNA-Seq to survey gene expression in three transgenic soybean lines expressing recombinant protein at levels representing up to 1.61 % of total protein in seed tissues. The three lines included: ST77, expressing human thyroglobulin protein (hTG), ST111, expressing human myelin basic protein (hMBP), and 764, expressing a mutant, nontoxic form of a staphylococcal subunit vaccine protein (mSEB). All lines selected for analysis were homozygous and contained a single copy of the transgene. METHODS Each transgenic soybean seed was screened for transgene presence and recombinant protein expression via PCR and western blotting. Whole seed mRNA was extracted and cDNA libraries constructed for Illumina sequencing. Following alignment to the soybean reference genome, differential gene expression analysis was conducted using edgeR and cufflinks. Functional analysis of differentially expressed genes was carried out using the gene ontology analysis tool AgriGO. RESULTS The transcriptomes of nine seeds from each transgenic line were sequenced and compared with wild type seeds. Native soybean gene expression was significantly altered in line 764 (mSEB) with more than 3000 genes being upregulated or downregulated. ST77 (hTG) and ST111 (hMBP) had significantly less differences with 52 and 307 differentially expressed genes respectively. Gene ontology enrichment analysis found that the upregulated genes in the 764 line were annotated with functions related to endopeptidase inhibitors and protein synthesis, but suppressed expression of genes annotated to the nuclear pore and to protein transport. No significant gene ontology terms were detected in ST77, and only a few genes involved in photosynthesis and thylakoid functions were downregulated in ST111. Despite these differences, transgenic plants and seeds appeared phenotypically similar to non-transgenic controls. There was no correlation between recombinant protein expression level and the quantity of differentially expressed genes detected. CONCLUSIONS Measurable unscripted gene expression changes were detected in the seed transcriptomes of all three transgenic soybean lines analyzed, with line 764 being substantially altered. Differences detected at the transcript level may be due to T-DNA insert locations, random mutations following transformation or direct effects of the recombinant protein itself, or a combination of these. The physiological consequences of such changes remain unknown.
Collapse
Affiliation(s)
- Kevin C Lambirth
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Adam M Whaley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Ivory C Blakley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
| | - Jessica A Schlueter
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Kenneth L Bost
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC, 28081, USA.
| | - Kenneth J Piller
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
64
|
Alves-Carvalho S, Aubert G, Carrère S, Cruaud C, Brochot AL, Jacquin F, Klein A, Martin C, Boucherot K, Kreplak J, da Silva C, Moreau S, Gamas P, Wincker P, Gouzy J, Burstin J. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1-19. [PMID: 26296678 DOI: 10.1111/tpj.12967] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/09/2015] [Accepted: 07/16/2015] [Indexed: 05/21/2023]
Abstract
Next-generation sequencing technologies allow an almost exhaustive survey of the transcriptome, even in species with no available genome sequence. To produce a Unigene set representing most of the expressed genes of pea, 20 cDNA libraries produced from various plant tissues harvested at various developmental stages from plants grown under contrasting nitrogen conditions were sequenced. Around one billion reads and 100 Gb of sequence were de novo assembled. Following several steps of redundancy reduction, 46 099 contigs with N50 length of 1667 nt were identified. These constitute the 'Caméor' Unigene set. The high depth of sequencing allowed identification of rare transcripts and detected expression for approximately 80% of contigs in each library. The Unigene set is now available online (http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi), allowing (i) searches for pea orthologs of candidate genes based on gene sequences from other species, or based on annotation, (ii) determination of transcript expression patterns using various metrics, (iii) identification of uncharacterized genes with interesting patterns of expression, and (iv) comparison of gene ontology pathways between tissues. This resource has allowed identification of the pea orthologs of major nodulation genes characterized in recent years in model species, as a major step towards deciphering unresolved pea nodulation phenotypes. In addition to a remarkable conservation of the early transcriptome nodulation apparatus between pea and Medicago truncatula, some specific features were highlighted. The resource provides a reference for the pea exome, and will facilitate transcriptome and proteome approaches as well as SNP discovery in pea.
Collapse
Affiliation(s)
- Susete Alves-Carvalho
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Grégoire Aubert
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | | | - Anne-Lise Brochot
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Françoise Jacquin
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Anthony Klein
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Chantal Martin
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Karen Boucherot
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Jonathan Kreplak
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | | | - Sandra Moreau
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | - Pascal Gamas
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | | | - Jérôme Gouzy
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | - Judith Burstin
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| |
Collapse
|
65
|
Garcia CB, Grusak MA. Mineral accumulation in vegetative and reproductive tissues during seed development in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2015; 6:622. [PMID: 26322063 PMCID: PMC4536387 DOI: 10.3389/fpls.2015.00622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/27/2015] [Indexed: 05/29/2023]
Abstract
Enhancing nutrient density in legume seeds is one of several strategies being explored to improve the nutritional quality of the food supply. In order to develop crop varieties with increased seed mineral concentration, a more detailed understanding of mineral translocation within the plant is required. By studying mineral accumulation in different organs within genetically diverse members of the same species, it may be possible to identify variable traits that modulate seed mineral concentration. We utilized two ecotypes (A17 and DZA315.16) of the model legume, Medicago truncatula, to study dry mass and mineral accumulation in the leaves, pod walls, and seeds during reproductive development. The pod wall dry mass was significantly different between the two ecotypes beginning at 12 days after pollination, whereas there was no significant difference in the average dry mass of individual seeds between the two ecotypes at any time point. There were also no significant differences in leaf dry mass between ecotypes; however, we observed expansion of A17 leaves during the first 21 days of pod development, while DZA315.16 leaves did not display a significant increase in leaf area. Mineral profiling of the leaves, pod walls, and seeds highlighted differences in accumulation patterns among minerals within each tissue as well as genotypic differences with respect to individual minerals. Because there were differences in the average seed number per pod, the total seed mineral content per pod was generally higher in A17 than DZA315.16. In addition, mineral partitioning to the seeds tended to be higher in A17 pods. These data revealed that mineral retention within leaves and/or pod walls might attenuate mineral accumulation within the seeds. As a result, strategies to increase seed mineral content should include approaches that will enhance export from these tissues.
Collapse
Affiliation(s)
| | - Michael A. Grusak
- *Correspondence: Michael A. Grusak, Department of Pediatrics, United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| |
Collapse
|
66
|
Li Q, Zhang S, Wang J. Transcriptomic and proteomic analyses of embryogenic tissues in Picea balfouriana treated with 6-benzylaminopurine. PHYSIOLOGIA PLANTARUM 2015; 154:95-113. [PMID: 25200684 DOI: 10.1111/ppl.12276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/07/2014] [Accepted: 07/29/2014] [Indexed: 05/22/2023]
Abstract
The cytokinin 6-benzylaminopurine (6-BAP) influences the embryogenic capacity of the tissues of Picea balfouriana during long subculture (after 3 months). Tissues that proliferate in 3.6 and 5 µM 6-BAP exhibit the highest and lowest embryogenic capacity, respectively, generating 113 ± 6 and 23 ± 3 mature embryos per 100 mg of tissue. In this study, a comparative transcriptomic and proteomic approach was applied to characterize the genes and proteins that are differentially expressed among tissues under the influence of different levels of 6-BAP. A total of 51 375 unigenes and 2617 proteins were obtained after quality filtering. There were 2770 transcripts for proteins found among these unigenes. Gene ontology (GO) analysis of the differentially expressed unigenes and proteins showed that they were involved in cell and binding activity and were enriched in ribosome and glutathione metabolism pathways. Ribosomal proteins, glutathione S-transferase proteins, germin-like proteins and calmodulin-independent protein kinases were up-regulated in the embryogenic tissues with the highest embryogenic ability (treated with 3.6 µM 6-BAP), which was validated via quantitative real-time polymerase chain reaction (qRT-PCR) analysis, and these proteins might serve as molecular markers of embryogenic ability. Data are available via Sequence Read Archive (SRA) and ProteomeXchange with identifier SRP042246 and PXD001022, respectively.
