51
|
Alvarenga L, Cardozo LFMF, Leal VO, Kemp JA, Saldanha JF, Ribeiro-Alves M, Meireles T, Nakao LS, Mafra D. Can resveratrol supplementation reduce uremic toxins plasma levels from the gut microbiota in non-dialyzed chronic kidney disease patients? J Ren Nutr 2022; 32:685-691. [PMID: 35122992 DOI: 10.1053/j.jrn.2022.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Uremic toxins such as indoxyl sulfate (IS), p-cresyl sulfate (pCS), and indole-3-acetic acid (IAA) produced by the gut microbiota are recognized as risk factors for many comorbidities, including cardiovascular diseases. Chronic kidney disease (CKD) patients have an accumulation of these toxins and nutritional strategies have been proposed to mitigate gut dysbiosis and, consequently, reduce these toxins. This study aimed to evaluate the effects of resveratrol supplementation on the plasma levels of IS, pCS, and IAA in non-dialyzed CKD patients. METHODS In this placebo-controlled crossover study, twenty non-dialyzed patients were randomly divided into two groups: they received either one capsule/day containing 500 mg of trans-resveratrol (63 ± 7.5 years, glomerular filtration ratio (GFR): 34 ± 14 mL/min, body mass index (BMI): 26.8 ± 5.6 kg/m2) or a placebo containing 500 mg wheat flour (62 ± 8.4 years, GFR: 34 ± 13 mL/min, BMI: 28.6 ± 4.4 kg/m2) during four weeks. After eight weeks of washout (no supplementation), another four weeks of supplementation with crossover was initiated. IS, IAA, and pCS plasma levels were quantified by the Reverse Phase High-Efficiency Liquid Chromatography method with fluorescent detection. The mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB) in peripheral blood mononuclear cells was evaluated by polymerase chain reaction. C-reactive protein (CRP) plasma levels were also evaluated. RESULTS As expected, the uremic toxins levels were negatively correlated with GFR, but no effect of trans-resveratrol supplementation was found on levels of IS, IAA, and pCS. There was a positive correlation between IS and Nrf2 (r = 0.24, p = 0.03) and also between IS and CRP (r = 0.21, p = 0.05). CONCLUSION Supplementation with trans-resveratrol did not reduce the plasma levels of IS, pCS, and IAA in non-dialyzed CKD patients. The interactions among uremic toxins and anti- and pro-inflammatory pathways deserve more studies.
Collapse
Affiliation(s)
- L Alvarenga
- Graduate Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil
| | - L F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil
| | - V O Leal
- University Hospital Pedro Ernesto (HUPE), State University of Rio de Janeiro (UERJ)
| | - J A Kemp
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil
| | - J F Saldanha
- Graduate Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil
| | - M Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology, INI, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - T Meireles
- Federal University of Parana (UFPR), Department of Basic Pathology, Curitiba, Brazil
| | - L S Nakao
- Federal University of Parana (UFPR), Department of Basic Pathology, Curitiba, Brazil
| | - D Mafra
- Graduate Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil; Graduate Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-RJ, Brazil.
