51
|
Characterization of Bacillus strains and hoax agents by protein profiling using automated microfluidic capillary electrophoresis. Forensic Sci Med Pathol 2014; 10:380-9. [DOI: 10.1007/s12024-014-9578-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
52
|
Zhang L, Borror CM, Sandrin TR. A designed experiments approach to optimization of automated data acquisition during characterization of bacteria with MALDI-TOF mass spectrometry. PLoS One 2014; 9:e92720. [PMID: 24662978 PMCID: PMC3963954 DOI: 10.1371/journal.pone.0092720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/24/2014] [Indexed: 01/27/2023] Open
Abstract
MALDI-TOF MS has been shown capable of rapidly and accurately characterizing bacteria. Highly reproducible spectra are required to ensure reliable characterization. Prior work has shown that spectra acquired manually can have higher reproducibility than those acquired automatically. For this reason, the objective of this study was to optimize automated data acquisition to yield spectra with reproducibility comparable to those acquired manually. Fractional factorial design was used to design experiments for robust optimization of settings, in which values of five parameters (peak selection mass range, signal to noise ratio (S:N), base peak intensity, minimum resolution and number of shots summed) commonly used to facilitate automated data acquisition were varied. Pseudomonas aeruginosa was used as a model bacterium in the designed experiments, and spectra were acquired using an intact cell sample preparation method. Optimum automated data acquisition settings (i.e., those settings yielding the highest reproducibility of replicate mass spectra) were obtained based on statistical analysis of spectra of P. aeruginosa. Finally, spectrum quality and reproducibility obtained from non-optimized and optimized automated data acquisition settings were compared for P. aeruginosa, as well as for two other bacteria, Klebsiella pneumoniae and Serratia marcescens. Results indicated that reproducibility increased from 90% to 97% (p-value[Formula: see text]0.002) for P. aeruginosa when more shots were summed and, interestingly, decreased from 95% to 92% (p-value [Formula: see text] 0.013) with increased threshold minimum resolution. With regard to spectrum quality, highly reproducible spectra were more likely to have high spectrum quality as measured by several quality metrics, except for base peak resolution. Interaction plots suggest that, in cases of low threshold minimum resolution, high reproducibility can be achieved with fewer shots. Optimization yielded more reproducible spectra than non-optimized settings for all three bacteria.
Collapse
Affiliation(s)
- Lin Zhang
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona, United States of America
| | - Connie M. Borror
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona, United States of America
| | - Todd R. Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona, United States of America
- * E-mail:
| |
Collapse
|
53
|
Kolecka A, Khayhan K, Arabatzis M, Velegraki A, Kostrzewa M, Andersson A, Scheynius A, Cafarchia C, Iatta R, Montagna M, Youngchim S, Cabañes F, Hoopman P, Kraak B, Groenewald M, Boekhout T. Efficient identification ofMalasseziayeasts by matrix‐assisted laser desorption ionization‐time of flight mass spectrometry (MALDI‐TOF MS). Br J Dermatol 2014; 170:332-41. [DOI: 10.1111/bjd.12680] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2013] [Indexed: 12/15/2022]
Affiliation(s)
- A. Kolecka
- Department of Yeast and Basidiomycete Research CBS‐KNAW Fungal Biodiversity Centre Uppsalalaan 8 3584CT Utrecht the Netherlands
| | - K. Khayhan
- Department of Yeast and Basidiomycete Research CBS‐KNAW Fungal Biodiversity Centre Uppsalalaan 8 3584CT Utrecht the Netherlands
- Department of Microbiology and Parasitology Faculty of Medical Sciences University of Phayao Phayao Thailand
| | - M. Arabatzis
- Research Mycology Laboratory (K.A. 70/3/6915) Microbiology Department Medical School of University of Athens Athens Greece
| | - A. Velegraki
- Research Mycology Laboratory (K.A. 70/3/6915) Microbiology Department Medical School of University of Athens Athens Greece
| | - M. Kostrzewa
- Bioanalytical Development Bruker Daltonics GmbH Bremen Germany
| | - A. Andersson
- Translational Immunology Unit Department of Medicine Solna Karolinska Institutet Stockholm Sweden
| | - A. Scheynius
- Translational Immunology Unit Department of Medicine Solna Karolinska Institutet Stockholm Sweden
| | - C. Cafarchia
- Department of Veterinary Medicine Aldo Moro University of Bari Bari Italy
| | - R. Iatta
- Department of Veterinary Medicine Aldo Moro University of Bari Bari Italy
| | - M.T. Montagna
- Department of Biomedical Science and Human Oncology Section of Hygiene Aldo Moro University of Bari Bari Italy
| | - S. Youngchim
- Department of Microbiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - F.J. Cabañes
- Department of Animal Health and Anatomy Universitat Autònoma de Barcelona Bellaterra Barcelona Spain
| | - P. Hoopman
- Department of Yeast and Basidiomycete Research CBS‐KNAW Fungal Biodiversity Centre Uppsalalaan 8 3584CT Utrecht the Netherlands
| | - B. Kraak
- Department of Yeast and Basidiomycete Research CBS‐KNAW Fungal Biodiversity Centre Uppsalalaan 8 3584CT Utrecht the Netherlands
| | - M. Groenewald
- Department of Yeast and Basidiomycete Research CBS‐KNAW Fungal Biodiversity Centre Uppsalalaan 8 3584CT Utrecht the Netherlands
| | - T. Boekhout
- Department of Yeast and Basidiomycete Research CBS‐KNAW Fungal Biodiversity Centre Uppsalalaan 8 3584CT Utrecht the Netherlands
- Department of Internal Medicine and Infectious Diseases University Medical Center Utrecht the Netherlands
- Department of Dermatology Shanghai Key Laboratory of Molecular Medical Mycology Second Military Medical University Changzheng Hospital Institute of Dermatology and Medical Mycology Shanghai China
- Institute of Microbiology Chinese Academy of Sciences Beijing China
| |
Collapse
|
54
|
Evaluation of MALDI-TOF mass spectrometry and Sepsityper Kit™ for the direct identification of organisms from sterile body fluids in a Canadian pediatric hospital. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2014; 24:191-4. [PMID: 24489560 DOI: 10.1155/2013/701093] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) can be used to identify bacteria directly from positive blood and sterile fluid cultures. The authors evaluated a commercially available kit - the Sepsityper Kit (Bruker Daltonik, Germany) - and MALDI-TOF MS for the rapid identification of organisms from 80 flagged positive blood culture broths, of which 73 (91.2%) were blood culture specimens and seven (8.7%) were cerebrospinal fluid specimens, in comparison with conventional identification methods. Correct identification to the genus and species levels was obtained in 75 of 80 (93.8%) and 39 of 50 (78%) blood culture broths, respectively. Applying the blood culture analysis module, a newly developed software tool, improved the species identification of Gram-negative organisms from 94.7% to 100% and of Gram-positive organisms from 66.7% to 70%. MALDI-TOF MS is a promising tool for the direct identification of organisms cultured from sterile sites.
