51
|
The landscape of protein biomarkers proposed for periodontal disease: markers with functional meaning. BIOMED RESEARCH INTERNATIONAL 2014; 2014:569632. [PMID: 25057495 PMCID: PMC4099050 DOI: 10.1155/2014/569632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/07/2014] [Indexed: 12/12/2022]
Abstract
Periodontal disease (PD) is characterized by a deregulated inflammatory response which fails to resolve, activating bone resorption. The identification of the proteomes associated with PD has fuelled biomarker proposals; nevertheless, many questions remain. Biomarker selection should favour molecules representing an event which occurs throughout the disease progress. The analysis of proteome results and the information available for each protein, including its functional role, was accomplished using the OralOme database. The integrated analysis of this information ascertains if the suggested proteins reflect the cell and/or molecular mechanisms underlying the different forms of periodontal disease. The evaluation of the proteins present/absent or with very different concentrations in the proteome of each disease state was used for the identification of the mechanisms shared by different PD variants or specific to such state. The information presented is relevant for the adequate design of biomarker panels for PD. Furthermore, it will open new perspectives and help envisage future studies targeted to unveil the functional role of specific proteins and help clarify the deregulation process in the PD inflammatory response.
Collapse
|
52
|
An ultra-fast and highly efficient multiple proteases digestion strategy using graphene-oxide-based immobilized protease reagents. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5082-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
53
|
Gao M, Qi D, Zhang P, Deng C, Zhang X. Development of multidimensional liquid chromatography and application in proteomic analysis. Expert Rev Proteomics 2014; 7:665-78. [DOI: 10.1586/epr.10.49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
54
|
Seema S, Krishnan M, Harith AK, Sahai K, Iyer SR, Arora V, Tripathi RP. Laser ionization mass spectrometry in oral squamous cell carcinoma. J Oral Pathol Med 2013; 43:471-83. [PMID: 24112294 DOI: 10.1111/jop.12117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2013] [Indexed: 12/15/2022]
Abstract
Biomarker research in oral squamous cell carcinoma (OSCC) aims for screening/early diagnosis and in predicting its recurrence, metastasis and overall prognosis. This article reviews the current molecular perspectives and diagnosis of oral cancer with proteomics using matrix-assisted laser desorption ionization (MALDI) and surface-enhanced laser desorption ionization (SELDI) mass spectrometry (MS). This method shows higher sensitivity, accuracy, reproducibility and ability to handle complex tissues and biological fluid samples. However, the data interpretation tools of contemporary mass spectrometry still warrant further improvement. Based on the data available with laser-based mass spectrometry, biomarkers of OSCC are classified as (i) diagnosis and prognosis, (ii) secretory, (iii) recurrence and metastasis, and (iv) drug targets. Majority of these biomarkers are involved in cell homeostasis and are either physiologic responders or enzymes. Therefore, proteins directly related to tumorigenesis have more diagnostic value. Salivary secretory markers are another group that offers a favourable and easy strategy for non-invasive screening and early diagnosis in oral cancer. Key molecular inter-related pathways in oral carcinogenesis are also intensely researched with software analysis to facilitate targeted drug therapeutics. The review suggested the need for incorporating 'multiple MS or tandem approaches' and focusing on a 'group of biomarkers' instead of single protein entities, for making early diagnosis and treatment for oral cancer a reality.
Collapse
Affiliation(s)
- Saraswathy Seema
- Army Base Hospital, School of Medicine & Paramedical Health Sciences, Guru Gobind Singh Indraprastha University, Government of Delhi, Delhi, India
| | | | | | | | | | | | | |
Collapse
|
55
|
Rezende TMB, Lima SMF, Petriz BA, Silva ON, Freire MS, Franco OL. Dentistry proteomics: From laboratory development to clinical practice. J Cell Physiol 2013; 228:2271-84. [DOI: 10.1002/jcp.24410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Taia M. B. Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
- Curso de Odontologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Stella M. F. Lima
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
- Curso de Odontologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Bernardo A. Petriz
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Osmar N. Silva
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Mirna S. Freire
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| |
Collapse
|
56
|
Chang KP, Wang CLA, Kao HK, Liang Y, Liu SC, Huang LL, Hseuh C, Hsieh YJ, Chien KY, Chang YS, Yu JS, Chi LM. Overexpression of caldesmon is associated with lymph node metastasis and poorer prognosis in patients with oral cavity squamous cell carcinoma. Cancer 2013; 119:4003-11. [DOI: 10.1002/cncr.28300] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 06/03/2013] [Accepted: 07/01/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Kai-Ping Chang
- Department of Otolaryngology-Head & Neck Surgery; Chang Gung Memorial Hospital; Tao-Yuan Taiwan
- Molecular Medicine Research Center; Chang Gung University; Tao-Yuan Taiwan