Collapse
Affiliation(s)
- Qingfen Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | | | | |
Collapse
|
67
|
Gupta S, Garg V, Bhatia S. A new set of ESTs from chickpea (Cicer arietinum L.) embryo reveals two novel F-box genes, CarF-box_PP2 and CarF-box_LysM, with potential roles in seed development. PLoS One 2015; 10:e0121100. [PMID: 25803812 PMCID: PMC4372429 DOI: 10.1371/journal.pone.0121100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 02/09/2015] [Indexed: 11/18/2022] Open
Abstract
Considering the economic importance of chickpea (C. arietinum L.) seeds, it is important to understand the mechanisms underlying seed development for which a cDNA library was constructed from 6 day old chickpea embryos. A total of 8,186 ESTs were obtained from which 4,048 high quality ESTs were assembled into 1,480 unigenes that majorly encoded genes involved in various metabolic and regulatory pathways. Of these, 95 ESTs were found to be involved in ubiquitination related protein degradation pathways and 12 ESTs coded specifically for putative F-box proteins. Differential transcript accumulation of these putative F-box genes was observed in chickpea tissues as evidenced by quantitative real-time PCR. Further, to explore the role of F-box proteins in chickpea seed development, two F-box genes were selected for molecular characterization. These were named as CarF-box_PP2 and CarF-box_LysM depending on their C-terminal domains, PP2 and LysM, respectively. Their highly conserved structures led us to predict their target substrates. Subcellular localization experiment revealed that CarF-box_PP2 was localized in the cytoplasm and CarF-box_LysM was localized in the nucleus. We demonstrated their physical interactions with SKP1 protein, which validated that they function as F-box proteins in the formation of SCF complexes. Sequence analysis of their promoter regions revealed certain seed specific cis-acting elements that may be regulating their preferential transcript accumulation in the seed. Overall, the study helped in expanding the EST database of chickpea, which was further used to identify two novel F-box genes having a potential role in seed development.
Collapse
Affiliation(s)
- Shefali Gupta
- National Institute of Plant Genome Research, New Delhi, India
| | - Vanika Garg
- National Institute of Plant Genome Research, New Delhi, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, New Delhi, India
- * E-mail:
| |
Collapse
|
68
|
Proteome analysis of dormancy-released seeds of Fraxinus mandshurica Rupr. in response to re-dehydration under different conditions. Int J Mol Sci 2015; 16:4713-30. [PMID: 25739084 PMCID: PMC4394444 DOI: 10.3390/ijms16034713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 01/18/2023] Open
Abstract
Desiccation tolerance is the ability of orthodox seeds to achieve equilibrium with atmospheric relative humidity and to survive in this state. Understanding how orthodox seeds respond to dehydration is important for improving quality and long-term storage of seeds under low temperature and drought stress conditions. Long-term storage of seeds is an artificial situation, because in most natural situations a seed that has been shed may not remain in a desiccated state for very long, and if dormant it may undergo repeated cycles of hydration. Different types of seeds are differentially sensitive to desiccation and this directly affects long-term storage. For these reasons, many researchers are investigating loss of desiccation tolerance during orthodox seed development to understand how it is acquired. In this study, the orthodox seed proteome response of Fraxinus mandshurica Rupr. to dehydration (to a relative water content of 10%, which mimics seed dehydration) was investigated under four different conditions viz. 20 °C; 20 °C with silica gel; 1 °C; and 1 °C after pretreatment with Ca2+. Proteins from seeds dehydrated under different conditions were extracted and separated by two-dimensional difference gel electrophoresis (2D-DIGE). A total of 2919 protein spots were detected, and high-resolution 2D-DIGE indicated there were 27 differentially expressed. Seven of these were identified using MALDI TOF/TOF mass spectrometry. Inferences from bioinformatics annotations of these proteins established the possible involvement of detoxifying enzymes, transport proteins, and nucleotide metabolism enzymes in response to dehydration. Of the seven differentially abundant proteins, the amounts of six were down-regulated and one was up-regulated. Also, a putative acyl-coenzyme A oxidase of the glyoxylate cycle increased in abundance. In particular, the presence of kinesin-1, a protein important for regulation and cargo interaction, was up-regulated in seeds exposed to low temperature dehydration. Kinesin-1 is present in all major lineages, but it is rarely detected in seed desiccation tolerance of woody species. These observations provide new insight into the proteome of seeds in deep dormancy under different desiccation conditions.
Collapse
|
69
|
Noguero M, Le Signor C, Vernoud V, Bandyopadhyay K, Sanchez M, Fu C, Torres-Jerez I, Wen J, Mysore KS, Gallardo K, Udvardi M, Thompson R, Verdier J. DASH transcription factor impacts Medicago truncatula seed size by its action on embryo morphogenesis and auxin homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:453-66. [PMID: 25492260 PMCID: PMC4329604 DOI: 10.1111/tpj.12742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 05/18/2023]
Abstract
The endosperm plays a pivotal role in the integration between component tissues of molecular signals controlling seed development. It has been shown to participate in the regulation of embryo morphogenesis and ultimately seed size determination. However, the molecular mechanisms that modulate seed size are still poorly understood especially in legumes. DASH (DOF Acting in Seed embryogenesis and Hormone accumulation) is a DOF transcription factor (TF) expressed during embryogenesis in the chalazal endosperm of the Medicago truncatula seed. Phenotypic characterization of three independent dash mutant alleles revealed a role for this TF in the prevention of early seed abortion and the determination of final seed size. Strong loss-of-function alleles cause severe defects in endosperm development and lead to embryo growth arrest at the globular stage. Transcriptomic analysis of dash pods versus wild-type (WT) pods revealed major transcriptional changes and highlighted genes that are involved in auxin transport and perception as mainly under-expressed in dash mutant pods. Interestingly, the exogenous application of auxin alleviated the seed-lethal phenotype, whereas hormonal dosage revealed a much higher auxin content in dash pods compared with WT. Together these results suggested that auxin transport/signaling may be affected in the dash mutant and that aberrant auxin distribution may contribute to the defect in embryogenesis resulting in the final seed size phenotype.
Collapse
Affiliation(s)
- Mélanie Noguero
- INRA, UMR1347 Agroécologie, pôle GEAPSIBP 86510, F-21000, Dijon, France
| | | | - Vanessa Vernoud
- INRA, UMR1347 Agroécologie, pôle GEAPSIBP 86510, F-21000, Dijon, France
| | - Kaustav Bandyopadhyay
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Myriam Sanchez
- INRA, UMR1347 Agroécologie, pôle GEAPSIBP 86510, F-21000, Dijon, France
| | - Chunxiang Fu
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Ivone Torres-Jerez
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Karine Gallardo
- INRA, UMR1347 Agroécologie, pôle GEAPSIBP 86510, F-21000, Dijon, France
| | - Michael Udvardi
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Richard Thompson
- INRA, UMR1347 Agroécologie, pôle GEAPSIBP 86510, F-21000, Dijon, France
| | - Jerome Verdier
- Plant Biology Division, The Samuel Roberts Noble Foundation2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences3888 Chenhua road, 201602, Shanghai, China
- *
For correspondence (e-mail )
| |
Collapse
|
70
|
Li L, Hur M, Lee JY, Zhou W, Song Z, Ransom N, Demirkale CY, Nettleton D, Westgate M, Arendsee Z, Iyer V, Shanks J, Nikolau B, Wurtele ES. A systems biology approach toward understanding seed composition in soybean. BMC Genomics 2015; 16 Suppl 3:S9. [PMID: 25708381 PMCID: PMC4331812 DOI: 10.1186/1471-2164-16-s3-s9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The molecular, biochemical, and genetic mechanisms that regulate the complex metabolic network of soybean seed development determine the ultimate balance of protein, lipid, and carbohydrate stored in the mature seed. Many of the genes and metabolites that participate in seed metabolism are unknown or poorly defined; even more remains to be understood about the regulation of their metabolic networks. A global omics analysis can provide insights into the regulation of seed metabolism, even without a priori assumptions about the structure of these networks. RESULTS With the future goal of predictive biology in mind, we have combined metabolomics, transcriptomics, and metabolic flux technologies to reveal the global developmental and metabolic networks that determine the structure and composition of the mature soybean seed. We have coupled this global approach with interactive bioinformatics and statistical analyses to gain insights into the biochemical programs that determine soybean seed composition. For this purpose, we used Plant/Eukaryotic and Microbial Metabolomics Systems Resource (PMR, http://www.metnetdb.org/pmr, a platform that incorporates metabolomics data to develop hypotheses concerning the organization and regulation of metabolic networks, and MetNet systems biology tools http://www.metnetdb.org for plant omics data, a framework to enable interactive visualization of metabolic and regulatory networks. CONCLUSIONS This combination of high-throughput experimental data and bioinformatics analyses has revealed sets of specific genes, genetic perturbations and mechanisms, and metabolic changes that are associated with the developmental variation in soybean seed composition. Researchers can explore these metabolomics and transcriptomics data interactively at PMR.