Collapse
|
55
|
Touchard A, Dauvois M, Arguel MJ, Petitclerc F, Leblanc M, Dejean A, Orivel J, Nicholson GM, Escoubas P. Elucidation of the unexplored biodiversity of ant venom peptidomes via MALDI-TOF mass spectrometry and its application for chemotaxonomy. J Proteomics 2014; 105:217-31. [PMID: 24456813 DOI: 10.1016/j.jprot.2014.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED The rise of integrative taxonomy, a multi-criteria approach used in characterizing species, fosters the development of new tools facilitating species delimitation. Mass spectrometric (MS) analysis of venom peptides from venomous animals has previously been demonstrated to be a valid method for identifying species. Here we aimed to develop a rapid chemotaxonomic tool for identifying ants based on venom peptide mass fingerprinting. The study focused on the biodiversity of ponerine ants (Hymenoptera: Formicidae: Ponerinae) in French Guiana. Initial experiments optimized the use of automated matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to determine variations in the mass profiles of ant venoms using several MALDI matrices and additives. Data were then analyzed via a hierarchical cluster analysis to classify the venoms of 17 ant species. In addition, phylogenetic relationships were assessed and were highly correlated with methods using DNA sequencing of the mitochondrial gene cytochrome c oxidase subunit 1. By combining a molecular genetics approach with this chemotaxonomic approach, we were able to improve the accuracy of the taxonomic findings to reveal cryptic ant species within species complexes. This chemotaxonomic tool can therefore contribute to more rapid species identification and more accurate taxonomies. BIOLOGICAL SIGNIFICANCE This is the first extensive study concerning the peptide analysis of the venom of both Pachycondyla and Odontomachus ants. We studied the venoms of 17 ant species from French Guiana that permitted us to fine-tune the venom analysis of ponerine ants via MALDI-TOF mass spectrometry. We explored the peptidomes of crude ant venom and demonstrated that venom peptides can be used in the identification of ant species. In addition, the application of this novel chemotaxonomic method combined with a parallel genetic approach using COI sequencing permitted us to reveal the presence of cryptic ants within both the Pachycondyla apicalis and Pachycondyla stigma species complexes. This adds a new dimension to the search for means of exploiting the enormous biodiversity of venomous ants as a source for novel therapeutic drugs or biopesticides. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Axel Touchard
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France.
| | - Mélodie Dauvois
- VenomeTech, 473 Route des Dolines - Villa 3, Valbonne 06560, France
| | | | - Frédéric Petitclerc
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Mathieu Leblanc
- VenomeTech, 473 Route des Dolines - Villa 3, Valbonne 06560, France
| | - Alain Dejean
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France; Université de Toulouse, UPS, INP, Laboratoire Écologie Fonctionnelle et Environnement (ECOLAB), 118 route de Narbonne, 31062 Toulouse, France
| | - Jérôme Orivel
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Graham M Nicholson
- Neurotoxin Research Group, School of Medical & Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | - Pierre Escoubas
- VenomeTech, 473 Route des Dolines - Villa 3, Valbonne 06560, France
| |
Collapse
|
56
|
Hirvonen JJ, Kaukoranta SS. GenomEra MRSA/SA, a fully automated homogeneous PCR assay for rapid detection ofStaphylococcus aureusand the marker of methicillin resistance in various sample matrixes. Expert Rev Mol Diagn 2014; 13:655-65. [DOI: 10.1586/14737159.2013.820542] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
57
|
Yeast identification algorithm based on use of the Vitek MS system selectively supplemented with ribosomal DNA sequencing: proposal of a reference assay for invasive fungal surveillance programs in China. J Clin Microbiol 2013; 52:572-7. [PMID: 24478490 DOI: 10.1128/jcm.02543-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sequence analysis of the internal transcribed spacer (ITS) region was employed as the gold standard method for yeast identification in the China Hospital Invasive Fungal Surveillance Net (CHIF-NET). It has subsequently been found that matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is potentially a more practical approach for this purpose. In the present study, the performance of the Vitek MS v2.0 system for the identification of yeast isolates collected from patients with invasive fungal infections in the 2011 CHIF-NET was evaluated. A total of 1,243 isolates representing 31 yeast species were analyzed, and the identification results by the Vitek MS v2.0 system were compared to those obtained by ITS sequence analysis. By the Vitek MS v2.0 system, 96.7% (n = 1,202) of the isolates were correctly assigned to the species level and 0.2% (n = 2) of the isolates were identified to the genus level, while 2.4% (n = 30) and 0.7% (n = 9) of the isolates were unidentified and misidentified, respectively. After retesting of the unidentified and misidentified strains, 97.3% (n = 1,209) of the isolates were correctly identified to the species level. Based on these results, a testing algorithm that combines the use of the Vitek MS system with selected supplementary ribosomal DNA (rDNA) sequencing was developed and validated for yeast identification purposes. By employing this algorithm, 99.7% (1,240/1,243) of the study isolates were accurately identified with the exception of two isolates of Candida fermentati and one isolate of Cryptococcus gattii. In conclusion, the proposed identification algorithm could be practically implemented in strategic programs of fungal infection surveillance.
Collapse
|
58
|
Genetic and phenotypic analysis of Vibrio cholerae non-O1, non-O139 isolated from German and Austrian patients. Eur J Clin Microbiol Infect Dis 2013; 33:767-78. [PMID: 24213848 PMCID: PMC3996285 DOI: 10.1007/s10096-013-2011-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/22/2013] [Indexed: 12/19/2022]
Abstract
Vibrio cholerae belonging to the non-O1, non-O139 serogroups are present in the coastal waters of Germany and in some German and Austrian lakes. These bacteria can cause gastroenteritis and extraintestinal infections, and are transmitted through contaminated food and water. However, non-O1, non-O139 V. cholerae infections are rare in Germany. We studied 18 strains from German and Austrian patients with diarrhea or local infections for their virulence-associated genotype and phenotype to assess their potential for infectivity in anticipation of possible climatic changes that could enhance the transmission of these pathogens. The strains were examined for the presence of genes encoding cholera toxin and toxin-coregulated pilus (TCP), as well as other virulence-associated factors or markers, including hemolysins, repeats-in-toxin (RTX) toxins, Vibrio seventh pandemic islands VSP-1 and VSP-2, and the type III secretion system (TTSS). Phenotypic assays for hemolysin activity, serum resistance, and biofilm formation were also performed. A dendrogram generated by incorporating the results of these analyses revealed genetic differences of the strains correlating with their clinical origin. Non-O1, non-O139 strains from diarrheal patients possessed the TTSS and/or the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin, which were not found in the strains from ear or wound infections. Routine matrix-assisted laser desorption/ionization (MALDI-TOF) mass spectrometry (MS) analysis of all strains provided reliable identification of the species but failed to differentiate between strains or clusters. The results of this study indicate the need for continued surveillance of V. cholerae non-O1, non-O139 in Germany, in view of the predicted increase in the prevalence of Vibrio spp. due to the rise in surface water temperatures.
