51
|
Wu L, Zeng S, Cao Y, Huang Z, Liu S, Peng H, Zhi C, Ma S, Hu K, Yuan Z. Inhibition of HDAC4 Attenuated JNK/c-Jun-Dependent Neuronal Apoptosis and Early Brain Injury Following Subarachnoid Hemorrhage by Transcriptionally Suppressing MKK7. Front Cell Neurosci 2019; 13:468. [PMID: 31708743 PMCID: PMC6823346 DOI: 10.3389/fncel.2019.00468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK)/c-Jun cascade-dependent neuronal apoptosis has been identified as a central element for early brain injury (EBI) following subarachnoid hemorrhage (SAH), but the molecular mechanisms underlying this process are still thoroughly undefined to date. In this study, we found that pan-histone deacetylase (HDAC) inhibition by TSA, SAHA, VPA, and M344 led to a remarkable decrease in the phosphorylation of JNK and c-Jun, concomitant with a significant abrogation of apoptosis caused by potassium deprivation in cultured cerebellar granule neurons (CGNs). Further investigation showed that these effects resulted from HDAC inhibition-induced transcriptional suppression of MKK7, a well-known upstream kinase of JNK. Using small interference RNAs (siRNAs) to silence the respective HDAC members, HDAC4 was screened to be required for MKK7 transcription and JNK/c-Jun activation. LMK235, a specific HDAC4 inhibitor, dose-dependently suppressed MKK7 transcription and JNK/c-Jun activity. Functionally, HDAC4 inhibition via knockdown or LMK235 significantly rescued CGN apoptosis induced by potassium deprivation. Moreover, administration of LMK235 remarkably ameliorated the EBI process in SAH rats, associated with an obvious reduction in MKK7 transcription, JNK/c-Jun activity, and neuronal apoptosis. Collectively, the findings provide new insights into the molecular mechanism of neuronal apoptosis regarding HDAC4 in the selective regulation of MKK7 transcription and JNK/c-Jun activity. HDAC4 inhibition could be a potential alternative to prevent MKK7/JNK/c-Jun axis-mediated nervous disorders, including SAH-caused EBI.
Collapse
Affiliation(s)
- Liqiang Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Shulian Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Yali Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Ziyan Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Sisi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Huaidong Peng
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Zhi
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanshan Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Kunhua Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhongmin Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
52
|
Sild M, Booij L. Histone deacetylase 4 (HDAC4): a new player in anorexia nervosa? Mol Psychiatry 2019; 24:1425-1434. [PMID: 30742020 DOI: 10.1038/s41380-019-0366-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/20/2018] [Accepted: 01/23/2019] [Indexed: 12/26/2022]
Abstract
Anorexia nervosa (AN) and other eating disorders continue to constitute significant challenges for individual and public health. AN is thought to develop as a result of complex interactions between environmental triggers, psychological risk factors, sociocultural influences, and genetic vulnerability. Recent research developments have highlighted a novel potentially relevant component in the AN etiology-activity of the histone deacetylase 4 (HDAC4) gene that has emerged in several recent studies related to AN. HDAC4 is a member of the ubiquitously important family of epigenetic modifier enzymes called histone deacetylases and has been implicated in processes related to the formation and function of the central nervous system (CNS), bone, muscle, and metabolism. In a family affected by eating disorders, a missense mutation in HDAC4 (A786T) was found to segregate with the illness. The relevance of this mutation in eating-related behaviors was further confirmed with mouse models. Despite the fact that HDAC4 has not been identified as a significant signal in genome-wide association studies in AN, several studies have found significant or near-significant methylation differences in HDAC4 locus in peripheral tissues of actively ill AN patients in comparison with different control groups. Limitations of these studies include a lack of understanding of to what extent the changes in methylation are predictive of AN as such changes might also occur as a consequence of the disease. It remains to be determined how methylation in peripheral tissues correlates with that in the CNS and how different methylation patterns affect HDAC4 expression. The present review discusses the findings and potential roles of HDAC4 in AN. Its emerging roles in learning and neuroplasticity may be specific and relevant for the etiology of AN and potentially lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Mari Sild
- Department of Psychology, Concordia University, Montreal, QC, Canada.,CHU Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | - Linda Booij
- Department of Psychology, Concordia University, Montreal, QC, Canada. .,CHU Sainte-Justine Hospital Research Center, Montreal, QC, Canada. .,Department of Psychiatry, McGill University, Montreal, QC, Canada. .,Department of Psychiatry, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
53
|
Asfaha Y, Schrenk C, Alves Avelar LA, Hamacher A, Pflieger M, Kassack MU, Kurz T. Recent advances in class IIa histone deacetylases research. Bioorg Med Chem 2019; 27:115087. [PMID: 31561937 DOI: 10.1016/j.bmc.2019.115087] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic control plays an important role in gene regulation through chemical modifications of DNA and post-translational modifications of histones. An essential post-translational modification is the histone acetylation/deacetylation-process which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The mammalian zinc dependent HDAC family is subdivided into three classes: class I (HDACs 1-3, 8), class II (IIa: HDACs 4, 5, 7, 9; IIb: HDACs 6, 10) and class IV (HDAC 11). In this review, recent studies on the biological role and regulation of class IIa HDACs as well as their contribution in neurodegenerative diseases, immune disorders and cancer will be presented. Furthermore, the development, synthesis, and future perspectives of selective class IIa inhibitors will be highlighted.
