51
|
Gonçalves S, Mansinhos I, Rodríguez-Solana R, Pereira-Caro G, Moreno-Rojas JM, Romano A. Impact of Metallic Nanoparticles on In Vitro Culture, Phenolic Profile and Biological Activity of Two Mediterranean Lamiaceae Species: Lavandula viridis L'Hér and Thymus lotocephalus G. López and R. Morales. Molecules 2021; 26:molecules26216427. [PMID: 34770836 PMCID: PMC8587770 DOI: 10.3390/molecules26216427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles (NPs) recently emerged as new chemical elicitors acting as signaling agents affecting several processes in plant metabolism. The aim of this work was to investigate the impact of the addition of copper oxide (CuO), zinc oxide (ZnO) and iron oxide (Fe3O4) NPs (<100 nm) at different concentrations (1, 5 and 10 mg/L) to the culture media on several morphological, physiological and -biochemical parameters of in vitro shoot cultures of Lavandula viridis L’Hér and Thymus lotocephalus G. López and R. Morales (Lamiaceae), as well as on phenolic profile and bioactivity (antioxidant and enzyme inhibition capacities). Although some decreases in shoot number and length were observed in response to NPs, biomass production was not affected or was improved in both species. Most NPs treatments decreased total chlorophyll and carotenoid contents and increased malondialdehyde levels, an indicator of lipid peroxidation, in both species. HPLC-HR-MS analysis led to the identification of thirteen and twelve phenolic compounds, respectively, in L. viridis and T. lotocephalus extracts, being rosmarinic acid the major compound found in all the extracts. ZnO and Fe3O4 NPs induced an increase in total phenolic and rosmarinic acid contents in T. lotocephalus extracts. Additionally, some NPs treatments also increased antioxidant activity in extracts from this species and the opposite was observed for L. viridis. The capacity of the extracts to inhibit tyrosinase, acetylcholinesterase and butyrylcholinesterase enzymes was not considerably affected. Overall, NPs had a significant impact on different parameters of L. viridis and T. lotocephalus in vitro shoot cultures, although the results varied with the species and NPs type.
Collapse
Affiliation(s)
- Sandra Gonçalves
- MED-Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (I.M.); or (R.R.-S.)
- Correspondence: (S.G.); (A.R.); Tel.: +351-289800910 (A.R.)
| | - Inês Mansinhos
- MED-Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (I.M.); or (R.R.-S.)
| | - Raquel Rodríguez-Solana
- MED-Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (I.M.); or (R.R.-S.)
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain; (G.P.-C.); (J.M.M.-R.)
| | - Gema Pereira-Caro
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain; (G.P.-C.); (J.M.M.-R.)
| | - José Manuel Moreno-Rojas
- Department of Food Science and Health, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Avenida Menendez-Pidal, SN, 14004 Córdoba, Spain; (G.P.-C.); (J.M.M.-R.)
| | - Anabela Romano
- MED-Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (I.M.); or (R.R.-S.)
- Correspondence: (S.G.); (A.R.); Tel.: +351-289800910 (A.R.)
| |
Collapse
|
52
|
Methyl Jasmonate Effect on Betulinic Acid Content and Biological Properties of Extract from Senna obtusifolia Transgenic Hairy Roots. Molecules 2021; 26:molecules26206208. [PMID: 34684788 PMCID: PMC8540613 DOI: 10.3390/molecules26206208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
It is known that Senna obtusifolia has been used in medicine since ancient times due to the content of many valuable compounds with a pro-health effect. One of them is betulinic acid, which is a pentacyclic triterpene with antimalarial, antiviral, anti-inflammatory and anticancer properties. In this work, a continuation of our previous research, an attempt was made to increase the level of betulinic acid accumulation by the cultivation of transgenic hairy roots that overexpress the squalene synthase gene in a 10 L sprinkle bioreactor with methyl jasmonate elicitation. We present that the applied strategy allowed us to increase the content of betulinic acid in hairy root cultures to the level of 48 mg/g dry weight. The obtained plant extracts showed a stronger cytotoxic effect on the U87MG glioblastoma cell line than the roots grown without elicitors. Additionally, the induction of apoptosis, reduction of mitochondrial membrane potential, chromosomal DNA fragmentation and activation of caspase cascades are demonstrated. Moreover, the tested extract showed inhibition of topoisomerase I activity.
Collapse
|
53
|
Cytokinin-Based Tissue Cultures for Stable Medicinal Plant Production: Regeneration and Phytochemical Profiling of Salvia bulleyana Shoots. Biomolecules 2021; 11:biom11101513. [PMID: 34680145 PMCID: PMC8533636 DOI: 10.3390/biom11101513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Salvia bulleyana is a rare Chinese medicinal plant that due to the presence of polyphenols lowers the risk of some chronic diseases especially those related to the cardiovascular system. The present study examines the organogenic competence of various combinations and concentrations of plant growth regulators to develop an efficient protocol for in vitro regeneration of S. bulleyana via leaf explants, maintaining the high production of active constituents. The purpose of the study was also to assess the possibilities of using a cytokinin-based regeneration to effectively produce therapeutic compounds. The adventitious shoot formation was observed through direct organogenesis on media with purine derivatives (meta-topolin, mT and benzylaminopurine, BAP), and through indirect organogenesis on media with urea derivatives (tidiazuron, TDZ and forchlorfenuron, CPPU). The highest regeneration frequency (95%) with 5.2 shoots per explant was obtained on leaves cultured on Murashige and Skoog (MS) medium containing 0.1 mg/L naphthalene-1-acetic acid (NAA) and 2 mg/L BAP. Following inter simple sequence repeat (ISSR) marker-based profiling, the obtained organogenic shoot lines revealed a similar banding pattern to the mother line, with total variability of 4.2–13.7%, indicating high level of genetic stability. The similar genetic profile of the studied lines translated into similar growth parameters. Moreover, HPLC analysis revealed no qualitative differences in the profile of bioactive metabolites; also, the total polyphenol content was similar for different lines, with the exception of the shoots obtained in the presence of CPPU that produced higher level of bioactive compounds. This is the first report of an effective and rapid in vitro organogenesis protocol for S. bulleyana, which can be efficiently employed for obtaining stable cultures rich in bioactive metabolites.