| | - Chih-Lueh Albert Wang
- Muscle and Motility Group; Boston Biomedical Research Institute; Watertown Massachusetts
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery; Chang Gung Memorial Hospital; Tao-Yuan Taiwan
| | - Ying Liang
- Molecular Medicine Research Center; Chang Gung University; Tao-Yuan Taiwan
| | - Shiau-Chin Liu
- Department of Otolaryngology-Head & Neck Surgery; Chang Gung Memorial Hospital; Tao-Yuan Taiwan
| | - Ling-Ling Huang
- Department of Otolaryngology-Head & Neck Surgery; Chang Gung Memorial Hospital; Tao-Yuan Taiwan
| | - Chuen Hseuh
- Department of Pathology; Chang Gung Memorial Hospital; Tao-Yuan Taiwan
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center; Chang Gung University; Tao-Yuan Taiwan
| | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology; Chang Gung University; Tao-Yuan Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center; Chang Gung University; Tao-Yuan Taiwan
| | - Jau-Song Yu
- Department of Biochemistry and Molecular Biology; Chang Gung University; Tao-Yuan Taiwan
| | - Lang-Ming Chi
- Molecular Medicine Research Center; Chang Gung University; Tao-Yuan Taiwan
- Department of Medical Research Development; Chang Gung Memorial Hospital; Tao-Yuan Taiwan
| |
Collapse
|
57
|
OralCard: A bioinformatic tool for the study of oral proteome. Arch Oral Biol 2013; 58:762-72. [DOI: 10.1016/j.archoralbio.2012.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 11/26/2012] [Accepted: 12/30/2012] [Indexed: 10/27/2022]
|
58
|
Laljee RP, Muddaiah S, Salagundi B, Cariappa PM, Indra AS, Sanjay V, Ramanathan A. Interferon Stimulated Gene - ISG15 is a Potential Diagnostic Biomarker in Oral Squamous Cell Carcinomas. Asian Pac J Cancer Prev 2013; 14:1147-50. [DOI: 10.7314/apjcp.2013.14.2.1147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
59
|
Sgorbissa A, Brancolini C. IFNs, ISGylation and cancer: Cui prodest? Cytokine Growth Factor Rev 2012; 23:307-14. [PMID: 22906767 DOI: 10.1016/j.cytogfr.2012.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/16/2012] [Accepted: 07/18/2012] [Indexed: 12/26/2022]
Abstract
IFNs are cytokines that segregate viral infections, modulate the immune responses and influence tumor cells survival. These options are under the control of ISGs (Interferon Stimulated Genes) which expression is propelled by IFNs. To the ISGs family belong all the components of the molecular machinery that modifies proteins by the addition of the ubiquitin-like protein ISG15, in a process known as ISGylation. Despite alterations in the components of this machinery are frequently observed in cancer, the contribution of ISG15 and of ISGylation to tumor growth and resistance to chemotherapy is unclear and debated. With the aim of elucidating this point, in this review we have discussed about recent data pointing to a dysregulation of the IFN signaling and the ISGylation system in cancer.
Collapse
Affiliation(s)
- Andrea Sgorbissa
- Dipartimento di Scienze Mediche e Biologiche and MATI Center of Excellence, Università degli Studi di Udine, Udine, Italy
| | | |
Collapse
|
60
|
Sumino J, Uzawa N, Okada N, Miyaguchi K, Mogushi K, Takahashi KI, Sato H, Michikawa C, Nakata Y, Tanaka H, Amagasa T. Gene expression changes in initiation and progression of oral squamous cell carcinomas revealed by laser microdissection and oligonucleotide microarray analysis. Int J Cancer 2012; 132:540-8. [PMID: 22740306 DOI: 10.1002/ijc.27702] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/11/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Jun Sumino
- Maxillofacial Surgery, Maxillofacial Reconstruction and Function, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Liu YC, Ho HC, Lee MR, Lai KC, Yeh CM, Lin YM, Ho TY, Hsiang CY, Chung JG. Early induction of cytokines/cytokine receptors and Cox2, and activation of NF-κB in 4-nitroquinoline 1-oxide-induced murine oral cancer model. Toxicol Appl Pharmacol 2012; 262:107-16. [PMID: 22561872 DOI: 10.1016/j.taap.2012.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/15/2012] [Accepted: 04/17/2012] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to identify the genes induced early in murine oral carcinogenesis. Murine tongue tumors induced by the carcinogen, 4-nitroquinoline 1-oxide (4-NQO), and paired non-tumor tissues were subjected to microarray analysis. Hierarchical clustering of upregulated genes in the tumor tissues revealed an association of induced genes with inflammation. Cytokines/cytokine receptors induced early were subsequently identified, clearly indicating their involvement in oral carcinogenesis. Hierarchical clustering also showed that cytokine-mediated inflammation was possibly linked with Mapk6. Cox2 exhibited the greatest extent (9-18 fold) of induction in the microarray data, and its early induction was observed in a 2h painting experiment by RT-PCR. MetaCore analysis showed that overexpressed Cox2 may interact with p53 and transcriptionally inhibit expression of several downstream genes. A painting experiment in transgenic mice also demonstrated that NF-κB activates early independently of Cox2 induction. MetaCore analysis revealed the most striking metabolic alterations in tumor tissues, especially in lipid metabolism resulting from the reduction of Pparα and Rxrg. Reduced expression of Mapk12 was noted, and MetaCore analysis established its relationship with decreased efficiency of Pparα phosphorylation. In conclusion, in addition to cytokines/cytokine receptors, the early induction of Cox2 and NF-κB activation is involved in murine oral carcinogenesis.