Collapse
Affiliation(s)
- Yodita Asfaha
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Christian Schrenk
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Leandro A Alves Avelar
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marc Pflieger
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Matthias U Kassack
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
54
|
Huang Z, Xia Y, Hu K, Zeng S, Wu L, Liu S, Zhi C, Lai M, Chen D, Xie L, Yuan Z. Histone deacetylase 6 promotes growth of glioblastoma through the MKK7/JNK/c-Jun signaling pathway. J Neurochem 2019; 152:221-234. [PMID: 31390677 DOI: 10.1111/jnc.14849] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
Abstract
Histone deacetylase 6 (HDAC6) activity contributes to the malignant proliferation, invasion, and migration of glioma cells (GCs), but the molecular mechanisms underlying the processes remains elusive. Here, we reported that HDAC6 inhibition by Ricolinostat (ACY-1215) or CAY10603 led to a remarkable decrease in the phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun, which preceded its suppressive effects on glioma cell growth. Further investigation showed that these effects resulted from HDAC6 inhibitor-induced suppression of MAPK kinase 7 (MKK7), which was identified to be critical for JNK activation and exerts the oncogenic roles in GCs. Selectively silencing HDAC6 by siRNAs had the same responses, whereas transient transfections expressing HDAC6 promoted MKK7 expression. Interestingly, by performing Q-PCR, HDAC6 inhibition did not cause a down-regulation of MKK7 mRNA level, whereas the suppressive effects on MKK7 protein can be efficiently blocked by the proteasomal inhibitor MG132. As a further test, elevating MKK7-JNK activity was sufficient to rescue HDAC6 inhibitor-mediated-suppressive effects on c-Jun activation and the malignant features. The suppression of both MKK7 expression and JNK/c-Jun activities was involved in the tumor-growth inhibitory effects induced by CAY10603 in U87-xenograft mice. Collectively, our findings provide new insights into the molecular mechanism of glioma malignancy regarding HDAC6 in the selective regulation of MKK7 expression and JNK/c-Jun activity. MKK7 protein stability critically depends on HDAC6 activity, and inhibition of HDAC6 probably presents a potential strategy for suppressing the oncogenic roles of MKK7/JNK/c-Jun axis in GCs.
Collapse
Affiliation(s)
- Ziyan Huang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Yong Xia
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Kunhua Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key laboratory of Brain Function and Disease, Guangzhou, China
| | - Shulian Zeng
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Liqiang Wu
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Sisi Liu
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Cheng Zhi
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Miaoling Lai
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Danmin Chen
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Longchang Xie
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Zhongmin Yuan
- Department of Neurosurgery and Neurosurgical Disease Research Centre, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China.,Guangdong Province Key laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
55
|
Paul P, Ramachandran S, Xia S, Unruh JR, Conkright-Fincham J, Li R. Dopamine receptor antagonists as potential therapeutic agents for ADPKD. PLoS One 2019; 14:e0216220. [PMID: 31059522 PMCID: PMC6502331 DOI: 10.1371/journal.pone.0216220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused mostly by mutations in polycystin-1 or polycystin-2. Fluid flow leads to polycystin-dependent calcium influx and nuclear export of histone deacetylase 5 (HDAC5), which facilitates the maintenance of renal epithelial architecture by de-repression of MEF2C target genes. Here, we screened a small-molecule library to find drugs that promotes nuclear export of HDAC5. We found that dopamine receptor antagonists, domperidone and loxapine succinate, stimulate export of HDAC5, even in Pkd1–/–cells. Domperidone targets Drd3 receptor to modulate the phosphorylation of HDAC5. Domperidone treatment increases HDAC5 phosphorylation likely by reducing protein phosphatase 2A (PP2A) activity, thus shifting the equilibrium towards HDAC5-P and export from the nucleus. Treating Pkd1–/–mice with domperidone showed significantly reduced cystic growth and cell proliferation. Further, treated mice displayed a reduction in glomerular cyst and increased body weight and activity. These results suggest that HDAC5 nucleocytoplasmic shuttling may be modulated to impede disease progression in ADPKD and uncovers an unexpected role for a class of dopamine receptors in renal epithelial morphogenesis.
Collapse
Affiliation(s)
- Parama Paul
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Sreekumar Ramachandran
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sheng Xia
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Division of Neonatology, Children’s Mercy Hospital, Kansas City, MO, United States
| | - Jay R. Unruh
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | | | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
- * E-mail:
| |
Collapse
|
56
|
MEF-2 isoforms' (A-D) roles in development and tumorigenesis. Oncotarget 2019; 10:2755-2787. [PMID: 31105874 PMCID: PMC6505634 DOI: 10.18632/oncotarget.26763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/01/2019] [Indexed: 12/29/2022] Open
Abstract
Myocyte enhancer factor (MEF)-2 plays a critical role in proliferation, differentiation, and development of various cell types in a tissue specific manner. Four isoforms of MEF-2 (A-D) differentially participate in controlling the cell fate during the developmental phases of cardiac, muscle, vascular, immune and skeletal systems. Through their associations with various cellular factors MEF-2 isoforms can trigger alterations in complex protein networks and modulate various stages of cellular differentiation, proliferation, survival and apoptosis. The role of the MEF-2 family of transcription factors in the development has been investigated in various cell types, and the evolving alterations in this family of transcription factors have resulted in a diverse and wide spectrum of disease phenotypes, ranging from cancer to infection. This review provides a comprehensive account on MEF-2 isoforms (A-D) from their respective localization, signaling, role in development and tumorigenesis as well as their association with histone deacetylases (HDACs), which can be exploited for therapeutic intervention.
Collapse
|
57
|
Gong M, Yu Y, Liang L, Vuralli D, Froehler S, Kuehnen P, Du Bois P, Zhang J, Cao A, Liu Y, Hussain K, Fielitz J, Jia S, Chen W, Raile K. HDAC4 mutations cause diabetes and induce β-cell FoxO1 nuclear exclusion. Mol Genet Genomic Med 2019; 7:e602. [PMID: 30968599 PMCID: PMC6503015 DOI: 10.1002/mgg3.602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
Background Studying patients with rare Mendelian diabetes has uncovered molecular mechanisms regulating β‐cell pathophysiology. Previous studies have shown that Class IIa histone deacetylases (HDAC4, 5, 7, and 9) modulate mammalian pancreatic endocrine cell function and glucose homeostasis. Methods We performed exome sequencing in one adolescent nonautoimmune diabetic patient and detected one de novo predicted disease‐causing HDAC4 variant (p.His227Arg). We screened our pediatric diabetes cohort with unknown etiology using Sanger sequencing. In mouse pancreatic β‐cell lines (Min6 and SJ cells), we performed insulin secretion assay and quantitative RT‐PCR to measure the β‐cell function transfected with the detected HDAC4 variants and wild type. We carried out immunostaining and Western blot to investigate if the detected HDAC4 variants affect the cellular translocation and acetylation status of Forkhead box protein O1 (FoxO1) in the pancreatic β‐cells. Results We discovered three HDAC4 mutations (p.His227Arg, p.Asp234Asn, and p.Glu374Lys) in unrelated individuals who had nonautoimmune diabetes with various degrees of β‐cell loss. In mouse pancreatic β‐cell lines, we found that these three HDAC4 mutations decrease insulin secretion, down‐regulate β‐cell‐specific transcriptional factors, and cause nuclear exclusion of acetylated FoxO1. Conclusion Mutations in HDAC4 disrupt the deacetylation of FoxO1, subsequently decrease the β‐cell function including insulin secretion, resulting in diabetes.