Collapse
|
54
|
Production of bioactive plant secondary metabolites through in vitro technologies-status and outlook. Appl Microbiol Biotechnol 2021; 105:6649-6668. [PMID: 34468803 PMCID: PMC8408309 DOI: 10.1007/s00253-021-11539-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/31/2022]
Abstract
Medicinal plants have been used by mankind since ancient times, and many bioactive plant secondary metabolites are applied nowadays both directly as drugs, and as raw materials for semi-synthetic modifications. However, the structural complexity often thwarts cost-efficient chemical synthesis, and the usually low content in the native plant necessitates the processing of large amounts of field-cultivated raw material. The biotechnological manufacturing of such compounds offers a number of advantages like predictable, stable, and year-round sustainable production, scalability, and easier extraction and purification. Plant cell and tissue culture represents one possible alternative to the extraction of phytochemicals from plant material. Although a broad commercialization of such processes has not yet occurred, ongoing research indicates that plant in vitro systems such as cell suspension cultures, organ cultures, and transgenic hairy roots hold a promising potential as sources for bioactive compounds. Progress in the areas of biosynthetic pathway elucidation and genetic manipulation has expanded the possibilities to utilize plant metabolic engineering and heterologous production in microorganisms. This review aims to summarize recent advances in the in vitro production of high-value plant secondary metabolites of medicinal importance. Key points • Bioactive plant secondary metabolites are important for current and future use in medicine • In vitro production is a sustainable alternative to extraction from plants or costly chemical synthesis • Current research addresses plant cell and tissue culture, metabolic engineering, and heterologous production
Collapse
|
55
|
Gurav TP, Dholakia BB, Giri AP. A glance at the chemodiversity of Ocimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2021; 21:879-913. [PMID: 34366748 PMCID: PMC8326315 DOI: 10.1007/s11101-021-09767-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/08/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Ocimum species represent commercially important medicinal and aromatic plants. The essential oil biosynthesized by Ocimum species is enriched with specialized metabolites specifically, terpenoids and phenylpropanoids. Interestingly, various Ocimum species are known to exhibit diverse chemical profiles, and this chemical diversity has been at the center of many studies to identify commercially important chemotypes. Here, we present various chemotypes from the Ocimum species and emphasize trends, implications, and strategies for the quality and yield improvement of essential oil. Globally, many Ocimum species have been analyzed for their essential oil composition in over 50 countries. Asia represents the highest number of chemotypes, followed by Africa, South America, and Europe. Ocimum basilicum L. has been the most widespread and well-studied species, followed by O. gratissimum L., O. tenuiflorum L., O. canum Sims, O. americanum and O. kilimandscharicum Gürke. Moreover, various molecular reasons, benefits, adverse health effects and mechanisms behind this vast chemodiversity have been discussed. Different strategies of plant breeding, metabolic engineering, transgenic, and tissue-culture, along with anatomical modifications, are surveyed to enhance specific chemotypic profiles and essential oil yield in numerous Ocimum species. Consequently, chemical characterization of the essential oil obtained from Ocimum species has become indispensable for its proper utilization. The present chemodiversity knowledge from Ocimum species will help to exploit various applications in the industrial, agriculture, biopharmaceutical, and food sectors. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-021-09767-z.
Collapse
Affiliation(s)
- Tanuja P. Gurav
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002 India
| | | | - Ashok P. Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
56
|
Activation of Cryptic Secondary Metabolite Biosynthesis in Bamboo Suspension Cells by a Histone Deacetylase Inhibitor. Appl Biochem Biotechnol 2021; 193:3496-3511. [PMID: 34287751 DOI: 10.1007/s12010-021-03629-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Plants have evolved a diverse array of secondary metabolite biosynthetic pathways. Undifferentiated plant cells, however, tend to biosynthesize secondary metabolites to a lesser extent and sometimes not at all. This phenomenon in cultured cells is associated with the transcriptional suppression of biosynthetic genes due to epigenetic alterations, such as low histone acetylation levels and/or high DNA methylation levels. Here, using cultured cells of bamboo (Bambusa multiplex; Bm) as a model system, we investigated the effect of histone deacetylase (HDAC) inhibitors on the activation of cryptic secondary metabolite biosynthesis. The Bm suspension cells cultured in the presence of an HDAC inhibitor, suberoyl bis-hydroxamic acid (SBHA), exhibited strong biosynthesis of some compounds that are inherently present at very low levels in Bm cells. Two major compounds induced by SBHA were isolated and were identified as 3-O-p-coumaroylquinic acid (1) and 3-O-feruloylquinic acid (2). Their productivities depended on the type of basal culture medium, initial cell density, and culture period, as well as the SBHA concentration. The biosynthesis of these two compounds was also induced by another HDAC inhibitor, trichostatin A. These results demonstrate the usefulness of HDAC inhibitors to activate cryptic secondary metabolite biosynthesis in cultured plant cells.
Collapse
|
57
|
Süntar I, Çetinkaya S, Haydaroğlu ÜS, Habtemariam S. Bioproduction process of natural products and biopharmaceuticals: Biotechnological aspects. Biotechnol Adv 2021; 50:107768. [PMID: 33974980 DOI: 10.1016/j.biotechadv.2021.107768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Decades of research have been put in place for developing sustainable routes of bioproduction of high commercial value natural products (NPs) on the global market. In the last few years alone, we have witnessed significant advances in the biotechnological production of NPs. The development of new methodologies has resulted in a better understanding of the metabolic flux within the organisms, which have driven manipulations to improve production of the target product. This was further realised due to the recent advances in the omics technologies such as genomics, transcriptomics, proteomics, metabolomics and secretomics, as well as systems and synthetic biology. Additionally, the combined application of novel engineering strategies has made possible avenues for enhancing the yield of these products in an efficient and economical way. Invention of high-throughput technologies such as next generation sequencing (NGS) and toolkits for genome editing Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) have been the game changers and provided unprecedented opportunities to generate rationally designed synthetic circuits which can produce complex molecules. This review covers recent advances in the engineering of various hosts for the production of bioactive NPs and biopharmaceuticals. It also highlights general approaches and strategies to improve their biosynthesis with higher yields in a perspective of plants and microbes (bacteria, yeast and filamentous fungi). Although there are numerous reviews covering this topic on a selected species at a time, our approach herein is to give a comprehensive understanding about state-of-art technologies in different platforms of organisms.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Etiler, Ankara, Turkey.
