51
|
Chen Y, Qin W, Wang C. Chemoproteomic profiling of protein modifications by lipid-derived electrophiles. Curr Opin Chem Biol 2015; 30:37-45. [PMID: 26625013 DOI: 10.1016/j.cbpa.2015.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/21/2023]
Abstract
Lipid-derived electrophiles (LDEs) are a group of endogenous reactive metabolites generated as products of lipid peroxidation when cells are under oxidative stress. LDEs are able to covalently modify nucleophilic residues in proteins to alter their structures and activities, either resulting in irreversible functional damage or triggering aberrant signaling pathways. Traditional biochemical methods have revealed individual protein targets modified by LDEs, however, deciphering the toxicity and/or signaling roles of LDEs requires systematic studies of these modifications in a high-throughput fashion. Here we survey recent progress in developing chemical proteomic strategies to globally profile protein-LDE interactions directly from complex proteomes. These powerful chemoproteomic methods have yielded a rich inventory of proteins and residue sites that are sensitive to LDE modification, serving as valuable resources to investigate mechanisms of their cellular toxicity at the molecular level.
Collapse
Affiliation(s)
- Ying Chen
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering and Peking University, Beijing 100871, China
| | - Wei Qin
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chu Wang
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China; Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering and Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
52
|
Schaur RJ, Siems W, Bresgen N, Eckl PM. 4-Hydroxy-nonenal-A Bioactive Lipid Peroxidation Product. Biomolecules 2015; 5:2247-337. [PMID: 26437435 PMCID: PMC4693237 DOI: 10.3390/biom5042247] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 12/23/2022] Open
Abstract
This review on recent research advances of the lipid peroxidation product 4-hydroxy-nonenal (HNE) has four major topics: I. the formation of HNE in various organs and tissues, II. the diverse biochemical reactions with Michael adduct formation as the most prominent one, III. the endogenous targets of HNE, primarily peptides and proteins (here the mechanisms of covalent adduct formation are described and the (patho-) physiological consequences discussed), and IV. the metabolism of HNE leading to a great number of degradation products, some of which are excreted in urine and may serve as non-invasive biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Rudolf J Schaur
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 33a, 8010 Graz, Austria.
| | - Werner Siems
- Institute for Medical Education, KortexMed GmbH, Hindenburgring 12a, 38667 Bad Harzburg, Germany.
| | - Nikolaus Bresgen
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
53
|
Endogenous Generation and Signaling Actions of Omega-3 Fatty Acid Electrophilic Derivatives. BIOMED RESEARCH INTERNATIONAL 2015; 2015:501792. [PMID: 26339618 PMCID: PMC4538325 DOI: 10.1155/2015/501792] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/28/2022]
Abstract
Dietary omega-3 polyunsaturated fatty acids (PUFAs) are beneficial for a number of conditions ranging from cardiovascular disease to chronic airways disorders, neurodegeneration, and cancer. Growing evidence has shown that bioactive oxygenated derivatives are responsible for transducing these salutary effects. Electrophilic oxo-derivatives of omega-3 PUFAs represent a class of oxidized derivatives that can be generated via enzymatic and nonenzymatic pathways. Inflammation and oxidative stress favor the formation of these signaling species to promote the resolution of inflammation within a fine autoregulatory loop. Endogenous generation of electrophilic oxo-derivatives of omega-3 PUFAs has been observed in in vitro and ex vivo human models and dietary supplementation of omega-3 PUFAs has been reported to increase their formation. Due to the presence of an α,β-unsaturated ketone moiety, these compounds covalently and reversibly react with nucleophilic residues on target proteins triggering the activation of cytoprotective pathways, including the Nrf2 antioxidant response, the heat shock response, and the peroxisome proliferator activated receptor γ (PPARγ) and suppressing the NF-κB proinflammatory pathway. The endogenous nature of electrophilic oxo-derivatives of omega-3 PUFAs combined with their ability to simultaneously activate multiple cytoprotective pathways has made these compounds attractive for the development of new therapies for the treatment of chronic disorders and acute events characterized by inflammation and oxidative stress.
Collapse
|
54
|
Abstract
Protein S-sulfenylation is the reversible oxidative modification of cysteine thiol groups to form cysteine S-sulfenic acids. Mapping the specific sites of protein S-sulfenylation onto complex proteomes is crucial to understanding the molecular mechanisms controlling redox signaling and regulation. This protocol describes global, in situ, site-specific analysis of protein S-sulfenylation using sulfenic acid-specific chemical probes and mass spectrometry (MS)-based proteomics. The major steps in this protocol are as follows: (i) optimization of conditions for selective labeling of cysteine S-sulfenic acids in intact cells with the commercially available dimedone-based probe, DYn-2; (ii) tagging the modified cysteines with a functionalized biotin reagent containing a cleavable linker via Cu(I)-catalyzed azide-alkyne cycloaddition reaction; (iii) enrichment of the biotin-tagged tryptic peptides with streptavidin; (iv) liquid chromatography-tandem MS (LC-MS/MS)-based shotgun proteomics; and (v) computational data analysis. We also outline strategies for quantitative analysis of this modification in cells responding to redox perturbations and discuss special issues pertaining to experimental design of thiol redox studies. Our chemoproteomic platform should be broadly applicable to the investigation of other bio-orthogonal chemically engineered post-translational modifications. The entire analysis protocol takes ∼1 week to complete.
Collapse
|
55
|
Lin HY, Haegele JA, Disare MT, Lin Q, Aye Y. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling. J Am Chem Soc 2015; 137:6232-44. [PMID: 25909755 PMCID: PMC4528680 DOI: 10.1021/ja5132648] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized "electrophile toolbox" with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology, T-REX (targetable reactive electrophiles and oxidants), is established by (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept, which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein, one of several redox-sensitive regulators of the Nrf2-ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2-ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background.
Collapse
Affiliation(s)
- Hong-Yu Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Joseph A. Haegele
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Michael T. Disare
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Qishan Lin
- Proteomics/Mass Spectrometry Facility, Center for Functional Genomics, University of Albany, Rensselaer, New York, 12144, USA
| | - Yimon Aye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, 10065, USA
| |
Collapse
|
56
|
Lubrano C, Valacchi G, Specchia P, Gnessi L, Rubanenko EP, Shuginina EA, Trukhanov AI, Korkina LG, De Luca C. Integrated Haematological Profiles of Redox Status, Lipid, and Inflammatory Protein Biomarkers in Benign Obesity and Unhealthy Obesity with Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:490613. [PMID: 26090072 PMCID: PMC4451994 DOI: 10.1155/2015/490613] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/11/2015] [Accepted: 04/20/2015] [Indexed: 12/24/2022]
Abstract
The pathogenesis of obesity (OB) and metabolic syndrome (MetS) implies free radical-, oxidized lipid- (LOOH-), and inflammatory cytokine-mediated altered pathways in target organs. Key elements of the transition from benign OB to unhealthy OB+MetS remain unclear. Here, we measured a panel of redox, antioxidant, and inflammation markers in the groups of OB patients (67 with, 45 without MetS) and 90 controls. Both OB groups displayed elevated levels of adipokines and heavy oxidative stress (OS) evidenced by reduced levels of glutathione, downregulated glutathione-S-transferase, increased 4-hydroxynonenal-protein adducts, reactive oxygen species, and membrane-bound monounsaturated fatty acids (MUFA). Exclusively in OB+MetS, higher-than-normal glutathione peroxidase activity, tumor necrosis factor-α, and other proinflammatory cytokines/chemokines/growth factors were observed; a combination of high adipokine plasminogen activator inhibitor-1 and MUFA was consistent with increased cardiovascular risk. The uncomplicated OB group showed features of adaptation to OS such as decreased levels of vitamin E, activated superoxide dismutase, and inhibited catalase, suggesting H2O2 hyperproduction. Proinflammatory cytokine pattern was normal, except few markers like RANTES, a suitable candidate for therapeutic approaches to prevent a setting of MetS by inhibition of LOOH-primed leukocyte chemotaxis/recruitment to target tissues.
Collapse
Affiliation(s)
- Carla Lubrano
- Section of Medical Pathophysiology, Endocrinology and Food Science, Department of Experimental Medicine, “Sapienza” University, “Umberto I” Polyclinic, Viale Regina Elena 324, 00161 Rome, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Palma Specchia
- Section of Medical Pathophysiology, Endocrinology and Food Science, Department of Experimental Medicine, “Sapienza” University, “Umberto I” Polyclinic, Viale Regina Elena 324, 00161 Rome, Italy
| | - Lucio Gnessi
- Section of Medical Pathophysiology, Endocrinology and Food Science, Department of Experimental Medicine, “Sapienza” University, “Umberto I” Polyclinic, Viale Regina Elena 324, 00161 Rome, Italy
| | - Elizaveta P. Rubanenko
- Active Longevity Clinic “Institut Krasoty na Arbate”, 8 Maly Nikolopeskovsky Lane, Moscow 119002, Russia
| | - Elena A. Shuginina
- Active Longevity Clinic “Institut Krasoty na Arbate”, 8 Maly Nikolopeskovsky Lane, Moscow 119002, Russia
| | - Arseny I. Trukhanov
- Active Longevity Clinic “Institut Krasoty na Arbate”, 8 Maly Nikolopeskovsky Lane, Moscow 119002, Russia
| | - Liudmila G. Korkina
- Active Longevity Clinic “Institut Krasoty na Arbate”, 8 Maly Nikolopeskovsky Lane, Moscow 119002, Russia
- Centre of Innovative Biotechnological Investigations (Cibi-NanoLab), 197 Vernadskogo Prospekt, Moscow 119571, Russia
| | - Chiara De Luca
- Centre of Innovative Biotechnological Investigations (Cibi-NanoLab), 197 Vernadskogo Prospekt, Moscow 119571, Russia
| |
Collapse
|
57
|
Codreanu SG, Liebler DC. Novel approaches to identify protein adducts produced by lipid peroxidation. Free Radic Res 2015; 49:881-7. [PMID: 25819163 DOI: 10.3109/10715762.2015.1019348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipid peroxidation is responsible for the generation of chemically reactive, diffusible lipid-derived electrophiles (LDEs) that covalently modify cellular protein targets. These protein modifications modulate protein activity and macromolecular interactions and induce adaptive and toxic cell signaling. Protein modifications induced by LDEs can be identified and quantified by affinity enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based techniques. Tagged LDE analog probes with different electrophilic groups can be covalently captured by click chemistry for LC-MS/MS analyses, thereby enabling in-depth studies of proteome damage at the protein and peptide sequence levels. Conversely, click-reactive, thiol-directed probes can be used to evaluate thiol damage caused by LDE by difference. These analytical approaches permit systematic study of the dynamics of protein damage caused by LDE and mechanisms by which oxidative stress contribute to toxicity and diseases.
