51
|
Burns EJ, Bukach CM. Face processing predicts reading ability: Evidence from prosopagnosia. Cortex 2021; 145:67-78. [PMID: 34689033 DOI: 10.1016/j.cortex.2021.03.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 02/17/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
There is considerable interest in whether face and word processing are reliant upon shared or dissociable processes. Developmental prosopagnosia is associated with lifelong face processing deficits, with these cases providing strong support for a dissociation between face and word recognition in three recent papers (Burns et al., 2017; Rubino et al., 2016; Starrfelt et al., 2018). However, the sample sizes in each of these studies may have been too small to detect significant effects. We therefore combined their data to increase power and reassessed their results. While only a non-significant trend for reading impairments was found in prosopagnosia using a one-sample t-test, poorer face memory performance was correlated with slower reading speeds across prosopagnosia and control participants. Surprisingly, poorer face perception skills in prosopagnosia were associated with smaller word length effects. This suggests that while mild reading impairments exist in developmental prosopagnosia, there may be a trade-off between their residual face perception abilities and reading skill. A reanalysis of Hills and colleagues' (2015) acquired prosopagnosia data also revealed a positive relationship between words and faces: severe impairments in face recognition were related to poorer word processing. In summary, the developmental and acquired prosopagnosia literature supports models of visual perception that posit face and word processing are reliant upon broadly shared processes.
Collapse
|
52
|
Normal colour perception in developmental prosopagnosia. Sci Rep 2021; 11:13741. [PMID: 34215772 PMCID: PMC8253794 DOI: 10.1038/s41598-021-92840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/11/2021] [Indexed: 11/08/2022] Open
Abstract
Developmental prosopagnosia (DP) is a selective neurodevelopmental condition defined by lifelong impairments in face recognition. Despite much research, the extent to which DP is associated with broader visual deficits beyond face processing is unclear. Here we investigate whether DP is accompanied by deficits in colour perception. We tested a large sample of 92 DP individuals and 92 sex/age-matched controls using the well-validated Ishihara and Farnsworth–Munsell 100-Hue tests to assess red–green colour deficiencies and hue discrimination abilities. Group-level analyses show comparable performance between DP and control individuals across both tests, and single-case analyses indicate that the prevalence of colour deficits is low and comparable to that in the general population. Our study clarifies that DP is not linked to colour perception deficits and constrains theories of DP that seek to account for a larger range of visual deficits beyond face recognition.
Collapse
|
53
|
The Oxford Face Matching Test: A non-biased test of the full range of individual differences in face perception. Behav Res Methods 2021; 54:158-173. [PMID: 34131874 PMCID: PMC8863687 DOI: 10.3758/s13428-021-01609-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
Tests of face processing are typically designed to identify individuals performing outside of the typical range; either prosopagnosic individuals who exhibit poor face processing ability, or super recognisers, who have superior face processing abilities. Here we describe the development of the Oxford Face Matching Test (OFMT), designed to identify individual differences in face processing across the full range of performance, from prosopagnosia, through the range of typical performance, to super recognisers. Such a test requires items of varying difficulty, but establishing difficulty is problematic when particular populations (e.g., prosopagnosics, individuals with autism spectrum disorder) may use atypical strategies to process faces. If item difficulty is calibrated on neurotypical individuals, then the test may be poorly calibrated for atypical groups, and vice versa. To obtain items of varying difficulty, we used facial recognition algorithms to obtain face pair similarity ratings that are not biased towards specific populations. These face pairs were used as stimuli in the OFMT, and participants were required to judge whether the face images depicted the same individual or different individuals. Across five studies the OFMT was shown to be sensitive to individual differences in the typical population, and in groups of both prosopagnosic individuals and super recognisers. The test-retest reliability of the task was at least equivalent to the Cambridge Face Memory Test and the Glasgow Face Matching Test. Furthermore, results reveal, at least at the group level, that both face perception and face memory are poor in those with prosopagnosia, and are good in super recognisers.
Collapse
|
54
|
Avidan G, Behrmann M. Spatial Integration in Normal Face Processing and Its Breakdown in Congenital Prosopagnosia. Annu Rev Vis Sci 2021; 7:301-321. [PMID: 34014762 DOI: 10.1146/annurev-vision-113020-012740] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Congenital prosopagnosia (CP), a life-long impairment in face processing that occurs in the absence of any apparent brain damage, provides a unique model in which to explore the psychological and neural bases of normal face processing. The goal of this review is to offer a theoretical and conceptual framework that may account for the underlying cognitive and neural deficits in CP. This framework may also provide a novel perspective in which to reconcile some conflicting results that permits the expansion of the research in this field in new directions. The crux of this framework lies in linking the known behavioral and neural underpinnings of face processing and their impairments in CP to a model incorporating grid cell-like activity in the entorhinal cortex. Moreover, it stresses the involvement of active, spatial scanning of the environment with eye movements and implicates their critical role in face encoding and recognition. To begin with, we describe the main behavioral and neural characteristics of CP, and then lay down the building blocks of our proposed model, referring to the existing literature supporting this new framework. We then propose testable predictions and conclude with open questions for future research stemming from this model. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Galia Avidan
- Department of Psychology and Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
55
|
Rice GE, Kerry SJ, Robotham RJ, Leff AP, Lambon Ralph MA, Starrfelt R. Category-selective deficits are the exception and not the rule: Evidence from a case-series of 64 patients with ventral occipito-temporal cortex damage. Cortex 2021; 138:266-281. [PMID: 33770511 PMCID: PMC8064027 DOI: 10.1016/j.cortex.2021.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/30/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
The organisational principles of the visual ventral stream are still highly debated, particularly the relative association/dissociation between word and face recognition and the degree of lateralisation of the underlying processes. Reports of dissociations between word and face recognition stem from single case-studies of category selective impairments, and neuroimaging investigations of healthy participants. Despite the historical reliance on single case-studies, more recent group studies have highlighted a greater commonality between word and face recognition. Studying individual patients with rare selective deficits misses (a) important variability between patients, (b) systematic associations between task performance, and (c) patients with mild, severe and/or non-selective impairments; meaning that the full spectrum of deficits is unknown. The Back of the Brain project assessed the range and specificity of visual perceptual impairment in 64 patients with posterior cerebral artery stroke recruited based on lesion localization and not behavioural performance. Word, object, and face processing were measured with comparable tests across different levels of processing to investigate associations and dissociations across domains. We present two complementary analyses of the extensive behavioural battery: (1) a data-driven analysis of the whole patient group, and (2) a single-subject case-series analysis testing for deficits and dissociations in each individual patient. In both analyses, the general organisational principle was of associations between words, objects, and faces even following unilateral lesions. The majority of patients either showed deficits across all domains or in no domain, suggesting a spectrum of visuo-perceptual deficits post stroke. Dissociations were observed, but they were the exception and not the rule: Category-selective impairments were found in only a minority of patients, all of whom showed disproportionate deficits for words. Interestingly, such selective word impairments were found following both left and right hemisphere lesions. This large-scale investigation of posterior cerebral artery stroke patients highlights the bilateral representation of visual perceptual function.
Collapse
Affiliation(s)
- Grace E Rice
- MRC Cognition and Brain Sciences Unit (CBU), University of Cambridge, UK
| | - Sheila J Kerry
- University College London Queen Square Institute of Neurology, UK
| | - Ro J Robotham
- Department of Psychology, University of Copenhagen, Denmark
| | - Alex P Leff
- University College London Queen Square Institute of Neurology, UK
| | | | - Randi Starrfelt
- Department of Psychology, University of Copenhagen, Denmark.
| |
Collapse
|
56
|
Gerlach C, Starrfelt R. Patterns of perceptual performance in developmental prosopagnosia: An in-depth case series. Cogn Neuropsychol 2021; 38:27-49. [PMID: 33459172 DOI: 10.1080/02643294.2020.1869709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Developmental prosopagnosia (DP) is a syndrome characterized by lifelong impairment in face recognition in the absence of brain damage. A key question regarding DP concerns which process(es) might be affected to selectively/disproportionally impair face recognition. We present evidence from a group of DPs, combining an overview of previous results with additional analyses important for understanding their pattern of preserved and impaired perceptual abilities. We argue that for most of these individuals, the common denominator is a deficit in (rapid) processing of global shape information. We conclude that the deficit in this group of DPs is not face-selective, but that it may appear so because faces are more visually similar-and recognized at a more fine-grained level-than objects. Indeed, when the demand on perceptual differentiation and visual similarity are held constant for faces and objects, we find no evidence for a disproportionate deficit for faces in this group of DPs.