| |
Collapse
|
52
|
Rhubarb Enema Increasing Short-Chain Fatty Acids that Improves the Intestinal Barrier Disruption in CKD May Be Related to the Regulation of Gut Dysbiosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1896781. [PMID: 35097110 PMCID: PMC8794667 DOI: 10.1155/2022/1896781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022]
Abstract
The incidence of CKD seriously endangers people's health. Researchers have proposed that improving the intestinal barrier damage in CKD may be an effective target for delaying the progression of CKD. Rhubarb can effectively improve the intestinal barrier and renal fibrosis, which may be related to the regulation of gut dysbiosis, but the mechanism needs to be further studied. Short-chain fatty acids (SCFAs) are important metabolites of the gut microbiota and play an important role in maintaining the intestinal barrier. The purpose of this study was to investigate whether rhubarb enema regulates the production of short-chain fatty acid-related gut microbiota and improves the intestinal barrier damage of CKD. 5/6 nephrectomy rats were used as the animal model, sevelamer was used as the positive control group, and the sham operation rats were used as the control group. After 4 weeks of enema treatment, the general clinical indicators, short-chain fatty acid levels, renal pathology, intestinal tissue pathology, intestinal tight junction protein, and changes in gut microbiota were detected. The results showed that rhubarb enema can increase the level of short-chain fatty acids in the 5/6 nephrectomy model rats, improve the intestinal barrier damage, inhibit the decrease of intestinal tight junction proteins, reduce inflammation levels, improve kidney pathology, reduce blood creatinine levels, and regulate the intestinal tract, the abundance, and composition of the flora. Further correlation analysis showed that rhubarb enema increased the level of short-chain fatty acids in 5/6 nephrectomy model rats, which may be related to the 7 strains that may regulate the production of short-chain fatty acids. This study indicated that rhubarb enema can improve the intestinal barrier damage of 5/6 nephrectomy model rats and improve CKD, which may be related to the regulation of short-chain fatty acid-producing gut microbiota.
Collapse
|
53
|
Zhang Q, Zhang Y, Zeng L, Chen G, Zhang L, Liu M, Sheng H, Hu X, Su J, Zhang D, Lu F, Liu X, Zhang L. The Role of Gut Microbiota and Microbiota-Related Serum Metabolites in the Progression of Diabetic Kidney Disease. Front Pharmacol 2021; 12:757508. [PMID: 34899312 PMCID: PMC8652004 DOI: 10.3389/fphar.2021.757508] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Diabetic kidney disease (DKD) has become the major cause of end-stage renal disease (ESRD) associated with the progression of renal fibrosis. As gut microbiota dysbiosis is closely related to renal damage and fibrosis, we investigated the role of gut microbiota and microbiota-related serum metabolites in DKD progression in this study. Methods: Fecal and serum samples obtained from predialysis DKD patients from January 2017 to December 2019 were detected using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry, respectively. Forty-one predialysis patients were divided into two groups according to their estimated glomerular filtration rate (eGFR): the DKD non-ESRD group (eGFR ≥ 15 ml/min/1.73 m2) (n = 22), and the DKD ESRD group (eGFR < 15 ml/min/1.73 m2) (n = 19). The metabolic pathways related to differential serum metabolites were obtained by the KEGG pathway analysis. Differences between the two groups relative to gut microbiota profiles and serum metabolites were investigated, and associations between gut microbiota and metabolite concentrations were assessed. Correlations between clinical indicators and both microbiota-related metabolites and gut microbiota were calculated by Spearman rank correlation coefficient and visualized by heatmap. Results: Eleven different intestinal floras and 239 different serum metabolites were identified between the two groups. Of 239 serum metabolites, 192 related to the 11 different intestinal flora were mainly enriched in six metabolic pathways, among which, phenylalanine and tryptophan metabolic pathways were most associated with DKD progression. Four microbiota-related metabolites in the phenylalanine metabolic pathway [hippuric acid (HA), L-(−)-3-phenylactic acid, trans-3-hydroxy-cinnamate, and dihydro-3-coumaric acid] and indole-3 acetic acid (IAA) in the tryptophan metabolic pathway positively correlated with DKD progression, whereas L-tryptophan in the tryptophan metabolic pathway had a negative correlation. Intestinal flora g_Abiotrophia and g_norank_f_Peptococcaceae were positively correlated with the increase in renal function indicators and serum metabolite HA. G_Lachnospiraceae_NC2004_Group was negatively correlated with the increase in renal function indicators and serum metabolites [L-(−)-3-phenyllactic acid and IAA]. Conclusions: This study highlights the interaction among gut microbiota, serum metabolites, and clinical indicators in predialysis DKD patients, and provides new insights into the role of gut microbiota and microbiota-related serum metabolites that were enriched in the phenylalanine and tryptophan metabolic pathways, which correlated with the progression of DKD.