Collapse
Affiliation(s)
- S G Codreanu
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, TN , USA
| | | |
Collapse
|
58
|
Aluise CD, Camarillo JM, Shimozu Y, Galligan JJ, Rose KL, Tallman KA, Marnett LJ. Site-specific, intramolecular cross-linking of Pin1 active site residues by the lipid electrophile 4-oxo-2-nonenal. Chem Res Toxicol 2015; 28:817-27. [PMID: 25739016 PMCID: PMC4480626 DOI: 10.1021/acs.chemrestox.5b00038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Products of oxidative damage to lipids
include 4-hydroxy-2-nonenal
(HNE) and 4-oxo-2-nonenal (ONE), both of which are cytotoxic electrophiles.
ONE reacts more rapidly with nucleophilic amino acid side chains,
resulting in covalent protein adducts, including residue–residue
cross-links. Previously, we demonstrated that peptidylprolyl cis/trans isomerase A1 (Pin1) was highly
susceptible to adduction by HNE and that the catalytic cysteine (Cys113)
was the preferential site of modification. Here, we show that ONE
also preferentially adducts Pin1 at the catalytic Cys but results
in a profoundly different modification. Results from experiments using
purified Pin1 incubated with ONE revealed the principal product to
be a Cys-Lys pyrrole-containing cross-link between the side chains
of Cys113 and Lys117. In vitro competition assays
between HNE and ONE demonstrate that ONE reacts more rapidly than
HNE with Cys113. Exposure of RKO cells to alkynyl-ONE (aONE) followed
by copper-mediated click chemistry and streptavidin purification revealed
that Pin1 is also modified by ONE in cells. Analysis of the Pin1 crystal
structure reveals that Cys113 and Lys117 are oriented toward each
other in the active site, facilitating formation of an ONE cross-link.
Collapse
Affiliation(s)
- Christopher D Aluise
- †A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, ‡Department of Chemistry, and §Mass Spectrometry Research Core, Vanderbilt University, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Jeannie M Camarillo
- †A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, ‡Department of Chemistry, and §Mass Spectrometry Research Core, Vanderbilt University, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Yuki Shimozu
- †A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, ‡Department of Chemistry, and §Mass Spectrometry Research Core, Vanderbilt University, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - James J Galligan
- †A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, ‡Department of Chemistry, and §Mass Spectrometry Research Core, Vanderbilt University, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Kristie L Rose
- †A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, ‡Department of Chemistry, and §Mass Spectrometry Research Core, Vanderbilt University, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Keri A Tallman
- †A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, ‡Department of Chemistry, and §Mass Spectrometry Research Core, Vanderbilt University, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Lawrence J Marnett
- †A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, ‡Department of Chemistry, and §Mass Spectrometry Research Core, Vanderbilt University, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
59
|
Poole LB. The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 2015; 80:148-57. [PMID: 25433365 PMCID: PMC4355186 DOI: 10.1016/j.freeradbiomed.2014.11.013] [Citation(s) in RCA: 657] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/20/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
Abstract
Cysteine is one of the least abundant amino acids, yet it is frequently found as a highly conserved residue within functional (regulatory, catalytic, or binding) sites in proteins. It is the unique chemistry of the thiol or thiolate group of cysteine that imparts to functional sites their specialized properties (e.g., nucleophilicity, high-affinity metal binding, and/or ability to form disulfide bonds). Highlighted in this review are some of the basic biophysical and biochemical properties of cysteine groups and the equations that apply to them, particularly with respect to pKa and redox potential. Also summarized are the types of low-molecular-weight thiols present in high concentrations in most cells, as well as the ways in which modifications of cysteinyl residues can impart or regulate molecular functions important to cellular processes, including signal transduction.
Collapse
Affiliation(s)
- Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
60
|
Yang J, Tallman KA, Porter NA, Liebler DC. Quantitative chemoproteomics for site-specific analysis of protein alkylation by 4-hydroxy-2-nonenal in cells. Anal Chem 2015; 87:2535-41. [PMID: 25654326 PMCID: PMC4350606 DOI: 10.1021/ac504685y] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Protein alkylation by 4-hydroxy-2-nonenal
(HNE), an endogenous
lipid derived electrophile, contributes to stress signaling and cellular
toxicity. Although previous work has identified protein targets for
HNE alkylation, the sequence specificity of alkylation and dynamics
in a cellular context remain largely unexplored. We developed a new
quantitative chemoproteomic platform, which uses isotopically tagged,
photocleavable azido-biotin reagents to selectively capture and quantify
the cellular targets labeled by the alkynyl analogue of HNE (aHNE).
Our analyses site-specifically identified and quantified 398 aHNE
protein alkylation events (386 cysteine sites and 12 histidine sites)
in intact cells. This data set expands by at least an order of magnitude
the number of such modification sites previously reported. Although
adducts formed by Michael addition are thought to be largely irreversible,
we found that most aHNE modifications are lost rapidly in
situ. Moreover, aHNE adduct turnover occurs only in intact
cells and loss rates are site-selective. This quantitative chemoproteomics
platform provides a versatile general approach to map bioorthogonal-chemically
engineered post-translational modifications and their cellular dynamics
in a site-specific and unbiased manner.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biochemistry, Vanderbilt University School of Medicine , 465 21st Avenue South, U1213 MRB III, Nashville, Tennessee 37232, United States
| | | | | | | |
Collapse
|
61
|
Schrimpe-Rutledge AC, Fong KY, Wright DW. Impact of 4-hydroxynonenal on matrix metalloproteinase-9 regulation in lipopolysaccharide-stimulated RAW 264.7 cells. Cell Biochem Funct 2015; 33:59-66. [PMID: 25663587 DOI: 10.1002/cbf.3087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/15/2014] [Accepted: 12/08/2014] [Indexed: 01/12/2023]
Abstract
Tissue degradation and leukocyte extravasation suggest proteolytic destruction of the extracellular matrix (ECM) during severe malaria. Matrix metalloproteinases (MMPs) play an established role in ECM turnover, and increased MMP-9 protein abundance is correlated with malarial infection. The malaria pigment hemozoin (Hz) is a heme detoxification biomineral that is produced during infection and associated with biologically active lipid peroxidation products such as 4-hydroxynonenal (HNE) adsorbed to its surface. Hz has innate immunomodulatory activity, and many of its effects can be reproduced by exogenously added HNE. Hz phagocytosis enhances MMP-9 expression in monocytes; thus, this study was designed to examine the ability of HNE to alter MMP-9 regulation in activated cells of macrophage lineage. Data show that treatment of lipopolysaccharide-stimulated RAW 264.7 cells with HNE increased MMP-9 secretion and activity. HNE treatment abolished the cognate tissue inhibitor of metalloproteinase-1 protein levels, further decreasing MMP-9 regulation. Phosphorylation of both p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase was induced by HNE, but only p38 MAPK inhibition lessened MMP-9 secretion. These results demonstrate the in vitro ability of HNE to cause MMP-9 dysregulation in an activated cell model. The findings may extend to myriad pathologies associated with lipid peroxidation and elevated MMP-9 levels leading to tissue damage.
Collapse
|
62
|
Parvez S, Fu Y, Li J, Long MJC, Lin HY, Lee D, Hu GS, Aye Y. Substoichiometric hydroxynonenylation of a single protein recapitulates whole-cell-stimulated antioxidant response. J Am Chem Soc 2015; 137:10-3. [PMID: 25544059 PMCID: PMC4304447 DOI: 10.1021/ja5084249] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Indexed: 12/24/2022]
Abstract
Lipid-derived electrophiles (LDEs) that can directly modify proteins have emerged as important small-molecule cues in cellular decision-making. However, because these diffusible LDEs can modify many targets [e.g., >700 cysteines are modified by the well-known LDE 4-hydroxynonenal (HNE)], establishing the functional consequences of LDE modification on individual targets remains devilishly difficult. Whether LDE modifications on a single protein are biologically sufficient to activate discrete redox signaling response downstream also remains untested. Herein, using T-REX (targetable reactive electrophiles and oxidants), an approach aimed at selectively flipping a single redox switch in cells at a precise time, we show that a modest level (∼34%) of HNEylation on a single target is sufficient to elicit the pharmaceutically important antioxidant response element (ARE) activation, and the resultant strength of ARE induction recapitulates that observed from whole-cell electrophilic perturbation. These data provide the first evidence that single-target LDE modifications are important individual events in mammalian physiology.