Collapse
Affiliation(s)
- Christian Gerlach
- Department of Psychology, University of Southern Denmark, Odense, Denmark
| | - Randi Starrfelt
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
57
|
Friedman R. Themes of advanced information processing in the primate brain. AIMS Neurosci 2020; 7:373-388. [PMID: 33263076 PMCID: PMC7701368 DOI: 10.3934/neuroscience.2020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/09/2020] [Indexed: 11/30/2022] Open
Abstract
Here is a review of several empirical examples of information processing that occur in the primate cerebral cortex. These include visual processing, object identification and perception, information encoding, and memory. Also, there is a discussion of the higher scale neural organization, mainly theoretical, which suggests hypotheses on how the brain internally represents objects. Altogether they support the general attributes of the mechanisms of brain computation, such as efficiency, resiliency, data compression, and a modularization of neural function and their pathways. Moreover, the specific neural encoding schemes are expectedly stochastic, abstract and not easily decoded by theoretical or empirical approaches.
Collapse
Affiliation(s)
- Robert Friedman
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA
| |
Collapse
|
58
|
Dunn JD, Summersby S, Towler A, Davis JP, White D. UNSW Face Test: A screening tool for super-recognizers. PLoS One 2020; 15:e0241747. [PMID: 33196639 PMCID: PMC7668578 DOI: 10.1371/journal.pone.0241747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
We present a new test-the UNSW Face Test (www.unswfacetest.com)-that has been specifically designed to screen for super-recognizers in large online cohorts and is available free for scientific use. Super-recognizers are people that demonstrate sustained performance in the very top percentiles in tests of face identification ability. Because they represent a small proportion of the population, screening large online cohorts is an important step in their initial recruitment, before confirmatory testing via standardized measures and more detailed cognitive testing. We provide normative data on the UNSW Face Test from 3 cohorts tested via the internet (combined n = 23,902) and 2 cohorts tested in our lab (combined n = 182). The UNSW Face Test: (i) captures both identification memory and perceptual matching, as confirmed by correlations with existing tests of these abilities; (ii) captures face-specific perceptual and memorial abilities, as confirmed by non-significant correlations with non-face object processing tasks; (iii) enables researchers to apply stricter selection criteria than other available tests, which boosts the average accuracy of the individuals selected in subsequent testing. Together, these properties make the test uniquely suited to screening for super-recognizers in large online cohorts.
Collapse
Affiliation(s)
- James D. Dunn
- School of Psychology, UNSW Sydney, Kensington, NSW, Australia
| | | | - Alice Towler
- School of Psychology, UNSW Sydney, Kensington, NSW, Australia
| | - Josh P. Davis
- Department of Psychology, University of Greenwich, London, United Kingdom
| | - David White
- School of Psychology, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
59
|
Tsantani M, Cook R. Normal recognition of famous voices in developmental prosopagnosia. Sci Rep 2020; 10:19757. [PMID: 33184411 PMCID: PMC7661722 DOI: 10.1038/s41598-020-76819-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Developmental prosopagnosia (DP) is a condition characterised by lifelong face recognition difficulties. Recent neuroimaging findings suggest that DP may be associated with aberrant structure and function in multimodal regions of cortex implicated in the processing of both facial and vocal identity. These findings suggest that both facial and vocal recognition may be impaired in DP. To test this possibility, we compared the performance of 22 DPs and a group of typical controls, on closely matched tasks that assessed famous face and famous voice recognition ability. As expected, the DPs showed severe impairment on the face recognition task, relative to typical controls. In contrast, however, the DPs and controls identified a similar number of voices. Despite evidence of interactions between facial and vocal processing, these findings suggest some degree of dissociation between the two processing pathways, whereby one can be impaired while the other develops typically. A possible explanation for this dissociation in DP could be that the deficit originates in the early perceptual encoding of face structure, rather than at later, post-perceptual stages of face identity processing, which may be more likely to involve interactions with other modalities.
Collapse
Affiliation(s)
- Maria Tsantani
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
| | - Richard Cook
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK.
| |
Collapse
|
60
|
Bate S, Mestry N, Atkinson M, Bennetts RJ, Hills PJ. Birthweight predicts individual differences in adult face recognition ability. Br J Psychol 2020; 112:628-644. [PMID: 33085082 DOI: 10.1111/bjop.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/16/2020] [Indexed: 11/28/2022]
Abstract
It has long been known that premature birth and/or low birthweight can lead to general difficulties in cognitive and emotional functioning throughout childhood. However, the influence of these factors on more specific processes has seldom been addressed, despite their potential to account for wide individual differences in performance that often appear innate. Here, we examined the influence of gestation and birthweight on adults' face perception and face memory skills. Performance on both sub-processes was predicted by birthweight and birthweight-for-gestation, but not gestation alone. Evidence was also found for the domain-specificity of these effects: No perinatal measure correlated with performance on object perception or memory tasks, but they were related to the size of the face inversion effect on the perceptual test. This evidence indicates a novel, very early influence on individual differences in face recognition ability, which persists into adulthood, influences face-processing strategy itself, and may be domain-specific.
Collapse
Affiliation(s)
- Sarah Bate
- Department of Psychology, Bournemouth University, Poole, UK
| | - Natalie Mestry
- Department of Psychology, Bournemouth University, Poole, UK
| | | | - Rachel J Bennetts
- College of Health and Life Sciences, Division of Psychology, Brunel University, Uxbridge, UK
| | - Peter J Hills
- Department of Psychology, Bournemouth University, Poole, UK
| |
Collapse
|
61
|
Rossion B, Retter TL, Liu‐Shuang J. Understanding human individuation of unfamiliar faces with oddball fast periodic visual stimulation and electroencephalography. Eur J Neurosci 2020; 52:4283-4344. [DOI: 10.1111/ejn.14865] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/19/2020] [Accepted: 05/30/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Bruno Rossion
- CNRS, CRAN UMR7039 Université de Lorraine F‐54000Nancy France
- Service de Neurologie, CHRU‐Nancy Université de Lorraine F‐54000Nancy France
| | - Talia L. Retter
- Department of Behavioural and Cognitive Sciences Faculty of Language and Literature Humanities, Arts and Education University of Luxembourg Luxembourg Luxembourg
| | - Joan Liu‐Shuang
- Institute of Research in Psychological Science Institute of Neuroscience Université de Louvain Louvain‐la‐Neuve Belgium
| |
Collapse
|
62
|
Bylemans T, Vrancken L, Verfaillie K. Developmental Prosopagnosia and Elastic Versus Static Face Recognition in an Incidental Learning Task. Front Psychol 2020; 11:2098. [PMID: 32982859 PMCID: PMC7488957 DOI: 10.3389/fpsyg.2020.02098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022] Open
Abstract
Previous research on the beneficial effect of motion has postulated that learning a face in motion provides additional cues to recognition. Surprisingly, however, few studies have examined the beneficial effect of motion in an incidental learning task and developmental prosopagnosia (DP) even though such studies could provide more valuable information about everyday face recognition compared to the perception of static faces. In the current study, 18 young adults (Experiment 1) and five DPs and 10 age-matched controls (Experiment 2) participated in an incidental learning task during which both static and elastically moving unfamiliar faces were sequentially presented and were to be recognized in a delayed visual search task during which the faces could either keep their original presentation or switch (from static to elastically moving or vice versa). In Experiment 1, performance in the elastic-elastic condition reached a significant improvement relative to the elastic-static and static-elastic condition, however, no significant difference could be detected relative to the static-static condition. Except for higher scores in the elastic-elastic compared to the static-elastic condition in the age-matched group, no other significant differences were detected between conditions for both the DPs and the age-matched controls. The current study could not provide compelling evidence for a general beneficial effect of motion. Age-matched controls performed generally worse than DPs, which may potentially be explained by their higher rates of false alarms. Factors that could have influenced the results are discussed.