Collapse
Affiliation(s)
- Qing Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanmei Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Zeng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guowei Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - La Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meifang Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongqin Sheng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoxuan Hu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingxu Su
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Duo Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuhua Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xusheng Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
54
|
Tremlett H, Zhu F, Arnold D, Bar-Or A, Bernstein CN, Bonner C, Forbes JD, Graham M, Hart J, Knox NC, Marrie RA, Mirza AI, O'Mahony J, Van Domselaar G, Yeh EA, Zhao Y, Banwell B, Waubant E. The gut microbiota in pediatric multiple sclerosis and demyelinating syndromes. Ann Clin Transl Neurol 2021; 8:2252-2269. [PMID: 34889081 PMCID: PMC8670321 DOI: 10.1002/acn3.51476] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Objective To examine the gut microbiota in individuals with and without pediatric‐onset multiple sclerosis (MS). Methods We compared stool‐derived microbiota of Canadian Pediatric Demyelinating Disease Network study participants ≤21 years old, with MS (disease‐modifying drug [DMD] exposed and naïve) or monophasic acquired demyelinating syndrome [monoADS] (symptom onset <18 years), and unaffected controls. All were ≥30 days without antibiotics or corticosteroids. V4 region 16S RNA gene‐derived amplicon sequence variants (Illumina MiSeq) were assessed using negative binomial regression and network analyses; rate ratios were age‐ and sex‐adjusted (aRR). Results Thirty‐two MS, 41 monoADS (symptom onset [mean] = 14.0 and 6.9 years) and 36 control participants were included; 75%/56%/58% were female, with mean ages at stool sample = 16.5/13.8/15.1 years, respectively. Nine MS cases (28%) were DMD‐naïve. Although microbiota diversity (alpha, beta) did not differ between participants (p > 0.1), taxa‐level and gut community networks did. MS (vs. monoADS) exhibited > fourfold higher relative abundance of the superphylum Patescibacteria (aRR = 4.2;95%CI:1.6–11.2, p = 0.004, Q = 0.01), and lower abundances of short‐chain fatty acid (SCFA)‐producing Lachnospiraceae (Anaerosporobacter) and Ruminococcaceae (p, Q < 0.05). DMD‐naïve MS cases were depleted for Clostridiales vadin‐BB60 (unnamed species) versus either DMD‐exposed, controls (p, Q < 0.01), or monoADS (p = 0.001, Q = 0.06) and exhibited altered community connectedness (p < 10−9 Kruskal–Wallis), with SCFA‐producing taxa underrepresented. Consistent taxa‐level findings from an independent US Network of Pediatric MS Centers case/control (n = 51/42) cohort included >eightfold higher abundance for Candidatus Stoquefichus and Tyzzerella (aRR = 8.8–12.8, p < 0.05) in MS cases and 72%–80% lower abundance of SCFA‐producing Ruminococcaceae‐NK4A214 (aRR = 0.38–0.2, p ≤ 0.01). Interpretation Gut microbiota community structure, function and connectivity, and not just individual taxa, are of likely importance in MS.