Collapse
Affiliation(s)
- Saba Parvez
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Yuan Fu
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Jiayang Li
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Marcus J. C. Long
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Hong-Yu Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Dustin
K. Lee
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Gene S. Hu
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Yimon Aye
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
- Department
of Biochemistry, Weill Cornell Medical College, New York, New York 10065, United States
| |
Collapse
|
63
|
Couvertier SM, Zhou Y, Weerapana E. Chemical-proteomic strategies to investigate cysteine posttranslational modifications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2315-30. [PMID: 25291386 DOI: 10.1016/j.bbapap.2014.09.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 01/10/2023]
Abstract
The unique combination of nucleophilicity and redox-sensitivity that is characteristic of cysteine residues results in a variety of posttranslational modifications (PTMs), including oxidation, nitrosation, glutathionylation, prenylation, palmitoylation and Michael adducts with lipid-derived electrophiles (LDEs). These PTMs regulate the activity of diverse protein families by modulating the reactivity of cysteine nucleophiles within active sites of enzymes, and governing protein localization between soluble and membrane-bound forms. Many of these modifications are highly labile, sensitive to small changes in the environment, and dynamic, rendering it difficult to detect these modified species within a complex proteome. Several chemical-proteomic platforms have evolved to study these modifications and enable a better understanding of the diversity of proteins that are regulated by cysteine PTMs. These platforms include: (1) chemical probes to selectively tag PTM-modified cysteines; (2) differential labeling platforms that selectively reveal and tag PTM-modified cysteines; (3) lipid, isoprene and LDE derivatives containing bioorthogonal handles; and (4) cysteine-reactivity profiling to identify PTM-induced decreases in cysteine nucleophilicity. Here, we will provide an overview of these existing chemical-proteomic strategies and their effectiveness at identifying PTM-modified cysteine residues within native biological systems.
Collapse
Affiliation(s)
| | - Yani Zhou
- Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
64
|
Sakamoto T, Maebayashi K, Nakagawa Y, Imai H. Deletion of the four phospholipid hydroperoxide glutathione peroxidase genes accelerates aging in Caenorhabditis elegans. Genes Cells 2014; 19:778-92. [PMID: 25200408 DOI: 10.1111/gtc.12175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 08/01/2014] [Indexed: 01/15/2023]
Abstract
The glutathione peroxidase (GPx) family is a major antioxidant enzyme family that catalyzes the reduction of a variety of hydroperoxides. GPxs are divided into selenium- and nonselenium-containing GPxs. Because of their efficient antioxidant activity, which depends on the presence of the amino acid residue selenocysteine, selenium-containing GPxs have been the subject of many studies. However, the physiological roles of the nonselenium GPxs remain unclear. Here, we report that the deletion of phospholipid hydroperoxide glutathione peroxidase (PHGPx) homologues causes accelerated aging that leads to a shortened lifespan in Caenorhabditis elegans. PHGPx is an antioxidant enzyme that directly reduces the phospholipid hydroperoxides generated in biomembranes. The quadruple phgpx mutant gpx-1; gpx-2; gpx-6; gpx-7 developed normally, reached adulthood and reproduced as well as the wild type. However, a lifespan analysis showed that the quadruple phgpx mutant had a short maximum lifespan, with an age-related increase in its mortality rate. The intestine is the primary tissue expressing gpx-1, gpx-2, gpx-6 and gpx-7 in C. elegans, and the expression of gpx-6 is greatly enhanced under starvation conditions. These results suggest that the C. elegans PHGPx homologues have important functions in the regulation of aging, probably by reducing oxidative damage in the intestine.
Collapse
Affiliation(s)
- Taro Sakamoto
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | | | | | | |
Collapse
|
65
|
Shearn CT, Backos DS, Orlicky DJ, Smathers-McCullough RL, Petersen DR. Identification of 5' AMP-activated kinase as a target of reactive aldehydes during chronic ingestion of high concentrations of ethanol. J Biol Chem 2014; 289:15449-62. [PMID: 24722988 DOI: 10.1074/jbc.m113.543942] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The production of reactive aldehydes including 4-hydroxy-2-nonenal (4-HNE) is a key component of the pathogenesis in a spectrum of chronic inflammatory hepatic diseases including alcoholic liver disease (ALD). One consequence of ALD is increased oxidative stress and altered β-oxidation in hepatocytes. A major regulator of β-oxidation is 5' AMP protein kinase (AMPK). In an in vitro cellular model, we identified AMPK as a direct target of 4-HNE adduction resulting in inhibition of both H2O2 and 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)-induced downstream signaling. By employing biotin hydrazide capture, it was confirmed that 4-HNE treatment of cells resulted in carbonylation of AMPKα/β, which was not observed in untreated cells. Using a murine model of alcoholic liver disease, treatment with high concentrations of ethanol resulted in an increase in phosphorylated as well as carbonylated AMPKα. Despite increased AMPK phosphorylation, there was no significant change in phosphorylation of acetyl CoA carboxylase. Mass spectrometry identified Michael addition adducts of 4-HNE on Cys(130), Cys(174), Cys(227), and Cys(304) on recombinant AMPKα and Cys(225) on recombinant AMPKβ. Molecular modeling analysis of identified 4-HNE adducts on AMPKα suggest that inhibition of AMPK occurs by steric hindrance of the active site pocket and by inhibition of hydrogen peroxide induced oxidation. The observed inhibition of AMPK by 4-HNE provides a novel mechanism for altered β-oxidation in ALD, and these data demonstrate for the first time that AMPK is subject to regulation by reactive aldehydes in vivo.
Collapse
Affiliation(s)
| | | | - David J Orlicky
- Department of Pathology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado 80045 and
| | | | | |
Collapse
|
66
|
Furdui CM, Poole LB. Chemical approaches to detect and analyze protein sulfenic acids. MASS SPECTROMETRY REVIEWS 2014; 33:126-46. [PMID: 24105931 PMCID: PMC3946320 DOI: 10.1002/mas.21384] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 05/08/2023]
Abstract
Orchestration of many processes relying on intracellular signal transduction is recognized to require the generation of hydrogen peroxide as a second messenger, yet relatively few molecular details of how this oxidant acts to regulate protein function are currently understood. This review describes emerging chemical tools and approaches that can be applied to study protein oxidation in biological systems, with a particular emphasis on a key player in protein redox regulation, cysteine sulfenic acid. While sulfenic acids (within purified proteins or simple mixtures) are detectable by physical approaches like X-ray crystallography, nuclear magnetic resonance and mass spectrometry, the propensity of these moieties to undergo further modification in complex biological systems has necessitated the development of chemical probes, reporter groups and analytical approaches to allow for their selective detection and quantification. Provided is an overview of techniques that are currently available for the study of sulfenic acids, and some of the biologically meaningful data that have been collected using such approaches.
Collapse
Affiliation(s)
- Cristina M. Furdui
- Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
- Correspondence to: Leslie B. Poole, Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157; ; telephone: 336-716-6711
| |
Collapse
|
67
|
Fedorova M, Bollineni RC, Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. MASS SPECTROMETRY REVIEWS 2014; 33:79-97. [PMID: 23832618 DOI: 10.1002/mas.21381] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 05/23/2023]
Abstract
Protein carbonylation, one of the most harmful irreversible oxidative protein modifications, is considered as a major hallmark of oxidative stress-related disorders. Protein carbonyl measurements are often performed to assess the extent of oxidative stress in the context of cellular damage, aging and several age-related disorders. A wide variety of analytical techniques are available to detect and quantify protein-bound carbonyls generated by metal-catalyzed oxidation, lipid peroxidation or glycation/glycoxidation. Here we review current analytical approaches for protein carbonyl detection with a special focus on mass spectrometry-based techniques. The utility of several carbonyl-derivatization reagents, enrichment protocols and especially advanced mass spectrometry techniques are compared and discussed in detail. Furthermore, the mechanisms and biology of protein carbonylation are summarized based on recent high-throughput proteomics data.
Collapse
Affiliation(s)
- Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, D-04103, Leipzig, Germany; Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, D-04103, Leipzig, Germany
| | | | | |
Collapse
|
68
|
Codreanu SG, Ullery JC, Zhu J, Tallman KA, Beavers WN, Porter NA, Marnett LJ, Zhang B, Liebler DC. Alkylation damage by lipid electrophiles targets functional protein systems. Mol Cell Proteomics 2014; 13:849-59. [PMID: 24429493 PMCID: PMC3945913 DOI: 10.1074/mcp.m113.032953] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions.