Collapse
Affiliation(s)
- Tom Bylemans
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Leia Vrancken
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Karl Verfaillie
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
63
|
Nestor A, Lee ACH, Plaut DC, Behrmann M. The Face of Image Reconstruction: Progress, Pitfalls, Prospects. Trends Cogn Sci 2020; 24:747-759. [PMID: 32674958 PMCID: PMC7429291 DOI: 10.1016/j.tics.2020.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 10/23/2022]
Abstract
Recent research has demonstrated that neural and behavioral data acquired in response to viewing face images can be used to reconstruct the images themselves. However, the theoretical implications, promises, and challenges of this direction of research remain unclear. We evaluate the potential of this research for elucidating the visual representations underlying face recognition. Specifically, we outline complementary and converging accounts of the visual content, the representational structure, and the neural dynamics of face processing. We illustrate how this research addresses fundamental questions in the study of normal and impaired face recognition, and how image reconstruction provides a powerful framework for uncovering face representations, for unifying multiple types of empirical data, and for facilitating both theoretical and methodological progress.
Collapse
Affiliation(s)
- Adrian Nestor
- Department of Psychology at Scarborough, University of Toronto, Toronto, Ontario, Canada.
| | - Andy C H Lee
- Department of Psychology at Scarborough, University of Toronto, Toronto, Ontario, Canada; Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
| | - David C Plaut
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Carnegie Mellon Neuroscience Institute, Pittsburgh, PA, USA
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA; Carnegie Mellon Neuroscience Institute, Pittsburgh, PA, USA
| |
Collapse
|
64
|
Murray E, Bate S. Diagnosing developmental prosopagnosia: repeat assessment using the Cambridge Face Memory Test. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200884. [PMID: 33047048 PMCID: PMC7540801 DOI: 10.1098/rsos.200884] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/12/2020] [Indexed: 05/11/2023]
Abstract
Developmental prosopagnosia (DP) is a cognitive condition characterized by a relatively selective impairment in face recognition. Currently, people are screened for DP via a single attempt at objective face-processing tests, usually all presented on the same day. However, several variables probably influence performance on these tests irrespective of actual ability, and the influence of repeat administration is also unknown. Here, we assess, for the first known time, the test-retest reliability of the Cambridge Face Memory Test (CFMT)-the leading task used worldwide to diagnose DP. This value was found to fall just below psychometric standards, and single-case analyses revealed further inconsistencies in performance that were not driven by testing location (online or in-person), nor the time-lapse between attempts. Later administration of an alternative version of the CFMT (the CFMT-Aus) was also found to be valuable in confirming borderline cases. Finally, we found that performance on the first 48 trials of the CFMT was equally as sensitive as the full 72-item score, suggesting that the instrument may be shortened for testing efficiency. We consider the implications of these findings for existing diagnostic protocols, concluding that two independent tasks of unfamiliar face memory should be completed on separate days.
Collapse
|
65
|
Fry R, Wilmer J, Xie I, Verfaellie M, DeGutis J. Evidence for normal novel object recognition abilities in developmental prosopagnosia. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200988. [PMID: 33047056 PMCID: PMC7540787 DOI: 10.1098/rsos.200988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The issue of the face specificity of recognition deficits in developmental prosopagnosia (DP) is fundamental to the organization of high-level visual memory and has been increasingly debated in recent years. Previous DP investigations have found some evidence of object recognition impairments, but have almost exclusively used familiar objects (e.g. cars), where performance may depend on acquired object-specific experience and related visual expertise. An object recognition test not influenced by experience could provide a better, less contaminated measure of DPs' object recognition abilities. To investigate this, in the current study we tested 30 DPs and 30 matched controls on a novel object memory test (NOMT Ziggerins) and the Cambridge Face Memory Test (CFMT). DPs with severe impairment on the CFMT showed no differences in accuracy or reaction times compared with controls on the NOMT. We found similar results when comparing DPs with a larger sample of 274 web-based controls. Additional individual analyses demonstrated that the rate of object recognition impairment in DPs did not differ from the rate of impairment in either control group. Together, these results demonstrate unimpaired object recognition in DPs for a class of novel objects that serves as a powerful index for broader novel object recognition capacity.
Collapse
Affiliation(s)
- Regan Fry
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jeremy Wilmer
- Department of Psychology, Wellesley College, Wellesley, MA, USA
| | - Isabella Xie
- Washington University in St Louis, St Louis, MO, USA
- Harvard Decision Science Lab, Harvard Kennedy School, Cambridge, MA, USA
| | - Mieke Verfaellie
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Joseph DeGutis
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
66
|
Tsantani M, Gray KLH, Cook R. Holistic processing of facial identity in developmental prosopagnosia. Cortex 2020; 130:318-326. [PMID: 32721648 DOI: 10.1016/j.cortex.2020.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/06/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
The nature of the perceptual deficit seen in developmental prosopagnosia remains poorly understood. One possibility is that these individuals experience face recognition difficulties because they fail to process faces holistically; they may be less able to analyze distal regions in parallel and therefore struggle to integrate information from different regions into a unified perceptual whole. Consequently, developmental prosopagnosics may be forced to base perceptual decisions on a slow, effortful piecemeal analysis of local facial features. In the present study, we sought to test this view by comparing the face recognition of developmental prosopagnosics and typical observers under two viewing conditions: when target faces were briefly presented in their entirety, and when they were inspected region-by-region through a dynamic aperture. If developmental prosopagnosics are forced to base perceptual decisions on information accumulated from a serial piecemeal analysis, one would expect little if any decrement in performance when target faces are viewed through apertures. Contrary to this prediction, however, developmental prosopagnosics showed strong aperture effects comparable with typical observers; their perceptual decisions were more accurate in the whole-face condition than when targets were viewed through the aperture. As expected, the developmental prosopagnosics were less accurate than typical controls when judging briefly presented faces shown in their entirety. Strikingly, however, they were also less able to accumulate perceptual evidence from a serial region-by-region analysis, than typical observers. Our results suggest that the perceptual problems seen in this population arise from imprecise descriptions of local regions, not aberrant holistic processing.
Collapse
Affiliation(s)
- Maria Tsantani
- Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Katie L H Gray
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Richard Cook
- Department of Psychological Sciences, Birkbeck, University of London, London, UK; Department of Psychology, University of York, York, UK.
| |
Collapse
|
67
|
Pertzov Y, Krill D, Weiss N, Lesinger K, Avidan G. Rapid forgetting of faces in congenital prosopagnosia. Cortex 2020; 129:119-132. [PMID: 32450329 DOI: 10.1016/j.cortex.2020.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/14/2019] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
Abstract
Congenital prosopagnosia (CP) is a life-long impairment in face recognition that occurs in the absence of any known brain damage. It is still unclear whether this disorder is related to a visual deficit, or to an impairment in encoding, maintaining or retrieving a face from memory. We tested CPs and matched neurotypical controls using a delayed estimation task in which a target face was shown either upright or inverted. Participants were asked to select the target face out of a cyclic space of morphed faces that could either resemble the target face, or not. The inclusion of upright and inverted faces enabled to examine the extent of the face inversion effect, a well-known face specific effect often associated with holistic processing. To enable disentangling visual from mnemonic processing, reports were required either following 1 and 6 sec retention interval, or simultaneously while the target face was still visible. Controls showed slower forgetting of upright compared to inverted faces. In contrast, CPs exhibited rapid forgetting of upright faces that was comparable to their performance and to performance of controls on inverted faces. Such forgetting was evident in random errors in which the selected faces did not resemble the face in memory, implying a time related decrease in the probability to access the correct face in memory. Importantly, CPs exhibited no inversion effect across all retention intervals, including the simultaneous one, suggesting that their abnormal rapid forgetting could be explained by an impairment in holistic visual processing of upright faces.