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Ülkü Selcen Haydaroğlu
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| |
Collapse
|
58
|
Koycheva IK, Vasileva LV, Amirova KM, Marchev AS, Balcheva-Sivenova ZP, Georgiev MI. Biotechnologically Produced Lavandula angustifolia Mill. Extract Rich in Rosmarinic Acid Resolves Psoriasis-Related Inflammation Through Janus Kinase/Signal Transducer and Activator of Transcription Signaling. Front Pharmacol 2021; 12:680168. [PMID: 33986690 PMCID: PMC8111009 DOI: 10.3389/fphar.2021.680168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is a common skin pathology, characterized by dysregulation of epidermal keratinocyte function attended by persistent inflammation, suggesting that molecules with anti-inflammatory potential may be effective for its management. Rosmarinic acid (RA) is a natural bioactive molecule known to have an anti-inflammatory potential. Here we examined the effect of biotechnologically produced cell suspension extract of Lavandula angustifolia Mill (LV) high in RA content as treatment for psoriasis-associated inflammation in human keratinocytes. Regulatory genes from the nuclear factor kappa B (NF-κB) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways were upregulated upon stimulation with a combination of interferon gamma (IFN-γ), interleukin (IL)-17A and IL-22. We also observed that both LV extract and RA could inhibit JAK2, leading to reduced STAT1 phosphorylation. Further, we demonstrated that LV extract inhibited phosphoinositide 3-kinases (PI3K) and protein kinase B (AKT), which could be implicated in reduced hyperproliferation in keratinocytes. Collectively, these findings indicate that the biotechnologically produced LV extract resolved psoriasis-like inflammation in human keratinocytes by interfering the JAK2/STAT1 signaling pathway and its effectiveness is due to its high content of RA (10%). Hence, both LV extract and pure RA possess the potential to be incorporated in formulations for topical application as therapeutic approach against psoriasis.
Collapse
Affiliation(s)
- Ivanka K Koycheva
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Liliya V Vasileva
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Kristiana M Amirova
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Andrey S Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zhivka P Balcheva-Sivenova
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Milen I Georgiev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
59
|
Balestrini R, Brunetti C, Cammareri M, Caretto S, Cavallaro V, Cominelli E, De Palma M, Docimo T, Giovinazzo G, Grandillo S, Locatelli F, Lumini E, Paolo D, Patanè C, Sparvoli F, Tucci M, Zampieri E. Strategies to Modulate Specialized Metabolism in Mediterranean Crops: From Molecular Aspects to Field. Int J Mol Sci 2021; 22:2887. [PMID: 33809189 PMCID: PMC7999214 DOI: 10.3390/ijms22062887] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Cecilia Brunetti
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Maria Cammareri
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Sofia Caretto
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Valeria Cavallaro
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Eleonora Cominelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Monica De Palma
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Teresa Docimo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Giovanna Giovinazzo
- CNR-Institute of Sciences of Food Production, Via Monteroni, 73100 Lecce, Italy; (S.C.); (G.G.)
| | - Silvana Grandillo
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Franca Locatelli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Erica Lumini
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| | - Dario Paolo
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Cristina Patanè
- CNR-Institute of Bioeconomy (IBE), Via Paolo Gaifami, 18, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Francesca Sparvoli
- CNR-Institute of Agricultural Biology and Biotechnology, Via Edoardo Bassini 15, 20133 Milan, Italy; (E.C.); (F.L.); (D.P.); (F.S.)
| | - Marina Tucci
- CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133, 80055 Portici, Italy; (M.C.); (M.D.P.); (T.D.); (S.G.); (M.T.)
| | - Elisa Zampieri
- National Research Council (CNR)-Institute of Sustainable Plant Protection (IPSP), Viale Mattioli 25 and Strada delle Cacce 73, 10125 and 10135 Torino, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (C.B.); (E.L.); (E.Z.)
| |
Collapse
|
60
|
Khan T, Khan MA, Karam K, Ullah N, Mashwani ZUR, Nadhman A. Plant in vitro Culture Technologies; A Promise Into Factories of Secondary Metabolites Against COVID-19. FRONTIERS IN PLANT SCIENCE 2021; 12:610194. [PMID: 33777062 PMCID: PMC7994895 DOI: 10.3389/fpls.2021.610194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/15/2021] [Indexed: 05/11/2023]
Abstract
The current pandemic has caused chaos throughout the world. While there are few vaccines available now, there is the need for better treatment alternatives in line with preventive measures against COVID-19. Along with synthetic chemical compounds, phytochemicals cannot be overlooked as candidates for drugs against severe respiratory coronavirus 2 (SARS-CoV-2). The important role of secondary metabolites or phytochemical compounds against coronaviruses has been confirmed by studies that reported the anti-coronavirus role of glycyrrhizin from the roots of Glycyrrhiza glabra. The study demonstrated that glycyrrhizin is a very promising phytochemical against SARS-CoV, which caused an outbreak in 2002-2003. Similarly, many phytochemical compounds (apigenin, betulonic acid, reserpine, emodin, etc.) were isolated from different plants such as Isatis indigotica, Lindera aggregate, and Artemisia annua and were employed against SARS-CoV. However, owing to the geographical and seasonal variation, the quality of standard medicinal compounds isolated from plants varies. Furthermore, many of the important medicinal plants are either threatened or on the verge of endangerment because of overharvesting for medicinal purposes. Therefore, plant biotechnology provides a better alternative in the form of in vitro culture technology, including plant cell cultures, adventitious roots cultures, and organ and tissue cultures. In vitro cultures can serve as factories of secondary metabolites/phytochemicals that can be produced in bulk and of uniform quality in the fight against COVID-19, once tested. Similarly, environmental and molecular manipulation of these in vitro cultures could provide engineered drug candidates for testing against COVID-19. The in vitro culture-based phytochemicals have an additional benefit of consistency in terms of yield as well as quality. Nonetheless, as the traditional plant-based compounds might prove toxic in some cases, engineered production of promising phytochemicals can bypass this barrier. Our article focuses on reviewing the potential of the different in vitro plant cultures to produce medicinally important secondary metabolites that could ultimately be helpful in the fight against COVID-19.