Collapse
Affiliation(s)
- Simona G Codreanu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Butterfield DA, Dalle-Donne I. Redox proteomics: from protein modifications to cellular dysfunction and disease. MASS SPECTROMETRY REVIEWS 2014; 33:1-6. [PMID: 24285334 DOI: 10.1002/mas.21404] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506
| | | |
Collapse
|
70
|
Wang C, Weerapana E, Blewett MM, Cravatt BF. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat Methods 2013; 11:79-85. [PMID: 24292485 PMCID: PMC3901407 DOI: 10.1038/nmeth.2759] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/11/2013] [Indexed: 02/07/2023]
Abstract
Cells produce electrophilic products with the potential to modify and affect the function of proteins. Chemoproteomic methods have provided a means to qualitatively inventory proteins targeted by endogenous electrophiles; however, ascertaining the potency and specificity of these reactions to identify the most sensitive sites in the proteome to electrophilic modification requires more quantitative methods. Here, we describe a competitive activity-based profiling method for quantifying the reactivity of electrophilic compounds against 1000+ cysteines in parallel in the human proteome. Using this approach, we identify a select set of proteins that constitute “hot spots” for modification by various lipid-derived electrophiles, including the oxidative stress product 4-hydroxynonenal (HNE). We show that one of these proteins, ZAK kinase, is labeled by HNE on a conserved, active site-proximal cysteine, resulting in enzyme inhibition to create a negative feedback mechanism that can suppress the activation of JNK pathways by oxidative stress.
Collapse
Affiliation(s)
- Chu Wang
- 1] The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA. [2] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Eranthie Weerapana
- 1] The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA. [2] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Megan M Blewett
- 1] The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA. [2] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | - Benjamin F Cravatt
- 1] The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA. [2] Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
71
|
Nam TG. Lipid peroxidation and its toxicological implications. Toxicol Res 2013; 27:1-6. [PMID: 24278542 PMCID: PMC3834518 DOI: 10.5487/tr.2011.27.1.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 12/16/2010] [Accepted: 12/22/2010] [Indexed: 12/15/2022] Open
Abstract
Lipid peroxidation is a free radical oxidation of polyunsaturated fatty acids such as linoleic acid or arachidonic acid. This process has been related with various pathologies and disease status mainly because of the oxidation products formed during the process. The oxidation products include reactive aldehydes such as malondialdehyde and 4-hydroxynonenal. These reactive aldehydes can form adducts with DNAs and proteins, leading to the alterations in their functions to cause various diseases. This review will provide a short summary on the implication of lipid peroxidation on cancer, atherosclerosis, and neurodegeneration as well as chemical and biochemical mechanisms by which these adducts affect the pathological conditions. In addition, select examples will be presented where antioxidants were used to counteract oxidative damage caused by lipid peroxidation. At the end, isoprostanes are discussed as a gold standard for the assessment of oxidative damages.
Collapse
|
72
|
Colzani M, Aldini G, Carini M. Mass spectrometric approaches for the identification and quantification of reactive carbonyl species protein adducts. J Proteomics 2013; 92:28-50. [DOI: 10.1016/j.jprot.2013.03.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 01/28/2023]
|
73
|
Moellering RE, Cravatt BF. Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science 2013; 341:549-53. [PMID: 23908237 DOI: 10.1126/science.1238327] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The posttranslational modification of proteins and their regulation by metabolites represent conserved mechanisms in biology. At the confluence of these two processes, we report that the primary glycolytic intermediate 1,3-bisphosphoglycerate (1,3-BPG) reacts with select lysine residues in proteins to form 3-phosphoglyceryl-lysine (pgK). This reaction, which does not require enzyme catalysis, but rather exploits the electrophilicity of 1,3-BPG, was found by proteomic profiling to be enriched on diverse classes of proteins and prominently in or around the active sites of glycolytic enzymes. pgK modifications inhibit glycolytic enzymes and, in cells exposed to high glucose, accumulate on these enzymes to create a potential feedback mechanism that contributes to the buildup and redirection of glycolytic intermediates to alternate biosynthetic pathways.
Collapse
Affiliation(s)
- Raymond E Moellering
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
74
|
Jarocka I, Gęgotek A, Bielawska A, Bielawski K, Łuczaj W, Hodun T, Skrzydlewska E. Effect of novel dinuclear platinum(II) complexes on redox status of MOLT-4 leukemic cells. Toxicol Mech Methods 2013; 23:641-9. [DOI: 10.3109/15376516.2013.825359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
75
|
Soares CO, Boiani M, Marnett LJ, Bechara EJH. Cytotoxicity of 1,4-diamino-2-butanone, a putrescine analogue, to RKO cells: mechanism and redox imbalance. Free Radic Res 2013; 47:672-82. [PMID: 23758064 DOI: 10.3109/10715762.2013.814126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
α-Aminocarbonyl metabolites (e.g., 5-aminolevulinic acid and aminoacetone) and the wide spectrum microbicide 1,4-diamino-2-butanone (DAB) have been shown to exhibit pro-oxidant properties. In vitro, these compounds undergo phosphate-catalyzed enolization at physiological pH and subsequent superoxide radical-propagated aerobic oxidation, yielding a reactive α-oxoaldehyde and H2O2. DAB cytotoxicity to pathogenic microorganisms has been attributed to the inhibition of polyamine biosynthesis. However, the role played in cell death by reactive DAB oxidation products is still poorly understood. This work aims to clarify the mechanism of DAB-promoted pro-oxidant action on mammalian cells. DAB (0.05-10 mM) treatment of RKO cells derived from human colon carcinoma led to a decrease in cell viability (IC50 ca. 0.3 mM DAB, 24 h incubation). Pre-addition of either catalase (5 μM) or aminoguanidine (20 mM) was observed to partially inhibit the toxic effects of DAB to the cells, while N-acetyl-L-cysteine (NAC, 5 mM) or reduced glutathione (GSH, 5 mM) provided almost complete protection against DAB. Changes in redox balance and stress response pathways were indicated by the increased expression of HO-1, NQO1 and xCT. Moreover, the observation of caspase 3 and PARP cleavage products is consistent with DAB-triggered apoptosis in RKO cells, which was corroborated by the partial protection afforded by the pan-caspase inhibitor z-VAD-FMK. Finally, DAB treatment disrupted the cell cycle in response to increased p53 and activation of ATM. Altogether, these data support the hypothesis that DAB exerts cytotoxicity via a mechanism involving not only polyamine biosynthesis but also by DAB oxidation products.
Collapse
Affiliation(s)
- C O Soares
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
76
|
Windsor K, Genaro-Mattos TC, Kim HYH, Liu W, Tallman KA, Miyamoto S, Korade Z, Porter NA. Probing lipid-protein adduction with alkynyl surrogates: application to Smith-Lemli-Opitz syndrome. J Lipid Res 2013; 54:2842-50. [PMID: 23828810 DOI: 10.1194/jlr.m041061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid modifications aid in regulating (and misregulating) protein function and localization. However, efficient methods to screen for a lipid's ability to modify proteins are not readily available. We present a strategy to identify protein-reactive lipids and apply it to a neurodevelopmental disorder, Smith-Lemli-Opitz syndrome (SLOS). Alkynyl surrogates were synthesized for polyunsaturated fatty acids, phospholipids, cholesterol, 7-dehydrocholesterol (7-DHC), and a 7-DHC-derived oxysterol. To probe for protein-reactive lipids, we used click chemistry to biotinylate the alkynyl tag and detected the lipid-adducted proteins with streptavidin Western blotting. In Neuro2a cells, the trend in amount of protein adduction followed known rates of lipid peroxidation (7-DHC >> arachidonic acid > linoleic acid >> cholesterol), with alkynyl-7-DHC producing the most adduction among alkynyl lipids. 7-DHC reductase-deficient cells, which cannot properly metabolize 7-DHC, exhibited significantly more alkynyl-7-DHC-protein adduction than control cells. Model studies demonstrated that a 7-DHC peroxidation product covalently modifies proteins. We hypothesize that 7-DHC generates electrophiles that can modify the proteome, contributing to SLOS's complex pathology. These probes and methods would allow for analysis of lipid-modified proteomes in SLOS and other disorders exhibiting 7-DHC accumulation. More broadly, the alkynyl lipid library would facilitate exploration of lipid peroxidation's role in specific biological processes in numerous diseases.
Collapse
|
77
|
Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? J Proteomics 2013; 92:110-31. [PMID: 23770299 DOI: 10.1016/j.jprot.2013.06.004] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 05/20/2013] [Accepted: 06/03/2013] [Indexed: 11/23/2022]
Abstract
Protein lipoxidation refers to the modification by electrophilic lipid oxidation products to form covalent adducts, which for many years has been considered as a deleterious consequence of oxidative stress. Oxidized lipids or phospholipids containing carbonyl moieties react readily with lysine to form Schiff bases; alternatively, oxidation products containing α,β-unsaturated moieties are susceptible to nucleophilic attack by cysteine, histidine or lysine residues to yield Michael adducts, overall corresponding to a large number of possible protein adducts. The most common detection methods for lipoxidized proteins take advantage of the presence of reactive carbonyl groups to add labels, or use antibodies. These methods have limitations in terms of specificity and identification of the modification site. The latter question is satisfactorily addressed by mass spectrometry, which enables the characterization of the adduct structure. This has allowed the identification of lipoxidized proteins in physiological and pathological situations. While in many cases lipoxidation interferes with protein function, causing inhibition of enzymatic activity and increased immunogenicity, there are a small number of cases where lipoxidation results in gain of function or activity. For certain proteins lipoxidation may represent a form of redox signaling, although more work is required to confirm the physiological relevance and mechanisms of such processes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
|
78
|
Fritz KS, Petersen DR. An overview of the chemistry and biology of reactive aldehydes. Free Radic Biol Med 2013; 59:85-91. [PMID: 22750507 PMCID: PMC3540155 DOI: 10.1016/j.freeradbiomed.2012.06.025] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/15/2012] [Accepted: 06/16/2012] [Indexed: 02/06/2023]
Abstract
The nonenzymatic free radical generation of reactive aldehydes is known to contribute to diseases of sustained oxidative stress including rheumatoid arthritis, atherosclerosis, neurodegeneration, and a number of liver diseases. At the same time, the accumulation of lipid electrophiles has been demonstrated to play a role in cell signaling events through modification of proteins critical for cellular homeostasis. Given the broad scope of reactivity profiles and the ability to modify numerous proteomic and genomic processes, new emphasis is being placed on a systems-based analysis of the consequences of electrophilic adduction. This review focuses on the generation and chemical reactivity of lipid-derived aldehydes with a special focus on the homeostatic responses to electrophilic stress.