Collapse
Affiliation(s)
| | - Dana Krill
- The Hebrew University of Jerusalem, Israel.
| | | | | | | |
Collapse
|
68
|
Behrmann M, Plaut DC. Hemispheric Organization for Visual Object Recognition: A Theoretical Account and Empirical Evidence. Perception 2020; 49:373-404. [PMID: 31980013 PMCID: PMC9944149 DOI: 10.1177/0301006619899049] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Despite the similarity in structure, the hemispheres of the human brain have somewhat different functions. A traditional view of hemispheric organization asserts that there are independent and largely lateralized domain-specific regions in ventral occipitotemporal (VOTC), specialized for the recognition of distinct classes of objects. Here, we offer an alternative account of the organization of the hemispheres, with a specific focus on face and word recognition. This alternative account relies on three computational principles: distributed representations and knowledge, cooperation and competition between representations, and topography and proximity. The crux is that visual recognition results from a network of regions with graded functional specialization that is distributed across both hemispheres. Specifically, the claim is that face recognition, which is acquired relatively early in life, is processed by VOTC regions in both hemispheres. Once literacy is acquired, word recognition, which is co-lateralized with language areas, primarily engages the left VOTC and, consequently, face recognition is primarily, albeit not exclusively, mediated by the right VOTC. We review psychological and neural evidence from a range of studies conducted with normal and brain-damaged adults and children and consider findings which challenge this account. Last, we offer suggestions for future investigations whose findings may further refine this account.
Collapse
Affiliation(s)
- Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - David C. Plaut
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
69
|
Stacchi L, Huguenin-Elie E, Caldara R, Ramon M. Normative data for two challenging tests of face matching under ecological conditions. COGNITIVE RESEARCH-PRINCIPLES AND IMPLICATIONS 2020; 5:8. [PMID: 32076893 PMCID: PMC7031457 DOI: 10.1186/s41235-019-0205-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 12/29/2019] [Indexed: 11/22/2022]
Abstract
Background Unfamiliar face processing is an ability that varies considerably between individuals. Numerous studies have aimed to identify its underlying determinants using controlled experimental procedures. While such tests can isolate variables that influence face processing, they usually involve somewhat unrealistic situations and optimized face images as stimulus material. As a consequence, the extent to which the performance observed under laboratory settings is informative for predicting real-life proficiency remains unclear. Results We present normative data for two ecologically valid but underused tests of face matching: the Yearbook Test (YBT) and the Facial Identity Card Sorting Test (FICST). The YBT (n = 252) measures identity matching across substantial age-related changes in facial appearance, while the FICST (n = 218) assesses the ability to process unfamiliar facial identity despite superficial image variations. To determine the predictive value of both tests, a subsample of our cohort (n = 181) also completed a commonly used test of face recognition and two tests of face perception (the long form of the Cambridge Face Memory Test (CFMT+), the Expertise in Facial Comparison Test (EFCT) and the Person Identification Challenge Test (PICT)). Conclusions Focusing on the top performers identified independently per test, we made two important observations: 1) YBT and FICST performance can predict CFMT+ scores and vice versa; and 2) EFCT and PICT scores neither reliably predict superior performance in ecologically meaningful and challenging tests of face matching, nor in the most commonly used test of face recognition. These findings emphasize the necessity for using challenging and ecologically relevant, and thus highly sensitive, tasks of unfamiliar face processing to identify high-performing individuals in the normal population.
Collapse
Affiliation(s)
- Lisa Stacchi
- Eye and Brain Mapping Laboratory, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Eva Huguenin-Elie
- Applied Face Cognition Lab, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Roberto Caldara
- Eye and Brain Mapping Laboratory, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Meike Ramon
- Applied Face Cognition Lab, Department of Psychology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
70
|
Genetic influence is linked to cortical morphology in category-selective areas of visual cortex. Nat Commun 2020; 11:709. [PMID: 32024844 PMCID: PMC7002610 DOI: 10.1038/s41467-020-14610-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/22/2020] [Indexed: 01/24/2023] Open
Abstract
Human visual cortex contains discrete areas that respond selectively to specific object categories such as faces, bodies, and places. A long-standing question is whether these areas are shaped by genetic or environmental factors. To address this question, here we analyzed functional MRI data from an unprecedented number (n = 424) of monozygotic (MZ) and dizygotic (DZ) twins. Category-selective maps were more identical in MZ than DZ twins. Within each category-selective area, distinct subregions showed significant genetic influence. Structural MRI analysis revealed that the ‘genetic voxels’ were predominantly located in regions with higher cortical curvature (gyral crowns in face areas and sulcal fundi in place areas). Moreover, we found that cortex was thicker and more myelinated in genetic voxels of face areas, while it was thinner and less myelinated in genetic voxels of place areas. This double dissociation suggests a differential development of face and place areas in cerebral cortex. It remains unclear whether the functional organization of the visual cortex is shaped by genetic or environmental factors. Using fMRI in twins (n = 424), these authors show that activation patterns in category-selective areas are heritable, and that the genetic effects in these areas are linked to structural properties of cortical tissue.
Collapse
|
71
|
Gerlach C, Klargaard SK, Alnæs D, Kolskår KK, Karstoft J, Westlye LT, Starrfelt R. Left hemisphere abnormalities in developmental prosopagnosia when looking at faces but not words. Brain Commun 2019; 1:fcz034. [PMID: 32954273 PMCID: PMC7425287 DOI: 10.1093/braincomms/fcz034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/11/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
Developmental prosopagnosia is a disorder characterized by profound and lifelong difficulties with face recognition in the absence of sensory or intellectual deficits or known brain injury. While there has been a surge in research on developmental prosopagnosia over the last decade and a half, the cognitive mechanisms behind the disorder and its neural underpinnings remain elusive. Most recently it has been proposed that developmental prosopagnosia may be a manifestation of widespread disturbance in neural migration which affects both face responsive brain regions as well as other category-sensitive visual areas. We present a combined behavioural and functional MRI study of face, object and word processing in a group of developmental prosopagnosics (N = 15). We show that developmental prosopagnosia is associated with reduced activation of core ventral face areas during perception of faces. The reductions were bilateral but tended to be more pronounced in the left hemisphere. As the first study to address category selectivity for word processing in developmental prosopagnosia, we do not, however, find evidence for reduced activation of the visual word form area during perception of orthographic material. We also find no evidence for reduced activation of the lateral occipital complex during perception of objects. These imaging findings correspond well with the behavioural performance of the developmental prosopagnosics, who show severe impairment for faces but normal reading and recognition of line drawings. Our findings suggest that a general deficit in neural migration across ventral occipito-temporal cortex is not a viable explanation for developmental prosopagnosia. The finding of left hemisphere involvement in our group of developmental prosopagnosics was at first surprising. However, a closer look at existing studies shows similar, but hitherto undiscussed, findings. These left hemisphere abnormalities seen in developmental prosopagnosia contrasts with lesion and imaging studies suggesting primarily right hemisphere involvement in acquired prosopagnosia, and this may reflect that the left hemisphere is important for the development of a normal face recognition network.
Collapse
Affiliation(s)
- Christian Gerlach
- Department of Psychology, University of Southern Denmark, DK-5230 Odense, Denmark.,BRIDGE, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Solja K Klargaard
- Department of Psychology, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0424, Norway
| | - Knut K Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0424, Norway.,Department of Psychology, University of Oslo, Oslo 0317, Norway
| | - Jens Karstoft
- BRIDGE, University of Southern Denmark, DK-5230 Odense, Denmark.,Department of Radiology, Odense University Hospital, Odense DK-5230, Denmark
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0424, Norway.,Department of Psychology, University of Oslo, Oslo 0317, Norway
| | - Randi Starrfelt
- Department of Psychology, University of Copenhagen, Copenhagen DK-1353, Denmark
| |
Collapse
|
72
|
Marsh JE, Biotti F, Cook R, Gray KLH. The discrimination of facial sex in developmental prosopagnosia. Sci Rep 2019; 9:19079. [PMID: 31836836 PMCID: PMC6910918 DOI: 10.1038/s41598-019-55569-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022] Open
Abstract
Developmental prosopagnosia (DP) is a neurodevelopmental condition characterised by difficulties recognising and discriminating faces. It is currently unclear whether the perceptual impairments seen in DP are restricted to identity information, or also affect the perception of other facial characteristics. To address this question, we compared the performance of 17 DPs and matched controls on two sensitive sex categorisation tasks. First, in a morph categorisation task, participants made binary decisions about faces drawn from a morph continuum that blended incrementally an average male face and an average female face. We found that judgement precision was significantly lower in the DPs than in the typical controls. Second, we used a sex discrimination task, where female or male facial identities were blended with an androgynous average face. We manipulated the relative weighting of each facial identity and the androgynous average to create four levels of signal strength. We found that DPs were significantly less sensitive than controls at each level of difficulty. Together, these results suggest that the visual processing difficulties in DP extend beyond the extraction of facial identity and affects the extraction of other facial characteristics. Deficits of facial sex categorisation accord with an apperceptive characterisation of DP.