Collapse
Affiliation(s)
- Yu-Ching Liu
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Qin W, Song Z, Fan C, Zhang W, Cai Y, Zhang Y, Qian X. Trypsin Immobilization on Hairy Polymer Chains Hybrid Magnetic Nanoparticles for Ultra Fast, Highly Efficient Proteome Digestion, Facile 18O Labeling and Absolute Protein Quantification. Anal Chem 2012; 84:3138-44. [DOI: 10.1021/ac2029216] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Weijie Qin
- State Key Laboratory of Proteomics, Beijing Proteome
Research Center, Beijing Institute of Radiation Medicine, No. 33 Life Science Park Road, Changping District, Beijing 102206,
P. R. China
| | - Zifeng Song
- State Key Laboratory of Proteomics, Beijing Proteome
Research Center, Beijing Institute of Radiation Medicine, No. 33 Life Science Park Road, Changping District, Beijing 102206,
P. R. China
| | - Chao Fan
- State Key Laboratory of Proteomics, Beijing Proteome
Research Center, Beijing Institute of Radiation Medicine, No. 33 Life Science Park Road, Changping District, Beijing 102206,
P. R. China
| | - Wanjun Zhang
- State Key Laboratory of Proteomics, Beijing Proteome
Research Center, Beijing Institute of Radiation Medicine, No. 33 Life Science Park Road, Changping District, Beijing 102206,
P. R. China
| | - Yun Cai
- State Key Laboratory of Proteomics, Beijing Proteome
Research Center, Beijing Institute of Radiation Medicine, No. 33 Life Science Park Road, Changping District, Beijing 102206,
P. R. China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics, Beijing Proteome
Research Center, Beijing Institute of Radiation Medicine, No. 33 Life Science Park Road, Changping District, Beijing 102206,
P. R. China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome
Research Center, Beijing Institute of Radiation Medicine, No. 33 Life Science Park Road, Changping District, Beijing 102206,
P. R. China
| |
Collapse
|
63
|
Kondo Y, Nagai K, Nakahata S, Saito Y, Ichikawa T, Suekane A, Taki T, Iwakawa R, Enari M, Taniwaki M, Yokota J, Sakoda S, Morishita K. Overexpression of the DNA sensor proteins, absent in melanoma 2 and interferon-inducible 16, contributes to tumorigenesis of oral squamous cell carcinoma with p53 inactivation. Cancer Sci 2012; 103:782-90. [PMID: 22320325 DOI: 10.1111/j.1349-7006.2012.02211.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 11/30/2022] Open
Abstract
The development of oral squamous cell carcinoma (OSCC) is a multistep process that requires the accumulation of genetic alterations. To identify genes responsible for OSCC development, we performed high-density single nucleotide polymorphism array analysis and genome-wide gene expression profiling on OSCC tumors. These analyses indicated that the absent in melanoma 2 (AIM2) gene and the interferon-inducible gene 16 (IFI16) mapped to the hematopoietic interferon-inducible nuclear proteins. The 200-amino-acid repeat gene cluster in the amplified region of chromosome 1q23 is overexpressed in OSCC. Both AIM2 and IFI16 are cytoplasmic double-stranded DNA sensors for innate immunity and act as tumor suppressors in several human cancers. Knockdown of AIM2 or IFI16 in OSCC cells results in the suppression of cell growth and apoptosis, accompanied by the downregulation of nuclear factor kappa-light-chain-enhancer of activated B cells activation. Because all OSCC cell lines have reduced p53 activity, wild-type p53 was introduced in p53-deficient OSCC cells. The expression of wild-type p53 suppressed cell growth and induced apoptosis via suppression of nuclear factor kappa-light-chain-enhancer of activated B cells activity. Finally, the co-expression of AIM2 and IFI16 significantly enhanced cell growth in p53-deficient cells; in contrast, the expression of AIM2 and/or IFI16 in cells bearing wild-type p53 suppressed cell growth. Moreover, AIM2 and IFI16 synergistically enhanced nuclear factor kappa-light-chain-enhancer of activated B cells signaling in p53-deficient cells. Thus, expression of AIM2 and IFI16 may have oncogenic activities in the OSCC cells that have inactivated the p53 system.