Collapse
Affiliation(s)
- Maolian Gong
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty, Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin, Germany.,Qingdao Municipal Hospital, Qingdao, China
| | - Yong Yu
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Lei Liang
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty, Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin, Germany.,Department of Pediatrics, Anhui Provincial Children's Hospital, Hefei, China
| | - Dogus Vuralli
- Division of Pediatric Endocrinology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Peter Kuehnen
- Institute for Experimental Pediatric Endocrinology, Berlin, Germany
| | - Philipp Du Bois
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty, Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aidi Cao
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty, Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin, Germany
| | | | - Khalid Hussain
- Division of Endocrinology, Department of Paediatric Medicine, Sidra Medical & Research Center, OPC, Doha, Qatar
| | - Jens Fielitz
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty, Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Greifswald & Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Shiqi Jia
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany.,The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Klemens Raile
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty, Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin, Germany.,Department of Pediatric Endocrinology and Diabetology, Charité, Berlin, Germany
| |
Collapse
|
58
|
Pietruczuk P, Jain A, Simo-Cheyou ER, Anand-Srivastava MB, Srivastava AK. Protein kinase B/AKT mediates insulin-like growth factor 1-induced phosphorylation and nuclear export of histone deacetylase 5 via NADPH oxidase 4 activation in vascular smooth muscle cells. J Cell Physiol 2019; 234:17337-17350. [PMID: 30793765 DOI: 10.1002/jcp.28353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) mediates the generation of reactive oxygen species (ROS) and the activation of growth promoting signaling pathways. Histone deacetylases (HDACs) regulate gene transcription by deacetylating lysine residues in histone and nonhistone proteins and a heightened HDAC activation, notably of HDAC5, is associated with vascular disorders, such as atherosclerosis. Although the contribution of IGF-1 in these pathologies is well documented, its role in HDAC phosphorylation and activation remains unexplored. Here, we examined the effect of IGF-1 on HDAC5 phosphorylation in vascular smooth muscle cells (VSMCs) and identified the signaling pathways involved in controlling HDAC5 phosphorylation and nuclear export. Treatment of A10 VSMCs with IGF-1 enhanced HDAC5 phosphorylation. Blockade of the IGF-1 receptor tyrosine kinase (TK) activity with the specific pharmacological inhibitor, AG1024, significantly inhibited IGF-1-induced HDAC5 phosphorylation, whereas the epidermal growth factor receptor (EGFR) TK antagonist, AG1478, had no effect. Inhibition of the mitogen-activated protein kinase pathway with U0126, SP600125, or SB203580, did not affect HDAC5 phosphorylation, whereas two inhibitors of the phosphoinositide 3-kinase (PI3K)/AKT pathways, wortmannin and SC66, almost completely attenuated IGF-1-induced responses as confirmed by immunoblotting of phospho-HDAC5 and by small interfering RNA (siRNA)-induced AKT silencing. Moreover, the NAD(P)H oxidase (Nox) inhibitor, diphenyleneiodonium (DPI), and Nox4 siRNA, attenuated IGF-1-induced phosphorylation of HDAC5 and AKT. The HDAC5 phosphorylation resulted in its nuclear export, which was reversed by SC66 and DPI. Our results indicate that IGF-1-induced phosphorylation and nuclear export of HDAC5 involve Nox4-dependent ROS generation and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Paulina Pietruczuk
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Ashish Jain
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Estelle R Simo-Cheyou
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Ashok K Srivastava
- Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada.,Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
59
|
Zang L, Kondengaden SM, Che F, Wang L, Heng X. Potential Epigenetic-Based Therapeutic Targets for Glioma. Front Mol Neurosci 2018; 11:408. [PMID: 30498431 PMCID: PMC6249994 DOI: 10.3389/fnmol.2018.00408] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Glioma is characterized by a high recurrence rate, short survival times, high rates of mortality and treatment difficulties. Surgery, chemotherapy and radiation (RT) are the standard treatments, but outcomes rarely improve even after treatment. With the advancement of molecular pathology, recent studies have found that the development of glioma is closely related to various epigenetic phenomena, including DNA methylation, abnormal microRNA (miRNA), chromatin remodeling and histone modifications. Owing to the reversibility of epigenetic modifications, the proteins and genes that regulate these changes have become new targets in the treatment of glioma. In this review, we present a summary of the potential therapeutic targets of glioma and related effective treating drugs from the four aspects mentioned above. We further illustrate how epigenetic mechanisms dynamically regulate the pathogenesis and discuss the challenges of glioma treatment. Currently, among the epigenetic treatments, DNA methyltransferase (DNMT) inhibitors and histone deacetylase inhibitors (HDACIs) can be used for the treatment of tumors, either individually or in combination. In the treatment of glioma, only HDACIs remain a good option and they provide new directions for the treatment. Due to the complicated pathogenesis of glioma, epigenetic applications to glioma clinical treatment are still limited.