Collapse
|
59
|
A new approach to bacterial colony morphotyping by matrix-assisted laser desorption ionization time of flight-based mass spectrometry. Talanta 2013; 116:100-7. [DOI: 10.1016/j.talanta.2013.04.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/21/2013] [Accepted: 04/24/2013] [Indexed: 01/14/2023]
|
60
|
Del Chierico F, Petrucca A, Vernocchi P, Bracaglia G, Fiscarelli E, Bernaschi P, Muraca M, Urbani A, Putignani L. Proteomics boosts translational and clinical microbiology. J Proteomics 2013; 97:69-87. [PMID: 24145144 DOI: 10.1016/j.jprot.2013.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/28/2013] [Accepted: 10/09/2013] [Indexed: 01/17/2023]
Abstract
The application of proteomics to translational and clinical microbiology is one of the most advanced frontiers in the management and control of infectious diseases and in the understanding of complex microbial systems within human fluids and districts. This new approach aims at providing, by dedicated bioinformatic pipelines, a thorough description of pathogen proteomes and their interactions within the context of human host ecosystems, revolutionizing the vision of infectious diseases in biomedicine and approaching new viewpoints in both diagnostic and clinical management of the patient. Indeed, in the last few years, many laboratories have matured a series of advanced proteomic applications, aiming at providing individual proteome charts of pathogens, with respect to their morph and/or cell life stages, antimicrobial or antimycotic resistance profiling, epidemiological dispersion. Herein, we aim at reviewing the current state-of-the-art on proteomic protocols designed and set-up for translational and diagnostic microbiological purposes, from axenic pathogens' characterization to microbiota ecosystems' full description. The final goal is to describe applications of the most common MALDI-TOF MS platforms to advanced diagnostic issues related to emerging infections, increasing of fastidious bacteria, and generation of patient-tailored phylotypes. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- F Del Chierico
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - A Petrucca
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Diagnostic Science, Sant'Andrea Hospital, Via di Grottarossa 1035, 00185 Rome, Italy
| | - P Vernocchi
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - G Bracaglia
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - E Fiscarelli
- Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - P Bernaschi
- Unit of Microbiology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - M Muraca
- Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - A Urbani
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Rome, Italy; IRCCS-Santa Lucia Foundation, Rome, Italy
| | - L Putignani
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Unit of Metagenomics, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
| |
Collapse
|
61
|
Lau SKP, Tang BSF, Teng JLL, Chan TM, Curreem SOT, Fan RYY, Ng RHY, Chan JFW, Yuen KY, Woo PCY. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry for identification of clinically significant bacteria that are difficult to identify in clinical laboratories. J Clin Pathol 2013; 67:361-6. [PMID: 24143023 DOI: 10.1136/jclinpath-2013-201818] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS Although the revolutionary matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) has been evaluated for identification of various groups of bacteria, its application in bacteria that are 'difficult-to-identify' by phenotypic tests has been less well studied. We aim to evaluate the usefulness of MALDI-TOF MS for identification of 'difficult-to-identify' bacterial isolates. METHODS We evaluated the performance of the Bruker MALDI-TOF MS system for a collection of 67 diverse clinically important bacterial isolates that were less commonly encountered, possessed ambiguous biochemical profiles or belonged to newly discovered species. The results were compared with 16S rRNA gene sequencing as a reference method for species identification. RESULTS Using 16S rRNA gene sequencing as the reference method, 30 (45%) isolates were identified correctly to species level (score ≥2.0), 20 (30%) were only identified to genus level (score ≥1.7), four (6%) were misidentified (incorrect species with score ≥2.0 or incorrect genus with score ≥1.7) and 13 (19%) showed 'no identification' (score <1.7). Aerobic Gram-positive bacteria showed the highest percentage of correct species identification, followed by aerobic Gram-negative, anaerobic Gram-positive and anaerobic Gram-negative bacteria. Sixteen isolates identified to genus level actually showed the correct species but with scores below the threshold for species identification. Most isolates which showed 'no identification' were due to the absence of the corresponding species in the Bruker database. CONCLUSIONS Expansion of commercial databases to include reference spectra of less commonly encountered and newly discovered species and to increase available spectra for each species is required to improve the accuracy of MALDI-TOF MS for identifying 'difficult-to-identify' bacteria.
Collapse
Affiliation(s)
- Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, , Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Gray TJ, Thomas L, Olma T, Iredell JR, Chen SCA. Rapid identification of Gram-negative organisms from blood culture bottles using a modified extraction method and MALDI-TOF mass spectrometry. Diagn Microbiol Infect Dis 2013; 77:110-2. [DOI: 10.1016/j.diagmicrobio.2013.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/16/2013] [Accepted: 06/13/2013] [Indexed: 01/11/2023]
|
63
|
Fenselau CC. Rapid characterization of microorganisms by mass spectrometry--what can be learned and how? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1161-6. [PMID: 23722726 PMCID: PMC3715556 DOI: 10.1007/s13361-013-0660-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 05/11/2023]
Abstract
Strategies for the rapid and reliable analysis of microorganisms have been sought to meet national needs in defense, homeland security, space exploration, food and water safety, and clinical diagnosis. Mass spectrometry has long been a candidate technique because it is extremely rapid and can provide highly specific information. It has excellent sensitivity. Molecular and fragment ion masses provide detailed fingerprints, which can also be interpreted. Mass spectrometry is also a broad band method--everything has a mass--and it is automatable. Mass spectrometry is a physiochemical method that is orthogonal and complementary to biochemical and morphological methods used to characterize microorganisms.
Collapse
Affiliation(s)
- Catherine C Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA,
| |
Collapse
|
64
|
Quintela-Baluja M, Böhme K, Fernández-No IC, Morandi S, Alnakip ME, Caamaño-Antelo S, Barros-Velázquez J, Calo-Mata P. Characterization of different food-isolatedEnterococcusstrains by MALDI-TOF mass fingerprinting. Electrophoresis 2013; 34:2240-50. [DOI: 10.1002/elps.201200699] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Marcos Quintela-Baluja
- Department of Analytical Chemistry, Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Inmaculada C. Fernández-No
- Department of Analytical Chemistry, Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Stefano Morandi
- Institute of Sciences of Food Production (ISPA-CNR); Milan; Italy
| | - Mohammed E. Alnakip
- Department of Analytical Chemistry, Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Sonia Caamaño-Antelo
- Department of Analytical Chemistry, Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| |
Collapse
|
65
|
Rapid identification of Bacillus anthracis spores in suspicious powder samples by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Appl Environ Microbiol 2013; 79:5372-83. [PMID: 23811517 DOI: 10.1128/aem.01724-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid and reliable identification of Bacillus anthracis spores in suspicious powders is important to mitigate the safety risks and economic burdens associated with such incidents. The aim of this study was to develop and validate a rapid and reliable laboratory-based matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis method for identifying B. anthracis spores in suspicious powder samples. A reference library containing 22 different Bacillus sp. strains or hoax materials was constructed and coupled with a novel classification algorithm and standardized processing protocol for various powder samples. The method's limit of B. anthracis detection was determined to be 2.5 × 10(6) spores, equivalent to a 55-μg sample size of the crudest B. anthracis-containing powder discovered during the 2001 Amerithrax incidents. The end-to-end analysis method was able to successfully discriminate among samples containing B. anthracis spores, closely related Bacillus sp. spores, and commonly encountered hoax materials. No false-positive or -negative classifications of B. anthracis spores were observed, even when the analysis method was challenged with a wide range of other bacterial agents. The robustness of the method was demonstrated by analyzing samples (i) at an external facility using a different MALDI-TOF MS instrument, (ii) using an untrained operator, and (iii) using mixtures of Bacillus sp. spores and hoax materials. Taken together, the observed performance of the analysis method developed demonstrates its potential applicability as a rapid, specific, sensitive, robust, and cost-effective laboratory-based analysis tool for resolving incidents involving suspicious powders in less than 30 min.