Collapse
Affiliation(s)
- Helen Tremlett
- Medicine (Neurology), University of British Columbia and The Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Feng Zhu
- Medicine (Neurology), University of British Columbia and The Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Douglas Arnold
- The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perleman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Charles N Bernstein
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba Inflammatory Bowel Disease Clinical and Research Centre, University of Manitoba, Winnipeg, Manitoba, R3E 3P4, Canada
| | - Christine Bonner
- National Microbiology Laboratory, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Jessica D Forbes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Morag Graham
- National Microbiology Laboratory, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Janace Hart
- Department of Neurology, University of California San Francisco, San Francisco, California, 94158, USA
| | - Natalie C Knox
- National Microbiology Laboratory, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, Winnipeg, Manitoba, R3A 1R9, Canada
| | - Ali I Mirza
- Medicine (Neurology), University of British Columbia and The Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Julia O'Mahony
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, Winnipeg, Manitoba, R3E 0J9, Canada
| | - E Ann Yeh
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Yinshan Zhao
- Medicine (Neurology), University of British Columbia and The Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Brenda Banwell
- Division of Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Emmanuelle Waubant
- Department of Neurology, University of California San Francisco, San Francisco, California, 94158, USA
| | | |
Collapse
|
55
|
Abstract
PURPOSE OF REVIEW Growing evidence show the importance of gut/kidney axis in renal diseases. Advances in gut microbiome sequencing, associated metabolites, detection of gut permeability and inflammation provide new therapeutic strategies targeting gut for kidney diseases and particularly for Immunoglobulin A (IgA) nephropathy (IgAN). RECENT FINDINGS The diversity and composition of gut flora have been recently deeply explored in kidney diseases. Modulation and depletion of microbiota in animal models allowed the understanding of molecular mechanisms involved in the crosstalk between gut, immune system and kidney. New clinical trials in order to positively modulate microbiota result in improvement of gastrointestinal disorders and inflammation in patients suffering with kidney diseases. SUMMARY The investigation of gut alterations in kidney diseases open new therapeutic strategies. In IgAN, targeted treatments for intestinal inflammation and modifications of gut microbiota seem promising.
Collapse
Affiliation(s)
- Renato C Monteiro
- INSERM UMR1149, Center of Research on Inflammation CRI, CNRS ERL8252
- Inflamex Laboratory of Excellence, Paris University
- Immunology Department, Bichat Hospital, AP-HP, DHU Apollo, Paris
| | - Laureline Berthelot
- Center of Research in Transplantation and Immunology CRTI, UMR1064, INSERM, Nantes University, Nantes, France
| |
Collapse
|
56
|
Zhao J, Ning X, Liu B, Dong R, Bai M, Sun S. Specific alterations in gut microbiota in patients with chronic kidney disease: an updated systematic review. Ren Fail 2021; 43:102-112. [PMID: 33406960 PMCID: PMC7808321 DOI: 10.1080/0886022x.2020.1864404] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Emerging evidence demonstrates that gut dysbiosis is implicated in the pathogenesis of chronic kidney disease (CKD) with underlying mechanisms involving mucosal and/or systematic immunity or metabolic disorders. However, the profile of gut microbiota in patients with CKD has not been completely explored. METHODS Databases from their date of inception to 31 March 2020 were systematically searched for case-control or cross-sectional studies comparing the gut microbial profiles in adult patients with CKD or end-stage renal disease (ESRD) with those in healthy controls. Quantitative analysis of alterations in gut microbial profiles was conducted. RESULTS Twenty-five studies with a total of 1436 CKD patients and 918 healthy controls were included. The present study supports the increased abundance of, phylum Proteobacteria and Fusobacteria, genus Escherichia_Shigella, Desulfovibrio, and Streptococcus, while lower abundance of genus Roseburia, Faecalibacterium, Pyramidobacter, Prevotellaceae_UCG-001, and Prevotella_9 in patients with CKD; and increased abundance of phylum Proteobacteria, and genus Streptococcus and Fusobacterium, while lower abundance of Prevotella, Coprococcus, Megamonas, and Faecalibacterium in patients with ESRD. Moreover, higher concentrations of trimethylamine-N-oxide and p-cresyl sulfate and lower concentrations of short-chain fatty acids were observed. Gut permeability in patients with CKD was not determined due to the heterogeneity of selected parameters. CONCLUSIONS Specific alterations of gut microbial parameters in patients with CKD were identified. However, a full picture of the gut microbiota could not be drawn from the data due to the differences in methodology, and qualitative and incomplete reporting of different studies.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Baojian Liu