Collapse
Affiliation(s)
- Yuudai Kondo
- Division of Oral and Maxillofacial Surgery, Medicine of Sensory and Motor Organs, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
From the salivary proteome to the OralOme: comprehensive molecular oral biology. Arch Oral Biol 2012; 57:853-64. [PMID: 22284344 DOI: 10.1016/j.archoralbio.2011.12.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/24/2011] [Accepted: 12/28/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVES There have been several efforts to identify the protein components of saliva. Some of these studies were conducted in healthy individuals and other in individuals with different oral and systemic disorders. However, a resource compiling and reviewing all of the proteins identified in proteomic studies is still lacking. The aim of this project is to develop such a resource. DESIGN The proteins identified by proteomic studies were compiled and all information concerning them was manually curated according to "IPI History search" and UniProt. Proteins were classified according to gene ontology using PANTHER. The involvement of each protein in disease was scrutinized using DAVID and a classification into protein disease classes was performed. RESULTS This survey of proteins in the oral cavity lead to the identification of 3397 non-redundant proteins, 605 altered in pathological conditions and 51 present only in disease. These proteins originate from different sources: 3115 from saliva, 990 from oral mucosa and 1929 from plasma. All protein sources contribute with different numbers and types of proteins to identical functions. However, each source produces specific proteins. Examples of the use of this proteomics database of saliva included the analysis of the changes in the proteome associated with periodontitis and a survey of systemic disease potential biomarkers in saliva. CONCLUSION The database generated with this work and the information therein stands as a resource for investigators/clinicians studying the oral biology, searching for molecular disease markers, developing diagnostic and prognostic tests, and contributing to the discovery of new therapeutic agents.
Collapse
|
65
|
Yan W, Shih JH, Rodriguez-Canales J, Tangrea MA, Ylaya K, Hipp J, Player A, Hu N, Goldstein AM, Taylor PR, Emmert-Buck MR, Erickson HS. Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma. BMC Res Notes 2012; 5:73. [PMID: 22280838 PMCID: PMC3283499 DOI: 10.1186/1756-0500-5-73] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/26/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC), the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB), normal differentiated squamous epithelium (ND), and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. RESULTS As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA) were verified to be dysregulated in the same pattern at both the mRNA and protein levels. CONCLUSIONS These data reveal insight into genes and molecular pathways mediating ESCC development and provide information potentially useful in designing novel therapeutic interventions for this tumor type.
Collapse
Affiliation(s)
- Wusheng Yan
- Pathogenetics Unit, Laboratory of Pathology, National Cancer Institute, Bethesda, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Vincent-Chong VK, Ismail SM, Rahman ZAA, Sharifah NA, Anwar A, Pradeep PJ, Ramanathan A, Karen-Ng LP, Kallarakkal TG, Mustafa WMW, Abraham MT, Tay KK, Zain RB. Genome-wide analysis of oral squamous cell carcinomas revealed over expression of ISG15, Nestin and WNT11. Oral Dis 2012; 18:469-76. [DOI: 10.1111/j.1601-0825.2011.01894.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
67
|
Chen YT, Chen HW, Domanski D, Smith DS, Liang KH, Wu CC, Chen CL, Chung T, Chen MC, Chang YS, Parker CE, Borchers CH, Yu JS. Multiplexed quantification of 63 proteins in human urine by multiple reaction monitoring-based mass spectrometry for discovery of potential bladder cancer biomarkers. J Proteomics 2012; 75:3529-45. [PMID: 22236518 DOI: 10.1016/j.jprot.2011.12.031] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/17/2011] [Accepted: 12/20/2011] [Indexed: 12/11/2022]
Abstract
Three common urological diseases are bladder cancer, urinary tract infection, and hematuria. Seventeen bladder cancer biomarkers were previously discovered using iTRAQ - these findings were verified by MRM-MS in this current study. Urine samples from 156 patients with hernia (n=57, control), bladder cancer (n=76), or urinary tract infection/hematuria (n=23) were collected and subjected to multiplexed LC-MRM/MS to determine the concentrations of 63 proteins that are normally considered to be plasma proteins, but which include proteins found in our earlier iTRAQ study. Sixty-five stable isotope-labeled standard proteotypic peptides were used as internal standards for 63 targeted proteins. Twelve proteins showed higher concentrations in the bladder cancer group than in the hernia and the urinary tract infection/hematuria groups, and thus represent potential urinary biomarkers for detection of bladder cancer. Prothrombin had the highest AUC (0.796), with 71.1% sensitivity and 75.0% specificity for differentiating bladder cancer (n=76) from non-cancerous (n=80) patients. The multiplexed MRM-MS data was used to generate a six-peptide marker panel. This six-peptide panel (afamin, adiponectin, complement C4 gamma chain, apolipoprotein A-II precursor, ceruloplasmin, and prothrombin) can discriminate bladder cancer subjects from non-cancerous subjects with an AUC of 0.814, with a 76.3% positive predictive value, and a 77.5% negative predictive value. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Wood LM, Pan ZK, Seavey MM, Muthukumaran G, Paterson Y. The ubiquitin-like protein, ISG15, is a novel tumor-associated antigen for cancer immunotherapy. Cancer Immunol Immunother 2011; 61:689-700. [PMID: 22057675 DOI: 10.1007/s00262-011-1129-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/14/2011] [Indexed: 12/21/2022]
Abstract
The recent announcement of the first FDA-approved therapeutic vaccine for prostate cancer, Sipuleucel-T, is a watershed moment for the field of tumor immunotherapy. However, while Sipuleucel-T provides a powerful tool to clinicians for the most prevalent form of cancer in men, there remains an unmet need for a similar therapeutic strategy against breast cancer, the most prevalent cancer in women. While current breast cancer vaccines in development target several antigens, the most prevalent is the tumor-associated antigen, HER2. Initial results with HER2 vaccines appear promising in terms of efficacy; however, the lack of HER2 overexpression by a majority of breast tumors and the safety concerns associated with current HER2-targeted immunotherapy suggest that additional therapeutic strategies would be beneficial. Recently, several studies have identified ISG15 as a molecule highly expressed in numerous malignancies. ISG15 is a small ubiquitin-like protein regulated by type-I interferon and classically associated with viral defense. Elevated ISG15 expression in breast cancer is especially well documented and is independent of HER2, progesterone receptor, and estrogen receptor status. Additionally, high ISG15 expression in breast cancer correlates with an unfavorable prognosis and poor responses to traditional treatment strategies such as chemotherapy and radiation. To overcome these challenges, we employ a novel strategy to specifically target tumor-associated ISG15 expression with immunotherapy. We demonstrate that vaccination against ISG15 results in significant CD8-mediated reductions in both primary and metastatic mammary tumor burden. These results validate ISG15 as a tumor-associated antigen for cancer immunotherapy.