Collapse
|
66
|
Tait E, Perry JD, Stanforth SP, Dean JR. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS. J Chromatogr Sci 2013; 52:363-73. [PMID: 23661670 DOI: 10.1093/chromsci/bmt042] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The analysis of volatile organic compounds (VOCs) as a tool for bacterial identification is reported. Headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) was applied to the analysis of bacterial VOCs with the aim of determining the impact of experimental parameters on the generated VOC profiles. The effect of culture medium, SPME fiber type and GC column were fully evaluated with the Gram-negative bacteria Escherichia coli and Klebsiella pneumoniae and the Gram-positive species Staphylococcus aureus. Multivariate analysis, including cluster analysis and principal component analysis, was applied to VOC data to determine whether the parameters under investigation significantly affected bacterial VOC profiles. Culture medium, and to a lesser extent, SPME fiber type, were found to significantly alter detected bacterial VOC profiles. The detected VOCs varied little with the polarity of the GC column. The results indicate that the generated bacterial VOC profiles need careful evaluation if they are to be used for clinical diagnostics. The whole process is limited by the need to grow the bacteria in broth (18 h) before extraction and analysis (63 min).
Collapse
Affiliation(s)
- Emma Tait
- 1Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST, UK
| | | | | | | |
Collapse
|
67
|
Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 2013; 113:2309-42. [PMID: 23394164 PMCID: PMC3624074 DOI: 10.1021/cr3004295] [Citation(s) in RCA: 532] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jeremy L. Norris
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, and Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575
| | - Richard M. Caprioli
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, and Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575
| |
Collapse
|
68
|
Body fluid identification by mass spectrometry. Int J Legal Med 2013; 127:1065-77. [DOI: 10.1007/s00414-013-0848-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/05/2013] [Indexed: 12/26/2022]
|
69
|
Gopal J, Abdelhamid HN, Hua PY, Wu HF. Chitosan nanomagnets for effective extraction and sensitive mass spectrometric detection of pathogenic bacterial endotoxin from human urine. J Mater Chem B 2013; 1:2463-2475. [DOI: 10.1039/c3tb20079e] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
70
|
Böhme K, Morandi S, Cremonesi P, Fernández No IC, Barros-Velázquez J, Castiglioni B, Brasca M, Cañas B, Calo-Mata P. Characterization of Staphylococcus aureus strains isolated from Italian dairy products by MALDI-TOF mass fingerprinting. Electrophoresis 2012; 33:2355-64. [PMID: 22887156 DOI: 10.1002/elps.201100480] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Staphylococcus aureus is a known pathogen, causing serious food-borne intoxications due to the production of enterotoxins, being otherwise a major cause of mastitis. In this sense, the detection of S. aureus is an important issue for the food industry to avoid health hazards and economic losses. The present work applied MALDI-TOF MS for the classification of 40 S. aureus strains, 36 isolated from Italian dairy products and four from human samples. All isolated strains were clearly identified as S. aureus by their spectral fingerprints. The peak masses m/z 3444, 5031, and 6887 were determined to be specific biomarkers for S. aureus. Furthermore, clustering of the peak mass lists was successfully applied as a typing method, resulting in eight groups of strains. This is the first time that a detailed spectral comparison was carried out and characteristic peak masses were determined for every spectral group. Three strains exhibited a peak at m/z 6917 instead of m/z 6887, which was related to four polymorphisms in their 16S rRNA sequences. However, the grouping obtained by MALDI-TOF MS fingerprinting could not be related to toxin production or to the origin of the strains.
Collapse
Affiliation(s)
- Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Khot PD, Fisher MA. Mass Spectrometry in the Clinical Microbiology Laboratory, Part I: PCR-MS. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.clinmicnews.2012.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
72
|
Rapid identification of microorganisms isolated from throat swab specimens of community-acquired pneumonia patients by two MALDI-TOF MS systems. Diagn Microbiol Infect Dis 2012; 73:301-7. [DOI: 10.1016/j.diagmicrobio.2012.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/05/2012] [Accepted: 04/16/2012] [Indexed: 11/18/2022]
|
73
|
Böhme K, Fernández-No IC, Barros-Velázquez J, Gallardo JM, Cañas B, Calo-Mata P. SpectraBank: An open access tool for rapid microbial identification by MALDI-TOF MS fingerprinting. Electrophoresis 2012; 33:2138-42. [DOI: 10.1002/elps.201200074] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Karola Böhme
- Department of Analytical Chemistry; Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Inmaculada C. Fernández-No
- Department of Analytical Chemistry; Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry; Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| | - Jose M. Gallardo
- Department of Food Technology; Institute for Marine Research (IIM-CSIC); Vigo; Spain
| | - Benito Cañas
- Department of Analytical Chemistry; University Complutense of Madrid; Madrid; Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry; Nutrition and Food Science; School of Veterinary Sciences; University of Santiago de Compostela; Lugo; Spain
| |
Collapse
|
74
|
Lu JJ, Tsai FJ, Ho CM, Liu YC, Chen CJ. Peptide biomarker discovery for identification of methicillin-resistant and vancomycin-intermediate Staphylococcus aureus strains by MALDI-TOF. Anal Chem 2012; 84:5685-92. [PMID: 22762263 DOI: 10.1021/ac300855z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid identification of community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA), hospital-associated (HA) MRSA, and vancomycin-intermediate S. aureus (VISA) is essential for proper therapy and timely intervention of outbreaks. In this study, peptide biomarkers for rapid identification of methicillin-resistant and vancomycin-intermediate S. aureus strains were discovered by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The results showed that the 1774.1 and 1792.1 m/z peaks corresponding to the phenol-soluble modulin α1 and phenol-soluble modulin α2 peptides, respectively, were present in the majority (95%, 121 of 127) of SCCmec types IV and V isolates, but only in 8% (15 of 185) of SCCmec types I-III isolates. Since SCCmec types I-III isolates are recognized as HA-MRSA and most CA-MRSA isolates belong to SCCmec types IV and V, these two peptides may serve as markers for discrimination between HA-MRSA and CA-MRSA isolates. The 1835.0 and 1863.0 m/z peaks were present in 50% (4 of 8) of heterogeneous VISA and 88% (14 of 16) of VISA isolates. The peptides of these two peaks were identified as proteolytic products of the acyl carrier protein. The results of this study provide the possibility to develop methods for identification of CA-MRSA, HA-MRSA, and vancomycin-resistant S. aureus isolates based on the presence of these peptides.
