51
|
Nita-Lazar A. Quantitative analysis of phosphorylation-based protein signaling networks in the immune system by mass spectrometry. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:368-76. [PMID: 20836078 PMCID: PMC6343483 DOI: 10.1002/wsbm.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dynamic modification of cell proteins with phosphate is one of the key regulators of the cellular response to external stimuli. Phosphorylation-based signaling networks mediate cell proliferation, differentiation, and migration, and their dysregulation is the basis of multiple diseases. However, the transient nature of the regulatory protein phosphorylation and low site occupancy mean that only a fraction of the protein is phosphorylated at a given time, and it is a challenge to measure the degree and dynamics of phosphorylation using traditional biochemical means. Technological advances in the field of mass spectrometry (MS) made it possible to generate large sets of phosphoproteomics data, probing the phosphoproteome with great depth, sensitivity, and accuracy. Therefore, quantitative phosphoproteomics emerged as one of the essential components of the systems biology approach for profiling of complex biological networks. Nowadays, the challenge lies in validation of the information and in its integration into the comprehensive models of cell decision processes. This article reviews the role of phosphoproteomics in systems biology, the MS-based approach, and technical details of the methods. Recent examples of quantitative measurements and methodologies as well as applications to the studies of the immune system and infectious diseases are presented and discussed.
Collapse
Affiliation(s)
- Aleksandra Nita-Lazar
- Program in Systems Immunology and Infectious Disease Modeling, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
52
|
Navarro MN, Goebel J, Feijoo-Carnero C, Morrice N, Cantrell DA. Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat Immunol 2011; 12:352-61. [PMID: 21399638 PMCID: PMC3110993 DOI: 10.1038/ni.2008] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/09/2011] [Indexed: 12/13/2022]
Abstract
Here we report an unbiased analysis of the cytotoxic T lymphocyte (CTL) serine-threonine phosphoproteome by high-resolution mass spectrometry. We identified approximately 2,000 phosphorylations in CTLs, of which approximately 450 were controlled by T cell antigen receptor (TCR) signaling. A significantly overrepresented group of molecules identified included transcription activators, corepressors and chromatin regulators. A focus on chromatin regulators showed that CTLs had high expression of the histone deacetylase HDAC7 but continually phosphorylated and exported this transcriptional repressor from the nucleus. Dephosphorylation of HDAC7 resulted in its accumulation in the nucleus and suppressed expression of genes encoding key cytokines, cytokine receptors and adhesion molecules that determine CTL function. Screening of the CTL phosphoproteome has thus identified intrinsic pathways of serine-threonine phosphorylation that target chromatin regulators and determine the CTL functional program.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Nucleus/metabolism
- Cells, Cultured
- Chromatography, Liquid
- Cytosol/metabolism
- Female
- Gene Expression Profiling
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Male
- Mass Spectrometry
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Confocal
- Molecular Sequence Data
- Oligonucleotide Array Sequence Analysis
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphorylation
- Proteomics/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Maria N Navarro
- The College of Life Sciences, Division of Immunology and Cell Biology, The University of Dundee, Dundee, Scotland, UK
| | | | | | | | | |
Collapse
|
53
|
To kill, you have to duck an HDAC. Nat Immunol 2011; 12:279-81. [PMID: 21423220 DOI: 10.1038/ni0411-279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
54
|
Brockmeyer C, Paster W, Pepper D, Tan CP, Trudgian DC, McGowan S, Fu G, Gascoigne NRJ, Acuto O, Salek M. T cell receptor (TCR)-induced tyrosine phosphorylation dynamics identifies THEMIS as a new TCR signalosome component. J Biol Chem 2011; 286:7535-47. [PMID: 21189249 PMCID: PMC3045008 DOI: 10.1074/jbc.m110.201236] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 12/06/2010] [Indexed: 11/24/2022] Open
Abstract
Stimulation of the T cell antigen receptor (TCR) induces formation of a phosphorylation-dependent signaling network via multiprotein complexes, whose compositions and dynamics are incompletely understood. Using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics, we investigated the kinetics of signal propagation after TCR-induced protein tyrosine phosphorylation. We confidently assigned 77 proteins (of 758 identified) as a direct or indirect consequence of tyrosine phosphorylation that proceeds in successive "signaling waves" revealing the temporal pace at which tyrosine kinases activate cellular functions. The first wave includes thymocyte-expressed molecule involved in selection (THEMIS), a protein recently implicated in thymocyte development but whose signaling role is unclear. We found that tyrosine phosphorylation of THEMIS depends on the presence of the scaffold proteins Linker for activation of T cells (LAT) and SH2 domain-containing lymphocyte protein of 76 kDa (SLP-76). THEMIS associates with LAT, presumably via the adapter growth factor receptor-bound protein 2 (Grb2) and with phospholipase Cγ1 (PLC-γ1). RNAi-mediated THEMIS knock-down inhibited TCR-induced IL-2 gene expression due to reduced ERK and nuclear factor of activated T cells (NFAT)/activator protein 1 (AP-1) signaling, whereas JNK, p38, or nuclear factor κB (NF-κB) activation were unaffected. Our study reveals the dynamics of TCR-dependent signaling networks and suggests a specific role for THEMIS in early TCR signalosome function.