Collapse
Affiliation(s)
| | - Dennis R. Petersen
- Address correspondence to: Dennis R. Petersen, Ph.D. 12850 E. Montview Blvd, Campus Box C-238, Aurora, CO 80045. Fax: 303-724-7266,
| |
Collapse
|
79
|
Edrissi B, Taghizadeh K, Dedon PC. Quantitative analysis of histone modifications: formaldehyde is a source of pathological n(6)-formyllysine that is refractory to histone deacetylases. PLoS Genet 2013; 9:e1003328. [PMID: 23468656 PMCID: PMC3585032 DOI: 10.1371/journal.pgen.1003328] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023] Open
Abstract
Aberrant protein modifications play an important role in the pathophysiology of many human diseases, in terms of both dysfunction of physiological modifications and the formation of pathological modifications by reaction of proteins with endogenous electrophiles. Recent studies have identified a chemical homolog of lysine acetylation, N6-formyllysine, as an abundant modification of histone and chromatin proteins, one possible source of which is the reaction of lysine with 3′-formylphosphate residues from DNA oxidation. Using a new liquid chromatography-coupled to tandem mass spectrometry method to quantify all N6-methyl-, -acetyl- and -formyl-lysine modifications, we now report that endogenous formaldehyde is a major source of N6-formyllysine and that this adduct is widespread among cellular proteins in all compartments. N6-formyllysine was evenly distributed among different classes of histone proteins from human TK6 cells at 1–4 modifications per 104 lysines, which contrasted strongly with lysine acetylation and mono-, di-, and tri-methylation levels of 1.5-380, 5-870, 0-1400, and 0-390 per 104 lysines, respectively. While isotope labeling studies revealed that lysine demethylation is not a source of N6-formyllysine in histones, formaldehyde exposure was observed to cause a dose-dependent increase in N6-formyllysine, with use of [13C,2H2]-formaldehyde revealing unchanged levels of adducts derived from endogenous sources. Inhibitors of class I and class II histone deacetylases did not affect the levels of N6-formyllysine in TK6 cells, and the class III histone deacetylase, SIRT1, had minimal activity (<10%) with a peptide substrate containing the formyl adduct. These data suggest that N6-formyllysine is refractory to removal by histone deacetylases, which supports the idea that this abundant protein modification could interfere with normal regulation of gene expression if it arises at conserved sites of physiological protein secondary modification. Oxidative stress and inflammation lead to the generation of a multitude of electrophiles in cells that in turn react with nucleophilic macromolecules such as DNA, RNA, polyunsaturated fatty acids, and proteins, leading to progression of a variety of disorders and diseases. Emerging evidence points to widespread modification of cellular proteins by N6-formylation of lysine as a result of adventitious reactions with endogenous electrophiles. N6-Formyllysine is a chemical homolog of the biologically important N6-acetyllysine and thus may interfere with acetylation signaling in cells. While N6-formyllysine adducts are now well recognized as abundant protein modifications in cells, the source of these pathological adducts remains unclear. Our previous study proposed N6-formylation of lysine in histone proteins occurred by reaction of lysine with 3′-formylphosphate residues arising from DNA oxidation. Here, we investigate additional sources as well as the fate of this abundant pathological protein modification. Our results reveal that endogenous formaldehyde is a major source of N6-formyllysine and that this adduct is widely distributed among proteins in all cell compartments. We also demonstrate for the first time that N6-formyllysine modifications do not undergo appreciable removal by histone deacetylases, which suggests that they persist in proteins and possibly interfere with the signaling functions at conserved lysine positions in histone proteins.
Collapse
Affiliation(s)
- Bahar Edrissi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Koli Taghizadeh
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
80
|
Abstract
Proteomic analyses of protein-electrophile adducts generally employ affinity capture of the adduct moiety, which enables global analyses, but is poorly suited to targeted studies of specific proteins. We describe a targeted molecular probe approach to study modifications of the molecular chaperone heat-shock protein 90 (Hsp90), which regulates diverse client proteins. Noncovalent affinity capture with a biotinyl analog of the HSP90 inhibitor geldanamycin enables detection of the native protein isoforms Hsp90α and Hsp90β and their phosphorylated forms. We applied this probe to map and quantify adducts formed on Hsp90 by 4-hydroxynonenal (HNE) in RKO cells. This approach was also applied to measure the kinetics of site-specific adduction of selected Hsp90 residues. A protein-selective affinity capture approach is broadly applicable for targeted analysis of electrophile adducts and their biological effects.
Collapse
|
81
|
Aluise CD, Rose K, Boiani M, Reyzer ML, Manna JD, Tallman K, Porter NA, Marnett LJ. Peptidyl-prolyl cis/trans-isomerase A1 (Pin1) is a target for modification by lipid electrophiles. Chem Res Toxicol 2012; 26:270-9. [PMID: 23231502 PMCID: PMC3579456 DOI: 10.1021/tx300449g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Oxidation of membrane phospholipids is associated with
inflammation,
neurodegenerative disease, and cancer. Oxyradical damage to phospholipids
results in the production of reactive aldehydes that adduct proteins
and modulate their function. 4-Hydroxynonenal (HNE), a common product
of oxidative damage to lipids, adducts proteins at exposed Cys, His,
or Lys residues. Here, we demonstrate that peptidyl-prolyl cis/trans-isomerase A1 (Pin1), an enzyme
that catalyzes the conversion of the peptide bond of pSer/pThr-Pro
moieties in signaling proteins from cis to trans, is highly susceptible
to HNE modification. Incubation of purified Pin1 with HNE followed
by MALDI-TOF/TOF mass spectrometry resulted in detection of Michael
adducts at the active site residues His-157 and Cys-113. Time and
concentration dependencies indicate that Cys-113 is the primary site
of HNE modification. Pin1 was adducted in MDA-MB-231 breast cancer
cells treated with 8-alkynyl-HNE as judged by click chemistry conjugation
with biotin followed by streptavidin-based pulldown and Western blotting
with anti-Pin1 antibody. Furthermore, orbitrap MS data support the
adduction of Cys-113 in the Pin1 active site upon HNE treatment of
MDA-MB-231 cells. siRNA knockdown of Pin1 in MDA-MB-231 cells partially
protected the cells from HNE-induced toxicity. Recent studies indicate
that Pin1 is an important molecular target for the chemopreventive
effects of green tea polyphenols. The present study establishes that
it is also a target for electrophilic modification by products of
lipid peroxidation.
Collapse
Affiliation(s)
- Christopher D Aluise
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Ohnishi K, Nakahata E, Irie K, Murakami A. Zerumbone, an electrophilic sesquiterpene, induces cellular proteo-stress leading to activation of ubiquitin-proteasome system and autophagy. Biochem Biophys Res Commun 2012; 430:616-22. [PMID: 23219816 DOI: 10.1016/j.bbrc.2012.11.104] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 11/24/2012] [Indexed: 10/27/2022]
Abstract
Zerumbone, a sesquiterpene present in Zingiber zerumbet Smith, has been implicated as a promising chemopreventive agent. Interestingly, a number of studies have revealed that its potent bioactivities are dependent on the electrophilic moiety of its α,β-unsaturated carbonyl group, while our recent findings showed its chemical potential for binding to cellular proteins through a Michael reaction. In the present study, modifications of proteins by zerumbone led to their insolubilization in vitro. In living cell models, zerumbone induced ubiquitination and aggregation of cellular proteins, which demonstrated its substantial proteo-toxicity. On the other hand, it was also revealed that zerumbone possesses potential for activating intracellular proteolysis mechanisms of the ubiquitin-proteasome system and autophagy. Furthermore, it up-regulated expressions of pro-autophagic genes including p62, which is known as a cargo receptor of aggrephagy, the selective autophagic process for protein aggregates. Pretreatment of Hepa1c1c7 cells with zerumbone conferred a phenotype resistant to cytotoxicity and protein modifications by 4-hydroxy-2-nonenal, an endogenous lipid peroxidation product, in a p62-dependent manner. Together, these results suggest that protein modifications by zerumbone cause mild proteo-stress, thereby activating intracellular proteolysis machineries to maintain protein homeostasis. We consider these effects on proteolysis mechanisms to be hormesis, which provides beneficial functions through mild biological stresses.