Collapse
Affiliation(s)
- Lanlan Zang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shukkoor Muhammed Kondengaden
- Chemistry Department and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Fengyuan Che
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lijuan Wang
- Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Xueyuan Heng
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| |
Collapse
|
60
|
Manca S, Frisbie CP, LaGrange CA, Casey CA, Riethoven JJM, Petrosyan A. The Role of Alcohol-Induced Golgi Fragmentation for Androgen Receptor Signaling in Prostate Cancer. Mol Cancer Res 2018; 17:225-237. [PMID: 30224543 DOI: 10.1158/1541-7786.mcr-18-0577] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/23/2018] [Accepted: 08/22/2018] [Indexed: 01/18/2023]
Abstract
Multiple epidemiologic observations and meta-analysis clearly indicate the link between alcohol abuse and the incidence and progression of prostate cancer; however, the mechanism remains enigmatic. Recently, it was found that ethanol (EtOH) induces disorganization of the Golgi complex caused by impaired function of the largest Golgi matrix protein, giantin (GOLGB1), which, in turn, alters the Golgi docking of resident Golgi proteins. Here, it is determined that in normal prostate cells, histone deacetylase 6 (HDAC6), the known regulator of androgen receptor (AR) signaling, localizes in the cytoplasm and nucleus, while its kinase, glycogen synthase kinase β (GSK3β), primarily resides in the Golgi. Progression of prostate cancer is accompanied by Golgi scattering, translocation of GSK3β from the Golgi to the cytoplasm, and the cytoplasmic shift in HDAC6 localization. Alcohol dehydrogenase-generated metabolites induces Golgi disorganization in androgen-responsive LNCaP and 22Rv1 cells, facilitates tumor growth in a mouse xenograft model and activates anchorage-independent proliferation, migration, and cell adhesion. EtOH-treated cells demonstrate reduced giantin and subsequent cytoplasmic GSK3β; this phenomenon was validated in giantin-depleted cells. Redistribution of GSK3β to the cytoplasm results in phosphorylation of HDAC6 and its retention in the cytoplasm, which, in turn, stimulates deacetylation of HSP90, AR import into the nucleus, and secretion of prostate-specific antigen (PSA). Finally, the relationship between Golgi morphology, HDAC6 cytoplasmic content, and clinicopathologic features was assessed in human prostate cancer patient specimens with and without a history of alcohol dependence. IMPLICATIONS: This study demonstrates the importance of alcohol-induced Golgi fragmentation in the activation of AR-mediated proliferation.
Collapse
Affiliation(s)
- Sonia Manca
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Cole P Frisbie
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chad A LaGrange
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Carol A Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jean-Jack M Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska.,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, Nebraska
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska. .,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, Nebraska.,The Fred and Pamela Buffett Cancer Center, Omaha, Nebraska
| |
Collapse
|
61
|
Wang T, Yao W, Shao Y, Zheng R, Huang F. PCAF fine-tunes hepatic metabolic syndrome, inflammatory disease, and cancer. J Cell Mol Med 2018; 22:5787-5800. [PMID: 30216660 PMCID: PMC6237576 DOI: 10.1111/jcmm.13877] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
The P300/CBP‐associating factor (PCAF), a histone acetyltransferase, is involved in metabolic and pathogenic diseases, particularly of the liver. The effects of PCAF on fine‐tuning liver diseases are extremely complex and vary according to different pathological conditions. This enzyme has dichotomous functions, depending on differently modified sites, which regulate the activities of various enzymes, metabolic functions, and gene expression. Here, we summarize the most recent findings on the functions and targets of PCAF in various metabolic and immunological processes in the liver and review these new discoveries and models of PCAF biology in three areas: hepatic metabolic syndrome, inflammatory disease, and cancer. Finally, we discuss the potential implications of these findings for therapeutic interventions in liver diseases.
Collapse
Affiliation(s)
- Tongxin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yafei Shao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruilong Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
62
|
Kang T, Jensen P, Huang H, Lund Christensen G, Billestrup N, Larsen MR. Characterization of the Molecular Mechanisms Underlying Glucose Stimulated Insulin Secretion from Isolated Pancreatic β-cells Using Post-translational Modification Specific Proteomics (PTMomics). Mol Cell Proteomics 2017; 17:95-110. [PMID: 29113996 DOI: 10.1074/mcp.ra117.000217] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/20/2017] [Indexed: 01/01/2023] Open
Abstract
Normal pancreatic islet β-cells (PBCs) abundantly secrete insulin in response to elevated blood glucose levels, in order to maintain an adequate control of energy balance and glucose homeostasis. However, the molecular mechanisms underlying the insulin secretion are unclear. Improving our understanding of glucose-stimulated insulin secretion (GSIS) mechanisms under normal conditions is a prerequisite for developing better interventions against diabetes. Here, we aimed at identifying novel signaling pathways involved in the initial release of insulin from PBCs after glucose stimulation using quantitative strategies for the assessment of phosphorylated proteins and sialylated N-linked (SA) glycoproteins.Islets of Langerhans derived from newborn rats with a subsequent 9-10 days of maturation in vitro were stimulated with 20 mm glucose for 0 min (control), 5 min, 10 min, and 15 min. The isolated islets were subjected to time-resolved quantitative phosphoproteomics and sialiomics using iTRAQ-labeling combined with enrichment of phosphorylated peptides and formerly SA glycopeptides and high-accuracy LC-MS/MS. Using bioinformatics we analyzed the functional signaling pathways during GSIS, including well-known insulin secretion pathways. Furthermore, we identified six novel activated signaling pathways (e.g. agrin interactions and prolactin signaling) at 15 min GSIS, which may increase our understanding of the molecular mechanism underlying GSIS. Moreover, we validated some of the regulated phosphosites by parallel reaction monitoring, which resulted in the validation of eleven new phosphosites significantly regulated on GSIS. Besides protein phosphorylation, alteration in SA glycosylation was observed on several surface proteins on brief GSIS. Interestingly, proteins important for cell-cell interaction, cell movement, cell-ECM interaction and Focal Adhesion (e.g. integrins, semaphorins, and plexins) were found regulated at the level of sialylation, but not in protein expression. Collectively, we believe that this comprehensive Proteomics and PTMomics survey of signaling pathways taking place during brief GSIS of primary PBCs is contributing to understanding the complex signaling underlying GSIS.