Collapse
Affiliation(s)
| | | | | | | | - David C. Trudgian
- Proteomics Facility, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | - Simon McGowan
- the Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, United Kingdom, and
| | - Guo Fu
- the Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| | - Nicholas R. J. Gascoigne
- the Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| | | | | |
Collapse
|
55
|
Finlay D, Cantrell D. The coordination of T-cell function by serine/threonine kinases. Cold Spring Harb Perspect Biol 2011; 3:a002261. [PMID: 21421912 DOI: 10.1101/cshperspect.a002261] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The function of T-lymphocytes during adaptive immune responses is directed by antigen receptors, costimulatory molecules, and cytokines. These extrinsic stimuli are coupled to a network of serine/threonine kinases that control the epigenetic, transcriptional, and metabolic programs that determine T-cell function. It is increasingly recognized that serine/threonine kinases, notably those that are controlled by lipid second messengers such as polyunsaturated diacylglycerols (DAG) and phosphatidylinositol-(3,4,5)-trisphosphate (PIP(3)), are at the core of T-cell signal transduction. In the present review the object will be to discuss some important examples of how pathways of serine/threonine phosphorylation control molecular functions of proteins and control protein localization to coordinate T-cell function in adaptive immune responses.
Collapse
Affiliation(s)
- David Finlay
- Division of Cell Biology and Immunology, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
56
|
Abstract
The function of T-lymphocytes during adaptive immune responses is directed by antigen receptors, costimulatory molecules, and cytokines. These extrinsic stimuli are coupled to a network of serine/threonine kinases that control the epigenetic, transcriptional, and metabolic programs that determine T-cell function. It is increasingly recognized that serine/threonine kinases, notably those that are controlled by lipid second messengers such as polyunsaturated diacylglycerols (DAG) and phosphatidylinositol-(3,4,5)-trisphosphate (PIP(3)), are at the core of T-cell signal transduction. In the present review the object will be to discuss some important examples of how pathways of serine/threonine phosphorylation control molecular functions of proteins and control protein localization to coordinate T-cell function in adaptive immune responses.
Collapse
|
57
|
Bensimon A, Schmidt A, Ziv Y, Elkon R, Wang SY, Chen DJ, Aebersold R, Shiloh Y. ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage. Sci Signal 2010; 3:rs3. [PMID: 21139141 DOI: 10.1126/scisignal.2001034] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The double-strand break (DSB) is a cytotoxic DNA lesion caused by oxygen radicals, ionizing radiation, and radiomimetic chemicals. Cells cope with DNA damage by activating the DNA damage response (DDR), which leads either to damage repair and cellular survival or to programmed cell death. The main transducer of the DSB response is the nuclear protein kinase ataxia telangiectasia mutated (ATM). We applied label-free quantitative mass spectrometry to follow the dynamics of DSB-induced phosphoproteome in nuclear fractions of the human melanoma G361 cells after radiomimetic treatment. We found that these dynamics are complex, including both phosphorylation and dephosphorylation events. In addition to identifying previously unknown ATM-dependent phosphorylation and dephosphorylation events, we found that about 40% of DSB-induced phosphorylations were ATM-independent and that several other kinases are potentially involved. Sustained activity of ATM was required to maintain many ATM-dependent phosphorylations. We identified an ATM-dependent phosphorylation site on ATM itself that played a role in its retention on damaged chromatin. By connecting many of the phosphorylated and dephosphorylated proteins into functional networks, we highlight putative cross talks between proteins pertaining to several cellular biological processes. Our study expands the DDR phosphorylation landscape and identifies previously unknown ATM-dependent and -independent branches. It reveals insights into the breadth and complexity of the cellular responses involved in the coordination of many DDR pathways, which is in line with the critical importance of genomic stability in maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Ariel Bensimon