Collapse
Affiliation(s)
- Laurence M Wood
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
69
|
Chang KP, Yu JS, Chien KY, Lee CW, Liang Y, Liao CT, Yen TC, Lee LY, Huang LL, Liu SC, Chang YS, Chi LM. Identification of PRDX4 and P4HA2 as metastasis-associated proteins in oral cavity squamous cell carcinoma by comparative tissue proteomics of microdissected specimens using iTRAQ technology. J Proteome Res 2011; 10:4935-47. [PMID: 21859152 DOI: 10.1021/pr200311p] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cervical lymph node metastasis represents the major prognosticator for oral cavity squamous cell carcinoma (OSCC). Here, we used an iTRAQ-based quantitative proteomic approach to identify proteins that are differentially expressed between microdissected primary and metastatic OSCC tumors. The selected candidates were examined in tissue sections via immunohistochemistry, and their roles in OSCC cell function investigated using RNA interference. Seventy-four differentially expressed proteins in nodal metastases, including PRDX4 and P4HA2, were identified. Immunohistochemical analysis revealed significantly higher levels of PRDX4 and P4HA2 in tumor cells than adjacent non-tumor epithelia (P < 0.0001 and P < 0.0001, respectively), and even higher expression in the 31 metastatic tumors of lymph nodes, compared to the corresponding primary tumors (P = 0.060 and P = 0.002, respectively). Overexpression of PRDX4 and P4HA2 was significantly associated with positive pN status (P = 0.048 and P = 0.021, respectively). PRDX4 overexpression was a significant prognostic factor for disease-specific survival in both univariate and multivariate analyses (P = 0.034 and P = 0.032, respectively). Additionally, cell migration and invasiveness were attenuated in OEC-M1 cells upon in vitro knockdown of PRDX4 and P4HA2 with specific interfering RNA. Novel metastasis-related prognostic markers for OSCC could be identified by our approach.
Collapse
Affiliation(s)
- Kai-Ping Chang
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Tsai YC, Pestka S, Wang LH, Runnels LW, Wan S, Lyu YL, Liu LF. Interferon-β signaling contributes to Ras transformation. PLoS One 2011; 6:e24291. [PMID: 21897875 PMCID: PMC3163666 DOI: 10.1371/journal.pone.0024291] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/04/2011] [Indexed: 01/25/2023] Open
Abstract
Increasing evidence has pointed to activated type I interferon signaling in tumors. However, the molecular basis for such activation and its role in tumorigenesis remain unclear. In the current studies, we report that activation of type I interferon (IFN) signaling in tumor cells is primarily due to elevated secretion of the type I interferon, IFN-β. Studies in oncogene-transformed cells suggest that oncogenes such as Ras and Src can activate IFN-β signaling. Significantly, elevated IFN-β signaling in Ras-transformed mammary epithelial MCF-10A cells was shown to contribute to Ras transformation as evidenced by morphological changes, anchorage-independent growth, and migratory properties. Our results demonstrate for the first time that the type I IFN, IFN-β, contributes to Ras transformation and support the notion that oncogene-induced cytokines play important roles in oncogene transformation.