Collapse
Affiliation(s)
- Ling Li
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, USA
| | - Manhoi Hur
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, USA
| | - Joon-Yong Lee
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Wenxu Zhou
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Zhihong Song
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Nick Ransom
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa 50011, USA
| | - Mark Westgate
- Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Zebulun Arendsee
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Vidya Iyer
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
| | - Jackie Shanks
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, USA
| | - Basil Nikolau
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, USA
| | - Eve Syrkin Wurtele
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, Iowa 50011, USA
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
71
|
Lafuente A, Pérez-Palacios P, Doukkali B, Molina-Sánchez MD, Jiménez-Zurdo JI, Caviedes MA, Rodríguez-Llorente ID, Pajuelo E. Unraveling the effect of arsenic on the model Medicago-Ensifer interaction: a transcriptomic meta-analysis. THE NEW PHYTOLOGIST 2015; 205:255-272. [PMID: 25252248 DOI: 10.1111/nph.13009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
The genetic regulation underlying the effect of arsenic (As(III)) on the model symbiosis Medicago-Ensifer was investigated using a combination of physiological (split-roots), microscopy and genetic (microarrays, qRT-PCR and composite plants) tools. Nodulation was very sensitive to As(III) (median inhibitory dose (ID50) = 20 μM). The effect on root elongation and on nodulation was local (nonsystemic). A battery of stress (salt, drought, heat shock, metals, etc.)-related genes were induced. Glutathione played a pivotal role in tolerance/detoxification, together with secondary metabolites ((iso)flavonoids and phenylpropanoids). However, antioxidant enzymes were not activated. Concerning the symbiotic interaction, molecular evidence suggesting that rhizobia alleviate As stress is for the first time provided. Chalcone synthase (which is involved in the first step of the legume-rhizobia cross-talk) was strongly enhanced, suggesting that the plants are biased to establish symbiotic interactions under As(III) stress. In contrast, 13 subsequent nodulation genes (involved in nodulation factors (Nod factors) perception, infection, thread initiation and progression, and nodule morphogenesis) were repressed. Overexpression of the ethylene responsive factor ERN in composite plants reduced root stress and partially restored nodulation, whereas overexpression of the early nodulin ENOD12 enhanced nodulation both in the presence and, particularly, in the absence of As, without affecting root elongation. Several transcription factors were identified, which could be additional targets for genetic engineering aiming to improve nodulation and/or alleviate root stress induced by this toxic.
Collapse
Affiliation(s)
- Alejandro Lafuente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, C/ Profesor García González 2, 41012, Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Wang WQ, Liu SJ, Song SQ, Møller IM. Proteomics of seed development, desiccation tolerance, germination and vigor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:1-15. [PMID: 25461695 DOI: 10.1016/j.plaphy.2014.11.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/03/2014] [Indexed: 05/19/2023]
Abstract
Proteomics, the large-scale study of the total complement of proteins in a given sample, has been applied to all aspects of seed biology mainly using model species such as Arabidopsis or important agricultural crops such as corn and rice. Proteins extracted from the sample have typically been separated and quantified by 2-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography and mass spectrometry to identify the proteins in the gel spots. In this way, qualitative and quantitative changes in the proteome during seed development, desiccation tolerance, germination, dormancy release, vigor alteration and responses to environmental factors have all been studied. Many proteins or biological processes potentially important for each seed process have been highlighted by these studies, which greatly expands our knowledge of seed biology. Proteins that have been identified to be particularly important for at least two of the seed processes are involved in detoxification of reactive oxygen species, the cytoskeleton, glycolysis, protein biosynthesis, post-translational modifications, methionine metabolism, and late embryogenesis-abundant (LEA) proteins. It will be useful for molecular biologists and molecular plant breeders to identify and study genes encoding particularly interesting target proteins with the aim to improve the yield, stress tolerance or other critical properties of our crop species.
Collapse
Affiliation(s)
- Wei-Qing Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Song-Quan Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China.
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, DK-4200 Slagelse, Denmark.
| |
Collapse
|
73
|
Liu N, Zhang G, Xu S, Mao W, Hu Q, Gong Y. Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum sativum L.) Seed Development. FRONTIERS IN PLANT SCIENCE 2015; 6:1039. [PMID: 26635856 PMCID: PMC4658420 DOI: 10.3389/fpls.2015.01039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/09/2015] [Indexed: 05/19/2023]
Abstract
Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch) and grain pea (high seed starch and low soluble sugar) revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding.
Collapse
Affiliation(s)
- Na Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Guwen Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Shengchun Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Weihua Mao
- Center of Analysis and Measurement, Zhejiang UniversityHangzhou, China
| | - Qizan Hu
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Yaming Gong
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
- *Correspondence: Yaming Gong
| |
Collapse
|
74
|
Frank A, Cohen H, Hoffman D, Amir R. Methionine and S-methylmethionine exhibit temporal and spatial accumulation patterns during the Arabidopsis life cycle. Amino Acids 2014; 47:497-510. [PMID: 25488426 DOI: 10.1007/s00726-014-1881-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/18/2014] [Indexed: 11/26/2022]
Abstract
Methionine is a nutritionally essential sulfur-containing amino acid found at low levels in plant tissues. Yet, the factors that regulate its synthesis and accumulation in seeds are not fully known. Recent genetic studies demonstrate that Arabidopsis seeds are able to synthesize methionine de novo through the aspartate family pathway similarly to vegetative tissues; however, additional biochemical studies suggest that the S-methylmethionine (SMM) cycle also plays a major role in methionine synthesis in seeds. To better understand the contribution of these two pathways to methionine synthesis, we have sampled various vegetative and reproductive tissues during the Arabidopsis life cycle and determined the contents of soluble and protein-incorporated methionine, SMM, as well as the expression levels of the key genes involved in these two pathways. Our results strengthen the hypothesis that SMM that is produced in the rosette leaves from methionine contributes to methionine accumulation in seeds. However, the SMM cycle may have additional functions in plant tissues since its key genes were expressed in all of the examined tissues, although at different rates. The accumulation patterns of soluble and protein-incorporated methionine during the Arabidopsis life cycle were found to be similar to most of the other amino acids, especially to those belonging to the branched-chain and aromatic amino acids that are produced in chloroplasts together with methionine. This indicates that similar factors regulate the levels of amino acids during development.
Collapse
Affiliation(s)
- Alon Frank
- Laboratory of Plant Science, Migal, Galilee Research Institute Ltd., P.O.B. 831, 11016, Kiryat Shmona, Israel
| | | | | | | |
Collapse
|
75
|
Morisaki A, Yamada N, Yamanaka S, Matsui K. Dimethyl sulfide as a source of the seaweed-like aroma in cooked soybeans and correlation with its precursor, S-methylmethionine (vitamin U). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8289-94. [PMID: 25090616 DOI: 10.1021/jf501614j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Among the soybean germplasm in Japan, two varieties, Nishiyamahitashi 98-5 (NH) and Shinanokurakake (SKK), have an intense seaweed-like flavor after cooking. Gas-liquid chromatography with mass spectrometry (GC-MS) indicated that a significant amount (11.5 ± 3.46 μg g(-1) for NH and 6.66 ± 0.91 μg g(-1) for SKK) of dimethyl sulfide (DMS) was formed after heat treatment. DMS is formed from S-methylmethionine (SMM, vitamin U). SMM was detected in all soybean varieties examined here, but its concentration in NH and SKK seeds was >100-fold higher than in the other varieties and ranged from 75 to 290 μg g(-1). The SMM content and the ability to form DMS upon heat treatment correlated among them. The plumes and radicles contained SMM exclusively. This is the first report of soybean varieties containing SMM at a level equivalent to or higher than that in vegetables known to contain high levels of SMM, for example, turnip, cabbage, and celery.
Collapse
Affiliation(s)
- Akira Morisaki
- Graduate School of Medicine (Agriculture) and Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University , Yamaguchi 753-8515, Japan
| | | | | | | |
Collapse
|
76
|
Soares EL, Shah M, Soares AA, Costa JH, Carvalho P, Domont GB, Nogueira FCS, Campos FAP. Proteome analysis of the inner integument from developing Jatropha curcas L. seeds. J Proteome Res 2014; 13:3562-70. [PMID: 25010673 DOI: 10.1021/pr5004505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we performed a systematic proteomic analysis of the inner integument from developing seeds of Jatropha curcas and further explored the protein machinery responsible for generating the carbon and nitrogen sources to feed the growing embryo and endosperm. The inner integument of developing seeds was dissected into two sections called distal and proximal, and proteins were extracted from these sections and from the whole integument and analyzed using an EASY-nanoLC system coupled to an ESI-LTQ-Orbitrap Velos mass spectrometer. We identified 1526, 1192, and 1062 proteins from the proximal, distal, and whole inner integuments, respectively. The identifications include those of peptidases and other hydrolytic enzymes that play a key role in developmental programmed cell death and proteins associated with the cell-wall architecture and modification. Because many of these proteins are differentially expressed within the integument cell layers, these findings suggest that the cells mobilize an array of hydrolases to produce carbon and nitrogen sources from proteins, carbohydrates, and lipids available within the cells. Not least, the identification of several classes of seed storage proteins in the inner integument provides additional evidence of the role of the seed coat as a transient source of reserves for the growing embryo and endosperm.