Collapse
Affiliation(s)
- Jade E Marsh
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK.
| | - Federica Biotti
- Department of Psychology, Royal Holloway, University of London, Egham, UK
| | - Richard Cook
- Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Katie L H Gray
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| |
Collapse
|
73
|
Gender Differences in Familiar Face Recognition and the Influence of Sociocultural Gender Inequality. Sci Rep 2019; 9:17884. [PMID: 31784547 PMCID: PMC6884510 DOI: 10.1038/s41598-019-54074-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/07/2019] [Indexed: 01/05/2023] Open
Abstract
Are gender differences in face recognition influenced by familiarity and socio-cultural factors? Previous studies have reported gender differences in processing unfamiliar faces, consistently finding a female advantage and a female own-gender bias. However, researchers have recently highlighted that unfamiliar faces are processed less efficiently than familiar faces, which have more robust, invariant representations. To-date, no study has examined whether gender differences exist for familiar face recognition. The current study addressed this by using a famous faces task in a large, web-based sample of > 2000 participants across different countries. We also sought to examine if differences varied by socio-cultural gender equality within countries. When examining raw accuracy as well when controlling for fame, the results demonstrated that there were no participant gender differences in overall famous face accuracy, in contrast to studies of unfamiliar faces. There was also a consistent own-gender bias in male but not female participants. In countries with low gender equality, including the USA, females showed significantly better recognition of famous female faces compared to male participants, whereas this difference was abolished in high gender equality countries. Together, this suggests that gender differences in recognizing unfamiliar faces can be attenuated when there is enough face learning and that sociocultural gender equality can drive gender differences in familiar face recognition.
Collapse
|
74
|
Effects of unilateral cortical resection of the visual cortex on bilateral human white matter. Neuroimage 2019; 207:116345. [PMID: 31712165 PMCID: PMC7016507 DOI: 10.1016/j.neuroimage.2019.116345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/19/2019] [Accepted: 11/08/2019] [Indexed: 01/21/2023] Open
Abstract
Children with unilateral resections of ventral occipito-temporal cortex (VOTC) typically do not evince visual perceptual impairments, even when relatively large swathes of VOTC are resected. In search of possible explanations for this behavioral competence, we evaluated white matter microstructure and connectivity in eight pediatric epilepsy patients following unilateral cortical resection and 15 age-matched controls. To uncover both local and broader resection-induced effects, we analyzed tractography data using two complementary approaches. First, the microstructural properties were measured in the inferior longitudinal and the inferior fronto-occipital fasciculi, the major VOTC association tracts. Group differences were only evident in the ipsilesional, and not in the contralesional, hemisphere, and single-subject analyses revealed that these differences were limited to the site of the resection. Second, graph theory was used to characterize the connectivity of the contralesional occipito-temporal regions. There were no changes to the network properties in patients with left VOTC resections nor in patients with resections outside the VOTC, but altered network efficiency was observed in two cases with right VOTC resections. These results suggest that, in many, although perhaps not all, cases of unilateral VOTC resections in childhood, the white matter profile in the preserved contralesional hemisphere along with residual neural activity might be sufficient for normal visual perception.
Collapse
|
75
|
Peterson MF, Zaun I, Hoke H, Jiahui G, Duchaine B, Kanwisher N. Eye movements and retinotopic tuning in developmental prosopagnosia. J Vis 2019; 19:7. [PMID: 31426085 DOI: 10.1167/19.9.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Despite extensive investigation, the causes and nature of developmental prosopagnosia (DP)-a severe face identification impairment in the absence of acquired brain injury-remain poorly understood. Drawing on previous work showing that individuals identified as being neurotypical (NT) show robust individual differences in where they fixate on faces, and recognize faces best when the faces are presented at this location, we defined and tested four novel hypotheses for how atypical face-looking behavior and/or retinotopic face encoding could impair face recognition in DP: (a) fixating regions of poor information, (b) inconsistent saccadic targeting, (c) weak retinotopic tuning, and (d) fixating locations not matched to the individual's own face tuning. We found no support for the first three hypotheses, with NTs and DPs consistently fixating similar locations and showing similar retinotopic tuning of their face perception performance. However, in testing the fourth hypothesis, we found preliminary evidence for two distinct phenotypes of DP: (a) Subjects characterized by impaired face memory, typical face perception, and a preference to look high on the face, and (b) Subjects characterized by profound impairments to both face memory and perception and a preference to look very low on the face. Further, while all NTs and upper-looking DPs performed best when faces were presented near their preferred fixation location, this was not true for lower-looking DPs. These results suggest that face recognition deficits in a substantial proportion of people with DP may arise not from aberrant face gaze or compromised retinotopic tuning, but from the suboptimal matching of gaze to tuning.
Collapse
Affiliation(s)
- Matthew F Peterson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ian Zaun
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harris Hoke
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Guo Jiahui
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Brad Duchaine
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Nancy Kanwisher
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
76
|
Bate S, Bennetts RJ, Tree JJ, Adams A, Murray E. The domain-specificity of face matching impairments in 40 cases of developmental prosopagnosia. Cognition 2019; 192:104031. [PMID: 31351346 DOI: 10.1016/j.cognition.2019.104031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
Abstract
A prevailing debate in the psychological literature concerns the domain-specificity of the face recognition system, where evidence from typical and neurological participants has been interpreted as evidence that faces are "special". Although several studies have investigated the same question in cases of developmental prosopagnosia, the vast majority of this evidence has recently been discounted due to methodological concerns. This leaves an uncomfortable void in the literature, restricting our understanding of the typical and atypical development of the face recognition system. The current study addressed this issue in 40 individuals with developmental prosopagnosia, completing a sequential same/different face and biological (hands) and non-biological (houses) object matching task, with upright and inverted conditions. Findings support domain-specific accounts of face-processing for both hands and houses: while significant correlations emerged between all the object categories, no condition correlated with performance in the upright faces condition. Further, a categorical analysis demonstrated that, when face matching was impaired, object matching skills were classically dissociated in six out of 15 individuals (four for both categories). These findings provide evidence about domain-specificity in developmental disorders of face recognition, and present a theoretically-driven means of partitioning developmental prosopagnosia.