Collapse
Affiliation(s)
- Jang-Jih Lu
- Department of Laboratory Medicine, Chang-Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | | | | | | | | |
Collapse
|
75
|
References. Parasitology 2012. [DOI: 10.1002/9781119968986.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
76
|
Croxatto A, Prod'hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 2012; 36:380-407. [DOI: 10.1111/j.1574-6976.2011.00298.x] [Citation(s) in RCA: 581] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 11/30/2022] Open
|
77
|
Species identification of clinical Prevotella isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 2012; 50:1415-8. [PMID: 22301022 DOI: 10.1128/jcm.06326-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The performance of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) for species identification of Prevotella was evaluated and compared with 16S rRNA gene sequencing. Using a Bruker database, 62.7% of the 102 clinical isolates were identified to the species level and 73.5% to the genus level. Extension of the commercial database improved these figures to, respectively, 83.3% and 89.2%. MALDI-TOF MS identification of Prevotella is reliable but needs a more extensive database.
Collapse
|
78
|
Wang J, Chen WF, Li QX. Rapid identification and classification of Mycobacterium spp. using whole-cell protein barcodes with matrix assisted laser desorption ionization time of flight mass spectrometry in comparison with multigene phylogenetic analysis. Anal Chim Acta 2011; 716:133-7. [PMID: 22284888 DOI: 10.1016/j.aca.2011.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/25/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
Abstract
The need of quick diagnostics and increasing number of bacterial species isolated necessitate development of a rapid and effective phenotypic identification method. Mass spectrometry (MS) profiling of whole cell proteins has potential to satisfy the requirements. The genus Mycobacterium contains more than 154 species that are taxonomically very close and require use of multiple genes including 16S rDNA for phylogenetic identification and classification. Six strains of five Mycobacterium species were selected as model bacteria in the present study because of their 16S rDNA similarity (98.4-99.8%) and the high similarity of the concatenated 16S rDNA, rpoB and hsp65 gene sequences (95.9-99.9%), requiring high identification resolution. The classification of the six strains by MALDI TOF MS protein barcodes was consistent with, but at much higher resolution than, that of the multi-locus sequence analysis of using 16S rDNA, rpoB and hsp65. The species were well differentiated using MALDI TOF MS and MALDI BioTyper™ software after quick preparation of whole-cell proteins. Several proteins were selected as diagnostic markers for species confirmation. An integration of MALDI TOF MS, MALDI BioTyper™ software and diagnostic protein fragments provides a robust phenotypic approach for bacterial identification and classification.
Collapse
Affiliation(s)
- Jun Wang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
79
|
Svarrer CW, Uldum SA. The occurrence of Legionella species other than Legionella pneumophila in clinical and environmental samples in Denmark identified by mip gene sequencing and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 2011; 18:1004-9. [PMID: 22070605 DOI: 10.1111/j.1469-0691.2011.03698.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In Denmark, several laboratories use PCR as a routine diagnostic method for Legionnaires' disease, and almost all PCR-positive samples are investigated by culture. From 1993 to 2010, isolates of Legionella species other than Legionella pneumophila were obtained from respiratory samples from 33 patients, and from 1997 to 2010, 42 isolates of Legionella non-pneumophila species were obtained and saved from water samples from 39 different sites in Denmark. Macrophage infectivity potentiator gene (mip) sequencing was used as a reference method to identify the Legionella non-pneumophila species. Only one of the 75 isolates did not meet the acceptance criterion of a similarity of ≥98% to sequences in the database. The species distribution between clinical and environmental isolates varied. For the former, four species were detected, with Legionella bozemanae and Legionella micdadei predominating (both 44%). For the latter, eight species were detected, with Legionella anisa predominating (52%). The distribution among the Danish clinical isolates was different from the general distribution both in Europe and outside Europe, where L. bozemanae and Legionella longbeachae are the most commonly found clinical Legionella non-pneumophila species. The 75 isolates were also investigated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): 64 were correctly identified, with a score of ≥2.0; eight had a score of <2.0, but only two of these were wrongly identified; and three gave no results with MALDI-TOF MS. Both mip sequencing and MALDI-TOF MS are robust methods for Legionella species identification.
Collapse
Affiliation(s)
- C W Svarrer
- Unit of Atypical Pneumonia, Department of Microbiological Surveillance and Research, Statens Serum Institut, DK Copenhagen S, Denmark.
| | | |
Collapse
|
80
|
Ho YP, Reddy PM. Advances in mass spectrometry for the identification of pathogens. MASS SPECTROMETRY REVIEWS 2011; 30:1203-24. [PMID: 21557290 PMCID: PMC7168406 DOI: 10.1002/mas.20320] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 05/25/2023]
Abstract
Mass spectrometry (MS) has become an important technique to identify microbial biomarkers. The rapid and accurate MS identification of microorganisms without any extensive pretreatment of samples is now possible. This review summarizes MS methods that are currently utilized in microbial analyses. Affinity methods are effective to clean, enrich, and investigate microorganisms from complex matrices. Functionalized magnetic nanoparticles might concentrate traces of target microorganisms from sample solutions. Therefore, nanoparticle-based techniques have a favorable detection limit. MS coupled with various chromatographic techniques, such as liquid chromatography and capillary electrophoresis, reduces the complexity of microbial biomarkers and yields reliable results. The direct analysis of whole pathogenic microbial cells with matrix-assisted laser desorption/ionization MS without sample separation reveals specific biomarkers for taxonomy, and has the advantages of simplicity, rapidity, and high-throughput measurements. The MS detection of polymerase chain reaction (PCR)-amplified microbial nucleic acids provides an alternative to biomarker analysis. This review will conclude with some current applications of MS in the identification of pathogens.