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ruijuan Dong
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ming Bai
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
57
|
Morales-Ferré C, Azagra-Boronat I, Massot-Cladera M, Tims S, Knipping K, Garssen J, Knol J, Franch À, Castell M, Rodríguez-Lagunas MJ, Pérez-Cano FJ. Effects of a Postbiotic and Prebiotic Mixture on Suckling Rats' Microbiota and Immunity. Nutrients 2021; 13:2975. [PMID: 34578853 PMCID: PMC8469903 DOI: 10.3390/nu13092975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
Human milk serves as a model for infant formula providing nutritional solutions for infants not able to receive enough mother's milk. Infant formulas aim to mimic the composition and functionality of human milk by providing ingredients reflecting those of the latest human milk insights, such as prebiotics, probiotics and postbiotics. The aim of this study was to examine the effects of the supplementation with a postbiotic (LactofidusTM) and its combination with the prebiotics short-chain galactooligosaccharides (scGOS) and long-chain fructooligosaccharides (lcFOS) in a preclinical model of healthy suckling rats. Pups were supplemented daily with LactofidusTM (POST group) and/or scGOS/lcFOS (P+P and PRE groups, respectively). Body weight and fecal consistency were analyzed. At the end of the study, immunoglobulin (Ig) profile, intestinal gene expression, microbiota composition and short chain fatty acid (SCFA) proportion were quantified. The supplementation with all nutritional interventions modulated the Ig profile, but the prebiotic mixture and the postbiotic induced differential effects: whereas scGOS/lcFOS induced softer feces and modulated microbiota composition and SCFA profile, Lactofidus™ upregulated Toll-like receptors gene expression. The use of the combination of scGOS/lcFOS and Lactofidus™ showed the effects observed for the oligosaccharides separately, as well as showing a synergistic impact on animal growth. Thus, the combined use of both products seems to be a good strategy to modulate immune and microbial features in early life.
Collapse
Affiliation(s)
- Carla Morales-Ferré
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Ignasi Azagra-Boronat
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Sebastian Tims
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (S.T.); (K.K.); (J.G.); (J.K.)
| | - Karen Knipping
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (S.T.); (K.K.); (J.G.); (J.K.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Johan Garssen
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (S.T.); (K.K.); (J.G.); (J.K.)
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Jan Knol
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (S.T.); (K.K.); (J.G.); (J.K.)
- Laboratory of Microbiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - María J. Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (C.M.-F.); (I.A.-B.); (M.M.-C.); (À.F.); (M.C.); (F.J.P.-C.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
58
|
Kemp JA, Regis de Paiva B, Fragoso Dos Santos H, Emiliano de Jesus H, Craven H, Z Ijaz U, Alvarenga Borges N, G Shiels P, Mafra D. The Impact of Enriched Resistant Starch Type-2 Cookies on the Gut Microbiome in Hemodialysis Patients: A Randomized Controlled Trial. Mol Nutr Food Res 2021; 65:e2100374. [PMID: 34390604 DOI: 10.1002/mnfr.202100374] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/01/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Resistant starch type-2 (RS2) can mitigate inflammation and oxidative stress in hemodialysis (HD) patients. However, there is still a lack of knowledge on the impact of the RS2 on the gut microbiota community in these patients. Thus, this study aims to evaluate the effects of enriched RS2 cookies on the gut microbiome in HD patients. METHODS AND RESULTS This comprises a randomized, double-blind, placebo-controlled trial of age-, sex-, and BMI-matched patients and controls. The RS2 group receives enriched RS2 cookies (16 g d-1 of Hi-Maize 260, Ingredion) for 4 weeks, while the placebo group received cookies made with manioc flour. Fecal microbiota composition is evaluated by the 16S ribosomal RNA gene. Analysis of the microbiota reveals that Pielou's evenness is significantly decreased after RS2 supplementation. Notably, it is observed that RS2 intervention upregulates significantly 8 Amplicon Sequencing Variants (ASV's), including Roseburia and Ruminococcus gauvreauii, which are short-chain fatty acids (SCFA) producers. Furthermore, it is associated with the downregulation of 11 ASVs, such as the pro-inflammatory Dialister. CONCLUSIONS RS2 intervention for 4 weeks in HD patients effectively alters SCFA producers in the gut microbiota, suggesting that it could be a good nutritional strategy for patients with chronic kidney disease (CKD) on HD.