Collapse
Affiliation(s)
- Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Mubarak Ali Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Kashmala Karam
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Nazif Ullah
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Zia-ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University, Peshawar, Pakistan
| |
Collapse
|
61
|
Tiwari P, Khare T, Shriram V, Bae H, Kumar V. Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnol Adv 2021; 48:107729. [PMID: 33705914 DOI: 10.1016/j.biotechadv.2021.107729] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Inappropriate and injudicious use of antimicrobial drugs in human health, hygiene, agriculture, animal husbandry and food industries has contributed significantly to rapid emergence and persistence of antimicrobial resistance (AMR), one of the serious global public health threats. The crisis of AMR versus slower discovery of newer antibiotics put forth a daunting task to control these drug-resistant superbugs. Several phyto-antimicrobials have been identified in recent years with direct-killing (bactericidal) and/or drug-resistance reversal (re-sensitization of AMR phenotypes) potencies. Phyto-antimicrobials may hold the key in combating AMR owing to their abilities to target major microbial drug-resistance determinants including cell membrane, drug-efflux pumps, cell communication and biofilms. However, limited distribution, low intracellular concentrations, eco-geographical variations, beside other considerations like dynamic environments, climate change and over-exploitation of plant-resources are major blockades in full potential exploration phyto-antimicrobials. Synthetic biology (SynBio) strategies integrating metabolic engineering, RNA-interference, genome editing/engineering and/or systems biology approaches using plant chassis (as engineerable platforms) offer prospective tools for production of phyto-antimicrobials. With expanding SynBio toolkit, successful attempts towards introduction of entire gene cluster, reconstituting the metabolic pathway or transferring an entire metabolic (or synthetic) pathway into heterologous plant systems highlight the potential of this field. Through this perspective review, we are presenting herein the current situation and options for addressing AMR, emphasizing on the significance of phyto-antimicrobials in this apparently post-antibiotic era, and effective use of plant chassis for phyto-antimicrobial production at industrial scales along with major SynBio tools and useful databases. Current knowledge, recent success stories, associated challenges and prospects of translational success are also discussed.
Collapse
Affiliation(s)
- Pragya Tiwari
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune University, Akurdi, Pune 411044, India
| | - Hanhong Bae
- Molecular Metabolic Engineering Lab, Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
62
|
Application of Plant Growth Regulators Modulates the Profile of Chlorogenic Acids in Cultured Bidens pilosa Cells. PLANTS 2021; 10:plants10030437. [PMID: 33668870 PMCID: PMC7996306 DOI: 10.3390/plants10030437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/05/2022]
Abstract
Plant cell culture offers an alternative to whole plants for the production of biologically important specialised metabolites. In cultured plant cells, manipulation by auxin and cytokinin plant growth regulators (PGRs) may lead to in vitro organogenesis and metabolome changes. In this study, six different combination ratios of 2,4-dichlorophenoxyacetic acid (2,4-D) and benzylaminopurine (BAP) were investigated with the aim to induce indirect organogenesis from Bidens pilosa callus and to investigate the associated induced changes in the metabolomes of these calli. Phenotypic appearance of the calli and total phenolic contents of hydromethanolic extracts indicated underlying biochemical differences that were investigated using untargeted metabolomics, based on ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC–qTOF–MS), combined with multivariate data analysis. The concentration and combination ratios of PGRs were shown to induce differential metabolic responses and, thus, distinct metabolomic profiles, dominated by chlorogenic acids consisting of caffeoyl- and feruloyl-derivatives of quinic acid. Although organogenesis was not achieved, the results demonstrate that exogenous application PGRs can be used to manipulate the metabolome of B. pilosa for in vitro production of specialised metabolites with purported pharmacological properties.
Collapse
|
63
|
Devi J, Kumar R, Singh K, Gehlot A, Bhushan S, Kumar S. In vitro adventitious roots: a non-disruptive technology for the production of phytoconstituents on the industrial scale. Crit Rev Biotechnol 2021; 41:564-579. [PMID: 33586555 DOI: 10.1080/07388551.2020.1869690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The current trends of consumer-driven demands for natural therapeutics and the availability of evidence-based phytopharmaceuticals from traditional knowledge has once again brought the medicinal plants into forefront of health. In 2019, World Health Organization global report on traditional and complementary medicine has also substantiated the revival of herbal medicine including its convergence with conventional medicine for the management and prevention of diseases. It means these industries need plenty of plant materials to meet the unprecedented demands of herbal formulations. However, it is pertinent to mention here that around 70-80% medicinal plants are sourced from the wild and most of such highly acclaimed plants are listed under Rare, Endangered and Threatened species by IUCN. Additionally, over 30% traditional health formulations are based on underground plant parts, which lead to the uprooting of plants. Overharvesting from limited plant populations, meager conventional cultivation and a rising fondness for natural products exerting enormous pressure on natural habitats. Therefore, the nondestructive means of phytochemical production employing biotechnological tools could be used for sustainable production and consumption patterns. In recent years, a number of reports described the use of adventitious roots induced under in vitro conditions for the extraction of phytochemicals on a sustainable basis. In this article, efforts are made to review recent developments in this area as well as understand the induction mechanisms of adventitious roots, their in vitro cultivation, probable factors that affect the growth and metabolite production, and assess the possibility of industrial scale production to meet the rising demands of natural herbs.