- David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Iwai LK, Benoist C, Mathis D, White FM. Quantitative phosphoproteomic analysis of T cell receptor signaling in diabetes prone and resistant mice. J Proteome Res 2010; 9:3135-45. [PMID: 20438120 DOI: 10.1021/pr100035b] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes, in human patients and NOD mice, results from an immune attack on insulin-producing beta-cells of the pancreas by autoreactive T lymphocytes. In NOD mice, genetically controlled perturbations in the signaling pathways downstream of the antigen-specific T cell receptor (TCR) may be instrumental in the altered responses of T cells, manifest as inefficient induction of apoptosis after recognition of self-antigens in the thymus or as perturbed reactivity of mature T cells in peripheral organs. To map this signaling difference(s), we have used mass spectrometry-based quantitative phosphoproteomics to compare the activation of primary CD4(+) T cells of diabetes-prone NOD and -resistant B6.H2g7 mice. Immunoprecipitation and IMAC purification of tyrosine-phosphorylated peptides, combined with a stable-isotope iTRAQ labeling, enabled us to identify and quantify over 77 phosphorylation events in 54 different proteins downstream of TCR stimulation of primary CD4(+) T cells. This analysis showed a generally higher level of phosphotyrosine in activated NOD cells, as well as several phosphorylation sites that appeared to be differentially regulated in these two strains (involving TXK, CD5, PAG1, and ZAP-70). These data highlight the differences in signaling between CD4(+) T cell compartments of NOD and B6g7 mice and may underlie the dysregulation of T cells in NOD mice.
Collapse
Affiliation(s)
- Leo K Iwai
- Department of Pathology, Harvard Medical School and Section on Immunology and Immunogenetics, Joslin Diabetes Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
59
|
Casado P, Cutillas PR. A self-validating quantitative mass spectrometry method for assessing the accuracy of high-content phosphoproteomic experiments. Mol Cell Proteomics 2010; 10:M110.003079. [PMID: 20972267 DOI: 10.1074/mcp.m110.003079] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein kinase pathways play pivotal roles in cell signaling and biology. The phosphoproteome is a reflection of protein kinase pathway activation and therefore there is considerable interest in its quantification as a means to assess the wiring of signaling networks. Although different approaches for quantitative phosphoproteomics have been described, there is no data on how accurate these are for each quantified phosphorylated site. We report a liquid chromatography-MS approach to objectively assess data quality in high-content comparison of phosphoproteomes in which samples to be compared are mixed at different proportions. The experimental data is then used to derive a linear regression function that allows calculating correlation values, linearity, and accuracy. We applied the technique to investigate phosphorylation in P31/Fuj and Kasumi-1, two leukemia cells lines showing strikingly different sensitivities to scr and PI3K inhibitors. We found that phosphopeptides quantified with accuracy were not always quantified with precision because of low ion statistics contributing to variability. Thus our approach was complementary to standard methods for calculating the precision of replicate measurements based on the coefficient of variation and provided additional information on data quality for each quantified phosphopeptide. We quantified > 2250 phosphorylation sites across cell lines with different levels of sensitivity to kinase inhibitors, of which 1847 showed an accuracy variation of < 30% (with an overall mean of 22%). Hundreds of phosphorylation sites on proteins with diverse function (including kinases, transcription, and translation factors) showed significantly distinct intensities across sensitive and resistant cells lines, indicating that kinase pathways are differentially regulated in cancer cells of distinct sensitivity to signaling inhibitors.
Collapse
Affiliation(s)
- Pedro Casado
- Analytical Signalling Group, Centre for Cell Signalling, Institute of Cancer, Bart's and the London Medical School, Queen Mary University of London, UK
| | | |
Collapse
|
60
|
Harsha HC, Pandey A. Phosphoproteomics in cancer. Mol Oncol 2010; 4:482-95. [PMID: 20937571 DOI: 10.1016/j.molonc.2010.09.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 12/19/2022] Open
Abstract
Reversible protein phosphorylation serves as a basis for regulating a number of cellular processes. Aberrant activation of kinase signaling pathways is commonly associated with several cancers. Recent developments in phosphoprotein/phosphopeptide enrichment strategies and quantitative mass spectrometry have resulted in robust pipelines for high-throughput characterization of phosphorylation in a global fashion. Today, it is possible to profile site-specific phosphorylation events on thousands of proteins in a single experiment. The potential of this approach is already being realized to characterize signaling pathways that govern oncogenesis. In addition, chemical proteomic strategies have been used to unravel targets of kinase inhibitors, which are otherwise difficult to characterize. This review summarizes various approaches used for analysis of the phosphoproteome in general, and protein kinases in particular, highlighting key cancer phosphoproteomic studies.