Collapse
Affiliation(s)
- Emanoella L Soares
- Department of Biochemistry and Molecular Biology, Federal University of Ceara , Campus do Pici - Bl. 907, Fortaleza 60455-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Staszak AM, Pawłowski TA. Proteomic analysis of embryogenesis and the acquisition of seed dormancy in Norway maple (Acer platanoides L.). Int J Mol Sci 2014; 15:10868-91. [PMID: 24941250 PMCID: PMC4100186 DOI: 10.3390/ijms150610868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/16/2014] [Accepted: 05/30/2014] [Indexed: 12/16/2022] Open
Abstract
The proteome of zygotic embryos of Acer platanoides L. was analyzed via high-resolution 2D-SDS-PAGE and MS/MS in order to: (1) identify significant physiological processes associated with embryo development; and (2) identify changes in the proteome of the embryo associated with the acquisition of seed dormancy. Seventeen spots were identified as associated with morphogenesis at 10 to 13 weeks after flowering (WAF). Thirty-three spots were associated with maturation of the embryo at 14 to 22 WAF. The greatest changes in protein abundance occurred at 22 WAF, when seeds become fully mature. Overall, the stage of morphogenesis was characterized by changes in the abundance of proteins (tubulins and actin) associated with the growth and development of the embryo. Enzymes related to energy supply were especially elevated, most likely due to the energy demand associated with rapid growth and cell division. The stage of maturation is crucial to the establishment of seed dormancy and is associated with a higher abundance of proteins involved in genetic information processing, energy and carbon metabolism and cellular and antioxidant processes. Results indicated that a glycine-rich RNA-binding protein and proteasome proteins may be directly involved in dormancy acquisition control, and future studies are warranted to verify this association.
Collapse
|
78
|
Tegeder M. Transporters involved in source to sink partitioning of amino acids and ureides: opportunities for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1865-78. [PMID: 24489071 DOI: 10.1093/jxb/eru012] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In most plant species, amino acids are the predominant chemical forms in which nitrogen is transported. However, in nodulated tropical or subtropical legumes, ureides are the main nitrogen transport compounds. This review describes the partitioning of amino acids and ureides within the plant, and follows their movement from the location of synthesis (source) to the sites of usage (sink). Xylem and phloem connect source and sink organs and serve as routes for long-distance transport of the organic nitrogen. Loading and unloading of these transport pathways might require movement of amino acids and ureides across cell membranes, a task that is mediated by membrane proteins (i.e. transporters) functioning as export or import systems. The current knowledge on amino acid and ureide transporters involved in long-distance transport of nitrogen is provided and their importance for source and sink physiology discussed. The review concludes by exploring possibilities for genetic manipulation of organic nitrogen transporter activities to confer increases in crop productivity.
Collapse
Affiliation(s)
- Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
79
|
Liu T, Chen JA, Wang W, Simon M, Wu F, Hu W, Chen JB, Zheng H. A combined proteomic and transcriptomic analysis on sulfur metabolism pathways of Arabidopsis thaliana under simulated acid rain. PLoS One 2014; 9:e90120. [PMID: 24595051 PMCID: PMC3940841 DOI: 10.1371/journal.pone.0090120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/27/2014] [Indexed: 11/30/2022] Open
Abstract
With rapid economic development, most regions in southern China have suffered acid rain (AR) pollution. In our study, we analyzed the changes in sulfur metabolism in Arabidopsis under simulated AR stress which provide one of the first case studies, in which the systematic responses in sulfur metabolism were characterized by high-throughput methods at different levels including proteomic, genomic and physiological approaches. Generally, we found that all of the processes related to sulfur metabolism responded to AR stress, including sulfur uptake, activation and also synthesis of sulfur-containing amino acid and other secondary metabolites. Finally, we provided a catalogue of the detected sulfur metabolic changes and reconstructed the coordinating network of their mutual influences. This study can help us to understand the mechanisms of plants to adapt to AR stress.
Collapse
Affiliation(s)
- Tingwu Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
- Department of Biology, Huaiyin Normal University, Huaian, Jiangsu, P. R. China
| | - Juan A. Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Wenhua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Martin Simon
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Feihua Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Wenjun Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Juan B. Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
| | - Hailei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, P. R. China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, P. R. China
- * E-mail:
| |
Collapse
|
80
|
D'Hooghe P, Dubousset L, Gallardo K, Kopriva S, Avice JC, Trouverie J. Evidence for proteomic and metabolic adaptations associated with alterations of seed yield and quality in sulfur-limited Brassica napus L. Mol Cell Proteomics 2014; 13:1165-83. [PMID: 24554741 DOI: 10.1074/mcp.m113.034215] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In Brassica napus, seed yield and quality are related to sulfate availability, but the seed metabolic changes in response to sulfate limitation remain largely unknown. To address this question, proteomics and biochemical studies were carried out on mature seeds obtained from plants grown under low sulfate applied at the bolting (LS32), early flowering (LS53), or start of pod filling (LS70) stage. The protein quality of all low-sulfate seeds was reduced and associated with a reduction of S-rich seed storage protein accumulation (as Cruciferin Cru4) and an increase of S-poor seed storage protein (as Cruciferin BnC1). This compensation allowed the protein content to be maintained in LS70 and LS53 seeds but was not sufficient to maintain the protein content in LS32 seeds. The lipid content and quality of LS53 and LS32 seeds were also affected, and these effects were primarily associated with a reduction of C18-derivative accumulation. Proteomics changes related to lipid storage, carbohydrate metabolism, and energy (reduction of caleosins, phosphoglycerate kinase, malate synthase, ATP-synthase β-subunit, and thiazole biosynthetic enzyme THI1 and accumulation of β-glucosidase and citrate synthase) provide insights into processes that may contribute to decreased oil content and altered lipid composition (in favor of long-chain fatty acids in LS53 and LS32 seeds). These data indicate that metabolic changes associated with S limitation responses affect seed storage protein composition and lipid quality. Proteins involved in plant stress response, such as dehydroascorbate reductase and Cu/Zn-superoxide dismutase, were also accumulated in LS53 and LS32 seeds, and this might be a consequence of reduced glutathione content under low S availability. LS32 treatment also resulted in (i) reduced germination vigor, as evidenced by lower germination indexes, (ii) reduced seed germination capacity, related to a lower seed viability, and (iii) a strong decrease of glyoxysomal malate synthase, which is essential for the use of fatty acids during seedling establishment.
Collapse
|
81
|
Teyssier C, Maury S, Beaufour M, Grondin C, Delaunay A, Le Metté C, Ader K, Cadene M, Label P, Lelu-Walter MA. In search of markers for somatic embryo maturation in hybrid larch (Larix × eurolepis): global DNA methylation and proteomic analyses. PHYSIOLOGIA PLANTARUM 2014; 150:271-91. [PMID: 23789891 DOI: 10.1111/ppl.12081] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/08/2013] [Accepted: 05/28/2013] [Indexed: 05/22/2023]
Abstract
A global DNA methylation and proteomics approach was used to investigate somatic embryo maturation in hybrid larch. Each developmental step during somatic embryogenesis was associated with a distinct and significantly different global DNA methylation level: from 45.8% mC for undifferentiated somatic embryos (1-week proliferation) to 61.5% mC for immature somatic embryos (1-week maturation), while maturation was associated with a decrease in DNA methylation to 53.4% for mature cotyledonary somatic embryos (8-weeks maturation). The presence of 5-azacytidine (hypo-methylating agent) or hydroxyurea (hyper-methylating agent) in the maturation medium altered the global DNA methylation status of the embryogenic cultures, and significantly reduced both their relative growth rate and embryogenic potential, suggesting an important role for DNA methylation in embryogenesis. Maturation was also assessed by examining changes in the total protein profile. Storage proteins, identified as legumin- and vicilin-like, appeared at the precotyledonary stage. In the proteomic study, total soluble proteins were extracted from embryos after 1 and 8 weeks of maturation, and separated by two-dimensional gel electrophoresis. There were 147 spots which showed significant differences between the stages of maturation; they were found to be involved mainly in primary metabolism and the stabilization of the resulting metabolites. This indicated that the somatic embryo was still metabolically active at 8 weeks of maturation. This is the first report of analyses of global DNA methylation (including the effects of hyper- and hypo-treatments) and proteome during somatic embryogenesis in hybrid larch, and thus provides novel insights into maturation of conifer somatic embryos.