Collapse
Affiliation(s)
- Jyoti Devi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Roushan Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Khem Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Ashok Gehlot
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Shashi Bhushan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Dietetics and Nutrition Technology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Sanjay Kumar
- CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| |
Collapse
|
64
|
Nano-Elicitation as an Effective and Emerging Strategy for In Vitro Production of Industrially Important Flavonoids. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041694] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Flavonoids represent a popular class of industrially important bioactive compounds. They possess valuable health-benefiting and disease preventing properties, and therefore they are an important component of the pharmaceutical, nutraceutical, cosmetical and medicinal industries. Moreover, flavonoids possess significant antiallergic, antihepatotoxic, anti-inflammatory, antioxidant, antitumor, antiviral, and antibacterial as well as cardio-protective activities. Due to these properties, there is a rise in global demand for flavonoids, forming a significant part of the world market. However, obtaining flavonoids directly from plants has some limitations, such as low quantity, poor extraction, over-exploitation, time consuming process and loss of flora. Henceforth, there is a shift towards the in vitro production of flavonoids using the plant tissue culture technique to achieve better yields in less time. In order to achieve the productivity of flavonoids at an industrially competitive level, elicitation is a useful tool. The elicitation of in vitro cultures induces stressful conditions to plants, activates the plant defense system and enhances the accumulation of secondary metabolites in higher quantities. In this regard, nanoparticles (NPs) have emerged as novel and effective elicitors for enhancing the in vitro production of industrially important flavonoids. Different classes of NPs, including metallic NPs (silver and copper), metallic oxide NPs (copper oxide, iron oxide, zinc oxide, silicon dioxide) and carbon nanotubes, are widely reported as nano-elicitors of flavonoids discussed herein. Lastly, the mechanisms of NPs as well as knowledge gaps in the area of the nano-elicitation of flavonoids have been highlighted in this review.
Collapse
|
65
|
Amirova KM, Dimitrova PA, Marchev AS, Krustanova SV, Simova SD, Alipieva KI, Georgiev MI. Biotechnologically-Produced Myconoside and Calceolarioside E Induce Nrf2 Expression in Neutrophils. Int J Mol Sci 2021; 22:1759. [PMID: 33578811 PMCID: PMC7916618 DOI: 10.3390/ijms22041759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022] Open
Abstract
The pathological manifestation of various diseases can be suppressed by the activation of nuclear factor erythroid 2 p45-related factor 2 (Nrf2), a transcriptional regulator of the cellular redox balance. Haberlea rhodopensis Friv. is a resurrection plant species endemic for Bulgaria, containing biologically active phenylethanoid glycosides that might possess antioxidant or redox activity. This study aimed to analyze the metabolic profile of in vitro cultured H. rhodopensis and to identify molecules that increase Nrf2 expression in bone marrow neutrophils. Fractions B, D, and E containing myconoside, or myconoside and calceolarioside E in ratios 1:0.6 and 0.25:1 were found to be the most active ones. Fraction B (200 µg/mL) improved neutrophil survival and strongly increased the Nrf2 intracellular level, while D and E, as well as, myconoside and calceolarioside E at the same ratios had a superior effect. Calceolarioside E (32 µg/mL) had stronger activity than myconoside, the effect of which was very similar to that of 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me), used as a positive control. These data indicate that both molecules, used alone or in combination have stimulatory activity on the endogenous Nrf2 level, indicating their therapeutic potential to regulate the cellular redox homeostasis oxidative stress-associated pathologies.
Collapse
Affiliation(s)
- Kristiana M. Amirova
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria; (K.M.A.); (A.S.M.)
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Petya A. Dimitrova
- Laboratory of Experimental Immunotherapy, Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria;
| | - Andrey S. Marchev
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria; (K.M.A.); (A.S.M.)
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Slaveya V. Krustanova
- Institute of Organic Chemistry with Center of Phytochemistry, Bulgarian Academy of Sciences, 9 Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.V.K.); (S.D.S.); (K.I.A.)
| | - Svetlana D. Simova
- Institute of Organic Chemistry with Center of Phytochemistry, Bulgarian Academy of Sciences, 9 Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.V.K.); (S.D.S.); (K.I.A.)
| | - Kalina I. Alipieva
- Institute of Organic Chemistry with Center of Phytochemistry, Bulgarian Academy of Sciences, 9 Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.V.K.); (S.D.S.); (K.I.A.)
| | - Milen I. Georgiev
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria; (K.M.A.); (A.S.M.)
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| |
Collapse
|
66
|
Rónavári A, Igaz N, Adamecz DI, Szerencsés B, Molnar C, Kónya Z, Pfeiffer I, Kiricsi M. Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules 2021; 26:844. [PMID: 33562781 PMCID: PMC7915205 DOI: 10.3390/molecules26040844] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The nanomaterial industry generates gigantic quantities of metal-based nanomaterials for various technological and biomedical applications; however, concomitantly, it places a massive burden on the environment by utilizing toxic chemicals for the production process and leaving hazardous waste materials behind. Moreover, the employed, often unpleasant chemicals can affect the biocompatibility of the generated particles and severely restrict their application possibilities. On these grounds, green synthetic approaches have emerged, offering eco-friendly, sustainable, nature-derived alternative production methods, thus attenuating the ecological footprint of the nanomaterial industry. In the last decade, a plethora of biological materials has been tested to probe their suitability for nanomaterial synthesis. Although most of these approaches were successful, a large body of evidence indicates that the green material or entity used for the production would substantially define the physical and chemical properties and as a consequence, the biological activities of the obtained nanomaterials. The present review provides a comprehensive collection of the most recent green methodologies, surveys the major nanoparticle characterization techniques and screens the effects triggered by the obtained nanomaterials in various living systems to give an impression on the biomedical potential of green synthesized silver and gold nanoparticles.