Collapse
Affiliation(s)
- Yu-Chen Tsai
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Sidney Pestka
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Lu-Hai Wang
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Loren W. Runnels
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Shan Wan
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yi Lisa Lyu
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Leroy F. Liu
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
71
|
Yu CJ, Chang KP, Chang YJ, Hsu CW, Liang Y, Yu JS, Chi LM, Chang YS, Wu CC. Identification of guanylate-binding protein 1 as a potential oral cancer marker involved in cell invasion using omics-based analysis. J Proteome Res 2011; 10:3778-88. [PMID: 21714544 DOI: 10.1021/pr2004133] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oral cavity squamous cell carcinoma (OSCC) is a devastating disease that accounts for 3% of all cancer cases diagnosed annually. OSCC is usually diagnosed at advanced clinical stages, resulting in poor outcomes. To identify effective biomarkers for improved OSCC diagnosis and/or management, we simultaneously analyzed the OSCC cell secretome and tissue transcriptome. Among the 19 candidates isolated, guanylate-binding protein 1 (GBP1) was selected for further validation using serum samples from OSCC patients and healthy controls. Notably, the serum level of GBP1 was higher in OSCC patients, compared to that in healthy controls. Immunohistochemical analysis further revealed GBP1 overexpression in OSCC tissues, compared with adjacent noncancerous epithelia. Importantly, the higher GBP1 level in OSCC tissue was associated with higher overall pathological stage, positive perineural invasion, and poorer prognosis. Moreover, GBP1 modulated the migration and invasion of OSCC cells in vitro. Our results collectively indicate that integrated analysis of the cancer secretome and transcriptome is a feasible strategy for the efficient identification of novel OSCC markers.
Collapse
Affiliation(s)
- Chia-Jung Yu
- Department of Cell and Molecular Biology, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Zhang W, Wang H, Tang H, Yang P. Endoglycosidase-mediated incorporation of 18O into glycans for relative glycan quantitation. Anal Chem 2011; 83:4975-81. [PMID: 21591765 DOI: 10.1021/ac200753e] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stable isotopic labeling coupled with mass spectrometry analysis is a promising method of detecting quantitative variations in glycans, which may result in aberrant glycosylation in many disorders and diseases. Although various isotopic labeling methods have been used for relative glycan quantitation, enzymatic (18)O labeling, which offers advantages for glycomics similar to those by protease-catalyzed (18)O labeling for proteomics, has not been developed yet. In this study, endoglycosidase incorporated (18)O into the N-glycan reducing end in (18)O-water as N-glycans were released from glycoproteins, rendering glycan reducing-end (18)O labeling (GREOL) a potential strategy for relative glycan quantitation. This proposed method provided good linearity with high reproducibility within 2 orders of magnitude in dynamic range. The ability of GREOL to quantitatively discriminate between isomeric hybrid N-glycans and complex N-glycans in glycoproteins was validated due to the distinct substrate specificities of endoglycosidases. GREOL was also used to analyze changes in human serum N-glycans associated with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | | | | | | |
Collapse
|
73
|
Affiliation(s)
- Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA.
| |
Collapse
|
74
|
Ge F, Bi LJ, Tao SC, Xu XD, Zhang ZP, Kitazato K, Zhang XE. Proteomic analysis of multiple myeloma: Current status and future perspectives. Proteomics Clin Appl 2011; 5:30-7. [DOI: 10.1002/prca.201000044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
75
|
Zhang D, Zhang DE. Interferon-stimulated gene 15 and the protein ISGylation system. J Interferon Cytokine Res 2010; 31:119-30. [PMID: 21190487 DOI: 10.1089/jir.2010.0110] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interferon-stimulated gene 15 (ISG15) is one of the most upregulated genes upon Type I interferon treatment or pathogen infection. Its 17 kDa protein product, ISG15, was the first ubiquitin-like modifier identified, and is similar to a ubiquitin linear dimer. As ISG15 modifies proteins in a similar manner to ubiquitylation, protein conjugation by ISG15 is termed ISGylation. Some of the primary enzymes that promote ISGylation are also involved in ubiquitin conjugation. The process to remove ISG15 from its conjugated proteins, termed de-ISGylation, is performed by a cellular ISG15-specific protease, ubiquitin-specific proteases with molecular mass 43 kDa (UBP43)/ubiquitin-specific proteases 18. Relative to ubiquitin, the biological function of ISG15 is still poorly understood, but ISG15 appears to play important roles in various biological and cellular functions. Therefore, there is growing interest in ISG15, as the study of free ISG15 and functional consequences of ISGylation/de-ISGylation may identify useful therapeutic targets. This review highlights recent discoveries and remaining questions important to understanding the biological functions of ISG15.
Collapse
Affiliation(s)
- Dongxian Zhang
- Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | | |
Collapse
|
76
|
Chang KP, Wu CC, Chen HC, Chen SJ, Peng PH, Tsang NM, Lee LY, Liu SC, Liang Y, Lee YS, Hao SP, Chang YS, Yu JS. Identification of candidate nasopharyngeal carcinoma serum biomarkers by cancer cell secretome and tissue transcriptome analysis: potential usage of cystatin A for predicting nodal stage and poor prognosis. Proteomics 2010; 10:2644-60. [PMID: 20461718 DOI: 10.1002/pmic.200900620] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is usually diagnosed at advanced clinical stages, resulting in poor outcomes. To discover serum biomarkers for improved NPC diagnosis and/or management, we simultaneously analyzed the NPC cell secretome and tissue transcriptome to identify candidate genes/proteins that are highly upregulated in NPC tissues and also secreted/released from NPC cells. Among the 30 candidates identified, 11 proteins were chosen for further validation using the serum samples from NPC patients and healthy controls, including cystatin A, cathepsin B, manganese superoxide dismutase and matrix metalloproteinase 2. The results showed that serum levels of all the four proteins were indeed higher in NPC patients versus healthy controls and that the use of a three-marker panel (cystatin A, manganese superoxide dismutase and matrix metalloproteinase 2) can contribute to a better NPC detection than each marker alone. In addition, a higher pretreated serum level of cystatin A was found to be associated with a higher nodal stage and poorer prognosis of NPC patients and cystatin A could modulate the migration and invasion of NPC cells in vitro. Altogether, our results indicate that analysis of both the cancer cell secretome and tissue transcriptome is a feasible strategy for efficient identification of novel NPC serum marker panel.