Collapse
Affiliation(s)
- Caroline Teyssier
- INRA, UR 0588, Research Unit for Breeding, Genetics and Physiology of Forest Trees, Orléans, F-45075, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Pradhan S, Bandhiwal N, Shah N, Kant C, Gaur R, Bhatia S. Global transcriptome analysis of developing chickpea (Cicer arietinum L.) seeds. FRONTIERS IN PLANT SCIENCE 2014; 5:698. [PMID: 25566273 PMCID: PMC4267183 DOI: 10.3389/fpls.2014.00698] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/24/2014] [Indexed: 05/20/2023]
Abstract
Understanding developmental processes, especially in non-model crop plants, is extremely important in order to unravel unique mechanisms regulating development. Chickpea (C. arietinum L.) seeds are especially valued for their high carbohydrate and protein content. Therefore, in order to elucidate the mechanisms underlying seed development in chickpea, deep sequencing of transcriptomes from four developmental stages was undertaken. In this study, next generation sequencing platform was utilized to sequence the transcriptome of four distinct stages of seed development in chickpea. About 1.3 million reads were generated which were assembled into 51,099 unigenes by merging the de novo and reference assemblies. Functional annotation of the unigenes was carried out using the Uniprot, COG and KEGG databases. RPKM based digital expression analysis revealed specific gene activities at different stages of development which was validated using Real time PCR analysis. More than 90% of the unigenes were found to be expressed in at least one of the four seed tissues. DEGseq was used to determine differentially expressing genes which revealed that only 6.75% of the unigenes were differentially expressed at various stages. Homology based comparison revealed 17.5% of the unigenes to be putatively seed specific. Transcription factors were predicted based on HMM profiles built using TF sequences from five legume plants and analyzed for their differential expression during progression of seed development. Expression analysis of genes involved in biosynthesis of important secondary metabolites suggested that chickpea seeds can serve as a good source of antioxidants. Since transcriptomes are a valuable source of molecular markers like simple sequence repeats (SSRs), about 12,000 SSRs were mined in chickpea seed transcriptome and few of them were validated. In conclusion, this study will serve as a valuable resource for improved chickpea breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Sabhyata Bhatia
- *Correspondence: Sabhyata Bhatia, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi 110067, India e-mail:
| |
Collapse
|
83
|
Smýkal P, Vernoud V, Blair MW, Soukup A, Thompson RD. The role of the testa during development and in establishment of dormancy of the legume seed. FRONTIERS IN PLANT SCIENCE 2014; 5:351. [PMID: 25101104 PMCID: PMC4102250 DOI: 10.3389/fpls.2014.00351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/30/2014] [Indexed: 05/19/2023]
Abstract
Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the "domestication syndrome." Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on structural and chemical aspects.
Collapse
Affiliation(s)
- Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacký University in OlomoucOlomouc, Czech Republic
- *Correspondence: Petr Smýkal, Department of Botany, Faculty of Sciences, Palacký University in Olomouc, Šlechtitelů 11, 783 71 Olomouc, Czech Republic e-mail:
| | | | - Matthew W. Blair
- Department of Agricultural and Environmental Sciences, Tennessee State UniversityNashville, TN, USA
| | - Aleš Soukup
- Department of Experimental Plant Biology, Charles UniversityPrague, Czech Republic
| | | |
Collapse
|
84
|
Wang WQ, Ye JQ, Rogowska-Wrzesinska A, Wojdyla KI, Jensen ON, Møller IM, Song SQ. Proteomic Comparison between Maturation Drying and Prematurely Imposed Drying of Zea mays Seeds Reveals a Potential Role of Maturation Drying in Preparing Proteins for Seed Germination, Seedling Vigor, and Pathogen Resistance. J Proteome Res 2013; 13:606-26. [DOI: 10.1021/pr4007574] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei-Qing Wang
- Key
Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Jian-Qing Ye
- Key
Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Katarzyna I. Wojdyla
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ole Nørregaard Jensen
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ian Max Møller
- Department
of Molecular Biology and Genetics, Aarhus University, Flakkebjerg,
Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Song-Quan Song
- Key
Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China
| |
Collapse
|
85
|
Matityahu I, Godo I, Hacham Y, Amir R. Tobacco seeds expressing feedback-insensitive cystathionine gamma-synthase exhibit elevated content of methionine and altered primary metabolic profile. BMC PLANT BIOLOGY 2013; 13:206. [PMID: 24314105 PMCID: PMC3878949 DOI: 10.1186/1471-2229-13-206] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/03/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND The essential sulfur-containing amino acid methionine plays a vital role in plant metabolism and human nutrition. In this study, we aimed to elucidate the regulatory role of the first committed enzyme in the methionine biosynthesis pathway, cystathionine γ-synthase (CGS), on methionine accumulation in tobacco seeds. We also studied the effect of this manipulation on the seed's metabolism. RESULTS Two forms of Arabidopsis CGS (AtCGS) were expressed under the control of the seeds-specific promoter of legumin B4: feedback-sensitive F-AtCGS (LF seeds), and feedback-insensitive T-AtCGS (LT seeds). Unexpectedly, the soluble content of methionine was reduced significantly in both sets of transgenic seeds. Amino acids analysis and feeding experiments indicated that although the level of methionine was reduced, the flux through its synthesis had increased. As a result, the level of protein-incorporated methionine had increased significantly in LT seeds by up to 60%, but this was not observed in LF seeds, whose methionine content is tightly regulated. This increase was accompanied by a higher content of other protein-incorporated amino acids, which led to 27% protein content in the seeds although this was statistically insignificantly. In addition, the levels of reducing sugars (representing starch) were slightly but significantly reduced, while that of oil was insignificantly reduced. To assess the impact of the high expression level of T-AtCGS in seeds on other primary metabolites, metabolic profiling using GC-MS was performed. This revealed significant alterations to the primary seed metabolism manifested by a significant increase in eight annotated metabolites (mostly sugars and their oxidized derivatives), while the levels of 12 other metabolites were reduced significantly in LT compared to wild-type seeds. CONCLUSION Expression of T-AtCGS leads to an increase in the level of total Met, higher contents of total amino acids, and significant changes in the levels of 20 annotated metabolites. The high level of oxidized metabolites, the two stress-associated amino acids, proline and serine, and low level of glutathione suggest oxidative stress that occurs during LT seed development. This study provides information on the metabolic consequence of increased CGS activity in seeds and how it affects the seed's nutritional quality.
Collapse
Affiliation(s)
- Ifat Matityahu
- Laboratory of Plant Science, Migal Galilee Technology Center, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Itamar Godo
- Laboratory of Plant Science, Migal Galilee Technology Center, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Yael Hacham
- Laboratory of Plant Science, Migal Galilee Technology Center, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Rachel Amir
- Laboratory of Plant Science, Migal Galilee Technology Center, P.O. Box 831, Kiryat Shmona 12100, Israel
- Tel Hai College, Upper Galilee, Israel
| |
Collapse
|
86
|
Zuber H, Poignavent G, Le Signor C, Aimé D, Vieren E, Tadla C, Lugan R, Belghazi M, Labas V, Santoni AL, Wipf D, Buitink J, Avice JC, Salon C, Gallardo K. Legume adaptation to sulfur deficiency revealed by comparing nutrient allocation and seed traits in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:982-96. [PMID: 24118112 DOI: 10.1111/tpj.12350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 05/11/2023]
Abstract
Reductions in sulfur dioxide emissions and the use of sulfur-free mineral fertilizers are decreasing soil sulfur levels and threaten the adequate fertilization of most crops. To provide knowledge regarding legume adaptation to sulfur restriction, we subjected Medicago truncatula, a model legume species, to sulfur deficiency at various developmental stages, and compared the yield, nutrient allocation and seed traits. This comparative analysis revealed that sulfur deficiency at the mid-vegetative stage decreased yield and altered the allocation of nitrogen and carbon to seeds, leading to reduced levels of major oligosaccharides in mature seeds, whose germination was dramatically affected. In contrast, during the reproductive period, sulfur deficiency had little influence on yield and nutrient allocation, but the seeds germinated slowly and were characterized by low levels of a biotinylated protein, a putative indicator of germination vigor that has not been previously related to sulfur nutrition. Significantly, plants deprived of sulfur at an intermediary stage (flowering) adapted well by remobilizing nutrients from source organs to seeds, ensuring adequate quantities of carbon and nitrogen in seeds. This efficient remobilization of photosynthates may be explained by vacuolar sulfate efflux to maintain leaf metabolism throughout reproductive growth, as suggested by transcript and metabolite profiling. The seeds from these plants, deprived of sulfur at the floral transition, contained normal levels of major oligosaccharides but their germination was delayed, consistent with low levels of sucrose and the glycolytic enzymes required to restart seed metabolism during imbibition. Overall, our findings provide an integrative view of the legume response to sulfur deficiency.