Collapse
Affiliation(s)
- Sarah Bate
- Department of Psychology, Bournemouth University, UK.
| | - Rachel J Bennetts
- College of Health and Life Sciences, Division of Psychology, Brunel University, UK
| | | | - Amanda Adams
- Department of Psychology, Bournemouth University, UK
| | - Ebony Murray
- Department of Psychology, Bournemouth University, UK
| |
Collapse
|
77
|
Perceptual Function and Category-Selective Neural Organization in Children with Resections of Visual Cortex. J Neurosci 2019; 39:6299-6314. [PMID: 31167940 DOI: 10.1523/jneurosci.3160-18.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
The consequences of cortical resection, a treatment for humans with pharmaco-resistant epilepsy, provide a unique opportunity to advance our understanding of the nature and extent of cortical (re)organization. Despite the importance of visual processing in daily life, the neural and perceptual sequellae of occipitotemporal resections remain largely unexplored. Using psychophysical and fMRI investigations, we compared the neural and visuoperceptual profiles of 10 children or adolescents following unilateral cortical resections and their age- and gender-matched controls. Dramatically, with the exception of two individuals, both of whom had relatively greater cortical alterations, all patients showed normal perceptual performance on tasks of intermediate- and high-level vision, including face and object recognition. Consistently, again with the exception of the same two individuals, both univariate and multivariate fMRI analyses revealed normal selectivity and representational structure of category-selective regions. Furthermore, the spatial organization of category-selective regions obeyed the typical medial-to-lateral topographic organization albeit unilaterally in the structurally preserved hemisphere rather than bilaterally. These findings offer novel insights into the malleability of cortex in the pediatric population and suggest that, although experience may be necessary for the emergence of neural category-selectivity, this emergence is not necessarily contingent on the integrity of particular cortical structures.SIGNIFICANCE STATEMENT One approach to reduce seizure activity in patients with pharmaco-resistant epilepsy involves the resection of the epileptogenic focus. The impact of these resections on the perceptual behaviors and organization of visual cortex remain largely unexplored. Here, we characterized the visuoperceptual and neural profiles of ventral visual cortex in a relatively large sample of post-resection pediatric patients. Two major findings emerged. First, most patients exhibited preserved visuoperceptual performance across a wide-range of visual behaviors. Second, normal topography, magnitude, and representational structure of category-selective organization were uncovered in the spared hemisphere. These comprehensive imaging and behavioral investigations uncovered novel evidence concerning the neural representations and visual functions in children who have undergone cortical resection, and have implications for cortical plasticity more generally.
Collapse
|
78
|
Abstract
Prosopagnosia is an impairment in the ability to recognize faces and can be acquired after a brain lesion or occur as a developmental variant. Studies of prosopagnosia make important contributions to our understanding of face processing and object recognition in the human visual system. We review four areas of advances in the study of this condition in recent years. First are issues surrounding the diagnosis of prosopagnosia, including the development and evaluation of newer tests and proposals for diagnostic criteria, especially for the developmental variant. Second are studies of the structural basis of prosopagnosia, including the application of more advanced neuroimaging techniques in studies of the developmental variant. Third are issues concerning the face specificity of the defect in prosopagnosia, namely whether other object processing is affected to some degree and in particular the status of visual word processing in light of recent predictions from the "many-to-many hypothesis". Finally, there have been recent rehabilitative trials of perceptual learning applied to larger groups of prosopagnosic subjects that show that face impairments are not immutable in this condition.
Collapse
Affiliation(s)
- Andrea Albonico
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada
| | - Jason Barton
- Human Vision and Eye Movement Laboratory, Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
79
|
Mahon BZ, Miozzo M, Pilcher WH. Direct electrical stimulation mapping of cognitive functions in the human brain. Cogn Neuropsychol 2019; 36:97-102. [PMID: 31514643 DOI: 10.1080/02643294.2019.1630375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Direct electrical stimulation (DES) is a well-established clinical tool for mapping cognitive functions while patients are undergoing awake neurosurgery or invasive long-term monitoring to identify epileptogenic tissue. Despite the proliferation of a range of invasive and noninvasive methods for mapping sensory, motor and cognitive processes in the human brain, DES remains the clinical gold standard for establishing the margins of brain tissue that can be safely removed while avoiding long-term neurological deficits. In parallel, and principally over the last two decades, DES has emerged as a powerful scientific tool for testing hypotheses of brain organization and mechanistic hypotheses of cognitive function. DES can cause transient "lesions" and thus can support causal inferences about the necessity of stimulated brain regions for specific functions, as well as the separability of sensory, motor and cognitive processes. This Special Issue of Cognitive Neuropsychology emphasizes the use of DES as a research tool to advance understanding of normal brain organization and function.
Collapse
Affiliation(s)
- Bradford Z Mahon
- Department of Psychology, Carnegie Mellon University , Pittsburgh , PA , USA
- Department of Neurosurgery, University of Rochester Medical Center , Rochester , NY , USA
- Department of Neurology, University of Rochester Medical Center , Rochester , NY , USA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University , Pittsburgh , PA , USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh , PA , USA
| | - Michele Miozzo
- Department of Psychology, The New School , New York , NY , USA
| | - Webster H Pilcher
- Department of Neurosurgery, University of Rochester Medical Center , Rochester , NY , USA
| |
Collapse
|
80
|
Barton JJS, Albonico A, Susilo T, Duchaine B, Corrow SL. Object recognition in acquired and developmental prosopagnosia. Cogn Neuropsychol 2019; 36:54-84. [PMID: 30947609 DOI: 10.1080/02643294.2019.1593821] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Whether face and object recognition are dissociated in prosopagnosia continues to be debated: a recent review highlighted deficiencies in prior studies regarding the evidence for such a dissociation. Our goal was to study cohorts with acquired and developmental prosopagnosia with a complementary battery of tests of object recognition that address prior limitations, as well as evaluating for residual effects of object expertise. We studied 15 subjects with acquired and 12 subjects with developmental prosopagnosia on three tests: the Old/New Tests, the Cambridge Bicycle Memory Test, and the Expertise-adjusted Test of Car Recognition. Most subjects with developmental prosopagnosia were normal on the Old/New Tests: for acquired prosopagnosia, subjects with occipitotemporal lesions often showed impairments while those with anterior temporal lesions did not. Ten subjects showed a putative classical dissociation between the Cambridge Face and Bicycle Memory Tests, seven of whom had normal reaction times. Both developmental and acquired groups showed reduced car recognition on the expertise-adjusted test, though residual effects of expertise were still evident. Two subjects with developmental prosopagnosia met criteria for normal object recognition across all tests. We conclude that strong evidence for intact object recognition can be found in a few subjects but the majority show deficits, particularly those with the acquired form. Both acquired and developmental forms show residual but reduced object expertise effects.
Collapse
Affiliation(s)
- Jason J S Barton
- a Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology , University of British Columbia , Vancouver , Canada
| | - Andrea Albonico
- a Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology , University of British Columbia , Vancouver , Canada
| | - Tirta Susilo
- b School of Psychology , Victoria University of Wellington , Wellington , New Zealand
| | - Brad Duchaine
- c Department of Psychological and Brain Sciences , Dartmouth College , Hanover , NH , USA
| | - Sherryse L Corrow
- a Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology , University of British Columbia , Vancouver , Canada.,d Department of Psychology , Bethel University , Minneapolis , MN , USA
| |
Collapse
|
81
|
Ramon M, Bobak AK, White D. Super-recognizers: From the lab to the world and back again. Br J Psychol 2019; 110:461-479. [PMID: 30893478 PMCID: PMC6767378 DOI: 10.1111/bjop.12368] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/01/2018] [Indexed: 11/26/2022]
Abstract
The recent discovery of individuals with superior face processing ability has sparked considerable interest amongst cognitive scientists and practitioners alike. These ‘Super‐recognizers’ (SRs) offer clues to the underlying processes responsible for high levels of face processing ability. It has been claimed that they can help make societies safer and fairer by improving accuracy of facial identity processing in real‐world tasks, for example when identifying suspects from Closed Circuit Television or performing security‐critical identity verification tasks. Here, we argue that the current understanding of superior face processing does not justify widespread interest in SR deployment: There are relatively few studies of SRs and no evidence that high accuracy on laboratory‐based tests translates directly to operational deployment. Using simulated data, we show that modest accuracy benefits can be expected from deploying SRs on the basis of ideally calibrated laboratory tests. Attaining more substantial benefits will require greater levels of communication and collaboration between psychologists and practitioners. We propose that translational and reverse‐translational approaches to knowledge development are critical to advance current understanding and to enable optimal deployment of SRs in society. Finally, we outline knowledge gaps that this approach can help address.