Collapse
Affiliation(s)
- Kohta Ohnishi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
83
|
Kumar V, Calamaras TD, Haeussler D, Colucci WS, Cohen RA, McComb ME, Pimentel D, Bachschmid MM. Cardiovascular redox and ox stress proteomics. Antioxid Redox Signal 2012; 17:1528-59. [PMID: 22607061 PMCID: PMC3448941 DOI: 10.1089/ars.2012.4706] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SIGNIFICANCE Oxidative post-translational modifications (OPTMs) have been demonstrated as contributing to cardiovascular physiology and pathophysiology. These modifications have been identified using antibodies as well as advanced proteomic methods, and the functional importance of each is beginning to be understood using transgenic and gene deletion animal models. Given that OPTMs are involved in cardiovascular pathology, the use of these modifications as biomarkers and predictors of disease has significant therapeutic potential. Adequate understanding of the chemistry of the OPTMs is necessary to determine what may occur in vivo and which modifications would best serve as biomarkers. RECENT ADVANCES By using mass spectrometry, advanced labeling techniques, and antibody identification, OPTMs have become accessible to a larger proportion of the scientific community. Advancements in instrumentation, database search algorithms, and processing speed have allowed MS to fully expand on the proteome of OPTMs. In addition, the role of enzymatically reversible OPTMs has been further clarified in preclinical models. CRITICAL ISSUES The identification of OPTMs suffers from limitations in analytic detection based on the methodology, instrumentation, sample complexity, and bioinformatics. Currently, each type of OPTM requires a specific strategy for identification, and generalized approaches result in an incomplete assessment. FUTURE DIRECTIONS Novel types of highly sensitive MS instrumentation that allow for improved separation and detection of modified proteins and peptides have been crucial in the discovery of OPTMs and biomarkers. To further advance the identification of relevant OPTMs in advanced search algorithms, standardized methods for sample processing and depository of MS data will be required.
Collapse
Affiliation(s)
- Vikas Kumar
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Higdon AN, Landar A, Barnes S, Darley-Usmar VM. The electrophile responsive proteome: integrating proteomics and lipidomics with cellular function. Antioxid Redox Signal 2012; 17:1580-9. [PMID: 22352679 PMCID: PMC3448939 DOI: 10.1089/ars.2012.4523] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SIGNIFICANCE The process of lipid peroxidation is emerging as an important mechanism that mediates the post-translational modification of proteins. Through advanced analytical techniques, lipidomics is now emerging as a critical factor in our understanding of the pathology of a broad range of diseases. RECENT ADVANCES During enzymatic or nonenzymatic lipid peroxidation, the simple structure of an unsaturated fatty acid is converted to an oxylipidome, many members of which are electrophilic and form the reactive lipid species (RLS). This aspect of lipid biology is particularly important, as it directly connects lipidomics with proteomics through the post-translational modification of a sub-proteome in the cell. This arises, because the electrophilic members of the oxylipidome react with proteins at nucleophilic amino-acid residues and so change their structure and function to form electrophile-responsive proteomes (ERP). CRITICAL ISSUES Biological systems have relatively few but well-defined and mechanistically distinct pro-oxidant pathways generating RLS. Defining the ERPs and the mechanisms underlying their formation and action has been a major focus for the field of lipidomics and redox signaling. FUTURE DIRECTIONS We propose that a unique oxylipidome can be defined for specific oxidants and will predict the biological responses through the reaction with proteins to form a specific ERP. In this review, we will describe the ERPs that modulate antioxidant and anti-inflammatory protective pathways, including the activation of Keap1/Nrf2 and the promotion of cell death through interactions with mitochondria.
Collapse
Affiliation(s)
- Ashlee N Higdon
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
85
|
Bachi A, Dalle-Donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2012. [DOI: 10.1021/cr300073p] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angela Bachi
- Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
86
|
Post-translational oxidative modification and inactivation of mitochondrial complex I in epileptogenesis. J Neurosci 2012; 32:11250-8. [PMID: 22895709 DOI: 10.1523/jneurosci.0907-12.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial oxidative stress and damage have been implicated in the etiology of temporal lobe epilepsy, but whether or not they have a functional impact on mitochondrial processes during epilepsy development (epileptogenesis) is unknown. One consequence of increased steady-state mitochondrial reactive oxygen species levels is protein post-translational modification (PTM). We hypothesize that complex I (CI), a protein complex of the mitochondrial electron transport chain, is a target for oxidant-induced PTMs, such as carbonylation, leading to impaired function during epileptogenesis. The goal of this study was to determine whether oxidative modifications occur and what impact they have on CI enzymatic activity in the rat hippocampus in response to kainate (KA)-induced epileptogenesis. Rats were injected with a single high dose of KA or vehicle and evidence for CI modifications was measured during the acute, latent, and chronic stages of epilepsy. Mitochondrial-specific carbonylation was increased acutely (48 h) and chronically (6 week), coincident with decreased CI activity. Mass spectrometry analysis of immunocaptured CI identified specific metal catalyzed carbonylation to Arg76 within the 75 kDa subunit concomitant with inhibition of CI activity during epileptogenesis. Computational-based molecular modeling studies revealed that Arg76 is in close proximity to the active site of CI and carbonylation of the residue is predicted to induce substantial structural alterations to the protein complex. These data provide evidence for the occurrence of a specific and irreversible oxidative modification of an important mitochondrial enzyme complex critical for cellular bioenergetics during the process of epileptogenesis.
Collapse
|
87
|
Dasuri K, Ebenezer P, Fernandez-Kim SO, Zhang L, Gao Z, Bruce-Keller AJ, Freeman LR, Keller JN. Role of physiological levels of 4-hydroxynonenal on adipocyte biology: implications for obesity and metabolic syndrome. Free Radic Res 2012; 47:8-19. [PMID: 23025469 DOI: 10.3109/10715762.2012.733003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lipid peroxidation products such as 4-hydroxynonenal (HNE) are known to be increased in response to oxidative stress, and are known to cause dysfunction and pathology in a variety of tissues during periods of oxidative stress. The aim of the current study was to determine the chronic (repeated HNE exposure) and acute effects of physiological concentrations of HNE toward multiple aspects of adipocyte biology using differentiated 3T3-L1 adipocytes. Our studies demonstrate that acute and repeated exposure of adipocytes to physiological concentrations of HNE is sufficient to promote subsequent oxidative stress, impaired adipogenesis, alter the expression of adipokines, and increase lipolytic gene expression and subsequent increase in free fatty acid (FFA) release. These results provide an insight in to the role of HNE-induced oxidative stress in regulation of adipocyte differentiation and adipose dysfunction. Taken together, these data indicate a potential role for HNE promoting diverse effects toward adipocyte homeostasis and adipocyte differentiation, which may be important to the pathogenesis observed in obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Kalavathi Dasuri
- Pennington Biomedical Research Center , Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Bodur C, Kutuk O, Tezil T, Basaga H. Inactivation of Bcl-2 through IκB kinase (IKK)-dependent phosphorylation mediates apoptosis upon exposure to 4-hydroxynonenal (HNE). J Cell Physiol 2012; 227:3556-65. [PMID: 22262057 DOI: 10.1002/jcp.24057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apoptosis of macrophage foam cells loaded with modified/oxidized lipids is implicated in destabilization of advanced atherosclerotic plaques in humans. Concentration of HNE, main aldehydic product of plasma LDL peroxidation, elevates in atherosclerotic lesions as well as in cultured cells under oxidative stress. Although this reactive aldehyde has been shown to promote apoptosis with the involvement of p38 MAPK and JNK in various mammalian cell lines, roles of B-cell lymphoma 2 (Bcl-2) family proteins remain to be deciphered. We demonstrated that HNE-induced apoptosis was accompanied by concurrent downregulations of antiapoptotic Bcl-x(L) and Mcl-1 as well as upregulation of proapoptotic Bak. Furthermore, phoshorylation of Bcl-2 at Thr56, Ser70, and probably more phosphorylation sites located on N-terminal loop domain associated with HNE-induced apoptosis in both U937 and HeLa cells while ectopic expression of a phospho-defective Bcl-2 mutant significantly attenuated apoptosis. In parallel to this, HNE treatment caused release of proapoptotic Bax from Bcl-2. Pharmacological inhbition of IKK inhibited HNE-induced Bcl-2 phosphorylation. Similarly, silencing IKKα and -β both ended up with abrogation of Bcl-2 phosphorylation along with attenuation of apoptosis. Moreover, both IKKα and -β coimmunoprecipitated with Bcl-2 and in vitro kinase assay proved the ability of IKK to phosphorylate Bcl-2. In view of these findings and considering HNE inhibits DNA-binding activity of nuclear factor-κB (NF-κB) through prevention of IκB phosphorylation/ubiquitination/proteolysis, IKK appears to directly interfere with Bcl-2 activity through phosphorylation in HNE-mediated apoptosis independent of NF-κB signaling.
Collapse
Affiliation(s)
- Cagri Bodur
- Biological Sciences and Bioengineering Program, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey
| | | | | | | |
Collapse
|
89
|
Shearn CT, Reigan P, Petersen DR. Inhibition of hydrogen peroxide signaling by 4-hydroxynonenal due to differential regulation of Akt1 and Akt2 contributes to decreases in cell survival and proliferation in hepatocellular carcinoma cells. Free Radic Biol Med 2012; 53:1-11. [PMID: 22580126 PMCID: PMC3377776 DOI: 10.1016/j.freeradbiomed.2012.04.021] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/18/2012] [Accepted: 04/22/2012] [Indexed: 11/16/2022]
Abstract
Dysregulation of cell signaling by electrophiles such as 4-hydroxynonenal (4-HNE) is a key component in the pathogenesis of chronic inflammatory liver disease. Another consequence of inflammation is the perpetuation of oxidative damage by the production of reactive oxidative species such as hydrogen peroxide. Previously, we have demonstrated Akt2 as a direct target of 4-HNE in hepatocellular carcinoma cells. In the present study, we used the hepatocellular carcinoma cell line HepG2 as model to understand the combinatorial effects of 4-HNE and hydrogen peroxide. We demonstrate that 4-HNE inhibits hydrogen peroxide-mediated phosphorylation of Akt1 but not Akt2. Pretreatment of HepG2 cells with 4-HNE prevented hydrogen peroxide stimulation of Akt-dependent phosphorylation of downstream targets and intracellular Akt activity compared with untreated control cells. Using biotin hydrazide capture, it was confirmed that 4-HNE treatment resulted in carbonylation of Akt1, which was not observed in untreated control cells. Using a synthetic GSK3α/β peptide as a substrate, treatment of recombinant human myristoylated Akt1 (rAkt1) with 20 or 40 μΜ 4-HNE inhibited rAkt1 activity by 29 and 60%, respectively. We further demonstrate that 4-HNE activates Erk via a PI3 kinase and PP2A-dependent mechanism leading to increased Jnk phosphorylation. At higher concentrations, 4-HNE decreased both cell survival and proliferation as evidenced by MTT assays and EdU incorporation as well as decreased expression of cyclin D1 and β-catenin, an effect only moderately increased by the addition of hydrogen peroxide. The ability of 4-HNE to exert combinatorial effects on Erk, Jnk, and Akt-dependent cell survival pathways provides additional insight into the mechanisms of cellular damage associated with chronic inflammation.