Collapse
Affiliation(s)
- Hélène Zuber
- Institut National de la Recherche Agronomique, UMR 1347 Agroécologie, BP 86510, F-21000, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Wang J, Lan P, Gao H, Zheng L, Li W, Schmidt W. Expression changes of ribosomal proteins in phosphate- and iron-deficient Arabidopsis roots predict stress-specific alterations in ribosome composition. BMC Genomics 2013; 14:783. [PMID: 24225185 PMCID: PMC3830539 DOI: 10.1186/1471-2164-14-783] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022] Open
Abstract
Background Ribosomes are essential ribonucleoprotein complexes that are engaged in translation and thus indispensable for growth. Arabidopsis thaliana ribosomes are composed of 80 distinct ribosomal proteins (RPs), each of which is encoded by two to seven highly similar paralogous genes. Little information is available on how RP genes respond to a shortage of essential mineral nutrients such as phosphate (Pi) or iron (Fe). In the present study, the expression of RP genes and the differential accumulation of RPs upon Pi or Fe deficiency in Arabidopsis roots were comprehensively analyzed. Results Comparison of 3,106 Pi-responsive genes with 3,296 Fe-responsive genes revealed an overlap of 579 genes that were differentially expressed under both conditions in Arabidopsis roots. Gene ontology (GO) analysis revealed that these 579 genes were mainly associated with abiotic stress responses. Among the 247 RP genes retrieved from the TAIR10 release of the Arabidopsis genome (98 small subunit RP genes, 143 large subunit RP genes and six ribosome-related genes), seven RP genes were not detected in Arabidopsis roots by RNA sequencing under control conditions. Transcripts from 20 and 100 RP genes showed low and medium abundance, respectively; 120 RP genes were highly expressed in Arabidopsis roots. As anticipated, gene ontology (GO) analysis indicated that most RP genes were related to translation and ribosome assembly, but some of the highly expressed RP genes were also involved in the responses to cold, UV-B, and salt stress. Only three RP genes derived from three ‘sets’ of paralogous genes were differentially expressed between Pi-sufficient and Pi-deficient roots, all of which were induced by Pi starvation. In Fe-deficient plants, 81 RP genes from 51 ’sets’ of paralagous RP genes were significantly down-regulated in response to Fe deficiency. The biological processes ’translation’ (GO: 0006412), ’ribosome biogenesis (GO: 0042254), and ’response to salt (GO: 0009651), cold (GO: 0009409), and UV-B stresses (GO: 0071493)’ were enriched in this subset of RP genes. At the protein level, 21 and two RPs accumulated differentially under Pi- and Fe-deficient conditions, respectively. Neither the differentially expressed RP genes nor the differentially expressed RPs showed any overlap between the two growth types. Conclusions In the present study three and 81 differentially expressed RP genes were identified under Pi and Fe deficiency, respectively. At protein level, 21 and two RP proteins were differentially accumulated under Pi- and Fe-deficient conditions. Our study shows that the expression of paralogous genes encoding RPs was regulated in a stress-specific manner in Arabidopsis roots, presumably resulting in an altered composition of ribosomes and biased translation. These findings may aid in uncovering an unexplored mechanism by which plants adapt to changing environmental conditions.
Collapse
Affiliation(s)
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China.
| | | | | | | | | |
Collapse
|
88
|
Zhu W, Zhang E, Li H, Chen X, Zhu F, Hong Y, Liao B, Liu S, Liang X. Comparative proteomics analysis of developing peanut aerial and subterranean pods identifies pod swelling related proteins. J Proteomics 2013; 91:172-87. [DOI: 10.1016/j.jprot.2013.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/29/2013] [Accepted: 07/01/2013] [Indexed: 11/15/2022]
|
89
|
Qu C, Fu F, Lu K, Zhang K, Wang R, Xu X, Wang M, Lu J, Wan H, Zhanglin T, Li J. Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2885-98. [PMID: 23698630 PMCID: PMC3697950 DOI: 10.1093/jxb/ert148] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Developing yellow-seeded Brassica napus (rapeseed) with improved qualities is a major breeding goal. The intermediate and final metabolites of the phenylpropanoid and flavonoid pathways affect not only oil quality but also seed coat colour of B. napus. Here, the accumulation of phenolic compounds was analysed in the seed coats of black-seeded (ZY821) and yellow-seeded (GH06) B. napus. Using toluidine blue O staining and liquid chromatography-mass spectrometry, histochemical and biochemical differences were identified in the accumulation of phenolic compounds between ZY821 and GH06. Two and 13 unique flavonol derivatives were detected in ZY821 and GH06, respectively. Quantitative real-time PCR analysis revealed significant differences between ZY821 and GH06 in the expression of common phenylpropanoid biosynthetic genes (BnPAL and BnC4H), common flavonoid biosynthetic genes (BnTT4 and BnTT6), anthocyanin- and proanthocyandin-specific genes (BnTT3 and BnTT18), proanthocyandin-specific genes (BnTT12, BnTT10, and BnUGT2) and three transcription factor genes (BnTTG1, BnTTG2, and BnTT8) that function in the flavonoid biosynthetic pathway. These data provide insight into pigment accumulation in B. napus, and serve as a useful resource for researchers analysing the formation of seed coat colour and the underlying regulatory mechanisms in B. napus.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- *These authors contributed equally to this work
| | - Fuyou Fu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, S7N 02X, Saskatoon Saskatchewan, Canada
- *These authors contributed equally to this work
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- *These authors contributed equally to this work
| | - Kai Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Min Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Junxing Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Huafang Wan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Tang Zhanglin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
90
|
White BL, Gökce E, Nepomuceno AI, Muddiman DC, Sanders TH, Davis JP. Comparative proteomic analysis and IgE binding properties of peanut seed and testa (skin). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3957-3968. [PMID: 23534881 DOI: 10.1021/jf400184y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To investigate the protein composition and potential allergenicity of peanut testae or skins, proteome analysis was conducted using nanoLC-MS/MS sequencing. Initial amino acid analysis suggested differences in protein compositions between the blanched seed (skins removed) and skin. Phenolic compounds hindered analysis of proteins in skins when the conventional extraction method was used; therefore, phenol extraction of proteins was necessary. A total of 123 proteins were identified in blanched seed and skins, and 83 of the proteins were common between the two structures. The skins contained all of the known peanut allergens in addition to 38 proteins not identified in the seed. Multiple defense proteins with antifungal activity were identified in the skins. Western blotting using sera from peanut-allergic patients revealed that proteins extracted from both the blanched seed and skin bound significant levels of IgE. However, when phenolic compounds were present in the skin protein extract, no IgE binding was observed. These findings indicate that peanut skins contain potentially allergenic proteins; however, the presence of phenolic compounds may attenuate this effect.
Collapse
Affiliation(s)
- Brittany L White
- Market Quality and Handling Research Unit, Agricultural Research Service, U.S. Department of Agriculture , Raleigh, North Carolina 27695, United States
| | | | | | | | | | | |
Collapse
|
91
|
Song S, Hou W, Godo I, Wu C, Yu Y, Matityahu I, Hacham Y, Sun S, Han T, Amir R. Soybean seeds expressing feedback-insensitive cystathionine γ-synthase exhibit a higher content of methionine. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1917-26. [PMID: 23530130 DOI: 10.1093/jxb/ert053] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Soybean seeds provide an excellent source of protein for human and livestock nutrition. However, their nutritional quality is hampered by a low concentration of the essential sulfur amino acid, methionine (Met). In order to study factors that regulate Met synthesis in soybean seeds, this study used the Met-insensitive form of Arabidopsis cystathionine γ-synthase (AtD-CGS), which is the first committed enzyme of Met biosynthesis. This gene was expressed under the control of a seed-specific promoter, legumin B4, and used to transform the soybean cultivar Zigongdongdou (ZD). In three transgenic lines that exhibited the highest expression level of AtD-CGS, the level of soluble Met increased significantly in developing green seeds (3.8-7-fold). These seeds also showed high levels of other amino acids. This phenomenon was more prominent in two transgenic lines, ZD24 and ZD91. The total Met content, which including Met incorporated into proteins, significantly increased in the mature dry seeds of these two transgenic lines by 1.8- and 2.3-fold, respectively. This elevation was accompanied by a higher content of other protein-incorporated amino acids, which led to significantly higher total protein content in the seeds of these two lines. However, in a third transgenic line, ZD01, the level of total Met and the level of other amino acids did not increase significantly in the mature dry seeds. This line also showed no significant change in protein levels. This suggests a positive connection between high Met content and the synthesis of other amino acids that enable the synthesis of more seed proteins.