Collapse
Affiliation(s)
- Yen-Peng Ho
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan.
| | | |
Collapse
|
81
|
Böhme K, Fernández-No IC, Barros-Velázquez J, Gallardo JM, Cañas B, Calo-Mata P. Rapid species identification of seafood spoilage and pathogenic Gram-positive bacteria by MALDI-TOF mass fingerprinting. Electrophoresis 2011; 32:2951-65. [PMID: 22009363 DOI: 10.1002/elps.201100217] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/20/2011] [Accepted: 06/02/2011] [Indexed: 11/08/2022]
Abstract
The rapid identification of food pathogenic and spoilage bacteria is important to ensure food quality and safety. Seafood contaminated with pathogenic bacteria is one of the major causes of food intoxications, and the rapid spoilage of seafood products results in high economic losses. In this study, a collection of the main seafood pathogenic and spoilage Gram-positive bacteria was compiled, including Bacillus spp., Listeria spp., Clostridium spp., Staphylococcus spp. and Carnobacterium spp. The strains, belonging to 20 different species, were obtained from the culture collections and studied by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). A reference library was created, including the spectral fingerprints of 32 reference strains and the extracted peak lists with 10-30 peak masses. Genus-specific as well as species-specific peak masses were assigned and could serve as biomarkers for the rapid bacterial identification. Furthermore, the peak mass lists were clustered with the web-application SPECLUST to show the phyloproteomic relationships among the studied strains. Afterwards, the method was successfully applied to identify six strains isolated from seafood by comparison with the reference library. Additionally, phylogenetic analysis based on the 16S rRNA gene was carried out and contrasted with the proteomic approach. This is the first time MALDI-TOF MS fingerprinting is applied to Gram-positive bacterial identification in seafood, being a fast and accurate technique to ensure seafood quality and safety.
Collapse
Affiliation(s)
- Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Lugo, Spain
| | | | | | | | | | | |
Collapse
|
82
|
Kubanova AA, Frigo NV, Rotanov SV, Solomka VS, Plakhova KI, Rakhmatulina MR, Manuk'yan TE, KUBANOVA AA, FRIGO NV, ROTANOV SV, SOLOMKA VS, PLAKHOVA KI, RAKHMATULLINA MR, MANUKIAN TYE. Modern approaches and prospects of development of laboratory diagnostics for sexuallytransmitted infections. VESTNIK DERMATOLOGII I VENEROLOGII 2011. [DOI: 10.25208/vdv1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The authors provide a comparison of modern approaches to the use of well-known laboratory methods for diagnostics of
syphilis, gonorrhea, trichomoniasis and urogenital clamidiosis, which are approved in the world science and practice.
They also examine promising directions in the development of up-to-date laboratory technologies (biomicrochips,
multiprimer PCR, mass spectrometry, PLEX-ID technology, immunoblotting, chemiluminescence immunoassay (CLIA),
xMAP, pyrosequencing) for detecting STD pathogens, which is necessary to make an etiological diagnosis and determine
efficient methods of treatment minimizing the period of time required for examination of patients.
Collapse
|
83
|
Bacterial and fungal microflora in surgically removed lung cancer samples. J Cardiothorac Surg 2011; 6:137. [PMID: 21999143 PMCID: PMC3212932 DOI: 10.1186/1749-8090-6-137] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/14/2011] [Indexed: 11/26/2022] Open
Abstract
Background Clinical and experimental data suggest an association between the presence of bacterial and/or fungal infection and the development of different types of cancer, independently of chemotherapy-induced leukopenia. This has also been postulated for the development of lung cancer, however the prevalence and the exact species of the bacteria and fungi implicated, have not yet been described. Aim To determine the presence of bacterial and fungal microflora in surgically extracted samples of patients with lung cancer. Materials and methods In this single-center prospective, observational study, tissue samples were surgically extracted from 32 consecutive patients with lung cancer, and reverse-transcription polymerase chain reaction (RT-PCR) was used to identify the presence of bacteria and fungi strains. Results The analysis of the electrophoresis data pointed out diversity between the samples and the strains that were identified. Mycoplasma strains were identified in all samples. Strains that appeared more often were Staphylococcus epidermidis, Streptococcus mitis and Bacillus strains, followed in descending frequency by Chlamydia, Candida, Listeria, and Haemophilus influenza. In individual patients Legionella pneumophila and Candida tropicalis were detected. Conclusions A diversity of pathogens could be identified in surgically extracted tissue samples of patients with lung cancer, with mycoplasma strains being present in all samples. These results point to an etiologic role for chronic infection in lung carcinogenesis. Confirmation of these observations and additional studies are needed to further characterize the etiologic role of inflammation in lung carcinogenesis.
Collapse
|
84
|
Hsieh SY, He JR, Yu MC, Lee WC, Chen TC, Lo SJ, Bera R, Sung CM, Chiu CT. Secreted ERBB3 isoforms are serum markers for early hepatoma in patients with chronic hepatitis and cirrhosis. J Proteome Res 2011; 10:4715-24. [PMID: 21877752 DOI: 10.1021/pr200519q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most hepatocellular carcinoma (HCC) is generated from chronic hepatitis and cirrhosis. To discover new markers for early HCC in patients with chronic hepatitis and cirrhosis, we initiated our search in the interstitial fluid of tumor (TIF) via differential gel electrophoresis and antibody arrays and identified secreted ERBB3 isoforms (sERBB3). The performance of serum sERBB3 in diagnosis of HCC was analyzed using receiver operating characteristic curves (ROC). The serum sERBB3 level was significantly higher in HCC than in cirrhosis (p < 0.001) and chronic hepatitis (p < 0.001). The accuracy of serum sERBB3 in detection of HCC was further validated in two independent sets of patients. In discrimination of early HCC from chronic hepatitis or cirrhosis, serum sERBB3 had a better performance than alpha-fetoprotein (AFP) (areas under ROC [AUC]: sERBB3 vs AFP = 93.1 vs 81.0% from chronic hepatitis and 70.9 vs 62.7% from cirrhosis). Combination of sERBB3 and AFP further improved the accuracy in detection of early HCC from chronic hepatitis (AUC = 97.1%) or cirrhosis (AUC = 77.5%). Higher serum sERBB3 levels were associated with portal-vein invasion and extrahepatic metastasis of HCC (p = 0.017). Therefore, sERBB3 are serum markers for early HCC in patients with chronic hepatitis and cirrhosis.
Collapse
Affiliation(s)
- Sen-Yung Hsieh
- Liver Research Unit, Chang Gung Memorial Hospital , Taoyuan 333, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Bessède E, Angla-Gre M, Delagarde Y, Sep Hieng S, Ménard A, Mégraud F. Matrix-assisted laser-desorption/ionization biotyper: experience in the routine of a University hospital. Clin Microbiol Infect 2011; 17:533-8. [PMID: 20518792 DOI: 10.1111/j.1469-0691.2010.03274.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) is positioned at the forefront of bacterial identification in the future. Its performance needed to be evaluated in a routine Bacteriology laboratory to determine its true benefits. A prospective study was carried out in the Bacteriology laboratory of the Pellegrin University Hospital in Bordeaux, France, from April to May 2009. Bacterial isolates from clinical samples were identified by conventional phenotypic bacteriological methods [Phoenix (Becton-Dickinson) or API strips (bioMérieux)] and in parallel with a mass spectrometer (Ultraflex III TOF/TOF and the biotyper database from Bruker Daltonics). In case of a discrepancy between these results at the genus level, a 16S rRNA and/or rpoB gene sequencing was performed. Of the 1013 bacteria tested, 837 (82.6%) were correctly identified at the species level by MALDI-TOF mass spectrometry (MS) without extraction and 189 after extraction, i.e. 986 (97.3%) were correctly identified at the species level by MALDI-TOF MS, vs. 945 (93.2%) by phenotypic methods. Indeed, the extraction step was necessary for only 15% of the isolates. These results were even better when considering the genus, reaching almost 99% with MALDI-TOF MS and 98% with phenotypic methods. The performance of MALDI-TOF MS is very attractive considering its efficiency and rapidity, and the technique constitutes a precious tool for bacteriological identification in a routine laboratory.