Collapse
Affiliation(s)
- Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., H-6720 Szeged, Hungary; (A.R.); (Z.K.)
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| | - Dóra I. Adamecz
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| | - Bettina Szerencsés
- Department of Microbiology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (B.S.); (I.P.)
| | - Csaba Molnar
- Broad Institute of MIT and Harvard, Cambridge, 415 Main St, Cambridge, MA 02142, USA;
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., H-6720 Szeged, Hungary; (A.R.); (Z.K.)
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1., H-6720 Szeged, Hungary
| | - Ilona Pfeiffer
- Department of Microbiology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (B.S.); (I.P.)
| | - Monika Kiricsi
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| |
Collapse
|
67
|
Arroo RRJ, Bhambra AS, Hano C, Renda G, Ruparelia KC, Wang MF. Analysis of plant secondary metabolism using stable isotope-labelled precursors. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:62-68. [PMID: 32706176 DOI: 10.1002/pca.2955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Analysis of biochemical pathways typically involves feeding a labelled precursor to an organism, and then monitoring the metabolic fate of the label. Initial studies used radioisotopes as a label and then monitored radioactivity in the metabolic products. As analytical equipment improved and became more widely available, preference shifted the use stable 'heavy' isotopes like deuterium (2 H)-, carbon-13 (13 C)- and nitrogen-15 (15 N)-atoms as labels. Incorporation of the labels could be monitored by mass spectrometry (MS), as part of a hyphenated tool kits, e.g. Liquid chromatography (LC)-MS, gas chromatography (GC)-MS, LC-MS/MS. MS offers great sensitivity but the exact location of an isotope label in a given metabolite cannot always be unambiguously established. Nuclear magnetic resonance (NMR) can also be used to pick up signals of stable isotopes, and can give information on the precise location of incorporated label in the metabolites. However, the detection limit for NMR is quite a bit higher than that for MS. OBJECTIVES A number of experiments involving feeding stable isotope-labelled precursors followed by NMR analysis of the metabolites is presented. The aim is to highlight the use of NMR analysis in identifying the precise fate of isotope labels after precursor feeding experiments. As more powerful NMR equipment becomes available, applications as described in this review may become more commonplace in pathway analysis. CONCLUSION AND PROSPECTS NMR is a widely accepted tool for chemical structure elucidation and is now increasingly used in metabolomic studies. In addition, NMR, combined with stable isotope feeding, should be considered as a tool for metabolic flux analyses.
Collapse
Affiliation(s)
- Randolph R J Arroo
- Faculty of Health & Life Sciences, De Montfort University, Leicester, UK
| | - Avninder S Bhambra
- Faculty of Health & Life Sciences, De Montfort University, Leicester, UK
| | | | - Gülin Renda
- Faculty of Pharmacy, Karadeniz Technical University, Ortahisar/Trabzon, Turkey
| | - Ketan C Ruparelia
- Faculty of Health & Life Sciences, De Montfort University, Leicester, UK
| | - Meng F Wang
- Faculty of Health & Life Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
68
|
Ghag SB, Adki VS, Ganapathi TR, Bapat VA. Plant Platforms for Efficient Heterologous Protein Production. BIOTECHNOL BIOPROC E 2021; 26:546-567. [PMID: 34393545 PMCID: PMC8346785 DOI: 10.1007/s12257-020-0374-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Production of recombinant proteins is primarily established in cultures of mammalian, insect and bacterial cells. Concurrently, concept of using plants to produce high-value pharmaceuticals such as vaccines, antibodies, and dietary proteins have received worldwide attention. Newer technologies for plant transformation such as plastid engineering, agroinfiltration, magnifection, and deconstructed viral vectors have been used to enhance the protein production in plants along with the inherent advantage of speed, scale, and cost of production in plant systems. Production of therapeutic proteins in plants has now a more pragmatic approach when several plant-produced vaccines and antibodies successfully completed Phase I clinical trials in humans and were further scheduled for regulatory approvals to manufacture clinical grade products on a large scale which are safe, efficacious, and meet the quality standards. The main thrust of this review is to summarize the data accumulated over the last two decades and recent development and achievements of the plant derived therapeutics. It also attempts to discuss different strategies employed to increase the production so as to make plants more competitive with the established production systems in this industry.
Collapse
Affiliation(s)
- Siddhesh B. Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz, Mumbai, 400098 India
| | - Vinayak S. Adki
- V. G. Shivdare College of Arts, Commerce and Science, Solapur, Maharashtra 413004 India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Vishwas A. Bapat
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
69
|
García-Pérez P, Lozano-Milo E, Landin M, Gallego PP. From Ethnomedicine to Plant Biotechnology and Machine Learning: The Valorization of the Medicinal Plant Bryophyllum sp. PHARMACEUTICALS (BASEL, SWITZERLAND) 2020; 13:ph13120444. [PMID: 33291844 PMCID: PMC7762000 DOI: 10.3390/ph13120444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022]
Abstract
The subgenus Bryophyllum includes about 25 plant species native to Madagascar, and is widely used in traditional medicine worldwide. Different formulations from Bryophyllum have been employed for the treatment of several ailments, including infections, gynecological disorders, and chronic diseases, such as diabetes, neurological and neoplastic diseases. Two major families of secondary metabolites have been reported as responsible for these bioactivities: phenolic compounds and bufadienolides. These compounds are found in limited amounts in plants because they are biosynthesized in response to different biotic and abiotic stresses. Therefore, novel approaches should be undertaken with the aim of achieving the phytochemical valorization of Bryophyllum sp., allowing a sustainable production that prevents from a massive exploitation of wild plant resources. This review focuses on the study of phytoconstituents reported on Bryophyllum sp.; the application of plant tissue culture methodology as a reliable tool for the valorization of bioactive compounds; and the application of machine learning technology to model and optimize the full phytochemical potential of Bryophyllum sp. As a result, Bryophyllum species can be considered as a promising source of plant bioactive compounds, with enormous antioxidant and anticancer potential, which could be used for their large-scale biotechnological exploitation in cosmetic, food, and pharmaceutical industries.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| | - Eva Lozano-Milo
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
| | - Mariana Landin
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Grupo I+D Farma (GI-1645), Pharmacy Faculty, University of Santiago, E-15782 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), E-15782 Santiago de Compostela, Spain
| | - Pedro P. Gallego
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310 Vigo, Spain; (P.G.-P.); (E.L.-M.)