Collapse
Affiliation(s)
- Shikui Song
- The National Key Facility for Crop Gene Resources and Genetic Improvement, NFCRI, MOA Key Laboratory of Soybean Biology Beijing, Institute of Crop Science, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Verdier J, Dessaint F, Schneider C, Abirached-Darmency M. A combined histology and transcriptome analysis unravels novel questions on Medicago truncatula seed coat. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:459-70. [PMID: 23125357 PMCID: PMC3542040 DOI: 10.1093/jxb/ers304] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The seed coat is involved in the determination of seed quality traits such as seed size, seed composition, seed permeability, and hormonal regulation. Understanding seed coat structure is therefore a prerequisite to deciphering the genetic mechanisms that govern seed coat functions. By combining histological and transcriptomic data analyses, cellular and molecular events occurring during Medicago truncatula seed coat development were dissected in order to relate structure to function and pinpoint target genes potentially involved in seed coat traits controlling final seed quality traits. The analyses revealed the complexity of the seed coat transcriptome, which contains >30 000 genes. In parallel, a set of genes showing a preferential expression in seed coat that may be involved in more specific functions was identified. The study describes how seed coat anatomy and morphological changes affect final seed quality such as seed size, seed composition, seed permeability, and hormonal regulation. Putative regulator genes of different processes have been identified as potential candidates for further functional genomic studies to improve agronomical seed traits. The study also raises new questions concerning the implication of seed coat endopolyploidy in cell expansion and the participation of the seed coat in de novo abscisic acid biosynthesis at early seed filling.
Collapse
Affiliation(s)
- Jerome Verdier
- UMR 1347 Agroécologie AgroSup/INRA/uB F-21065 Dijon, France
| | - Fabrice Dessaint
- The Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore OK 73401, USA
| | | | - Mona Abirached-Darmency
- UMR 1347 Agroécologie AgroSup/INRA/uB F-21065 Dijon, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
93
|
Liu TW, Niu L, Fu B, Chen J, Wu FH, Chen J, Wang WH, Hu WJ, He JX, Zheng HL. A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana. Genome 2013; 56:49-60. [PMID: 23379338 DOI: 10.1139/gen-2012-0090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acid rain, as a worldwide environmental issue, can cause serious damage to plants. In this study, we provided the first case study on the systematic responses of arabidopsis (Arabidopsis thaliana (L.) Heynh.) to simulated acid rain (SiAR) by transcriptome approach. Transcriptomic analysis revealed that the expression of a set of genes related to primary metabolisms, including nitrogen, sulfur, amino acid, photosynthesis, and reactive oxygen species metabolism, were altered under SiAR. In addition, transport and signal transduction related pathways, especially calcium-related signaling pathways, were found to play important roles in the response of arabidopsis to SiAR stress. Further, we compared our data set with previously published data sets on arabidopsis transcriptome subjected to various stresses, including wound, salt, light, heavy metal, karrikin, temperature, osmosis, etc. The results showed that many genes were overlapped in several stresses, suggesting that plant response to SiAR is a complex process, which may require the participation of multiple defense-signaling pathways. The results of this study will help us gain further insights into the response mechanisms of plants to acid rain stress.
Collapse
Affiliation(s)
- Ting-Wu Liu
- a Department of Biology, Huaiyin Normal University, Huaian, Jiangsu 223300, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Silva-Sanchez C, Chen S, Zhu N, Li QB, Chourey PS. Proteomic comparison of basal endosperm in maize miniature1 mutant and its wild-type Mn1. FRONTIERS IN PLANT SCIENCE 2013; 4:211. [PMID: 23805148 PMCID: PMC3691554 DOI: 10.3389/fpls.2013.00211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/03/2013] [Indexed: 05/08/2023]
Abstract
Developing endosperm in maize seed is a major site for biosynthesis and storage of starch and proteins, and of immense economic importance for its role in food, feed and biofuel production. The basal part of endosperm performs a major role in solute, water and nutrition acquisition from mother plant to sustain these functions. The miniature1 (mn1) mutation is a loss-of-function mutation of the Mn1-encoded cell wall invertase that is entirely expressed in the basal endosperm and is essential for many of the metabolic and signaling functions associated with metabolically released hexose sugars in developing endosperm. Here we report a comparative proteomic study between Mn1 and mn1 basal endosperm to better understand basis of pleiotropic effects on many diverse traits in the mutant. Specifically, we used iTRAQ based quantitative proteomics combined with Gene Ontology (GO) and bioinformatics to understand functional basis of the proteomic information. A total of 2518 proteins were identified from soluble and cell wall associated protein (CWAP) fractions; of these 131 proteins were observed to be differentially expressed in the two genotypes. The main functional groups of proteins that were significantly different were those involved in the carbohydrate metabolic and catabolic process, and cell homeostasis. The study constitutes the first proteomic analysis of basal endosperm cell layers in relation to endosperm growth and development in maize.
Collapse
Affiliation(s)
- Cecilia Silva-Sanchez
- Proteomics, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
| | - Sixue Chen
- Proteomics, Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
- Department of Biology, UF Genetics Institute, University of FloridaGainesville, FL, USA
- *Correspondence: Sixue Chen, Interdisciplinary Center for Biotechnology Research and Department of Biology, UF Genetics Institute, University of Florida, 2033 Mowry Rd., CGRC Rm. 438, Gainesville, FL 32610, USA e-mail: ;
| | - Ning Zhu
- Department of Biology, UF Genetics Institute, University of FloridaGainesville, FL, USA
| | - Qin-Bao Li
- USDA-Agricultural Research Service, Center for Medical, Agricultural and Veterinary EntomologyGainesville, FL, USA
| | - Prem S. Chourey
- USDA-Agricultural Research Service, Center for Medical, Agricultural and Veterinary EntomologyGainesville, FL, USA
- Departments of Agronomy and Plant Pathology, University of FloridaGainesville, FL, USA
- Prem S. Chourey, USDA-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1600/1700 SW 23rd Drive, Gainesville, FL 32608, USA e-mail:
| |
Collapse
|
95
|
Barvkar VT, Pardeshi VC, Kale SM, Kadoo NY, Giri AP, Gupta VS. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development. J Proteome Res 2012; 11:6264-76. [PMID: 23153172 DOI: 10.1021/pr300984r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Flax (Linum usitatissimum L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds. Therefore, a proteomic analysis of seven seed developmental stages (4, 8, 12, 16, 22, 30, and 48 days after anthesis) in a flax variety, NL-97 was carried out using a combination of 1D-SDS-PAGE and LC-MSE methods. A total 1716 proteins were identified and their functional annotation revealed that a majority of them were involved in primary metabolism, protein destination, storage and energy. Three carbon assimilatory pathways appeared to operate in flax seeds. Reverse transcription quantitative PCR of selected 19 genes was carried out to understand their roles during seed development. Besides storage proteins, methionine synthase, RuBisCO and S-adenosylmethionine synthetase were highly expressed transcripts, highlighting their importance in flax seed development. Further, the identified proteins were mapped onto developmental seed specific expressed sequence tag (EST) libraries of flax to obtain transcriptional evidence and 81% of them had detectable expression at the mRNA level. This study provides new insights into the complex seed developmental processes operating in flax.
Collapse
Affiliation(s)
- Vitthal T Barvkar
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | | | | | | | | | | |
Collapse
|
96
|
D'Erfurth I, Le Signor C, Aubert G, Sanchez M, Vernoud V, Darchy B, Lherminier J, Bourion V, Bouteiller N, Bendahmane A, Buitink J, Prosperi JM, Thompson R, Burstin J, Gallardo K. A role for an endosperm-localized subtilase in the control of seed size in legumes. THE NEW PHYTOLOGIST 2012; 196:738-751. [PMID: 22985172 DOI: 10.1111/j.1469-8137.2012.04296.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 05/08/2023]
Abstract
Here, we report a subtilase gene (SBT1.1) specifically expressed in the endosperm of Medicago truncatula and Pisum sativum seeds during development, which is located at a chromosomal position coinciding with a seed weight quantitative trait locus (QTL). Association studies between SBT1.1 polymorphisms and seed weights in ecotype collections provided further evidence for linkage disequilibrium between the SBT1.1 locus and a seed weight locus. To investigate the possible contribution of SBT1.1 to the control of seed weight, a search for TILLING (Targeting Induced Local Lesions in Genomes) mutants was performed. An inspection of seed phenotype revealed a decreased weight and area of the sbt1.1 mutant seeds, thus inferring a role of SBT1.1 in the control of seed size in the forage and grain legume species. Microscopic analyses of the embryo, representing the major part of the seed, revealed a reduced number of cells in the MtP330S mutant, but no significant variation in cell size. SBT1.1 is therefore most likely to be involved in the control of cotyledon cell number, rather than cell expansion, during seed development. This raises the hypothesis of a role of SBT1.1 in the regulation of seed size by providing molecules that can act as signals to control cell division within the embryo.