Collapse
Affiliation(s)
| | | | - Dennis R. Petersen
- To whom correspondence should be addressed: Dennis Petersen, University of Colorado Denver, School of Pharmacy, Department of Pharmaceutical Sciences, 12850 East Montview Blvd Box C238, Building V20 Room 2131, Ph. 303-724-3397, Fax 303-724-7266,
| |
Collapse
|
90
|
Abstract
The process of lipid peroxidation is widespread in biology and is mediated through both enzymatic and non-enzymatic pathways. A significant proportion of the oxidized lipid products are electrophilic in nature, the RLS (reactive lipid species), and react with cellular nucleophiles such as the amino acids cysteine, lysine and histidine. Cell signalling by electrophiles appears to be limited to the modification of cysteine residues in proteins, whereas non-specific toxic effects involve modification of other nucleophiles. RLS have been found to participate in several physiological pathways including resolution of inflammation, cell death and induction of cellular antioxidants through the modification of specific signalling proteins. The covalent modification of proteins endows some unique features to this signalling mechanism which we have termed the ‘covalent advantage’. For example, covalent modification of signalling proteins allows for the accumulation of a signal over time. The activation of cell signalling pathways by electrophiles is hierarchical and depends on a complex interaction of factors such as the intrinsic chemical reactivity of the electrophile, the intracellular domain to which it is exposed and steric factors. This introduces the concept of electrophilic signalling domains in which the production of the lipid electrophile is in close proximity to the thiol-containing signalling protein. In addition, we propose that the role of glutathione and associated enzymes is to insulate the signalling domain from uncontrolled electrophilic stress. The persistence of the signal is in turn regulated by the proteasomal pathway which may itself be subject to redox regulation by RLS. Cell death mediated by RLS is associated with bioenergetic dysfunction, and the damaged proteins are probably removed by the lysosome-autophagy pathway.
Collapse
|
91
|
Smathers RL, Fritz KS, Galligan JJ, Shearn CT, Reigan P, Marks MJ, Petersen DR. Characterization of 4-HNE modified L-FABP reveals alterations in structural and functional dynamics. PLoS One 2012; 7:e38459. [PMID: 22701647 PMCID: PMC3368874 DOI: 10.1371/journal.pone.0038459] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/05/2012] [Indexed: 01/01/2023] Open
Abstract
4-Hydroxynonenal (4-HNE) is a reactive α,β-unsaturated aldehyde produced during oxidative stress and subsequent lipid peroxidation of polyunsaturated fatty acids. The reactivity of 4-HNE towards DNA and nucleophilic amino acids has been well established. In this report, using proteomic approaches, liver fatty acid-binding protein (L-FABP) is identified as a target for modification by 4-HNE. This lipid binding protein mediates the uptake and trafficking of hydrophobic ligands throughout cellular compartments. Ethanol caused a significant decrease in L-FABP protein (P<0.001) and mRNA (P<0.05), as well as increased poly-ubiquitinated L-FABP (P<0.001). Sites of 4-HNE adduction on mouse recombinant L-FABP were mapped using MALDI-TOF/TOF mass spectrometry on apo (Lys57 and Cys69) and holo (Lys6, Lys31, His43, Lys46, Lys57 and Cys69) L-FABP. The impact of 4-HNE adduction was found to occur in a concentration-dependent manner; affinity for the fluorescent ligand, anilinonaphthalene-8-sulfonic acid, was reduced from 0.347 µM to Kd(1) = 0.395 µM and Kd(2) = 34.20 µM. Saturation analyses revealed that capacity for ligand is reduced by approximately 50% when adducted by 4-HNE. Thermal stability curves of apo L-FABP was also found to be significantly affected by 4-HNE adduction (ΔTm = 5.44°C, P<0.01). Computational-based molecular modeling simulations of adducted protein revealed minor conformational changes in global protein structure of apo and holo L-FABP while more apparent differences were observed within the internal binding pocket, revealing reduced area and structural integrity. New solvent accessible portals on the periphery of the protein were observed following 4-HNE modification in both the apo and holo state, suggesting an adaptive response to carbonylation. The results from this study detail the dynamic process associated with L-FABP modification by 4-HNE and provide insight as to how alterations in structural integrity and ligand binding may a contributing factor in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Rebecca L. Smathers
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kristofer S. Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - James J. Galligan
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Colin T. Shearn
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Michael J. Marks
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, United States of America
| | - Dennis R. Petersen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
92
|
Nagy P, Lechte TP, Das AB, Winterbourn CC. Conjugation of glutathione to oxidized tyrosine residues in peptides and proteins. J Biol Chem 2012; 287:26068-76. [PMID: 22648418 DOI: 10.1074/jbc.m112.371690] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine residues are sensitive to oxidation and can be converted to hydroperoxides either by superoxide reacting with the Tyr radical or by singlet oxygen. These hydroperoxides rearrange to bicyclic derivatives that are readily reduced to more stable hydroxides. The aromatic character of tyrosine is lost, but the product contains an α-β unsaturated carbonyl group and is, therefore, an electrophile. We have generated hydroxide derivatives of several Tyr-containing peptides and shown using liquid chromatography/mass spectrometry that they undergo Michael addition with GSH. For Tyr-Gly, rate constants of 9.2 and 11.8 m(-1)min(-1) were measured for the two chromatographically distinct isomers. Unusual for GSH addition to an electrophile, the reaction is reversible, with a half-life of many hours for the reverse reaction. These kinetics indicate that with a typical cellular concentration of 5 mm GSH, >95% Tyr-Gly hydroxide would become conjugated with a half-life of ∼15 min. Sperm whale myoglobin forms a hydroperoxide on Tyr-151 in a hydrogen peroxide/superoxide-dependent reaction. We show that its hydroxide derivative reacts with GSH to form a conjugate. Detection of the conjugate required stabilization by reduction; otherwise, the reverse reaction occurred during tryptic digestion and analysis. Our findings represent a novel mechanism for peptide or protein glutathionylation involving a carbon-sulfur cross-link between oxidized Tyr and Cys. As with other electrophiles, the oxidized Tyr should undergo a similar reaction with Cys residues in proteins to give intramolecular or intermolecular protein cross-links. This mechanism could give rise to protein cross-linking in conditions of oxidative stress.
Collapse
Affiliation(s)
- Peter Nagy
- Free Radical Research Group, Department of Pathology, University of Otago Christchurch, Christchurch 8040, New Zealand
| | | | | | | |
Collapse
|
93
|
Galligan JJ, Smathers RL, Fritz KS, Epperson LE, Hunter LE, Petersen DR. Protein carbonylation in a murine model for early alcoholic liver disease. Chem Res Toxicol 2012; 25:1012-21. [PMID: 22502949 DOI: 10.1021/tx300002q] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hepatic oxidative stress and subsequent lipid peroxidation are well-recognized consequences of sustained ethanol consumption. The covalent adduction of nucleophilic amino acid side-chains by lipid electrophiles is significantly increased in patients with alcoholic liver disease (ALD); a global assessment of in vivo protein targets and the consequences of these modifications, however, has not been conducted. In this article, we describe the identification of novel protein targets for covalent adduction in a 6-week murine model for ALD. Ethanol-fed mice displayed a 2-fold increase in hepatic TBARS, while immunohistochemical analysis for the reactive aldehydes 4-hydroxynonenal (4-HNE), 4-oxononenal (4-ONE), acrolein (ACR), and malondialdehyde (MDA) revealed a marked increase in the staining of modified proteins in the ethanol-treated mice. Increased protein carbonyl content was confirmed utilizing subcellular fractionation of liver homogenates followed by biotin-tagging through hydrazide chemistry, where approximately a 2-fold increase in modified proteins was observed in microsomal and cytosolic fractions. To determine targets of protein carbonylation, a secondary hydrazide method coupled to a highly sensitive 2-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS or MuDPIT) technique was utilized. Our results have identified 414 protein targets for modification by reactive aldehydes in ALD. The presence of novel in vivo sites of protein modification by 4-HNE (2), 4-ONE (4) and ACR (2) was also confirmed in our data set. While the precise impact of protein carbonylation in ALD remains unknown, a bioinformatic analysis of the data set has revealed key pathways associated with disease progression, including fatty acid metabolism, drug metabolism, oxidative phosphorylation, and the TCA cycle. These data suggest a major role for aldehyde adduction in the pathogenesis of ALD.