- CITACA—Agri-Food Research and Transfer Cluster, University of Vigo, E-32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
70
|
Arya SS, Rookes JE, Cahill DM, Lenka SK. Next-generation metabolic engineering approaches towards development of plant cell suspension cultures as specialized metabolite producing biofactories. Biotechnol Adv 2020; 45:107635. [PMID: 32976930 DOI: 10.1016/j.biotechadv.2020.107635] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
Abstract
Plant cell suspension culture (PCSC) has emerged as a viable technology to produce plant specialized metabolites (PSM). While Taxol® and ginsenoside are two examples of successfully commercialized PCSC-derived PSM, widespread utilization of the PCSC platform has yet to be realized primarily due to a lack of understanding of the molecular genetics of PSM biosynthesis. Recent advances in computational, molecular and synthetic biology tools provide the opportunity to rapidly characterize and harness the specialized metabolic potential of plants. Here, we discuss the prospects of integrating computational modeling, artificial intelligence, and precision genome editing (CRISPR/Cas and its variants) toolboxes to discover the genetic regulators of PSM. We also explore how synthetic biology can be applied to develop metabolically optimized PSM-producing native and heterologous PCSC systems. Taken together, this review provides an interdisciplinary approach to realize and link the potential of next-generation computational and molecular tools to convert PCSC into commercially viable PSM-producing biofactories.
Collapse
Affiliation(s)
- Sagar S Arya
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001, India; Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - James E Rookes
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - David M Cahill
- Deakin University, School of Life and Environmental Sciences, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
| | - Sangram K Lenka
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001, India.
| |
Collapse
|
71
|
Farhadi S, Salehi M, Moieni A, Safaie N, Sabet MS. Modeling of paclitaxel biosynthesis elicitation in Corylus avellana cell culture using adaptive neuro-fuzzy inference system-genetic algorithm (ANFIS-GA) and multiple regression methods. PLoS One 2020; 15:e0237478. [PMID: 32853208 PMCID: PMC7451515 DOI: 10.1371/journal.pone.0237478] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 01/28/2023] Open
Abstract
Paclitaxel as a microtubule-stabilizing agent is widely used for the treatment of a vast range of cancers. Corylus avellana cell suspension culture (CSC) is a promising strategy for paclitaxel production. Elicitation of paclitaxel biosynthesis pathway is a key approach for improving its production in cell culture. However, optimization of this process is time-consuming and costly. Modeling of paclitaxel elicitation process can be helpful to predict the optimal condition for its high production in cell culture. The objective of this study was modeling and forecasting paclitaxel biosynthesis in C. avellana cell culture responding cell extract (CE), culture filtrate (CF) and cell wall (CW) derived from endophytic fungus, either individually or combined treatment with methyl-β-cyclodextrin (MBCD), based on four input variables including concentration levels of fungal elicitors and MBCD, elicitor adding day and CSC harvesting time, using adaptive neuro-fuzzy inference system (ANFIS) and multiple regression methods. The results displayed a higher accuracy of ANFIS models (0.94-0.97) as compared to regression models (0.16-0.54). The great accordance between the predicted and observed values of paclitaxel biosynthesis for both training and testing subsets support excellent performance of developed ANFIS models. Optimization process of developed ANFIS models with genetic algorithm (GA) showed that optimal MBCD (47.65 mM) and CW (2.77% (v/v)) concentration levels, elicitor adding day (16) and CSC harvesting time (139 h and 41 min after elicitation) can lead to highest paclitaxel biosynthesis (427.92 μg l-1). The validation experiment showed that ANFIS-GA method can be a promising tool for selecting the optimal conditions for maximum paclitaxel biosynthesis, as a case study.
Collapse
Affiliation(s)
- Siamak Farhadi
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mina Salehi
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Moieni
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sadegh Sabet
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
72
|
Belwal T, Singh G, Jeandet P, Pandey A, Giri L, Ramola S, Bhatt ID, Venskutonis PR, Georgiev MI, Clément C, Luo Z. Anthocyanins, multi-functional natural products of industrial relevance: Recent biotechnological advances. Biotechnol Adv 2020; 43:107600. [PMID: 32693016 DOI: 10.1016/j.biotechadv.2020.107600] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/09/2023]
Abstract
Anthocyanins, the color compounds of plants, are known for their wide applications in food, nutraceuticals and cosmetic industry. The biosynthetic pathway of anthocyanins is well established with the identification of potential key regulatory genes, which makes it possible to modulate its production by biotechnological means. Various biotechnological systems, including use of in vitro plant cell or tissue cultures as well as microorganisms have been used for the production of anthocyanins under controlled conditions, however, a wide range of factors affects their production. In addition, metabolic engineering technologies have also used the heterologous production of anthocyanins in recombinant plants and microorganisms. However, these approaches have mostly been tested at the lab- and pilot-scales, while very few up-scaling studies have been undertaken. Various challenges and ways of investigation are proposed here to improve anthocyanin production by using the in vitro plant cell or tissue culture and metabolic engineering of plants and microbial culture systems. All these methods are capable of modulating the production of anthocyanins , which can be further utilized for pharmaceutical, cosmetics and food applications.