Collapse
Affiliation(s)
- I D'Erfurth
- INRA (Institut National de la Recherche Agronomique), UMR1347 Agroécologie, BP 86510, F-21000, Dijon, France
| | - C Le Signor
- INRA (Institut National de la Recherche Agronomique), UMR1347 Agroécologie, BP 86510, F-21000, Dijon, France
| | - G Aubert
- INRA (Institut National de la Recherche Agronomique), UMR1347 Agroécologie, BP 86510, F-21000, Dijon, France
| | - M Sanchez
- INRA (Institut National de la Recherche Agronomique), UMR1347 Agroécologie, BP 86510, F-21000, Dijon, France
| | - V Vernoud
- INRA (Institut National de la Recherche Agronomique), UMR1347 Agroécologie, BP 86510, F-21000, Dijon, France
| | - B Darchy
- INRA (Institut National de la Recherche Agronomique), UMR1347 Agroécologie, BP 86510, F-21000, Dijon, France
| | - J Lherminier
- INRA (Institut National de la Recherche Agronomique), UMR1347 Agroécologie, BP 86510, F-21000, Dijon, France
| | - V Bourion
- INRA (Institut National de la Recherche Agronomique), UMR1347 Agroécologie, BP 86510, F-21000, Dijon, France
| | - N Bouteiller
- INRA/CNRS (Centre National de la Recherche Scientifique), Unité de Recherche en Génomique Végétale, CP5708, 91057, Evry, France
| | - A Bendahmane
- INRA/CNRS (Centre National de la Recherche Scientifique), Unité de Recherche en Génomique Végétale, CP5708, 91057, Evry, France
| | - J Buitink
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR 4207 QUASAV, 49045, Angers, France
| | - J M Prosperi
- INRA, UMR1334 Amélioration Génétique et Adaptation des Plantes, 34060, Montpellier, France
| | - R Thompson
- INRA (Institut National de la Recherche Agronomique), UMR1347 Agroécologie, BP 86510, F-21000, Dijon, France
| | - J Burstin
- INRA (Institut National de la Recherche Agronomique), UMR1347 Agroécologie, BP 86510, F-21000, Dijon, France
| | - K Gallardo
- INRA (Institut National de la Recherche Agronomique), UMR1347 Agroécologie, BP 86510, F-21000, Dijon, France
| |
Collapse
|
97
|
Abirached-Darmency M, Dessaint F, Benlicha E, Schneider C. Biogenesis of protein bodies during vicilin accumulation in Medicago truncatula immature seeds. BMC Res Notes 2012; 5:409. [PMID: 22862819 PMCID: PMC3431269 DOI: 10.1186/1756-0500-5-409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/17/2012] [Indexed: 12/05/2022] Open
Abstract
Background Grain legumes play a worldwide role as a source of plant proteins for feed and food. In the model legume Medicago truncatula, the organisation of protein storage vacuoles (PSV) in maturing seeds remains unknown. Findings The sub-cellular events accompanying the accumulation of vicilin (globulin7S) were analysed during seed mid-maturation. Immuno-detection of vicilin in light microscopy, allowed a semi-quantitative assessment of the protein body complement. The identified populations of vicilin-containing protein bodies are distinguished by their number and size which allowed to propose a model of their biogenesis. Two distributions were detected, enabling a separation of their processing at early and mid maturation stages. The largest protein bodies, at 16 and 20 days after pollination (DAP), were formed by the fusion of small bodies. They have probably attained their final size and correspond to mature vicilin aggregations. Electron microscopic observations revealed the association of the dense protein bodies with rough endoplasmic reticulum. The presence of a ribosome layer surrounding protein bodies, would support an endoplasmic reticulum–vacuole trafficking pathway. Conclusions The stastistic analysis may be useful for screening mutations of candidate genes governing protein content. The definitive evidence for an ER-storage vacuole pathway corresponds to a challenge, for the storage of post-translationally unstable proteins. It was proposed for the accumulation of one class of storage protein, the vicilins. This alternative pathway is a matter of controversy in dicotyledonous seeds.
Collapse
|
98
|
Murine macrophages response to iron. J Proteomics 2012; 76 Spec No.:10-27. [PMID: 22835775 DOI: 10.1016/j.jprot.2012.07.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/20/2012] [Accepted: 07/15/2012] [Indexed: 12/17/2022]
Abstract
Macrophages play a critical role at the crossroad between iron metabolism and immunity, being able to store and recycle iron derived from the phagocytosis of senescent erythrocytes. The way by which macrophages manage non-heme iron at physiological concentration is still not fully understood. We investigated protein changes in mouse bone marrow macrophages incubated with ferric ammonium citrate (FAC 10 μM iron). Differentially expressed spots were identified by nano RP-HPLC-ESI-MS/MS. Transcriptomic, metabolomics and western immunoblotting analyses complemented the proteomic approach. Pattern analysis was also used for identifying networks of proteins involved in iron homeostasis. FAC treatment resulted in higher abundance of several proteins including ferritins, cytoskeleton related proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) at the membrane level, vimentin, arginase, galectin-3 and macrophage migration inhibitory factor (MIF). Interestingly, GAPDH has been recently proposed to act as an alternative transferrin receptor for iron acquisition through internalization of the GAPDH-transferrin complex into the early endosomes. FAC treatment also induced the up-regulation of oxidative stress-related proteins (PRDX), which was further confirmed at the metabolic level (increase in GSSG, 8-isoprostane and pentose phosphate pathway intermediates) through mass spectrometry-based targeted metabolomics approaches. This study represents an example of the potential usefulness of "integarated omics" in the field of iron biology, especially for the elucidation of the molecular mechanisms controlling iron homeostasis in normal and disease conditions. This article is part of a Special Issue entitled: Integrated omics.
Collapse
|
99
|
Impact of Molecular Technologies on Faba Bean (Vicia faba L.) Breeding Strategies. AGRONOMY-BASEL 2012. [DOI: 10.3390/agronomy2030132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
100
|
Yu HD, Yang XF, Chen ST, Wang YT, Li JK, Shen Q, Liu XL, Guo FQ. Downregulation of chloroplast RPS1 negatively modulates nuclear heat-responsive expression of HsfA2 and its target genes in Arabidopsis. PLoS Genet 2012; 8:e1002669. [PMID: 22570631 PMCID: PMC3342936 DOI: 10.1371/journal.pgen.1002669] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/08/2012] [Indexed: 12/11/2022] Open
Abstract
Heat stress commonly leads to inhibition of photosynthesis in higher plants. The transcriptional induction of heat stress-responsive genes represents the first line of inducible defense against imbalances in cellular homeostasis. Although heat stress transcription factor HsfA2 and its downstream target genes are well studied, the regulatory mechanisms by which HsfA2 is activated in response to heat stress remain elusive. Here, we show that chloroplast ribosomal protein S1 (RPS1) is a heat-responsive protein and functions in protein biosynthesis in chloroplast. Knockdown of RPS1 expression in the rps1 mutant nearly eliminates the heat stress-activated expression of HsfA2 and its target genes, leading to a considerable loss of heat tolerance. We further confirm the relationship existed between the downregulation of RPS1 expression and the loss of heat tolerance by generating RNA interference-transgenic lines of RPS1. Consistent with the notion that the inhibited activation of HsfA2 in response to heat stress in the rps1 mutant causes heat-susceptibility, we further demonstrate that overexpression of HsfA2 with a viral promoter leads to constitutive expressions of its target genes in the rps1 mutant, which is sufficient to reestablish lost heat tolerance and recovers heat-susceptible thylakoid stability to wild-type levels. Our findings reveal a heat-responsive retrograde pathway in which chloroplast translation capacity is a critical factor in heat-responsive activation of HsfA2 and its target genes required for cellular homeostasis under heat stress. Thus, RPS1 is an essential yet previously unknown determinant involved in retrograde activation of heat stress responses in higher plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|