Collapse
Affiliation(s)
- E Bessède
- Laboratoire de Bactériologie, CHU de Bordeaux, Hôpital Pellegrin, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
86
|
Welker M. Proteomics for routine identification of microorganisms. Proteomics 2011; 11:3143-53. [DOI: 10.1002/pmic.201100049] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/31/2011] [Accepted: 04/20/2011] [Indexed: 11/10/2022]
|
87
|
Ferreira L, Sánchez-Juanes F, Muñoz-Bellido J, González-Buitrago J. Rapid method for direct identification of bacteria in urine and blood culture samples by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: intact cell vs. extraction method. Clin Microbiol Infect 2011; 17:1007-12. [DOI: 10.1111/j.1469-0691.2010.03339.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
88
|
Feng HT, Sim LC, Wan C, Wong NSC, Yang Y. Rapid characterization of protein productivity and production stability of CHO cells by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1407-1412. [PMID: 21504006 DOI: 10.1002/rcm.5011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The biopharmaceutical industry has been in pursuit of strategies which can isolate stable and high-producing cell lines. The whole cell mass spectrometry method by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) is a rapid and simple method for cell characterization based on the differences in the fingerprints of the mass spectra. This work describes how the method was evaluated for the application of screening for stable and high-producing clones from a panel of recombinant Chinese hamster ovary (CHO) cell lines. Detectable m/z values and their relative intensities were collected and processed by partial least squares (PLS). To reduce the errors introduced by the preparation method and spectra noise, high intensity preliminary data was selected and the number of variables introduced was validated by leave-one-out cross-validation. The differences in recombinant protein productivity and titer were revealed by PLS regression with promising results. Partial least-squares discriminant analysis (PLS-DA) was applied to differentiate stable and unstable cell lines as traditional stability testing would require several months involving numerous continuous passages. Results confirmed that the whole cell MALDI-TOF method can be a powerful method for routine monitoring of bioprocesses and study can be further developed by extending the number of the cell lines tested to establish a recombinant cell line database.
Collapse
Affiliation(s)
- Hua-tao Feng
- Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), 20 Biopolis Way, Centros, Singapore 138668.
| | | | | | | | | |
Collapse
|
89
|
Identification of lethal Aspergillus at early growth stages based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Diagn Microbiol Infect Dis 2011; 70:344-54. [PMID: 21546196 DOI: 10.1016/j.diagmicrobio.2011.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 11/22/2022]
Abstract
Delayed and incorrect diagnoses are potential risk factors leading to high mortality of invasive aspergillosis (IA). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to acquire a wide mass spectral range and characterize the early process of asexual sporulation of lethal IA pathogens recovered on agar plates. Proteins were extracted using trifluoroacetic acid and soft ionized using an ultraviolet laser with the assistance of ferulic acid. At the second stage of sporulation with various differentiated structures, there are more specific peaks that can be used to discriminate different Aspergillus species than at the first stage, which features vegetative hyphae. Certain specific peaks are found in different strains of the same species, Aspergillus fumigatus. In addition, the relative standard deviations of the m/z ratios are much smaller than those of the relative intensities in these peaks. Therefore, common lethal Aspergillus species can be identified after short-term cultivation by matching species-specific m/z values.
Collapse
|
90
|
Šedo O, Sedláček I, Zdráhal Z. Sample preparation methods for MALDI-MS profiling of bacteria. MASS SPECTROMETRY REVIEWS 2011; 30:417-434. [PMID: 21500244 DOI: 10.1002/mas.20287] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 11/15/2009] [Accepted: 11/15/2009] [Indexed: 05/30/2023]
Abstract
Direct matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) bacterial cell or lysate analysis appears to meet all the criteria required for a rapid and reliable analytical microorganism identification and taxonomical classification tool. Few-minute analytical procedure providing information extending up to sub-species level underlines the potential of the MALDI-MS profiling in comparison with other methods employed in the field. However, the quality of MALDI-MS profiles and consequently the performance of the method are influenced by numerous factors, which involve particular steps of the sample preparation procedure. This review is aimed at advances in development and optimization of the MALDI-MS profiling methodology. Approaches improving the quality of the MALDI-MS profiles and universal feasibility of the method are discussed.
Collapse
Affiliation(s)
- Ondrej Šedo
- Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | |
Collapse
|
91
|
Szabados F, Michels M, Kaase M, Gatermann S. The sensitivity of direct identification from positive BacT/ALERT™ (bioMérieux) blood culture bottles by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is low. Clin Microbiol Infect 2011; 17:192-5. [PMID: 20370799 DOI: 10.1111/j.1469-0691.2010.03229.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been presented as a novel method for the direct identification of bacteria from positive blood culture bottles. The rate of the MALDI TOF MS-based identification in the present study from positive BacT/ALERT (bioMérieux, Marcy l'Etoile, France) blood culture bottles was 30%, which is far below the previously reported sensitivities using the BACTEC (Becton Dickinson, Franklin Lakes, NJ, USA) system. We also found evidence that the Biotyper algorithm did not identify a second pathogen in cases of positive BacT/ALERT blood culture bottles containing two different species.
Collapse
Affiliation(s)
- F Szabados
- Institute for Hygiene and Microbiology, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany.
| | | | | | | |
Collapse
|
92
|
Buskirk AD, Hettick JM, Chipinda I, Law BF, Siegel PD, Slaven JE, Green BJ, Beezhold DH. Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi. Anal Biochem 2011; 411:122-8. [DOI: 10.1016/j.ab.2010.11.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
|
93
|
Rajwa B, Dundar MM, Akova F, Bettasso A, Patsekin V, Hirleman ED, Bhunia AK, Robinson JP. Discovering the unknown: detection of emerging pathogens using a label-free light-scattering system. Cytometry A 2011; 77:1103-12. [PMID: 21108360 DOI: 10.1002/cyto.a.20978] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A recently introduced technique for pathogen recognition called BARDOT (BActeria Rapid Detection using Optical scattering Technology) belongs to the broad class of optical sensors and relies on forward-scatter phenotyping (FSP). The specificity of FSP derives from the morphological information that bacterial material encodes on a coherent optical wavefront passing through the colony. The system collects elastically scattered light patterns that, given a constant environment, are unique to each bacterial species and serovar. The notable similarity between FSP technology and spectroscopies is their reliance on statistical machine learning to perform recognition. Currently used methods utilize traditional supervised techniques which assume completeness of training libraries. However, this restrictive assumption is known to be false for most experimental conditions, resulting in unsatisfactory levels of accuracy, poor specificity, and consequently limited overall performance for biodetection and classification tasks. The presented work demonstrates application of the BARDOT system to classify bacteria belonging to the Salmonella class in a nonexhaustive framework, that is, without full knowledge about all the possible classes that can be encountered. Our study uses a Bayesian approach to learning with a nonexhaustive training dataset to allow for the automated detection of unknown bacterial classes.