Collapse
Affiliation(s)
- Taewook Kang
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Pia Jensen
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Honggang Huang
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark
| | - Gitte Lund Christensen
- §Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nils Billestrup
- §Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Martin R Larsen
- From the ‡Department of Biochemistry and Molecular Biology, PR group, University of Southern Denmark, Odense, Denmark;
| |
Collapse
|
63
|
Annadurai N, Agrawal K, Džubák P, Hajdúch M, Das V. Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer's disease. Cell Mol Life Sci 2017; 74:4159-4169. [PMID: 28634681 PMCID: PMC11107647 DOI: 10.1007/s00018-017-2574-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects normal functions of the brain. Currently, AD is one of the leading causes of death in developed countries and the only one of the top ten diseases without a means to prevent, cure, or significantly slow down its progression. Therefore, newer therapeutic concepts are urgently needed to improve survival and the quality of life of AD patients. Microtubule affinity-regulating kinases (MARKs) regulate tau-microtubule binding and play a crucial role in neurons. However, their role in hyperphosphorylation of tau makes them potential druggable target for AD therapy. Despite the relevance of MARKs in AD pathogenesis, only a few small molecules are known to have anti-MARK activity and not much has been done to progress these compounds into therapeutic candidates. But given the diverse role of MARKs, the specificity of novel inhibitors is imperative for their successful translation from bench to bedside. In this regard, a recent co-crystal structure of MARK4 in association with a pyrazolopyrimidine-based inhibitor offers a potential scaffold for the development of more specific MARK inhibitors. In this manuscript, we review the biological role of MARKs in health and disease, and draw attention to the largely unexplored area of MARK inhibitors for AD.
Collapse
Affiliation(s)
- Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900, Olomouc, Czech Republic
| | - Khushboo Agrawal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900, Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900, Olomouc, Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900, Olomouc, Czech Republic.
| |
Collapse
|
64
|
Zhang G, Gan YH. Synergistic antitumor effects of the combined treatment with an HDAC6 inhibitor and a COX-2 inhibitor through activation of PTEN. Oncol Rep 2017; 38:2657-2666. [PMID: 29048666 PMCID: PMC5780018 DOI: 10.3892/or.2017.5981] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/11/2017] [Indexed: 02/04/2023] Open
Abstract
Chemotherapy is one of the most effective non-surgical treatments for various types of tumor. Identifying different combinations of antitumor agents that can produce synergistic antitumor effects remains an important clinical strategy. In the present study, we showed that the combination of histone deacetylase 6 (HDAC6) inhibitor tubastatin A together with cyclooxygenase-2 (COX-2) inhibitor celecoxib resulted in synergistic antitumor effects in CAL 27 and SACC-83 cells. Treatment with celecoxib alone promoted the membrane translocation of phosphatase and tensin homolog (PTEN), indicating PTEN activation, and consequently led to protein kinase B (AKT) dephosphorylation (inactivation). Similarly, treatment with an HDAC6 inhibitor alone promoted PTEN membrane translocation and correspondingly dephosphorylated AKT. The combination of celecoxib and an HDAC6 inhibitor synergistically increased PTEN membrane translocation and inactivated AKT. Moreover, celecoxib enhanced the HDAC6 inhibitor-induced antitumor effects in PTEN-deficient U-87 MG cells that had been stably transfected with wild-type PTEN, but not in the same cell line stably transfected with mutant PTEN-K163R, which cannot be activated by HDAC6 inhibitors. In summary, the results indicated that the COX-2 inhibitor celecoxib enhanced the HDAC6 inhibitor-induced antitumor effects by activating the PTEN/AKT signaling pathway.
Collapse
Affiliation(s)
- Guanhua Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| | - Ye-Hua Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian, Beijing 100081, P.R. China
| |
Collapse
|
65
|
Subcellular Distribution of HDAC1 in Neurotoxic Conditions Is Dependent on Serine Phosphorylation. J Neurosci 2017; 37:7547-7559. [PMID: 28663197 DOI: 10.1523/jneurosci.3000-16.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 05/25/2017] [Accepted: 06/18/2017] [Indexed: 11/21/2022] Open
Abstract
Calcium-dependent nuclear export of histone deacetylase 1 (HDAC1) was shown previously to precede axonal damage in culture, but the in vivo relevance of these findings and the potential posttranslational modifications of HDAC1 remained elusive. Using acute hippocampal slices from mice of either sex with genetic conditional ablation of Hdac1 in CA1 hippocampal neurons (i.e., Camk2a-cre;Hdac1fl/fl), we show significantly diminished axonal damage in response to neurotoxic stimuli. The protective effect of Hdac1 ablation was detected also in CA3 neurons in Grik4-cre;Hdac1fl/f mice, which were more resistant to the excitotoxic damage induced by intraventricular injection of kainic acid. The amino acid residues modulating HDAC1 subcellular localization were identified by site-directed mutagenesis, which identified serine residues 421 and 423 as critical for its nuclear localization. The physiological phosphorylation of HDAC1 was decreased by neurotoxic stimuli, which stimulated the phosphatase enzymatic activity of calcineurin. Treatment of neurons with the calcineurin inhibitors FK506 or cyclosporin A resulted in nuclear accumulation of phospho-HDAC1 and was neuroprotective. Together, our data identify HDAC1 and the phosphorylation of specific serine residues in the molecule as potential targets for neuroprotection.SIGNIFICANCE STATEMENT The importance of histone deacetylation in normal brain functions and pathological conditions is unquestionable, yet the molecular mechanisms responsible for the neurotoxic potential of histone deacetylase 1 (HDAC1) and its subcellular localization are not fully understood. Here, we use transgenic lines to define the in vivo relevance of HDAC1 and identify calcineurin-dependent serine dephosphorylation as the signal modulating the neurotoxic role of HDAC1 in response to neurotoxic stimuli.
Collapse
|
66
|
麦 汉, 姜 涛, 张 爱, 吕 田, 杨 灿, 覃 偲. [Expression of HDAC9 in different brain regions in mice with cerebral ischemic stroke]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:812-816. [PMID: 28669958 PMCID: PMC6744151 DOI: 10.3969/j.issn.1673-4254.2017.06.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the expression and the subcellular localization of HDAC9 in different brain regions of mice after cerebral ischemic injury and explore the association between HDAC9 and ischemic stroke. METHODS Twenty-one male C57BL/6 mice were randomly divided into sham-operated group (n=9) and operated group (n=12). In the latter group, the mice with Zea-Longa neurological deficit scores of 2 or 3 following middle cerebral artery occlusion (MCAO) were assigned into MCAO group (n=9). Immunofluorescence was performed to investigate the subcellular localization of HDAC9 in the brain tissues on day 3 after MCAO. Western blotting and qRT-PCR were used to analyze the expression of HDAC9 in different regions of the brain. Results Immunofluorescence showed more intense HDAC9 expressions in the brain tissues around the infarct focus, and in the cells surrounding the infarct, HDAC9 expression was obviously increased in the cytoplasm and reduced in the cell nuclei. Compared with the other brain regions, the ipsilesional cortex with MCAO showed more abundant HDAC9 expressions at both the mRNA and protein levels (P<0.05). CONCLUSION HDAC9 may be closely related to cerebral ischemic injury and participate in the pathophysiological process of ischemic stroke.