Collapse
Affiliation(s)
- H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore, India.
| | | |
Collapse
|
61
|
Palmisano G, Thingholm TE. Strategies for quantitation of phosphoproteomic data. Expert Rev Proteomics 2010; 7:439-56. [PMID: 20536313 DOI: 10.1586/epr.10.19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent developments in phosphoproteomic sample-preparation techniques and sensitive mass spectrometry instrumentation have led to large-scale identifications of phosphoproteins and phosphorylation sites from highly complex samples. This has facilitated the implementation of different quantitation strategies in order to study the biological role of protein phosphorylation during disease progression, differentiation or during external stimulation of a cellular system. In this article, a brief summary of the most popular strategies for phosphoproteomic studies is given; however, the main focus will be on different quantitation strategies. Methods for metabolic labeling, chemical modification and label-free quantitation and their applicability or inapplicability in phosphoproteomic studies are discussed.
Collapse
Affiliation(s)
- Giuseppe Palmisano
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
62
|
Iliuk AB, Martin VA, Alicie BM, Geahlen RL, Tao WA. In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics 2010; 9:2162-72. [PMID: 20562096 DOI: 10.1074/mcp.m110.000091] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ability to obtain in-depth understanding of signaling networks in cells is a key objective of systems biology research. Such ability depends largely on unbiased and reproducible analysis of phosphoproteomes. We present here a novel proteomics tool, polymer-based metal ion affinity capture (PolyMAC), for the highly efficient isolation of phosphopeptides to facilitate comprehensive phosphoproteome analyses. This approach uses polyamidoamine dendrimers multifunctionalized with titanium ions and aldehyde groups to allow the chelation and subsequent isolation of phosphopeptides in a homogeneous environment. Compared with current strategies based on solid phase micro- and nanoparticles, PolyMAC demonstrated outstanding reproducibility, exceptional selectivity, fast chelation times, and high phosphopeptide recovery from complex mixtures. Using the PolyMAC method combined with antibody enrichment, we identified 794 unique sites of tyrosine phosphorylation in malignant breast cancer cells, 514 of which are dependent on the expression of Syk, a protein-tyrosine kinase with unusual properties of a tumor suppressor. The superior sensitivity of PolyMAC allowed us to identify novel components in a variety of major signaling networks, including cell migration and apoptosis. PolyMAC offers a powerful and widely applicable tool for phosphoproteomics and molecular signaling.
Collapse
Affiliation(s)
- Anton B Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
63
|
Yu K, Salomon AR. PeptideDepot: flexible relational database for visual analysis of quantitative proteomic data and integration of existing protein information. Proteomics 2010; 9:5350-8. [PMID: 19834895 DOI: 10.1002/pmic.200900119] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, dramatic progress has been achieved in expanding the sensitivity, resolution, mass accuracy, and scan rate of mass spectrometers able to fragment and identify peptides through MS/MS. Unfortunately, this enhanced ability to acquire proteomic data has not been accompanied by a concomitant increase in the availability of flexible tools allowing users to rapidly assimilate, explore, and analyze this data and adapt to various experimental workflows with minimal user intervention. Here we fill this critical gap by providing a flexible relational database called PeptideDepot for organization of expansive proteomic data sets, collation of proteomic data with available protein information resources, and visual comparison of multiple quantitative proteomic experiments. Our software design, built upon the synergistic combination of a MySQL database for safe warehousing of proteomic data with a FileMaker-driven graphical user interface for flexible adaptation to diverse workflows, enables proteomic end-users to directly tailor the presentation of proteomic data to the unique analysis requirements of the individual proteomics lab. PeptideDepot may be deployed as an independent software tool or integrated directly with our high throughput autonomous proteomic pipeline used in the automated acquisition and post-acquisition analysis of proteomic data.
Collapse
Affiliation(s)
- Kebing Yu
- Department of Chemistry, Brown University, Providence, RI 02903, USA
| | | |
Collapse
|
64
|
|