Collapse
Affiliation(s)
- Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Wu R, Zhao X, Wang Z, Zhou M, Chen Q. Novel Molecular Events in Oral Carcinogenesis via Integrative Approaches. J Dent Res 2010; 90:561-72. [PMID: 20940368 DOI: 10.1177/0022034510383691] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- R.Q. Wu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - X.F. Zhao
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - Z.Y. Wang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - M. Zhou
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| | - Q.M. Chen
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan, 610041, China
| |
Collapse
|
78
|
Chen YT, Chen CL, Chen HW, Chung T, Wu CC, Chen CD, Hsu CW, Chen MC, Tsui KH, Chang PL, Chang YS, Yu JS. Discovery of novel bladder cancer biomarkers by comparative urine proteomics using iTRAQ technology. J Proteome Res 2010; 9:5803-15. [PMID: 20806971 DOI: 10.1021/pr100576x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A urine sample preparation workflow for the iTRAQ (isobaric tag for relative and absolute quantitation) technique was established. The reproducibility of this platform was evaluated and applied to discover proteins with differential levels between pooled urine samples from nontumor controls and three bladder cancer patient subgroups with different grades/stages (a total of 14 controls and 23 cancer cases in two multiplex iTRAQ runs). Combining the results of two independent clinical sample sets, a total of 638 urine proteins were identified. Among them, 55 proteins consistently showed >2-fold differences in both sample sets. Western blot analyses of individual urine samples confirmed that the levels of apolipoprotein A-I (APOA1), apolipoprotein A-II, heparin cofactor 2 precursor and peroxiredoxin-2 were significantly elevated in bladder cancer urine specimens (n = 25-74). Finally, we quantified APOA1 in a number of urine samples using a commercial ELISA and confirmed again its potential value for diagnosis (n = 126, 94.6% sensitivity and 92.0% specificity at a cutoff value of 11.16 ng/mL) and early detection (n = 71, 83.8% sensitivity and 94.0% specificity). Collectively, our results provide the first iTRAQ-based quantitative profile of bladder cancer urine proteins and represent a valuable resource for the discovery of bladder cancer markers.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Molecular Medicine Research Center, Chang Gung University, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Schaaij-Visser TB, Brakenhoff RH, Leemans CR, Heck AJ, Slijper M. Protein biomarker discovery for head and neck cancer. J Proteomics 2010; 73:1790-803. [DOI: 10.1016/j.jprot.2010.01.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/18/2010] [Accepted: 01/26/2010] [Indexed: 02/07/2023]
|
80
|
Wu CC, Hsu CW, Chen CD, Yu CJ, Chang KP, Tai DI, Liu HP, Su WH, Chang YS, Yu JS. Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas. Mol Cell Proteomics 2010; 9:1100-1117. [PMID: 20124221 PMCID: PMC2877973 DOI: 10.1074/mcp.m900398-mcp200] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/23/2009] [Indexed: 02/05/2023] Open
Abstract
Although cancer cell secretome profiling is a promising strategy used to identify potential body fluid-accessible cancer biomarkers, questions remain regarding the depth to which the cancer cell secretome can be mined and the efficiency with which researchers can select useful candidates from the growing list of identified proteins. Therefore, we analyzed the secretomes of 23 human cancer cell lines derived from 11 cancer types using one-dimensional SDS-PAGE and nano-LC-MS/MS performed on an LTQ-Orbitrap mass spectrometer to generate a more comprehensive cancer cell secretome. A total of 31,180 proteins was detected, accounting for 4,584 non-redundant proteins, with an average of 1,300 proteins identified per cell line. Using protein secretion-predictive algorithms, 55.8% of the proteins appeared to be released or shed from cells. The identified proteins were selected as potential marker candidates according to three strategies: (i) proteins apparently secreted by one cancer type but not by others (cancer type-specific marker candidates), (ii) proteins released by most cancer cell lines (pan-cancer marker candidates), and (iii) proteins putatively linked to cancer-relevant pathways. We then examined protein expression profiles in the Human Protein Atlas to identify biomarker candidates that were simultaneously detected in the secretomes and highly expressed in cancer tissues. This analysis yielded 6-137 marker candidates selective for each tumor type and 94 potential pan-cancer markers. Among these, we selectively validated monocyte differentiation antigen CD14 (for liver cancer), stromal cell-derived factor 1 (for lung cancer), and cathepsin L1 and interferon-induced 17-kDa protein (for nasopharyngeal carcinoma) as potential serological cancer markers. In summary, the proteins identified from the secretomes of 23 cancer cell lines and the Human Protein Atlas represent a focused reservoir of potential cancer biomarkers.