Collapse
Affiliation(s)
- 汉滔 麦
- 南方医科大学第三附属医院神经内科,广东 广州 510630Department of Neurology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 涛 姜
- 南方医科大学第三附属医院神经内科,广东 广州 510630Department of Neurology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 爱武 张
- 中山大学附属第一医院神经内科,广东 广州 510080Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - 田明 吕
- 南方医科大学第三附属医院神经内科,广东 广州 510630Department of Neurology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 灿洪 杨
- 南方医科大学第三附属医院神经内科,广东 广州 510630Department of Neurology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - 偲偲 覃
- 南方医科大学第三附属医院神经内科,广东 广州 510630Department of Neurology, Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
67
|
Ahn MY, Yoon JH. Histone deacetylase 8 as a novel therapeutic target in oral squamous cell carcinoma. Oncol Rep 2016; 37:540-546. [PMID: 28004115 DOI: 10.3892/or.2016.5280] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/21/2016] [Indexed: 11/06/2022] Open
Abstract
The overexpression of histone deacetylases (HDACs) has been observed in many cancers and inhibition of specific HDAC has emerged as a new target for cancer therapy. The present study examined the expression of HDAC8 and the inhibitory effect of HDAC8 in oral squamous cell carcinoma (OSCC). The expression of HDAC8 was measured in human OSCC tissues and OSCC cell lines using immunohistochemistry and immunoblotting. HDAC8 was knocked down in OSCC cells by transfection with HDAC8 siRNAs and cell proliferation was quantified. Apoptosis and autophagy were measured using flow cytometry and immunoblotting. HDAC8 were overexpressed in OSCC tissues and OSCC cells, mainly localized in the cytoplasm. HDAC8 siRNAs effectively reduced the level of HDAC8 expression and HDAC8 silencing significantly inhibited the proliferation of OSCC cells. HDAC8 knockdown induced apoptotic cell death through caspases activation and pro-survival autophagy in OSCC cells. Combination with HDAC silencing and autophagy inhibition enhanced cell death by increasing apoptosis in OSCC cells. This study suggests that inhibition of HDAC8 might become a novel therapeutic strategy for OSCC.
Collapse
Affiliation(s)
- Mee-Young Ahn
- College of Medical and Life Sciences, Division of Bio-industry, Major in Pharmaceutical Engineering, Silla University, Busan 46958, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Research Institute, Daejeon Dental Hospital, Wonkwang University, Daejeon 302-120, Republic of Korea
| |
Collapse
|
68
|
Nuclear Accumulation of Histone Deacetylase 4 (HDAC4) Exerts Neurotoxicity in Models of Parkinson’s Disease. Mol Neurobiol 2016; 54:6970-6983. [DOI: 10.1007/s12035-016-0199-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
|
69
|
Wang T, Xu W, Qin M, Yang Y, Bao P, Shen F, Zhang Z, Xu J. Pathogenic Mutations in the Valosin-containing Protein/p97(VCP) N-domain Inhibit the SUMOylation of VCP and Lead to Impaired Stress Response. J Biol Chem 2016; 291:14373-14384. [PMID: 27226613 DOI: 10.1074/jbc.m116.729343] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/06/2022] Open
Abstract
Valosin-containing protein/p97(VCP) is a hexameric ATPase vital to protein degradation during endoplasmic reticulum stress. It regulates diverse cellular functions including autophagy, chromatin remodeling, and DNA repair. In addition, mutations in VCP cause inclusion body myopathy, Paget disease of the bone, and frontotemporal dementia (IBMPFD), as well as amyotrophic lateral sclerosis. Nevertheless, how the VCP activities were regulated and how the pathogenic mutations affect the function of VCP during stress are not unclear. Here we show that the small ubiquitin-like modifier (SUMO)-ylation of VCP is a normal stress response inhibited by the disease-causing mutations in the N-domain. Under oxidative and endoplasmic reticulum stress conditions, the SUMOylation of VCP facilitates the distribution of VCP to stress granules and nucleus, and promotes the VCP hexamer assembly. In contrast, pathogenic mutations in the VCP N-domain lead to reduced SUMOylation and weakened VCP hexamer formation upon stress. Defective SUMOylation of VCP also causes altered co-factor binding and attenuated endoplasmic reticulum-associated protein degradation. Furthermore, SUMO-defective VCP fails to protect against stress-induced toxicity in Drosophila Therefore, our results have revealed SUMOylation as a molecular signaling switch to regulate the distribution and functions of VCP during stress response, and suggest that deficiency in VCP SUMOylation caused by pathogenic mutations will render cells vulnerable to stress insults.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Wangchao Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Meiling Qin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Yi Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Puhua Bao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Fuxiao Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Diseases, Metabolic Bone Disease and Genetic Research Unit, Shanghai Jiao Tong University Affiliated People's No.6 Hospital, Shanghai 200233, China
| | - Jin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031,.