Collapse
Affiliation(s)
- Julie Ann Kemp
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Bruna Regis de Paiva
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | | | - Hannah Craven
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| | - Umer Z Ijaz
- School of Engineering University of Glasgow, Glasgow, UK
| | - Natalia Alvarenga Borges
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.,Department of Applied Nutrition, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, UK
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
59
|
Du X, Liu J, Xue Y, Kong X, Lv C, Li Z, Huang Y, Wang B. Alteration of gut microbial profile in patients with diabetic nephropathy. Endocrine 2021; 73:71-84. [PMID: 33905112 DOI: 10.1007/s12020-021-02721-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
AIMS Investigations show that 30-40% of patients with diabetes develop diabetic nephropathy (DN). The gut microbiome has become lively field research in diabetes mellitus and chronic kidney disease. The gut microbial profile in DN (stage-3 or 4) patients and healthy controls were systematically analyzed, the discrepancies on microbial profiles in different disease stages, gender, and BMI in DN were also described. METHODS Fecal samples from 37 healthy volunteers (HG) and 43 DN patients (PG) were recruited to gut microbiota 16S rDNA V3-V4 regions analysis. In consideration of disease stage, gender, and BMI, PG, and HG were further divided into three subgroups. To predict the DN stage, a random forest model was carried out, using the most discrepant genera selected from the PG and HG samples. RESULTS Gut bacterial richness and diversity in PG were far less than HG. The gut microbiota composition in PG-III was at the middle level between HG and PG-IV. The gender and BMI had some impact on the gut microbiota profile but the major difference still came from the disease. The random forest model was constructed from 25 most discrepant microbe genera. The area under curve (AUC) of receiving operational curve (ROC) was 0.972, indicated a high discriminatory power to predict DN. CONCLUSIONS DN patients showed dysbiosis and a decrease in gut bacterial richness and diversity compared with HG. Several characterized genera like Megasphaera, Veillonella, Escherichia-Shigella, Anaerostipes, and Haemophilus might be the new potential microbial biomarkers of DN.
Collapse
Affiliation(s)
- Xi Du
- Second Affiliated Hospital of Tianjin University of TCM, Hebei District, 300250, Tianjin, PR China
| | - Jia Liu
- Second Affiliated Hospital of Tianjin University of TCM, Hebei District, 300250, Tianjin, PR China
| | - Yu Xue
- Tianjin University of Traditional Chinese Medicine, Jinghai District, 301617, Tianjin, PR China
| | - Xiangyun Kong
- Tianjin University of Traditional Chinese Medicine, Jinghai District, 301617, Tianjin, PR China
- Cangzhou Hospital of Integrated TCM-WM Hebei, Cangzhou, 061001, Hebei Province, PR China
| | - Chunxiao Lv
- Second Affiliated Hospital of Tianjin University of TCM, Hebei District, 300250, Tianjin, PR China
| | - Ziqiang Li
- Second Affiliated Hospital of Tianjin University of TCM, Hebei District, 300250, Tianjin, PR China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of TCM, Hebei District, 300250, Tianjin, PR China.
| | - Baohe Wang
- Second Affiliated Hospital of Tianjin University of TCM, Hebei District, 300250, Tianjin, PR China.