Collapse
Affiliation(s)
- James J Galligan
- Department of Pharmacology, School of Medicine, University of Colorado-Denver, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
94
|
Ullery JC, Marnett LJ. Protein modification by oxidized phospholipids and hydrolytically released lipid electrophiles: Investigating cellular responses. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2424-35. [PMID: 22562025 DOI: 10.1016/j.bbamem.2012.04.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/05/2012] [Accepted: 04/17/2012] [Indexed: 12/17/2022]
Abstract
Oxygen is essential for the growth and function of mammalian cells. However, imbalances in oxygen or abnormalities in the ability of a cell to respond to oxygen levels can result in oxidative stress. Oxidative stress plays an important role in a number of diseases including atherosclerosis, rheumatoid arthritis, cancer, neurodegenerative diseases and asthma. When membrane lipids are exposed to high levels of oxygen or derived oxidants, they undergo lipid peroxidation to generate oxidized phospholipids (oxPL). Continual exposure to oxidants and decomposition of oxPL results in the formation of reactive electrophiles, such as 4-hydroxy-2-nonenal (HNE). Reactive lipid electrophiles have been shown to covalently modify DNA and proteins. Furthermore, exposure of cells to lipid electrophiles results in the activation of cytoprotective signaling pathways in order to promote cell survival and recovery from oxidant stress. However, if not properly managed by cellular detoxification mechanisms, the continual exposure of cells to electrophiles results in cytotoxicity. The following perspective will discuss the biological importance of lipid electrophile protein adducts including current strategies employed to identify and isolate protein adducts of lipid electrophiles as well as approaches to define cellular signaling mechanisms altered upon exposure to electrophiles. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.
Collapse
Affiliation(s)
- Jody C Ullery
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
| | | |
Collapse
|
95
|
Fritz KS, Kellersberger KA, Gomez JD, Petersen DR. 4-HNE adduct stability characterized by collision-induced dissociation and electron transfer dissociation mass spectrometry. Chem Res Toxicol 2012; 25:965-70. [PMID: 22404378 PMCID: PMC3328623 DOI: 10.1021/tx300100w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
4-Hydroxynonenal (4-HNE) alters numerous proteomic and genomic processes. Understanding chemical mechanisms of 4-HNE interactions with biomolecules and their respective stabilities may lead to new discoveries in biomarkers for numerous diseases of oxidative stress. Collision-induced dissociation (CID) and electron transfer dissociation (ETD) MS/MS were utilized to examine the stability of a 4-HNE-Cys Michael adduct. CID conditions resulted in the neutral loss of 4-HNE, also known as a retro-Michael addition reaction (RMA). Consequently, performing ETD fragmentation on this same adduct did not result in RMA. Interestingly, 4-HNE adduct reduction via sodium borohydride (NaBH₄) treatment stabilized against the CID induced RMA. In a direct comparison of three forms of 4-HNE adducts, computational modeling revealed sizable shifts in the shape and orientation of the lowest unoccupied molecular orbital (LUMO) density around the 4-HNE-Cys moiety. These findings demonstrate that ETD MS/MS analysis can be used to improve the detection of 4-HNE-protein modifications by preventing RMA reactions from occurring.
Collapse
Affiliation(s)
- Kristofer S. Fritz
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Jose D. Gomez
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Dennis R. Petersen
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
96
|
Vásquez-Garzón VR, Rouimi P, Jouanin I, Waeg G, Zarkovic N, Villa-Treviño S, Guéraud F. Evaluation of three simple direct or indirect carbonyl detection methods for characterization of oxidative modifications of proteins. Toxicol Mech Methods 2012; 22:296-304. [DOI: 10.3109/15376516.2012.657258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
97
|
Abstract
Formation of covalent protein adducts by lipid electrophiles contributes to diseases and toxicities linked to oxidative stress, but analysis of the adducts presents a challenging analytical problem. We describe selective adduct capture using biotin affinity probes to enrich protein and peptide adducts for analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS). One approach employs biotinamidohexanoic acid hydrazide to covalently label residual carbonyl groups on adducts. The other employs alkynyl analogs of lipid electrophiles, which form adducts that can be postlabeled with azidobiotin tags by Cu(+)-catalyzed cycloaddition (Click chemistry). To enhance the selectivity of adduct capture, we use an azidobiotin reagent with a photocleavable linker, which allows recovery of adducted proteins and peptides under mild conditions. This approach allows both the identification of protein targets of lipid electrophiles and sequence mapping of the adducts.
Collapse
|
98
|
Chavez JD, Wu J, Bisson W, Maier CS. Site-specific proteomic analysis of lipoxidation adducts in cardiac mitochondria reveals chemical diversity of 2-alkenal adduction. J Proteomics 2011; 74:2417-29. [PMID: 21513823 PMCID: PMC3199298 DOI: 10.1016/j.jprot.2011.03.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/30/2011] [Accepted: 03/30/2011] [Indexed: 12/31/2022]
Abstract
The modification of proteins by lipid peroxidation products has been linked to numerous diseases and age-related disorders. Here we report on the identification of endogenous protein targets of electrophilic 2-alkenals in cardiac mitochondria. An aldehyde/keto-specific chemical labeling and affinity strategy in combination with LC-MS/MS resulted in 39 unique lipoxidation sites on 27 proteins. Several of the target sites were modified by a variety of 2-alkenal products including acrolein, β-hydroxyacrolein, crotonaldehyde, 4-hydroxy-2-hexenal, 4-hydroxy-2-nonenal and 4-oxo-2-nonenal. Many of the adduction sites are implicated in the catalytic function of key mitochondrial enzymes suggesting potential impact on pathways and overall mitochondrial function.
Collapse
Affiliation(s)
- Juan D. Chavez
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
| | - Jianyong Wu
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
| | - William Bisson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331
| | - Claudia S. Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
99
|
Spiess PC, Deng B, Hondal RJ, Matthews DE, van der Vliet A. Proteomic profiling of acrolein adducts in human lung epithelial cells. J Proteomics 2011; 74:2380-94. [PMID: 21704744 PMCID: PMC3196826 DOI: 10.1016/j.jprot.2011.05.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 02/01/2023]
Abstract
Acrolein (2,3-propenal) is a major indoor and outdoor air pollutant originating largely from tobacco smoke or organic combustion. Given its high reactivity, the adverse effects of inhaled acrolein are likely due to direct interactions with the airway epithelium, resulting in altered epithelial function, but only limited information exists to date regarding the primary direct cellular targets for acrolein. Here, we describe a global proteomics approach to characterize the spectrum of airway epithelial protein targets for Michael adduction in acrolein-exposed bronchial epithelial (HBE1) cells, based on biotin hydrazide labeling and avidin purification of biotinylated proteins or peptides for analysis by LC-MS/MS. Identified protein targets included a number of stress proteins, cytoskeletal proteins, and several key proteins involved in redox signaling, including thioredoxin reductase, thioredoxin, peroxiredoxins, and glutathione S-transferase π. Because of the central role of thioredoxin reductase in cellular redox regulation, additional LC-MS/MS characterization was performed on purified mitochondrial thioredoxin reductase to identify the specific site of acrolein adduction, revealing the catalytic selenocysteine residue as the target responsible for enzyme inactivation. Our findings indicate that these approaches are useful in characterizing major protein targets for acrolein, and will enhance mechanistic understanding of the impact of acrolein on cell biology.
Collapse
Affiliation(s)
- Page C. Spiess
- Department of Pathology, University of Vermont, Burlington, VT 05405
| | - Bin Deng
- Department of Biology and Proteomics Core Facility, University of Vermont, Burlington, VT 05405
| | - Robert J. Hondal
- Department of Biochemistry, University of Vermont, Burlington, VT 05405
| | - Dwight E. Matthews
- Departments of Chemistry and Medicine, University of Vermont, Burlington, VT 05405
| | | |
Collapse
|
100
|
Spiess PC, Deng B, Hondal RJ, Matthews DE, van der Vliet A. Proteomic profiling of acrolein adducts in human lung epithelial cells. J Proteomics 2011; 74:2380-2394. [PMID: 21704744 DOI: 10.1016/j.jprot.2011.05.039.proteomic] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 05/29/2023]
Abstract
Acrolein (2,3-propenal) is a major indoor and outdoor air pollutant originating largely from tobacco smoke or organic combustion. Given its high reactivity, the adverse effects of inhaled acrolein are likely due to direct interactions with the airway epithelium, resulting in altered epithelial function, but only limited information exists to date regarding the primary direct cellular targets for acrolein. Here, we describe a global proteomics approach to characterize the spectrum of airway epithelial protein targets for Michael adduction in acrolein-exposed bronchial epithelial (HBE1) cells, based on biotin hydrazide labeling and avidin purification of biotinylated proteins or peptides for analysis by LC-MS/MS. Identified protein targets included a number of stress proteins, cytoskeletal proteins, and several key proteins involved in redox signaling, including thioredoxin reductase, thioredoxin, peroxiredoxins, and glutathione S-transferase π. Because of the central role of thioredoxin reductase in cellular redox regulation, additional LC-MS/MS characterization was performed on purified mitochondrial thioredoxin reductase to identify the specific site of acrolein adduction, revealing the catalytic selenocysteine residue as the target responsible for enzyme inactivation. Our findings indicate that these approaches are useful in characterizing major protein targets for acrolein, and will enhance mechanistic understanding of the impact of acrolein on cell biology.
Collapse
Affiliation(s)
- Page C Spiess
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|