| |
Collapse
|
70
|
Chen C, Wei X, Lv Z, Sun X, Wang S, Zhang Y, Jiao Q, Wang X, Li Y, Wei L. Cyclic Equibiaxial Tensile Strain Alters Gene Expression of Chondrocytes via Histone Deacetylase 4 Shuttling. PLoS One 2016; 11:e0154951. [PMID: 27149270 PMCID: PMC4858146 DOI: 10.1371/journal.pone.0154951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/21/2016] [Indexed: 12/23/2022] Open
Abstract
Objectives This paper aims to investigate whether equibiaxial tensile strain alters chondrocyte gene expression via controlling subcellular localization of histone deacetylase 4 (HDAC4). Materials and Methods Murine chondrocytes transfected with GFP-HDAC4 were subjected to 3 h cyclic equibiaxial tensile strain (CTS, 6% strain at 0.25 Hz) by a Flexcell® FX-5000™ Tension System. Fluorescence microscope and western blot were used to observe subcellular location of HDAC4. The gene expression was analyzed by real-time RT-PCR. The concentration of Glycosaminoglycans in culture medium was quantified by bimethylmethylene blue dye; Collagen II protein was evaluated by western blot. Cells phenotype was identified by immunohistochemistry. Cell viability was evaluated by live-dead cell detect kit. Okadaic acid, an inhibitor of HDAC4 nuclear relocation, was used to further validate whether HDAC4 nuclear relocation plays a role in gene expression in response to tension stimulation. Results 87.5% of HDAC4 was located in the cytoplasm in chondrocytes under no loading condition, but it was relocated to the nucleus after CTS. RT-PCR analysis showed that levels of mRNA for aggrecan, collagen II, LK1 and SOX9 were all increased in chondrocytes subjected to CTS as compared to no loading control chondrocytes; in contrast, the levels of type X collagen, MMP-13, IHH and Runx2 gene expression were decreased in the chondrocytes subjected to CTS as compared to control chondrocytes. Meanwhile, CTS contributed to elevation of glycosaminoglycans and collagen II protein, but did not change collagen I production. When Okadaic acid blocked HDAC4 relocation from the cytoplasm to nucleus, the changes of the chondrocytes induced by CTS were abrogated. There was no chondrocyte dead detected in this study in response to CTS. Conclusions CTS is able to induce HDAC4 relocation from cytoplasm to nucleus. Thus, CTS alters chondrocytes gene expression in association with the relocation of HDAC4 induced by CTS.
Collapse
Affiliation(s)
- Chongwei Chen
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University; Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Xiaochun Wei
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University; Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Zhi Lv
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University; Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Xiaojuan Sun
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University; Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Shaowei Wang
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University; Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hosptal, Providence, Rhode Island, United States of America
| | - Yang Zhang
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University; Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hosptal, Providence, Rhode Island, United States of America
| | - Qiang Jiao
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University; Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Xiaohu Wang
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University; Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Yongping Li
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University; Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Lei Wei
- Department of Orthopaedics, the Second Hospital of Shanxi Medical University; Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hosptal, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
71
|
Richards JL, Yap YA, McLeod KH, Mackay CR, Mariño E. Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clin Transl Immunology 2016; 5:e82. [PMID: 27350881 PMCID: PMC4910123 DOI: 10.1038/cti.2016.29] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 02/06/2023] Open
Abstract
It is now convincingly clear that diet is one of the most influential lifestyle factors contributing to the rise of inflammatory diseases and autoimmunity in both developed and developing countries. In addition, the modern 'Western diet' has changed in recent years with increased caloric intake, and changes in the relative amounts of dietary components, including lower fibre and higher levels of fat and poor quality of carbohydrates. Diet shapes large-bowel microbial ecology, and this may be highly relevant to human diseases, as changes in the gut microbiota composition are associated with many inflammatory diseases. Recent studies have demonstrated a remarkable role for diet, the gut microbiota and their metabolites-the short-chain fatty acids (SCFAs)-in the pathogenesis of several inflammatory diseases, such as asthma, arthritis, inflammatory bowel disease, colon cancer and wound-healing. This review summarizes how diet, microbiota and gut microbial metabolites (particularly SCFAs) can modulate the progression of inflammatory diseases and autoimmunity, and reveal the molecular mechanisms (metabolite-sensing G protein-coupled receptor (GPCRs) and inhibition of histone deacetylases (HDACs)). Therefore, considerable benefit could be achieved simply through the use of diet, probiotics and metabolites for the prevention and treatment of inflammatory diseases and autoimmunity.
Collapse
Affiliation(s)
- James L Richards
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Yu Anne Yap
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Keiran H McLeod
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Charles R Mackay
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Eliana Mariño
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
72
|
Chen C, Wei X, Wang S, Jiao Q, Zhang Y, Du G, Wang X, Wei F, Zhang J, Wei L. Compression regulates gene expression of chondrocytes through HDAC4 nuclear relocation via PP2A-dependent HDAC4 dephosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1633-42. [PMID: 27106144 DOI: 10.1016/j.bbamcr.2016.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 04/13/2016] [Accepted: 04/17/2016] [Indexed: 11/15/2022]
Abstract
Biomechanics plays a critical role in the modulation of chondrocyte function. The mechanisms by which mechanical loading is transduced into intracellular signals that regulate chondrocyte gene expression remain largely unknown. Histone deacetylase 4 (HDAC4) is specifically expressed in chondrocytes. Mice lacking HDAC4 display chondrocyte hypertrophy, ectopic and premature ossification, and die early during the perinatal period. HDAC4 has a remarkable ability to translocate between the cell's cytoplasm and nucleus. It has been established that subcellular relocation of HDAC4 plays a critical role in chondrocyte differentiation and proliferation. However, it remains unclear whether subcellular relocation of HDAC4 in chondrocytes can be induced by mechanical loading. In this study, we first report that compressive loading induces HDAC4 relocation from the cytoplasm to the nucleus of chondrocytes via stimulation of Ser/Thr-phosphoprotein phosphatases 2A (PP2A) activity, which results in dephosphorylation of HDAC4. Dephosphorylated HDAC4 relocates to the nucleus to achieve transcriptional repression of Runx2 and regulates chondrocyte gene expression in response to compression. Our results elucidate the mechanism by which mechanical compression regulates chondrocyte gene expression through HDAC4 relocation from the cell's cytoplasm to the nucleus via PP2A-dependent HDAC4 dephosphorylation.