| |
Collapse
|
60
|
Stepanova N. Role of Impaired Oxalate Homeostasis in Cardiovascular Disease in Patients With End-Stage Renal Disease: An Opinion Article. Front Pharmacol 2021; 12:692429. [PMID: 34122117 PMCID: PMC8193726 DOI: 10.3389/fphar.2021.692429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Natalia Stepanova
- State Institution “Institute of Nephrology National Academy of Medical Science of Ukraine”, Kyiv, Ukraine
| |
Collapse
|
61
|
Bosák J, Lexa M, Fiedorová K, Gadara DC, Micenková L, Spacil Z, Litzman J, Freiberger T, Šmajs D. Patients With Common Variable Immunodeficiency (CVID) Show Higher Gut Bacterial Diversity and Levels of Low-Abundance Genes Than the Healthy Housemates. Front Immunol 2021; 12:671239. [PMID: 34054845 PMCID: PMC8163231 DOI: 10.3389/fimmu.2021.671239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a clinically and genetically heterogeneous disorder with inadequate antibody responses and low levels of immunoglobulins including IgA that is involved in the maintenance of the intestinal homeostasis. In this study, we analyzed the taxonomical and functional metagenome of the fecal microbiota and stool metabolome in a cohort of six CVID patients without gastroenterological symptomatology and their healthy housemates. The fecal microbiome of CVID patients contained higher numbers of bacterial species and altered abundance of thirty-four species. Hungatella hathewayi was frequent in CVID microbiome and absent in controls. Moreover, the CVID metagenome was enriched for low-abundance genes likely encoding nonessential functions, such as bacterial motility and metabolism of aromatic compounds. Metabolomics revealed dysregulation in several metabolic pathways, mostly associated with decreased levels of adenosine in CVID patients. Identified features have been consistently associated with CVID diagnosis across the patients with various immunological characteristics, length of treatment, and age. Taken together, this initial study revealed expansion of bacterial diversity in the host immunodeficient conditions and suggested several bacterial species and metabolites, which have potential to be diagnostic and/or prognostic CVID markers in the future.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Matej Lexa
- Faculty of Informatics, Masaryk University, Brno, Czechia
| | - Kristýna Fiedorová
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Darshak C. Gadara
- RECETOX Center, Faculty of Science, Masaryk University, Brno, Czechia
| | - Lenka Micenková
- RECETOX Center, Faculty of Science, Masaryk University, Brno, Czechia
| | - Zdenek Spacil
- RECETOX Center, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jiří Litzman
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Clinical Immunology and Allergology, St. Anne’s University Hospital in Brno, Brno, Czechia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
62
|
Luo D, Zhao W, Lin Z, Wu J, Lin H, Li Y, Song J, Zhang J, Peng H. The Effects of Hemodialysis and Peritoneal Dialysis on the Gut Microbiota of End-Stage Renal Disease Patients, and the Relationship Between Gut Microbiota and Patient Prognoses. Front Cell Infect Microbiol 2021; 11:579386. [PMID: 33834002 PMCID: PMC8021868 DOI: 10.3389/fcimb.2021.579386] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/25/2021] [Indexed: 11/15/2022] Open
Abstract
Gut microbiota alterations occur in end-stage renal disease (ESRD) patients with or without dialysis. However, it remains unclear whether changes in gut microbiota of dialysis ESRD patients result from dialysis or ESRD, or both. Similarly, there is a dearth of information on the relationship between gut microbiota and ESRD prognoses. We collected fecal samples and tracked clinical outcomes from 73 ESRD patients, including 33 pre-dialysis ESRD patients, 19 peritoneal dialysis (PD) patients, and 21 hemodialysis (HD) patients. 16S rRNA sequencing and bioinformatics tools were used to analyze the gut microbiota of ESRD patients and healthy controls. Gut microbiota diversity was different before and after dialysis. Bacteroidetes were significantly deceased in HD patients. Twelve bacterial genera exhibited statistically significant differences, due to dialysis (all P < 0.05, FDR corrected). HD reversed abnormal changes in Oscillospira and SMB53 in pre-dialysis patients. Functional predictions of microbial communities showed that PD and HD altered signal transduction and metabolic pathways in ESRD patients. Furthermore, Bacteroides and Phascolarctobacterium were associated with cardiovascular mortality. Dorea, Clostridium, and SMB53 were related to peritonitis in PD patients. This study not only demonstrated differences in gut microbiota between pre-dialysis and dialysis ESRD patients, but also firstly proposed gut bacteria may exert an impact on patient prognosis.
Collapse
Affiliation(s)
- Dan Luo
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenbo Zhao
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiming Lin
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianhao Wu
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongchun Lin
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongjie Li
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Song
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Zhang
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Peng
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|