Collapse
Affiliation(s)
| | | | - Chi-De Chen
- ¶Graduate Institute of Biomedical Sciences, and
| | - Chia-Jung Yu
- From the ‡Molecular Medicine Research Center
- ¶Graduate Institute of Biomedical Sciences, and
- ‖Department of Cell and Molecular Biology, Chang Gung University and
| | - Kai-Ping Chang
- Departments of **Otolaryngology-Head and Neck Surgery and
| | - Dar-In Tai
- ‡‡Hepatogastroenterology, Chang Gung Memorial Hospital, Tao-Yuan 333, Taiwan
| | | | - Wen-Hui Su
- From the ‡Molecular Medicine Research Center
| | - Yu-Sun Chang
- From the ‡Molecular Medicine Research Center
- ¶Graduate Institute of Biomedical Sciences, and
| | - Jau-Song Yu
- From the ‡Molecular Medicine Research Center
- ¶Graduate Institute of Biomedical Sciences, and
- ‖Department of Cell and Molecular Biology, Chang Gung University and
| |
Collapse
|
81
|
Leth-Larsen R, Lund RR, Ditzel HJ. Plasma membrane proteomics and its application in clinical cancer biomarker discovery. Mol Cell Proteomics 2010; 9:1369-82. [PMID: 20382631 DOI: 10.1074/mcp.r900006-mcp200] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Plasma membrane proteins that are exposed on the cell surface have important biological functions, such as signaling into and out of the cells, ion transport, and cell-cell and cell-matrix interactions. The expression level of many of the plasma membrane proteins involved in these key functions is altered on cancer cells, and these proteins may also be subject to post-translational modification, such as altered phosphorylation and glycosylation. Additional protein alterations on cancer cells confer metastatic capacities, and some of these cell surface proteins have already been successfully targeted by protein drugs, such as human antibodies, that have enhanced survival of several groups of cancer patients. The combination of novel analytical approaches and subcellular fractionation procedures has made it possible to study the plasma membrane proteome in more detail, which will elucidate cancer biology, particularly metastasis, and guide future development of novel drug targets. The technical advances in plasma membrane proteomics and the consequent biological revelations will be discussed herein. Many of the advances have been made using cancer cell lines, but because the main goal of this research is to improve individualized treatment and increase cancer patient survival, further development is crucial to direct analysis of clinically relevant patient samples. These efforts include optimized specimen handling and preparation as well as improved proteomics platforms. Identification of potentially useful proteomics-based biomarkers must be validated in larger, well defined retrospective and prospective clinical studies, and these combined efforts should result in identification of biomarkers that will greatly improve early detection, prognosis, and prediction of treatment response.
Collapse
Affiliation(s)
- Rikke Leth-Larsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, JB Winsløwsvej 25.3, 5000 Odense C, Denmark
| | | | | |
Collapse
|
82
|
Gao X, Zhang X, Zheng J, He F. Proteomics in China: Ready for prime time. SCIENCE CHINA-LIFE SCIENCES 2010; 53:22-33. [DOI: 10.1007/s11427-010-0027-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 12/28/2009] [Indexed: 12/27/2022]
|
83
|
Govekar RB, D'Cruz AK, Alok Pathak K, Agarwal J, Dinshaw KA, Chinoy RF, Gadewal N, Kannan S, Sirdeshmukh R, Sundaram CS, Malgundkar SA, Kane SV, Zingde SM. Proteomic profiling of cancer of the gingivo-buccal complex: Identification of new differentially expressed markers. Proteomics Clin Appl 2009; 3:1451-62. [PMID: 21136964 DOI: 10.1002/prca.200900023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 08/18/2009] [Accepted: 09/07/2009] [Indexed: 11/11/2022]
Abstract
Tobacco-related oral cancer is the most common cancer among Indian males, gingivo-buccal complex (GBC) being the most affected subsite due to the habit of chewing tobacco. Proteins from the lysates of microdissected normal and transformed epithelium from clinically well-characterized tissue samples of the GBC were separated by two-dimensional gel electrophoresis to identify differentially expressed proteins. Eleven protein spots showed differential expression, which could withstand the stringency of statistical evaluation. The observations were confirmed with additional tissues. Nine of these differentiators were identified by MS as lactate dehydrogenase B, α-enolase, prohibitin, cathepsin D, apolipoprotein A-I, tumor protein translationally controlled-1, an SFN family protein, 14-3-3σ and tropomyosin. Cluster analysis indicated that these proteins, as a coexpressed set, could distinguish normal and transformed epithelium. Functionally, these differentiator molecules are relevant to the pathways and processes that have been previously implicated in oral carcinogenesis and could therefore be investigated further as a panel of markers for management of cancer of the GBC.
Collapse
Affiliation(s)
- Rukmini B Govekar
- Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|