Collapse
Affiliation(s)
- Bartek Rajwa
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Zhou N, Wang N, Xu B, Wang J, Fang J, Dong F, He K, Yang X. Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid identification of bacteria cultured in liquid media. SCIENCE CHINA-LIFE SCIENCES 2011; 54:48-53. [PMID: 21253870 DOI: 10.1007/s11427-010-4119-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 06/13/2010] [Indexed: 12/15/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used for many years to rapidly identify whole bacteria. However, no consistent methodology exists for the rapid identification of bacteria cultured in liquid media. Thus, in this study we explored the use of MALDI-TOF MS analysis for rapid identification of cells cultured in liquid media. We determined that 2,5-dihydroxybenzoic acid (50 mg mL(-1), 50% acetonitrile, 0.1% trifluoroacetic acid) was the best matrix solution for MALDI-TOF MS for this type of study. Moreover, the tested strains were successfully differentiated by principal component analysis, and the main characteristics of the mass peaks for each species were found in mixed culture samples. In addition, we found that the minimum number of cells for detection was 1.8 × 10(3). In conclusion, our findings suggest that MS-based techniques can be developed as an auxiliary method for rapidly and accurately identifying bacteria cultured in liquid media.
Collapse
Affiliation(s)
- Na Zhou
- Pharmaceutical Department of Jilin University, Changchun, 130021, China
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Gaia V, Casati S, Tonolla M. Rapid identification of Legionella spp. by MALDI-TOF MS based protein mass fingerprinting. Syst Appl Microbiol 2011; 34:40-4. [PMID: 21247716 DOI: 10.1016/j.syapm.2010.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 11/05/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
A set of reference strains representing 38 different Legionella species were submitted to Whole Cell Mass Spectrometry (WCMS) with MALDI-TOF. The dendrogram computed from strain mass spectral patterns obtained by WCMS was compared to the phylogenetic tree obtained from macrophage infectivity potentiator (mip) sequences. The trees inferred from these two methods revealed significant homologies. Using 453 Legionella isolates previously characterized by genotyping, it was possible to create species-specific SuperSpectra, using appropriate sets of spectral masses, allowing unambiguous differentiation and identification of the most frequently isolated Legionella species. These SuperSpectra were tested for their suitability to identify Legionella strains isolated from water samples, cooling towers, potting soils and patient specimens deposited at the Swiss National Reference Centre for Legionella and previously identified by molecular methods such as mip gene sequencing. 99.1% of the tested strains isolated from the environment could be correctly identified by comparison with the new SuperSpectra. The identification of Legionella spp. by MALDI-TOF MS is rapid, easy to perform and has the advantage of being time- and cost-saving, in comparison to sequence-based identification.
Collapse
Affiliation(s)
- Valeria Gaia
- Cantonal Institute of Microbiology, Bellinzona, Switzerland.
| | | | | |
Collapse
|
96
|
Wittwer M, Heim J, Schär M, Dewarrat G, Schürch N. Tapping the potential of intact cell mass spectrometry with a combined data analytical approach applied to Yersinia spp.: detection, differentiation and identification of Y. pestis. Syst Appl Microbiol 2011; 34:12-9. [PMID: 21239132 DOI: 10.1016/j.syapm.2010.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 10/28/2010] [Accepted: 11/15/2010] [Indexed: 11/29/2022]
Abstract
In the everyday routine of an analytic lab, one is often confronted with the challenge to identify an unknown microbial sample lacking prior information to set the search limits. In the present work, we propose a workflow, which uses the spectral diversity of a commercial database (SARAMIS) to narrow down the search field at a certain taxonomic level, followed by a refined classification by supervised modelling. As supervised learning algorithm, we have chosen a shrinkage discriminant analysis approach, which takes collinearity of the data into account and provides a scoring system for biomarker ranking. This ranking can be used to tailor specific biomarker subsets, which optimize discrimination between subgroups, allowing a weighting of misclassification. The suitability of the approach was verified based on a dataset containing the mass spectra of three Yersinia species Yersinia enterocolitica, Y. pseudotuberculosis and Yersinia pestis. Thereby, we laid the emphasis on the discrimination between the highly related species Yersinia pseudotuberculosis and Y. pestis. All three species were correctly identified at the genus level by the commercial database. Whereas Y. enterocolitica was correctly identified at the species level, discrimination between the highly related Y. pseudotuberculosis and Y. pestis strains was ambiguous. With the use of the supervised modelling approach, we were able to accurately discriminate all the species even when grown under different culture conditions.
Collapse
Affiliation(s)
- Matthias Wittwer
- SPIEZ LABORATORY, Federal Office for Civil Protection FOCP, Austrasse, CH-3700 Spiez, Switzerland.
| | | | | | | | | |
Collapse
|
97
|
Tan L, Wen S, Sun MZ, Tang L. Changes in Protein Profile in Cecum of Mouse with Intestinal Dysbacteriosis Induced by Ceftriaxone Sodium. J HARD TISSUE BIOL 2011. [DOI: 10.2485/jhtb.20.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
98
|
Liu CL, Wen S, Liu YH, Li HJ, Xiao J, Tang L. Extracellular Nucleic Acids Secreted by Lactobacillus Regulate TLR9 Expression. J HARD TISSUE BIOL 2011. [DOI: 10.2485/jhtb.20.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
99
|
Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 2010; 5:1733-54. [DOI: 10.2217/fmb.10.127] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MALDI-TOF-mass spectrometry (MS) has been successfully adapted for the routine identification of microorganisms in clinical microbiology laboratories in the past 10 years. This revolutionary technique allows for easier and faster diagnosis of human pathogens than conventional phenotypic and molecular identification methods, with unquestionable reliability and cost–effectiveness. This article will review the application of MALDI-TOF-MS tools in routine clinical diagnosis, including the identification of bacteria at the species, subspecies, strain and lineage levels, and the identification of bacterial toxins and antibiotic-resistance type. We will also discuss the application of MALDI-TOF-MS tools in the identification of Archaea, eukaryotes and viruses. Pathogenic identification from colony-cultured, blood-cultured, urine and environmental samples is also reviewed.
Collapse
Affiliation(s)
- Piseth Seng
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Jean-Marc Rolain
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Pierre Edouard Fournier
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Bernard La Scola
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Michel Drancourt
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | | |
Collapse
|
100
|
Böhme K, Fernández-No IC, Gallardo JM, Cañas B, Calo-Mata P. Safety Assessment of Fresh and Processed Seafood Products by MALDI-TOF Mass Fingerprinting. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0441-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|