Collapse
Affiliation(s)
- Chongwei Chen
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan 030001, China
| | - Xiaochun Wei
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan 030001, China
| | - Shaowei Wang
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan 030001, China; Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | - Qiang Jiao
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan 030001, China
| | - Yang Zhang
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan 030001, China; Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | - Guoqing Du
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA
| | - Xiaohu Wang
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan 030001, China
| | - Fangyuan Wei
- Foot and Ankle Orthopaedic Surgery Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jianzhong Zhang
- Foot and Ankle Orthopaedic Surgery Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Lei Wei
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Taiyuan 030001, China; Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA.
| |
Collapse
|
73
|
Guise AJ, Cristea IM. Approaches for Studying the Subcellular Localization, Interactions, and Regulation of Histone Deacetylase 5 (HDAC5). Methods Mol Biol 2016; 1436:47-84. [PMID: 27246208 PMCID: PMC5644287 DOI: 10.1007/978-1-4939-3667-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As a member of the class IIa family of histone deacetylases, the histone deacetylase 5 (HDAC5) is known to undergo nuclear-cytoplasmic shuttling and to be a critical transcriptional regulator. Its misregulation has been linked to prominent human diseases, including cardiac diseases and tumorigenesis. In this chapter, we describe several experimental methods that have proven effective for studying the functions and regulatory features of HDAC5. We present methods for assessing the subcellular localization, protein interactions, posttranslational modifications (PTMs), and activity of HDAC5 from the standpoint of investigating either the endogenous protein or tagged protein forms in human cells. Specifically, given that at the heart of HDAC5 regulation lie its dynamic localization, interactions, and PTMs, we present methods for assessing HDAC5 localization in fixed and live cells, for isolating HDAC5-containing protein complexes to identify its interactions and modifications, and for determining how these PTMs map to predicted HDAC5 structural motifs. Lastly, we provide examples of approaches for studying HDAC5 functions with a focus on its regulation during cell-cycle progression. These methods can readily be adapted for the study of other HDACs or non-HDAC-proteins of interest. Individually, these techniques capture temporal and spatial snapshots of HDAC5 functions; yet together, these approaches provide powerful tools for investigating both the regulation and regulatory roles of HDAC5 in different cell contexts relevant to health and disease.
Collapse
Affiliation(s)
- Amanda J Guise
- Department of Molecular Biology, Princeton University, 210 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, 210 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA.
| |
Collapse
|
74
|
Abstract
Histone deacetylases (HDACs) regulate various nuclear and cytoplasmic processes. In mammals, these enzymes are divided into four classes, with class II further divided into two subclasses: IIa (HDAC4, HDAC5, HDAC7, HDAC9) and IIb (HDAC6 and HDAC10). While HDAC6 is mainly cytoplasmic and HDAC10 is pancellular, class IIa HDACs are dynamically shuttled between the nucleus and cytoplasm in a signal-dependent manner, indicating that they are unique signal transducers able to transduce signals from the cytoplasm to chromatin in the nucleus. Once inside the nucleus, class IIa HDACs interact with MEF2 and other transcription factors, mainly acting as transcriptional corepressors. Although class IIa HDACs share many molecular properties in vitro, they play quite distinct roles in vivo. This chapter lists methods that we have used for molecular and biochemical characterization of HDAC4, including development of regular and phospho-specific antibodies, deacetylase activity determination, reporter gene assays, analysis of subcellular localization, and determination of interaction with 14-3-3 and MEF2. Although described specifically for HDAC4, the protocols should be adaptable for analysis to the other three class IIa members, HDAC5, HDAC7, and HDAC9, as well as for other proteins with related properties.
Collapse
Affiliation(s)
- Lin Li
- The Rosalind and Morris Goodman Cancer Research Center, Montreal, QC H3A 1A3, Canada
- Department of Medicine, McGill University, Lady Meredith House, 1110 Pine Ave. West, Room 101, Montreal, QC, Canada, H3A 1A3
| | - Xiang-Jiao Yang
- The Rosalind and Morris Goodman Cancer Research Center, Montreal, QC H3A 1A3, Canada.
- Department of Medicine, McGill University, Lady Meredith House, 1110 Pine Ave. West, Room 101, Montreal, QC, Canada, H3A 1A3.
- McGill University Health Center, Lady Meredith House, 1110 Pine Ave. West, Room 101, Montreal, QC, Canada, H3A 1A3.
| |
Collapse
|
75
|
Wang Q, Wei H, Du J, Cao Y, Zhang N, Liu X, Liu X, Chen D, Ma W. H3 Thr3 phosphorylation is crucial for meiotic resumption and anaphase onset in oocyte meiosis. Cell Cycle 2015; 15:213-24. [PMID: 26636626 DOI: 10.1080/15384101.2015.1121330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Haspin-catalyzed histone H3 threonine 3 (Thr3) phosphorylation facilitates chromosomal passenger complex (CPC) docking at centromeres, regulating indirectly chromosome behavior during somatic mitosis. It is not fully known about the expression and function of H3 with phosphorylated Thr3 (H3T3-P) during meiosis in oocytes. In this study, we investigated the expression and sub-cellular distribution of H3T3-P, as well as its function in mouse oocytes during meiotic division. Western blot analysis revealed that H3T3-P expression was only detected after germinal vesicle breakdown (GVBD), and gradually increased to peak level at metaphase I (MI), but sharply decreased at metaphase II (MII). Immunofluorescence showed H3T3-P was only brightly labeled on chromosomes after GVBD, with relatively high concentration across the whole chromosome axis from pro-metaphase I (pro-MI) to MI. Specially, H3T3-P distribution was exclusively limited to the local space between sister centromeres at MII stage. Haspin inhibitor, 5-iodotubercidin (5-ITu), dose- and time-dependently blocked H3T3-P expression in mouse oocytes. H3T3-P inhibition delayed the resumption of meiosis (GVBD) and chromatin condensation. Moreover, the loss of H3T3-P speeded up the meiotic transition to MII of pro-MI oocytes in spite of the presence of non-aligned chromosomes, even reversed MI-arrest induced with Nocodazole. The inhibition of H3T3-P expression distinguishably damaged MAD1 recruitment on centromeres, which indicates the spindle assembly checkpoint was impaired in function, logically explaining the premature onset of anaphase I. Therefore, Haspin-catalyzed histone H3 phosphorylation is essential for chromatin condensation and the following timely transition from meiosis I to meiosis II in mouse oocytes during meiotic division.
Collapse
Affiliation(s)
- Qian Wang
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Haojie Wei
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Juan Du
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Yan Cao
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Nana Zhang
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Xiaoyun Liu
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Xiaoyu Liu
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Dandan Chen
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Wei Ma
- a Department of Histology and Embryology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| |
Collapse
|