Collapse
Affiliation(s)
- Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Hangzhou 310058, People's Republic of China.
| | - Gopal Singh
- G.B. Pant National Institute of Himalayan Environment, Kosi- Katarmal, Almora 263643, India; Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Aseesh Pandey
- G.B. Pant National Institute of Himalayan Environment, Sikkim Regional Centre, Pangthang, Gangtok 737101, Sikkim, India
| | - Lalit Giri
- G.B. Pant National Institute of Himalayan Environment, Kosi- Katarmal, Almora 263643, India
| | - Sudipta Ramola
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Indra D Bhatt
- G.B. Pant National Institute of Himalayan Environment, Kosi- Katarmal, Almora 263643, India
| | - Petras Rimantas Venskutonis
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| | - Milen I Georgiev
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Hangzhou 310058, People's Republic of China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China.
| |
Collapse
|
73
|
Puvača N, Lika E, Tufarelli V, Bursić V, Ljubojević Pelić D, Nikolova N, Petrović A, Prodanović R, Vuković G, Lević J, Giannenas I. Influence of Different Tetracycline Antimicrobial Therapy of Mycoplasma ( Mycoplasma synoviae) in Laying Hens Compared to Tea Tree Essential Oil on Table Egg Quality and Antibiotic Residues. Foods 2020; 9:E612. [PMID: 32403221 PMCID: PMC7278781 DOI: 10.3390/foods9050612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
The food of animal origin that is the most consumed is the table egg, but laying hens treated with antibiotics can produce eggs contaminated with antibiotic residues. Residues of antibiotics may present a risk for consumer health. Keeping in mind that laying hens almost always suffer from Mycoplasma (Mycoplasma synoviae), for which they are treated with antibiotics, high-quality egg production is even harder. Our research aimed to investigate the influence of three different antibiotics compared to the tea tree (Melaleuca alternifolia) essential oil administered to naturally infected laying hens with M. synoviae, on antibiotic residues in eggs as well as the egg nutritive and sensory qualities. A total of 20,000 laying hens, housed in one facility and divided into four lines each consisting of 5000 hens naturally infected with M. synoviae, was used. For the antimicrobial therapy, tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC) were used, respectively. As a control, tea tree essential oil (TT) was used. Based on the gained results all tetracyclines treatment residue values were significantly (p < 0.05) higher compared to the control treatment (TT), but without any significant differences (p > 0.05) between themselves. The results showed no differences in the nutritive and the sensory qualities of eggs between the control and the experimental treatments (p > 0.05). Keeping in mind the obtained results from this study, it can be concluded that tea tree essential oil could be successfully used as a natural antibiotic in the treatment of M. synoviae, without any adverse effects on table egg quality.
Collapse
Affiliation(s)
- Nikola Puvača
- Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia;
| | - Erinda Lika
- Faculty of Veterinary Medicine, Agricultural University of Tirana, Kodor Kamez, 1000 Tirana, Albania;
| | - Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Bari “Aldo Moro”, 70010 Valenzano, Italy;
| | - Vojislava Bursić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | | | - Nedeljka Nikolova
- Institute of Animal Science, University “Ss. Cyril and Methodius”, Av. Ilinden 92/a, 1000 Skopje, North Macedonia;
| | - Aleksandra Petrović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Radivoj Prodanović
- Department of Engineering Management in Biotechnology, Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia;
| | - Gorica Vuković
- Institute of Public Health of Belgrade, Bulevar despota Stefana 54a, 11000 Belgrade, Serbia;
| | - Jovanka Lević
- Scientific Institute of Food Technology in Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
74
|
García-Pérez P, Lozano-Milo E, Landin M, Gallego PP. Machine Learning Unmasked Nutritional Imbalances on the Medicinal Plant Bryophyllum sp. Cultured in vitro. FRONTIERS IN PLANT SCIENCE 2020; 11:576177. [PMID: 33329638 PMCID: PMC7729169 DOI: 10.3389/fpls.2020.576177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/06/2020] [Indexed: 05/20/2023]
Abstract
Plant nutrition is a crucial factor that is usually underestimated when designing plant in vitro culture protocols of unexploited plants. As a complex multifactorial process, the study of nutritional imbalances requires the use of time-consuming experimental designs and appropriate statistical and multiple regression analysis for the determination of critical parameters, whose results may be difficult to interpret when the number of variables is large. The use of machine learning (ML) supposes a cutting-edge approach to investigate multifactorial processes, with the aim of detecting non-linear relationships and critical factors affecting a determined response and their concealed interactions. Thus, in this work we applied artificial neural networks coupled to fuzzy logic, known as neurofuzzy logic, to determine the critical factors affecting the mineral nutrition of medicinal plants belonging to Bryophyllum subgenus cultured in vitro. The application of neurofuzzy logic algorithms facilitate the interpretation of the results, as the technology is able to generate useful and understandable "IF-THEN" rules, that provide information about the factor(s) involved in a certain response. In this sense, ammonium, sulfate, molybdenum, copper and sodium were the most important nutrients that explain the variation in the in vitro culture establishment of the medicinal plants in a species-dependent manner. Thus, our results indicate that Bryophyllum spp. display a fine-tuning regulation of mineral nutrition, that was reported for the first time under in vitro conditions. Overall, neurofuzzy model was able to predict and identify masked interactions among such factors, providing a source of knowledge (helpful information) from the experimental data (non-informative per se), in order to make the exploitation and valorization of medicinal plants with high phytochemical potential easier.
Collapse
Affiliation(s)
- Pascual García-Pérez
- Applied Plant and Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, Vigo, Spain
- Clúster de Investigación e Transferencia Agroalimentaria do Campus da Auga - Agri-Food Research and Transfer Cluster, University of Vigo, Ourense, Spain
| | - Eva Lozano-Milo
- Applied Plant and Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, Vigo, Spain
- Clúster de Investigación e Transferencia Agroalimentaria do Campus da Auga - Agri-Food Research and Transfer Cluster, University of Vigo, Ourense, Spain
| | - Mariana Landin
- Grupo I+D Farma (GI-1645), AeMat, Pharmacology, Pharmacy and Pharmaceutical Technology Department, Pharmacy Faculty, University of Santiago, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pedro Pablo Gallego
- Applied Plant and Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, Vigo, Spain
- Clúster de Investigación e Transferencia Agroalimentaria do Campus da Auga - Agri-Food Research and Transfer Cluster, University of Vigo, Ourense, Spain
- *Correspondence: Pedro Pablo Gallego
| |
Collapse
|