Collapse
Affiliation(s)
- Meike Ramon
- Applied Face Cognition Lab, University of Fribourg, Switzerland
| | - Anna K Bobak
- Psychology, Faculty of Natural Sciences, University of Stirling, UK
| | | |
Collapse
|
82
|
Rossion B. Prosopdysgnosia? What could it tell us about the neural organization of face and object recognition? Cogn Neuropsychol 2019; 35:98-101. [PMID: 29658423 DOI: 10.1080/02643294.2017.1414778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Bruno Rossion
- a Psychological Sciences Research Institute, Institute of Neuroscience , University of Louvain , Belgium.,b Neurology Unit , Centre Hospitalier Regional Universitaire (CHRU) de Nancy , Nancy , France
| |
Collapse
|
83
|
Abstract
Scientific research involves going beyond the well-trodden and well-tested ideas and theories that form the core of scientific knowledge. During the time scientists are working things out, some results will be right, and others will be wrong. Over time, the right results will emerge. Lisa Randall (Frank B. Baird, Jr. Professor of Science, Physics Department, Harvard University) We are grateful to all the commentators for the important and thoughtful comments raised in response to the Geskin and Behrmann (G & B) literature survey. The issues raised in the introduction to this Special Issue and in these commentaries not only address and challenge aspects of the G & B literature review, but contribute perspectives and extensions that go well beyond the scope of the review. As is evident from G & B and from the 13 commentaries, many aspects of congenital prosopagnosia (CP) remain controversial. Adopting the language of the quote above, the intention of the G & B survey, along with the commentaries and this response, is to establish a collaborative process from which the right results (and right theory) will emerge in time. We are grateful to the editor of this Special Issue, Dr. Brad Mahon, for his support and for facilitating this collaborative exchange in Cognitive Neuropsychology.
Collapse
Affiliation(s)
- Marlene Behrmann
- a Department of Psychology , Carnegie Mellon University , Pittsburgh , PA , USA
| | - Jacob Geskin
- a Department of Psychology , Carnegie Mellon University , Pittsburgh , PA , USA
| |
Collapse
|
84
|
Gray KLH, Cook R. Should developmental prosopagnosia, developmental body agnosia, and developmental object agnosia be considered independent neurodevelopmental conditions? Cogn Neuropsychol 2019; 35:59-62. [PMID: 29658410 DOI: 10.1080/02643294.2018.1433153] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Katie L H Gray
- a School of Psychology and Clinical Language Sciences , University of Reading , Reading , UK
| | - Richard Cook
- b Department of Psychological Sciences , Birkbeck, University of London , London , UK
| |
Collapse
|
85
|
Rosenthal G, Avidan G. A possible neuronal account for the behavioural heterogeneity in congenital prosopagnosia. Cogn Neuropsychol 2019; 35:74-77. [PMID: 29658411 DOI: 10.1080/02643294.2017.1417248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Gideon Rosenthal
- a Department of Cognitive and Brain Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,b The Zlotowski Center for Neuroscience , Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Galia Avidan
- a Department of Cognitive and Brain Sciences , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,b The Zlotowski Center for Neuroscience , Ben-Gurion University of the Negev , Beer-Sheva , Israel.,c Department of Psychology , Ben-Gurion University of the Negev , Beer-Sheva , Israel
| |
Collapse
|
86
|
Garrido L, Duchaine B, DeGutis J. Association vs dissociation and setting appropriate criteria for object agnosia. Cogn Neuropsychol 2019; 35:55-58. [PMID: 29658418 DOI: 10.1080/02643294.2018.1431875] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Lúcia Garrido
- a Division of Psychology , Brunel University London , Uxbridge , Middlesex , UK
| | - Bradley Duchaine
- b Psychological and Brain Sciences , Dartmouth College , Hanover , NH , USA
| | - Joseph DeGutis
- c Department of Psychiatry , Harvard Medical School, VA Boston Healthcare System , Boston , MA , USA
| |
Collapse
|
87
|
Starrfelt R, Robotham RJ. On the use of cognitive neuropsychological methods in developmental disorders. Cogn Neuropsychol 2019; 35:94-97. [PMID: 29658416 DOI: 10.1080/02643294.2017.1423048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Randi Starrfelt
- a Department of Psychology , University of Copenhagen , Copenhagen , Denmark
| | - Ro Julia Robotham
- a Department of Psychology , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
88
|
de Gelder B, Van den Stock J. Face specificity of developmental prosopagnosia, moving beyond the debate on face specificity. Cogn Neuropsychol 2019; 35:87-89. [PMID: 29658420 DOI: 10.1080/02643294.2018.1441818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Beatrice de Gelder
- a Faculty of Psychology and Neuroscience, Department of Cognitive Neurosciences , Maastricht University , Maastricht , The Netherlands
| | - Jan Van den Stock
- b Department of Neurosciences , Laboratory for Translational Neuropsychiatry , Leuven , Belgium
| |
Collapse
|
89
|
Affiliation(s)
- Adrian Nestor
- a Department of Psychology , University of Toronto at Scarborough , Toronto , ON , Canada
| |
Collapse
|
90
|
The good, the bad, and the average: Characterizing the relationship between face and object processing across the face recognition spectrum. Neuropsychologia 2019; 124:274-284. [DOI: 10.1016/j.neuropsychologia.2018.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
|
91
|
Tests of whole upright face processing in prosopagnosia: A literature review. Neuropsychologia 2018; 121:106-121. [PMID: 30389553 DOI: 10.1016/j.neuropsychologia.2018.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/30/2018] [Accepted: 10/23/2018] [Indexed: 01/15/2023]
Abstract
Prosopagnosia refers to an acquired or developmental deficit in face recognition. This neuropsychological impairment has received increasing attention over the last decade, in particular because of an increased scientific interest in developmental prosopagnosia. Studies investigating prosopagnosia have used a variety of different clinical and experimental tests to assess face processing abilities. With such a large variety of assessment methods available, test selection can be challenging. Some previous works have aimed to provide an overview of tests used to diagnose prosopagnosia. However, no overview that is based on a structured review of the literature is available. We review the literature to identify tests that have been used to assess the processing of whole upright faces in acquired and developmental prosopagnosia over the last five years (2013-2017). We not only review tests that have been used for diagnostic purposes, but also tests that have been used for experimental purposes. Tests are categorised according to i) their experimental designs and, ii) the stage of face processing that they assess. On this basis, we discuss considerations regarding test designs for future studies. A visual illustration providing a structured overview of paradigms available for testing the processing of whole upright faces is provided. This visual illustration can be used to inform test selection when designing a study and to apply a structured approach to interpreting findings from the literature. The different approaches to assessment of face processing in prosopagnosia have been necessary and fruitful in generating data and hypotheses about the cause of face processing deficits. However, impairments at different levels of face processing have often been interpreted as reflecting a deficit in the recognition stage of face processing. Based on the data now available on prosopagnosia, we advocate for a more structured approach to assessment, which may facilitate a better understanding of the key deficits in prosopagnosia and of the level(s) of face processing that are impaired.
Collapse
|
92
|
Gerlach C, Starrfelt R. Delayed processing of global shape information is associated with weaker top-down effects in developmental prosopagnosia. Cogn Neuropsychol 2018; 35:471-478. [PMID: 30204050 DOI: 10.1080/02643294.2018.1519505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In previous studies we have shown that a group of individuals with developmental prosopagnosia (DP): (i) were impaired at recognizing objects when presented as silhouettes or fragmented forms; stimuli which place particular demands on global shape processing, (ii) that these impairments correlated with their face recognition deficit, (iii) that they showed a reduced global precedence effect in Navon's paradigm, and (iv) that the magnitude of their global precedence effect correlated with their face and object recognition performance. This pattern of deficits points towards a delay in the processing of global shape information; a delay that may weaken top-down influences on recognition performance. Here we show that the DPs show reduced real object superiority effects (faster responses to real objects than nonobjects) compared with controls. Given that real object superiority effects reflect top-down processing, these findings support the notion of impaired global shape based top-down processing in DP.
Collapse
Affiliation(s)
- Christian Gerlach
- a Department of Psychology , University of Southern Denmark , Odense , Denmark
| | - Randi Starrfelt
- b Department of Psychology , University of Copenhagen , København , Denmark
| |
Collapse
|
93
|
Rossion B. Damasio's error - Prosopagnosia with intact within-category object recognition. J Neuropsychol 2018; 12:357-388. [PMID: 29845731 DOI: 10.1111/jnp.12162] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/18/2018] [Indexed: 11/29/2022]
Abstract
The sudden inability to recognize individual faces following brain damage was first reported in a scientific journal 150 years ago and termed 'prosopagnosia' 70 years ago. While the term originally identified a face-selective neurological condition, it is now obscured by a sequence of imprecisions. First, prosopagnosia is routinely used to define symptoms of individual face recognition (IFR) difficulties in the context of visual object agnosia or other neurological conditions, or even in the normal population. Second, this over-expansive definition has lent support to a long-standing within-category recognition account of prosopagnosia, that is, that the impairment of IFR reflects a general impairment in recognizing within-category objects. However, stringent experimental studies of classical cases of prosopagnosia following brain damage show that their core impairment is not in recognizing physically similar exemplars within non-face object categories. Instead, the impairment presents specifically for recognizing exemplars of the category of faces. Moreover, compared to typical observers, the impairment appears even more severe for recognizing individual faces against physically dissimilar than similar distractors. Here, I argue that we need to limit accordingly our definition of prosopagnosia to a clinical (i.e., neurological) condition in which there is no basic-level object recognition impairment. Other criteria for prosopagnosia are proposed, with the hope that this conservative definition enables the study of human IFR processes in isolation, and supports progress in understanding the nature of these processes.
Collapse
Affiliation(s)
- Bruno Rossion
- CNRS, CRAN, Université de Lorraine, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-5400, France
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Belgium
| |
Collapse
|
94
|
Developmental prosopagnosics have widespread selectivity reductions across category-selective visual cortex. Proc Natl Acad Sci U S A 2018; 115:E6418-E6427. [PMID: 29941554 DOI: 10.1073/pnas.1802246115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Developmental prosopagnosia (DP) is a neurodevelopmental disorder characterized by severe deficits with facial identity recognition. It is unclear which cortical areas contribute to face processing deficits in DP, and no previous studies have investigated whether other category-selective areas function normally in DP. To address these issues, we scanned 22 DPs and 27 controls using a dynamic localizer consisting of video clips of faces, scenes, bodies, objects, and scrambled objects. We then analyzed category selectivity, a measure of the tuning of a cortical area to a particular visual category. DPs exhibited reduced face selectivity in all 12 face areas, and the reductions were significant in three posterior and two anterior areas. DPs and controls showed similar responses to faces in other category-selective areas, which suggests the DPs' behavioral deficits with faces result from problems restricted to the face network. DPs also had pronounced scene-selectivity reductions in four of six scene-selective areas and marginal body-selectivity reductions in two of four body-selective areas. Our results demonstrate that DPs have widespread deficits throughout the face network, and they are inconsistent with a leading account of DP which proposes that posterior face-selective areas are normal in DP. The selectivity reductions in other category-selective areas indicate many DPs have deficits spread across high-level visual cortex.
Collapse
|
95
|
Ramon M, Sokhn N, Lao J, Caldara R. Decisional space determines saccadic reaction times in healthy observers and acquired prosopagnosia. Cogn Neuropsychol 2018; 35:304-313. [PMID: 29749293 DOI: 10.1080/02643294.2018.1469482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Determining the familiarity and identity of a face have been considered as independent processes. Covert face recognition in cases of acquired prosopagnosia, as well as rapid detection of familiarity have been taken to support this view. We tested P.S. a well-described case of acquired prosopagnosia, and two healthy controls (her sister and daughter) in two saccadic reaction time (SRT) experiments. Stimuli depicted their family members and well-matched unfamiliar distractors in the context of binary gender, or familiarity decisions. Observers' minimum SRTs were estimated with Bayesian approaches. For gender decisions, P.S. and her daughter achieved sufficient performance, but displayed different SRT distributions. For familiarity decisions, her daughter exhibited above chance level performance and minimum SRTs corresponding to those reported previously in healthy observers, while P.S. performed at chance. These findings extend previous observations, indicating that decisional space determines performance in both the intact and impaired face processing system.
Collapse
Affiliation(s)
- Meike Ramon
- a Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology , University of Fribourg , Fribourg , Switzerland
| | - Nayla Sokhn
- a Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology , University of Fribourg , Fribourg , Switzerland
| | - Junpeng Lao
- a Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology , University of Fribourg , Fribourg , Switzerland
| | - Roberto Caldara
- a Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology , University of Fribourg , Fribourg , Switzerland
| |
Collapse
|
96
|
Collins E, Dundas E, Gabay Y, Plaut DC, Behrmann M. Hemispheric Organization in Disorders of Development. VISUAL COGNITION 2017; 25:416-429. [PMID: 30464702 DOI: 10.1080/13506285.2017.1370430] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A recent theoretical account posits that, during the acquisition of word recognition in childhood, the pressure to couple visual and language representations in the left hemisphere (LH) results in competition with the LH representation of faces, which consequently become largely, albeit not exclusively, lateralized to the right hemisphere (RH). We explore predictions from this hypothesis using a hemifield behavioral paradigm with words and faces as stimuli, with concurrent ERP measurement, in a group of adults with developmental dyslexia (DD) or with congenital prosopagnosia (CP), and matched control participants. Behaviorally, the DD group exhibited clear deficits in both word and face processing relative to controls, while the CP group showed a specific deficit in face processing only. This pattern was mirrored in the ERP data too. The DD group evinced neither the normal ERP pattern of RH dominance for faces nor the LH dominance for words. In contrast, the CP group showed the typical ERP superiority for words in the LH but did not show the typical RH superiority for faces. These findings are consistent with the hypothesis that the typical hemispheric organization for words can develop in the absence of typical hemispheric organization for faces but not vice versa, supporting the account of interactive perceptual development.
Collapse
Affiliation(s)
- Elliot Collins
- Department of Psychology, Carnegie Mellon University and Center for the Neural Basis of Cognition, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890.,School of Medicine, University of Pittsburgh, 3550 Terrace St, Pittsburgh, PA, 15213
| | - Eva Dundas
- Department of Psychology, Carnegie Mellon University and Center for the Neural Basis of Cognition, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890
| | - Yafit Gabay
- Department of Psychology, Carnegie Mellon University and Center for the Neural Basis of Cognition, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890.,Department of Special Education, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, Israel
| | - David C Plaut
- Department of Psychology, Carnegie Mellon University and Center for the Neural Basis of Cognition, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University and Center for the Neural Basis of Cognition, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890
| |
Collapse
|
97
|
Liu TT, Behrmann M. Functional outcomes following lesions in visual cortex: Implications for plasticity of high-level vision. Neuropsychologia 2017; 105:197-214. [PMID: 28668576 DOI: 10.1016/j.neuropsychologia.2017.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022]
Abstract
Understanding the nature and extent of neural plasticity in humans remains a key challenge for neuroscience. Importantly, however, a precise characterization of plasticity and its underlying mechanism has the potential to enable new approaches for enhancing reorganization of cortical function. Investigations of the impairment and subsequent recovery of cognitive and perceptual functions following early-onset cortical lesions in humans provide a unique opportunity to elucidate how the brain changes, adapts, and reorganizes. Specifically, here, we focus on restitution of visual function, and we review the findings on plasticity and re-organization of the ventral occipital temporal cortex (VOTC) in published reports of 46 patients with a lesion to or resection of the visual cortex early in life. Findings reveal that a lesion to the VOTC results in a deficit that affects the visual recognition of more than one category of stimuli (faces, objects and words). In addition, the majority of pediatric patients show limited recovery over time, especially those in whom deficits in low-level vision also persist. Last, given that neither the equipotentiality nor the modularity view on plasticity was clearly supported, we suggest some intermediate possibilities in which some plasticity may be evident but that this might depend on the area that was affected, its maturational trajectory as well as its structural and functional connectivity constraints. Finally, we offer suggestions for future research that can elucidate plasticity further.
Collapse
Affiliation(s)
- Tina T Liu
- Department of Psychology, and, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Marlene Behrmann
- Department of Psychology, and, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|